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Abstract. The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological9

events, including Drought-Flood Abrupt Alternation (DFAA). The efficacy of potential mitigation10

measures, such as reservoirs, on DFAA under climate change remains poorly understood. This study11

investigates these dynamics using five Global Climate Models (GCMs) from the Coupled Model12

Intercomparison Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt13

Alteration Index (R-SDFAI), along with the Tsinghua Representative Elementary Watershed (THREW)14

model integrated with the developed reservoir module. The findings reveal that DFAA in the LMR15

Basin is primarily dominated by DTF (drought to flood), with probabilities of DTF exceeding those of16

FTD (flood to drought) at mild, moderate, and severe intensity levels. The increase in DTF probability17

for future periods is also significantly higher than that of FTD. Mild DTF and mild FTD account for18

58% to 90% and 75% to 100% of their total probability in the future, making the mild-intensity events19

the most frequent DFAA. Reservoirs play a significant role in reducing DTF risks during both dry and20

wet seasons, though their effectiveness in controlling FTD risks, particularly during the dry season, is21

relatively weaker. Furthermore, there is a positive correlation between the reservoir's capacity to22

mitigate total DFAA risk and its total storage. Reservoirs display a stronger ability to regulate23

high-intensity FTD and high-frequency DTF events, and significantly reduce the monthly duration of24

DFAA. These insights provide valuable guidance for the effective management of water resources25

cooperatives across the LMR Basin.26

Keywords. Drought-Flood Abrupt Alternation; Climate change; Reservoir operation; Lancang-Mekong27

River Basin.28
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1. Introduction29

Flood and drought are two of the most frequent natural disasters in the world (Adikari and Yoshitani,30

2009; ADREM et al., 2024). Drought-Flood Abrupt Alternation (DFAA), which is defined as the rapid31

transition between flood and drought conditions within a region (Xiong and Yang, 2025), has received32

growing attention in recent years (Chen et al., 2025; Wu et al., 2023; Zhang et al., 2012; Shan et al.,33

2018; Song et al., 2023). DFAA specifically consists of two types of rapid transition events: (1) drought34

to flood (DTF), where conditions shift quickly from drought to flood, and (2) flood to drought (FTD),35

where conditions rapidly change from flood to drought. Hazards arising from DFAA are more36

significant than those from floods and droughts. DFAA not only alters soil conditions and increases the37

potential for exceeding water quality standards (Bai et al., 2023; Yang et al., 2019) but also challenges38

food security and seriously affects agricultural production. Furthermore, DFAA, particularly DTF, is39

prone to triggering severe secondary natural hazards, primarily including flash floods, landslides, and40

mudslides (Wang et al., 2023).41

It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing42

trend (Yang et al., 2022; Chen et al., 2024). However, notable regional differences exist. Shan et al.43

(2018) observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded44

since the 1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that45

although droughts and floods have increased in the Huai River Basin, DFAA events have become less46

frequent. Looking ahead, Zhao et al. (2022) projected that the Han River Basin will experience an47

upward trend in both DFAA frequency and intensity, whereas Yang et al. (2019) reported a projected48

decline in the frequency of DFAA events in the Hetao region.49

The Lancang-Mekong River (LMR) Basin, as a significant international river in Southeast Asia,50

profoundly affects key sectors such as hydropower, agriculture, fisheries, and transport (Morovati et al.,51

2024). At the same time, the basin is a high-incidence area for floods and droughts (Liu et al., 2020;52

MRC, 2020). Notably, wet season droughts account for about 40% of annual drought (Tian et al., 2020),53

while the region is also prone to large floods during the dry season (e.g., May 2006, May 2007,54

December 2016) (Tellman et al., 2021). The existence of these wet-season droughts and dry-season55

floods establishes the necessary conditions for DFAA in the LMR Basin.56

Continued global warming is expected to further intensify both extreme wet and dry climate patterns57
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(IPCC, 2023), contributing to increased vulnerability to DFAA in the future (Yang et al., 2022; Wang et58

al., 2023; Chen et al., 2025). There is a strong tendency toward more intense floods and droughts in59

Southeast Asia (IPCC WG1, 2021) and specifically in the LMR Basin (Wang et al., 2021; Li et al.,60

2021; Dong et al., 2022; Hoang et al., 2016). This heightens concerns about DFAA patterns in the LMR61

Basin, emphasizing the need for improved water security, sustainable management, and early disaster62

forecasting and prevention systems.63

The hydrological regime of the LMR Basin is shaped mainly by climate change and human activities64

(LMC and MRC, 2023). Despite the severe impacts of climate change, human activities such as65

reservoir operation can help adapt the hydrological regime to these changes (Zhang et al., 2023;66

Khadka et al., 2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021). Research67

highlights that reservoirs play a crucial role in reducing flood damage during the wet season and in68

minimizing low-flow occurrences (Arias et al., 2014; Räsänen et al., 2012; Dang and Pokhrel, 2024).69

To evaluate reservoir impacts under the changing climate, integration of a reservoir module within70

hydrological models is a widely adopted practice. For example, Wang et al. (2017b) demonstrated that71

reservoir operation can reduce flood intensity and frequency, while Yun et al. (2021a; 2021b) showed72

that careful reservoir management can relieve both extreme drought and wet events, though with some73

trade-offs in hydroelectric benefits. Collectively, these studies indicate that reservoirs offer practical74

adaptation solutions to address climate change impacts.75

It is essential to consider how human activities, especially reservoir operations, can help manage DFAA76

under climate change. This consideration supports effective water resource management and the77

sustainable development of the basin system. However, little research to date has focused on this aspect78

for the LMR Basin. The statistics, reports, and studies on DFAA in the LMR Basin remain scarce,79

particularly concerning the mitigating role of reservoirs under the changing climate. In response, this80

study develops a reservoir module for hydrological modeling, examines the trends of DFAA in the81

LMR Basin under climate change, and assesses how reservoirs can help basin states adapt to changing82

conditions. This work aims to advance knowledge on DFAA and support regional water resources83

management and sustainability.84

2. Methodology85
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2.1 Study area86

The Lancang-Mekong River (LMR) originates from the Tibetan Plateau in China and flows through87

China, Myanmar, Laos, Thailand, Cambodia, and Vietnam before entering the South China Sea at the88

Mekong Delta. LMR is approximately 4900 km long with a basin area of 812,400 km2 (He, 1995). Its89

annual runoff is about 475 billion m3 (Sabo et al., 2017; Luo et al., 2023). LMR Basin is characterized90

by steep slopes and rapid flows in the upstream. The downstream features shallow slopes and slow,91

mixed flows. The wet and dry seasons in the LMR Basin extend from June to November and from92

December to May, respectively (LMC and MRC, 2023). These are mainly influenced by the93

southwestern and northeastern monsoons. The distribution of the hydrology system and mainstream94

hydrological stations in the LMR Basin is detailed in Fig. 1a.95

96
Figure 1: Hydrology of the LMR Basin. (a) Map of rivers and reservoirs, (b) Information on four main97
hydrological stations, and (c) distribution of reservoir storage. Here, JH, NK, PA, and KT denote JingHong,98
Nong Khai, Pakse, and Kratie stations, respectively.99

LMR Basin nourishes approximately 65 million people. The basin states rely on the river system to100

develop economic industries, including capture fisheries, irrigation agriculture, and hydropower. LMR101

Basin has the largest freshwater capture fishery in the world (MRC, 2010; MRC, 2019). Its irrigation102

area is estimated at around 4.3 million hectares (Do et al., 2020), with the Mekong Delta regarded as103
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Southeast Asia’s food basket. LMR Basin is one of the most active regions for hydropower in the world104

(MRC, 2019; Williams, 2019). It harbors about 235,000 GWhyr−1 of hydroelectric potential in its105

mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). LMR Basin is also heavily impacted106

by floods and droughts. During the past two decades, LMR Basin has experienced several severe107

droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and floods (Liu et al., 2020; Tian et al.,108

2020; MRC, 2020). These disasters affect crop cultivation and fisheries harvesting, leading to the loss109

of property and lives in riparian countries. In 2013 and 2018, floods heavily affected the lower basin,110

specifically Cambodia, Vietnam, Laos, and Thailand. These floods covered 22.3 and 6.47 thousand km2,111

respectively (Tellman et al., 2021).112

2.2 Data collection113

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the114

meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios,115

namely SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and116

high-emission scenarios, respectively. Five GCMs (Global Climate Models) with wide utilization and117

proven performance in the LMR Basin are applied in this study (Li et al., 2021; Yun et al., 2021a; Yun118

et al., 2021b), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and119

UKESM1-0-LL. The detailed information for these five GCMs is shown in Table 1 (Eyring et al., 2016;120

Gidden et al., 2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100. This study accordingly121

considers three research periods: the history period from 1980 to 2014 (consistent with CMIP6), the122

near future period from 2021 to 2060, and the far future period from 2061 to 2100.123

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980124

to 2020 are used to calibrate and validate the hydrological model. These data are derived from the125

China Meteorological Administration (CMA) and the Mekong River Commission (MRC). The126

hydrological stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse, and127

Kratie, whose locations and basic information are shown in Figs. 1a and 1b. This study uses the128

ERA5_Land data as the meteorological input for calibrating and validating the hydrological model, and129

as the correction dataset for correcting the raw CMIP6 data. ERA5_Land data cover the period from130

1980 to 2020, with a spatial resolution of 0.1°, and contain precipitation, temperature, and potential131

evapotranspiration. Soil data are obtained from the Global Soil Database (GSD) provided by the Food132
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and Agriculture Organization of the United Nations (FAO) with a spatial resolution of 10 km x 10 km.133

Normalized Vegetation Index (NDVI), Leaf Area Index (LAI), and Snow Cover data are obtained from134

MODIS (Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500 m x 500 m135

and a temporal resolution of 16 days.136

Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024).137

This study utilizes 122 reservoirs, which simultaneously contain information on location, storage, and138

operation years, including 24 reservoirs in the Lancang Basin and 98 reservoirs in the Mekong Basin.139

The earliest and latest operation years for them are 1965 and 2035. The location and storage140

distribution of these reservoirs are shown in Figs. 1a and 1c.141

Model Name Modeling Center Realization
Resolution

(Lon×Lat)

GFDL-ESM4
National Oceanic and Atmospheric Administration Geophysical

Fluid Dynamics Laboratory, United States
r1i1p1f1 1.25°×1°

IPSL-CM6A-LR Institute Pierre Simon Laplace, France r1i1p1f1 2.5°×1.25874°

MPI-ESM1-2-HRMax Planck Institute for Meteorology, Germany r1i1p1f1 0.9375°×0.9375°

MRI-ESM2-0 Meteorological Research Institute, Japan r1i1p1f1 1. 125°×1. 125°

UKESM1-0-LL Met Office Hadley Centre, UK r1i1p1f2 1.875°×1.25°

Table 1: Details of 5 GCMs applied in this study.142

2.3 Bias correction method for CMIP6 data143

The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al.,144

2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation145

in the LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange, 2019; Lange,146

2021). ERA5_Land data are used as correction data in this study to address bias in raw CMIP6 data.147

This study interpolates the data from the five GCMs of CMIP6, which have different spatial resolutions,148

to 0.1° (consistent with ERA5_Land) using the bilinear interpolation spatial resolution method. The149

interpolated CMIP6 data are bias-corrected for each GCM according to an N-dimensional probability150

density function transform of the multivariate bias correction approach (abbreviated as MBCn)151

(Cannon, 2016; Cannon, 2018). The MBCn method is trained based on the difference between152

precipitation and temperature data from ERA5_Land and CMIP6 over the history period (1980-2014),153

and then applied to the future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM.154

The MBCn method considers the multivariate dependency structure of meteorological data and enables155

the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and156
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quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as157

illustrated in Eqs. (1) and (2).158

푿�푇
[푙] = 푿푇

[푙]푹[푙]

푿�푆
[푙] = 푿푆

[푙]푹[푙]

푿�푃
[푙] = 푿푃

[푙]푹[푙]
(1)159

Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming160

historical observations 푋푇
[푙], historical climate model simulations 푋푆

[푙], and climate model projections161

푋푃
[푙] using a random orthogonal rotation matrix 푅[푙] during the l-th iteration. The rotated data are162

represented as 푋�푇
[푙], 푋�푆

[푙], and 푋�푃
[푙]. This procedure is pivotal for MBCn's multivariate joint distribution163

correction, as it transforms the original variable space into new random orientations. In contrast to164

conventional univariate correction approaches, MBCn employs a random orthogonal matrix to mix165

variables, thereby breaking their independence.166

∆(푛)[푙](푖) = 푥�푃
(푛)[푙](푖) − 퐹푆

(푛)[푙]−1(퐹푃
(푛)[푙](푥�푃

(푛)[푙](푖)))

푥�푃
(푛)[푙](푖) = 퐹푇

(푛)[푙]−1(퐹푃
(푛)[푙](푥�푃

(푛)[푙](푖))) + ∆(푛)[푙](푖)
(2)167

Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to the168

n-th dimension of the rotated climate model projection data 푥�푃
(푛)[푙](푖) within the rotated space of the169

푙-th iteration. Here, ∆(푛)[푙](푖) represents the quantile difference between the historical climate model170

simulations and climate model projections in the l-th iteration and the n-th dimension. 퐹푃
(푛)[푙] denotes171

the empirical cumulative distribution function for the rotated climate model projection data in the n-th172

dimension. 퐹푇
(푛)[푙]−1 and 퐹푆

(푛)[푙]−1 denote inverse Functions of the empirical cumulative distribution173

functions for the rotated historical observation data and historical climate model simulation data in the174

n-th dimension. This step preserves the trend of the climate model projection data throughout the175

correction process. The number of iterations is typically set to 10-30.176

The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying177

random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the178

climate model. The rotation operation breaks dependencies between variables, enabling the quantile179

delta mapping of a single variable to indirectly adjust multivariate correlations. The quantile delta180

mapping ensures the transmission of absolute or relative trends by computing quantile differences181

between the historical and projected periods of the climate model. The MBCn method has been182
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reported to increase correction precision and accuracy compared to univariate and other multivariate183

bias correction algorithms (Cannon, 2018).184

In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential185

evapotranspiration data for five GCMs under three SSP scenarios, based on daily temperature. The186

computational approach is outlined in Eq. (3).187

푃퐸푇 = [1 + 훼0(푇 − 푇0� �� )]푃퐸푇0� ����� (3)188

Where, 푇0� �� and 푃퐸푇0� ����� correspond to the daily air temperature (°C) and daily potential189

evapotranspiration (mm day⁻¹) in the history period sourced from ERA5_Land datasets. 푇 signifies190

the corrected daily air temperature (°C) from CMIP6 datasets. The parameter 훼0 is determined by the191

relationship between daily potential evapotranspiration and daily temperature in ERA5_Land data192

during the history period.193

2.4 Hydrological model coupled with reservoir module194

The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this195

study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for196

spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone,197

bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach,198

saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008).199

The model is built upon scale-coordinated equilibrium equations, geometrical relationships, and200

constitutive relationships, and enables comprehensive simulation of complex hydrological processes201

from mountain to ocean. The fundamental balance equations in the THREW model are listed in Eqs. (4)202

to (6).203

푑
푑푡
(휌훼

푗� �� 휖훼
푗 푦푗휔푗) = 푃 푒훼

푗푃∑ + 훽≠훼 푒훼훽
푗∑ (4)204

Eq. (4) demonstrates the general form of the mass conservation equation at the REW scale. 푑
푑푡

denotes205

the time derivative. 휌훼
푗� �� refers to the time-averaged density of phase 훼 in sub-region j, in kg·m-3. 휖훼

푗206

means the volume fraction of phase α within sub-region j. 푦푗 indicates the time-averaged thickness of207

sub-region j, in m. 휔푗 means the time-averaged fraction of REW horizontal area occupied by208

sub-region j. 푒훼
푗푃 denotes the net mass exchange flux of phase 훼 in sub-region j through interface P209

(e.g., with atmosphere, groundwater, neighboring REWs), in kg·m-2·s-1, where a positive value210
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indicates the inflow to sub-region j. 푒훼훽
푗 refers to the phase transition rate between phase 훼 and phase211

훽 within sub-region j, in kg·m-2·s-1, where a positive value indicates phase 훼 gains mass from phase212

훽. Sub-region here refers to the eight zones within each REW.213

(휌훼
푗� �� 휖훼

푗 푦푗휔푗) 푑푣훼
푗� ��

푑푡
= 푔훼

푗 휌훼
푗� ���� 휖훼

푗 푦푗휔푗 + 푃푇훼
푗푃∑ + 훽≠훼 푇훼훽

푗∑ (5)214

Eq. (5) presents the general form of the momentum conservation equation at the REW scale. 푣훼
푗� ��215

indicates the time-averaged velocity vector of phase α in sub-region j, in m·s-1. 푔훼
푗� �� denotes the216

time-averaged gravity vector of phase 훼 in sub-region j, in m·s-2. 푇훼
푗푃 means the force vector217

(pressure, friction, seepage) exerted on phase 훼 in sub-region j by interface P, in N·s-2, representing218

the momentum exchange. 푇훼훽
푗 refers to the interfacial force vector between phase 훼 and phase 훽219

within sub-region j, in N·s-2, including drag and capillarity.220

(휖훼
푗 푦푗휔푗푐훼

푗 ) 푑휃훼
푗� ��

푑푡
= ℎ훼

푗 휌훼
푗� ���� 휖훼

푗 푦푗휔푗 + 푃푄훼
푗푃∑ + 훽≠훼푄훼훽

푗∑ (6)221

Eq. (6) exhibits the general form of the heat conservation equation at the REW scale. 푐훼
푗 means the222

specific heat capacity (constant volume) of phase 훼 in sub-region j, in J·kg-1·K-1. 휃훼
푗 refers to the223

time-averaged temperature of phase 훼 in sub-region j, in K. ℎ훼
푗� �� denotes the heat generation rate per224

unit mass within phase α in sub-region j, in W·kg-1 (e.g., radioactive decay, negligible usually). 푄훼
푗푃225

indicates the heat exchange rate between phase 훼 in sub-region j and its environment via interface P,226

in W·m-2, with the positive value representing the heat gained by phase 훼 in sub-basin j. 푄훼훽
푗 refers227

to the heat exchange rate between phase 훼 and phase 훽 within sub-region j, in W·m-2, with a positive228

value indicating that heat is gained by phase 훼.229

The THREW model employs an automatic calibration procedure to calibrate hydrological parameters230

through parallel computation (Nan et al., 2021). The calibration period of the THREW model in the231

LMR Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The Nash-Sutcliffe232

efficiency coefficient (NSE) indicator is adopted to calibrate the objective function and evaluate233

simulation effectiveness at the daily scale, which is calculated according to Eq. (7). The THREW234

model has been successfully applied to a number of basins with various climate characteristics235

worldwide (Tian et al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang et al.,236

2023).237
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푁푆퐸 = 1 − 푛푢푚=1
푁 (푄표푏푠

푛푢푚−푄푠푖푚
푛푢푚)2∑

푛푢푚=1
푁 (푄표푏푠

푛푢푚−푄표푏푠� ���� )2∑
(7)238

Where, 푄표푏푠푛푢푚 is the daily observed runoff, 푄푠푖푚푛푢푚 is the daily simulated runoff, 푄표푏푠� ���� is the average of239

observed runoff, and 푁 is the total number of days.240

This study extends the THREW model by developing and integrating a reservoir management module.241

This integration allows the expanded THREW model to use detailed data on 122 reservoirs in the LMR242

Basin, with operational years ranging from 1965 to 2035. By specifying whether the module is active,243

the model can simulate either natural runoff (without considering reservoirs) or dammed runoff (with244

reservoirs included). This setup ensures a seamless interaction between the core model and the245

reservoir operations framework.246

Reservoir operation follows consistent rules across time and space, with each reservoir starting247

operation according to its operational year. Strategies are adapted in response to inflow fluctuations and248

administered on a daily scale. Each reservoir is assigned based on location. Cumulative multi-year249

sub-basin storage is calculated as input for the reservoir module, which operates in two phases: initial250

and normal. The normal phase is divided into general and emergency cases, both using the same251

operation rules but differing constraints; the emergency case allows more flexibility. The module's252

flowchart is illustrated in Fig.2.253

If a REW's cumulative multi-year storage changes within a year, it signals the start of a new reservoir's254

operation, which follows initial phase rules. During the initial phase, the outlet flow matches the inlet if255

it is below the minimum discharge constraint; otherwise, it meets the minimum discharge constraint.256

The rules for the initial phase are described as Eqs. (8) to (9). Storage and discharge constraints are257

defined in Eqs. (10) to (11) (Tennant, 1976; Yun et al., 2020). The initial phase ends when reservoir258

storage exceeds the minimum constraint (Eq. (12)), then transitions to the normal phase.259

푄표푢푡 =
푄푖푛, 푄푖푛 < 푄푚푖푛
푄푚푖푛, 푄푖푛 ≥ 푄푚푖푛

(8)260

푆푡 = 푆푡−1 + 푄푖푛 − 푄표푢푡 (9)261

푆푚푖푛 = 0.2 × 푆푡표푡푎푙 (10)262

푄푚푖푛 = 0.6 × 푄푎푣푒 (11)263

푆푡 ≥ 푆푚푖푛 (12)264
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Where 푄표푢푡 is the outlet flow, 푄푖푛 is the inlet flow, 푄푚푖푛 is the minimum discharge constraint, 푆푡 is265

the storage for time t, 푆푚푖푛 is the minimum storage constraint, 푆푡표푡푎푙 is the total storage, and 푄푎푣푒 is266

the average multi-year runoff during the calibration period (i.e., 2000-2009).267

268

Figure 2: Flowchart of the constructed reservoir module.269

The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model270

(SOP) (Wang et al., 2017a; Morris and Fan, 1998), as depicted in Eq. (9) and Eqs. (13) to (16). Under271

the premise of water balance (Eq. (9)), constraints for annual storage (Eq. (13)), outlet flow (Eq. (14)),272

wet season storage (Eq. (15)), and dry season storage (Eq. (16)) are considered separately, where273

priority is given to the annual storage constraint (Eq. (13)).274

푆푚푖푛 ≤ 푆푡 ≤ 푆푚푎푥 (13)275

푄푚푖푛 ≤ 푄표푢푡 ≤ 푄푚푎푥 (14)276

푚푖푛 푆푐 − 푆푡 , 푚표푛푡ℎ = 6,7,8,9,10,11 (15)277

푚푖푛 푆푛 − 푆푡 , 푚표푛푡ℎ = 12,1,2,3,4,5 (16)278

Where 푄푚푎푥 is the maximum discharge constraint, 푆푚푎푥 is the maximum storage constraint, 푆푐 is279

the storage corresponding to the flood control level, and 푆푛 is the storage corresponding to the normal280

water level.281
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When in the normal phase, the reservoir first applies general case constraints (Eqs. (17) to (22)). If282

outlet flow is not fully satisfied (Eq. (14)), constraints switch to the emergency case, and the reservoir283

is rescheduled. Eq. (23) signals an emergency case start, which provides more flexible flow limits to284

avoid extremes. Emergency case constraints are in Eqs. (24) to (25).285

푄푚푎푥 = 2 × 푄푎푣푒 (17)286

푄푚푖푛 = 0.6 × 푄푎푣푒 (18)287

푆푐 = 푆푚푖푛 × 1.2 (19)288

푆푛 = 푆푚푎푥 × 0.8 (20)289

푆푚푖푛 = 0.2 × 푆푡표푡푎푙 (21)290

푆푚푎푥 =
0.8 × 푆푡표푡푎푙, 푚표푛푡ℎ = 6,7,8,9,10,11
1 × 푆푡표푡푎푙, 푚표푛푡ℎ = 12,1,2,3,4,5 (22)291

푄푚푖푛 ≤ 푄표푢푡' ≤ 푄푚푎푥 (23)292

푄푚푖푛 = 0.3 × 푄푎푣푒 (24)293

푆푚푎푥 = 0.8 × 푆푡표푡푎푙 (25)294

Where 푄표푢푡' is the outlet flow after the scheduling in the general case.295

2.5 Indicator for DFAA296

It is common practice to quantify DFAA incidents via indices. LDFAI, proposed by Wu et al. (2006),297

quantitatively characterizes long-term DFAA during the wet season and has been widely adopted (Ren298

et al., 2023; Shi et al., 2021; Yang et al., 2022; Yang et al., 2019). Building on this, Zhang et al. (2012)299

introduced the one-month interval SDFAI, extending its application from precipitation to runoff and300

characterizing short-term DFAA. SDFAI has since been applied in fields such as hydrology,301

meteorology, ecology, and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al.,302

2019).303

Song et al. (2023) proposed the Revised Short-cycle Drought-Flood Abrupt Alteration Index304

(R-SDFAI), which extends the LDFAI and SDFAI time frame from only the flood season to the entire305

year, facilitating multi-year DFAA analysis. R-SDFAI also addresses issues of over-identification,306

under-identification, and misrepresentation of DFAA severity found in SDFAI. Therefore, this study307
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uses R-SDFAI for DFAA analysis, with the formulas outlined in Eqs. (26) to (31) (Song et al., 2023).308

퐹1 = 푆푖+1 − 푆푖 (26)309

퐹2 = 푆푖+1 + 푆푖 (27)310

퐹 = 퐹1
퐹2

푆푖+1+푆푖
(28)311

퐼 = 퐹 × 푚푖푛( 푆푖+1 , 푆푖 ) (29)312

퐼' = ( 퐼
0.5
)
푚푎푥( 푆푖+1 , 푆푖 )2

퐹1 +퐹2 × 퐼
푚푎푥( 푆푖+1 , 푆푖 )

퐹1 +퐹2 +퐼
푚푖푛( 푆푖+1 , 푆푖 )

퐹1 +퐹2

2
(30)313

푅 − 푆퐷퐹퐴퐼 = 푠푖푔푛(퐹1) × (
퐼'

퐼'0.5
× 퐼

0.5
)
[
푚푎푥( 푆푖+1 , 푆푖 )

퐹1 +퐹2
]
[1−

푚푎푥( 푆푖+1 , 푆푖 )
퐹1 +퐹2

]

(31)314

Where, 푆푖 refers to the SRI in month i, 퐹1 denotes the intensity of DFAA, 퐹2 denotes the absolute315

intensity of drought and flood, and 퐹 is a weighting factor between 0 and 1. 퐼'0.5 refers to 퐼' when316

I=0.5.317

The calculation process of SRI utilized in this work is explained in Eqs. (32) to (37). Eq. (32) gives the318

probability density function that satisfies the Gamma distribution for runoff x at a given time period.319

푔(푥) = 1
훽훼훤(훼)

푥훼−1푒−
푥
훽, 푥 > 0 (32)320

Where, 훼 > 0 and 훽 > 0 are respectively the shape and scale parameters. 훼� and 훽� are the optimal321

values of 훼 and 훽, obtained according to the maximum likelihood estimation method, as illustrated in322

Eqs. (33) to (35). 훤(훼) is the gamma function, as given in Eq. (36).323

훼� = 1
4퐴
(1 + 1 + 4퐴

3
(33)324

훽� = 푥�
훼�

(34)325

퐴 = 푙푛 (푥�) − 푙푛 (푥푖)∑
푛푢푚

(35)326

훤(훼) = 0
∞푦훼−1푒푦 푑푦푑푦∫ (36)327

Where, 푥푖 is the sample of runoff sequence, 푥� is the average runoff, and 푛푢푚 is the length of the328

runoff sequence.329

Then the cumulative probability of runoff x is illustrated in Eq. (37).330
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퐺(푥) = 0
푥푔(푥) 푑푥푑푥∫ = 1

훽�훼�훤(훼�) 0
푥 푥훼�−1푒

−푥
훽� 푑푥푑푥∫ , 푥 > 0 (37)331

The R-SDFAI index identifies DFAA events with a threshold of ±1 (Song et al., 2023), and further332

categorizes DFAA events into three intensity levels—mild, moderate, and severe—using thresholds of333

±1, ±1.44, and ±1.88, as demonstrated in Table 2. This classification follows the criteria proposed by334

Song et al. (2023). The underlying rationale involves using ±0.5, ±1, and ±1.5 as thresholds for the335

SRI index to categorize extreme hydrological events into mild, moderate, and severe droughts and336

floods (positive values indicate flood, while negative values indicate drought). The R-SDFAI index337

values of ±1, ±1.44, and ±1.88 are calculated through the transitions between mild drought and mild338

flood, moderate drought and moderate flood, and severe drought and severe flood. These thresholds339

serve as the classification criteria for mild, moderate, and severe DFAA events. For a more detailed340

explanation of this classification standard, please refer to Song et al. (2023). In this study, the341

frequency of DFAA events is represented by their occurrence probabilities during history, near future,342

and far future periods, while the intensity of DFAA is assessed through the probability of different343

intensity events.344

Event Intensity Classification

DTF

Mild 1 ≤ R-SDFAI < 1.44

Moderate 1.44 ≤ R-SDFAI < 1.88

Severe R-SDFAI ≥ 1.88

FTD

Mild -1.44 < R-SDFAI ≤ −1

Moderate −1.88 < R-SDFAI ≤ −1.44

Severe R-SDFAI ≤ −1.88

Table 2: The evaluation criteria and intensity classification for DFAA events.345

2.6 Scenario Setting346

This study examines two scenarios: dammed (with reservoir operations) and natural (without reservoir347

operations). Meteorological data from five GCMs under three SSPs are downscaled to the REW scale348

and used as input for the THREW model. The model, with the reservoir module, simulates runoff at349

key hydrological stations for the history period (1980-2014), the near future (2021-2060), and the far350

future (2061-2100). Both scenarios—with and without reservoir management—are examined. The351

R-SDFAI indicator evaluates DFAA event probabilities for each period and each scenario, using runoff352

simulated by the 5 GCMs and 3 SSPs.353
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This study adopts the difference in DFAA’s probability between the natural scenario (without reservoir354

operations) and the dammed scenario (with reservoir operations) to capture the reservoir’s impact, as355

shown in Eq. (38).356

푃퐼푚푝푎푐푡 표푓 푅푒푠푒푟푣표푖푟푠,푖,푒 = 푃퐷푎푚푚푒푑,푖,푒 − 푃푁푎푡푢푟푎푙,푖,푒 (38)357

Where 푃퐼푚푝푎푐푡 표푓 푅푒푠푒푟푣표푖푟푠,푖,푒 represents the impact of reservoirs on the probability of event e in period358

i. 푃푁푎푡푢푟푎푙,푖,푒 denotes the probability of event e under the natural scenario in period i, while 푃퐷푎푚푚푒푑,푖,푒359

denotes the probability of event e under the dammed scenario in period i. Period i refers to the near360

future and far future periods. Event e indicates the DTF, FTD, and DFAA events.361

Eqs. (39) and (40) give the definitions of 푃푁푎푡푢푟푎푙,푖,푒 and 푃퐷푎푚푚푒푑,푖,푒 described above.362

푃푁푎푡푢푟푎푙,푖,푒 =
푀푁푎푡푢푟푎,푖,푒

푇푀푖
(39)363

푃퐷푎푚푚푒푑,푖,푒 =
푀퐷푎푚푚푒푑,푖,푒

푇푀푖
(40)364

Where 푀푁푎푡푢푟푎,푖,푒 denotes the number of months in which event e occurs in period i under the natural365

scenario. 푀퐷푎푚푚푒푑,푖,푒 denotes the number of months occurred event e in period i under the dammed366

scenario. 푇푀푖 refers to the total number of months in period i. Period i refers to the near future and far367

future periods. Event e indicates the DTF, FTD, and DFAA events.368

As each GCM possesses a unique structure and assumptions, projections of climate change by a single369

GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of370

hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple371

GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties,372

and ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016;373

Hecht et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in374

prior studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this375

research determines the average DFAA probability from five GCMs to lessen the uncertainty in their376

predictions and assesses the fluctuation in these probabilities across the models to demonstrate their377

variability.378

3. Result379
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3.1 CMIP6 data bias correction performance380

From both regional and seasonal perspectives, the uncorrected raw CMIP6 data show significant381

discrepancies with ERA5_Land data during the history period (1980-2014). When compared with382

ERA5_Land data, the uncorrected raw CMIP6 data reveal an average annual precipitation bias of383

± 1800 mm and an average daily temperature of ± 12 ℃ (Figs. 3b and 3e). These notable384

inconsistencies highlight that using uncorrected CMIP6 data for hydrological modeling would incur385

considerable inaccuracies. However, CMIP6 data corrected by the MBCn method deviate from386

ERA5_Land data by no more than ±120 mm of average annual precipitation and ±0.2 ℃ of average387

daily temperature (Figs. 3c and 3f). The bias correction greatly improves CMIP6 data accuracy in the388

LMR Basin. The corrected CMIP6 data also match the seasonal cycle of ERA5_Land well for both389

precipitation and temperature (Fig. 3g). Compared to the raw data, the corrected CMIP6 shows much390

improved spatial and temporal accuracy, leading to more accurate and reasonable analyses for DFAA.391

3.2 Calibration and validation for the hydrological model392

The daily observed runoff and daily simulated runoff from the THREW model for the calibration393

period (2000-2009) and validation period (2010-2020) are illustrated in Fig. 4, demonstrating the394

model’s strong performance. Importantly, since there was no massive reservoir construction in the395

LMR Basin before and during the calibration period (Zhang et al., 2023), the THREW model without396

the reservoir module is applied for calibration. Meanwhile,the addition of large-scale reservoirs during397

the validation period allows validation of the THREW model configuration with the reservoir module,398

Notably, the THREW model captures runoff fluctuations between wet and dry seasons with high399

accuracy, achieving an NSE of at least 0.8 during both periods. This excellent simulation performance400

extends across both upstream and downstream regions, emphasizing the robustness of the model under401

observed conditions.402
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403
Figure 3: Averaged meteorological data of 5 GCMs for the history period (1980-2014). Here, 5 GCMs are404
corrected separately. (a)-(c) present the spatial distribution of precipitation based on respectively405
ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected406
CMIP6 minus ERA5_Land). (d)-(f) illustrate the spatial distribution of temperature based on ERA5_Land,407
raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus408
ERA5_Land). (g) seasonal cycles of temperature and precipitation from ERA5_Land, raw and409
bias-corrected CMIP6, as well as their corresponding range.410
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411
Figure 4: Performance of the THREW model in calibration (2000-2009) and validation (2010-2020) periods.412
Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.413

3.3 DFAAunder the changing climate414

Under the natural scenario (without reservoir operations), DFAA in the LMR Basin is dominated by415

DTF, that is, the risk of DTF is more critical than that of FTD (Fig. 5a). The probability of FTD ranges416

from 0.7% to 2.1% in the history period, 0.6% to 2.0% in the near future, and 0.5% to 2.0% in the far417

future. Conversely, DTF probabilities are higher, ranging from 1.6% to 2.3%, 1.2% to 3.2%, and 1.2%418

to 3.0% respectively in these three periods.419

DFAA risk is substantially elevated during the wet season compared to the dry season (Fig. 5a). For the420

average of five GCMs, the probability of FTD in the wet season is 2 to 5.5 times higher than that in the421

dry season in the history period. In the near and far future periods, this ratio ranges from 1.1 to 36 times422

and 3.3 to 41 times, respectively. As for DTF, the probability in the wet season is correspondingly 1.7423

to 5.7 times, 1.3 to 3.9 times, and 0.9 to 6.3 times higher than that in the dry season for history, near424

future, and far future. Only JingHong station experiences a slightly higher probability of DTF in the425

dry season (1.25%) than in the wet season (1.17%) for the far future.426

DFAA risks show marked spatial variation, with annual probability consistently higher downstream427

than upstream (Fig. 5a). The annual probability of FTD ranges from 0.6% to 1.3% at JingHong station428

and 0.7% to 1.4% at Nong Khai station. These probabilities rise to 1.2% to 2.1% and 1.4% to 2.1% at429

Pakse and Kratie stations, respectively. Similarly, the annual probability of DTF at JingHong and Nong430

Khai stations is 1.2% to 2.1% and 1.2% to 2.3%. The probabilities at Pakse and Kratie stations range431
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from 1.4% to 3.2% and 3.1% to 3.2%, respectively. The DTF risk in the wet season and the FTD risk in432

both dry and wet seasons are also higher downstream than upstream. Since the probability of FTD in433

the dry season at Nong Khai, Pakse, and Kratie stations is limited, especially under the SSP5-8.5434

scenario (<0.2%), the risk of FTD in the dry season appears more notable upstream than downstream.435

436
Figure 5: DFAA under the natural scenario. Here, JH, NK, PA, and KT respectively denote JingHong,437
Nong Khai, Pakse, and Kratie stations. (a) Seasonal probability of DFAA averaged across five GCMs438
during the history (1980-2014), near future (2021-2060), and far future (2061-2100) periods, as well as under439
three SSPs. The annual probability is half of the sum of wet and dry season probabilities. (b) The annual440
change in DFAA probability averaged across five GCMs and their ranges in the near and far future periods441
with respect to the history period under three SSPs. (c) The seasonal change in DFAA probability averaged442
across five GCMs and their ranges in the near and far future periods with respect to the history period443
during wet and dry seasons under three SSPs.444

The annual DFAA probability increases under SSP1-2.6 and SSP2-4.5 scenarios (except for FTD at445

Pakse station) and decreases under the SSP5-8.5 scenario (Fig. 5b). Such a pattern is attributable to the446

enhanced tendency for flood and drought events in the LMR Basin to cluster rather than alternate under447

the SSP5-8.5 scenario (Dong et al., 2022). Under SSP5-8.5 scenario, the average probability of FTD448

across five GCMs is 0.6% to 1.8%, while the probability of DTF ranges from 1.2% to 2.6%.449

Conversely, the average probabilities of FTD and DTF under the SSP2-4.5 scenario range from 0.7% to450

2.1% and 1.7% to 3.2%, respectively.451

452
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The future growth in DTF is significantly greater than that in FTD. For the average probabilities across453

five GCMs, relative to the history period, the future change in DTF probability at JingHong station is454

-0.5% to 0.4%, at Nong Khai station is -0.4% to 0.7%, and at Pakse and Kratie stations, respectively, is455

-0.5% to 0.9% and -0.2% to 0.8%. The future FTD probability change for JingHong is -0.2% to 0.5%,456

while for Nong Khai, Pakse, and Kratie, it is -0.4% to 0.3%, -1% to -0.1%, and -0.6% to 0.2%,457

respectively. The maximum values from the five GCMs show a consistent trend, with increases in DTF458

probability being significantly greater than those in FTD probability.459

Upstream and downstream regions experience contrasting future risk increases, with FTD risks rising460

more upstream and DTF risks rising more downstream (Fig. 5b). Under three climate models, Jinghong461

Station experiences the maximum increase of 0.37% and 0.08% in DTF risks, respectively, in the near462

and far future. Meanwhile, FTD risks at this station rise by 0.45% and 0.53%, respectively. Conversely,463

Kratie Station exhibits the highest increase of 0.83% and 0.71% in DTF risks, alongside 0.06% and464

0.02% increases in FTD risks. The opposite trends of DFAA risk in upstream and downstream pose465

enhanced challenges to the integrated management of the LMR Basin.466

Future seasonal DFAA risks follow scenario-dependent trends: wet-season risks for both DTF and FTD467

rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under the SSP5-8.5 scenario (Fig. 5c). This is468

similar to the annual DFAA risk. The risk of FTD during the dry season decreases, with an upward469

trend emerging only in the near future under the SSP2-4.5 scenario (average across five GCMs <0.4%,470

maximum <1.3%). The risk of DTF during the dry season rises in most situations, except at Nong Khai471

station in the near future under the SSP5-8.5 scenario, where it shows an average decrease of 0.46%472

across five GCMs. The largest increase of dry-season risk of DTF is found at Pakse station under the473

SSP2-4.5 scenario, with an average increase of 1.08% across five GCMs and a maximum increase of474

2.08%.475

Mild-intensity DFAA events constitute the majority of all DFAA occurrences (Fig. 6). The probability476

of mild DTF varies across scenarios, with values ranging from 0.7% to 2.4%, which corresponds to477

58% to 90% of the total DTF probability. Likewise, mild FTD probabilities range from 0.6% to 1.8%478

(Fig. 6), comprising a larger share of the total FTD probability, specifically 75% to 100%. Mild DTF479

events account for 2 to 13 times the possibility of moderate DTF events. This ratio escalates to 3 to 31480

times for FTD events. Notably, severe FTD events are extremely rare, often occurring at 0% probability.481

However, severe DTF events are notable, with probabilities ranging from 0% to 0.38%, and in some482



21

instances, accounting for up to 13% of total DTF probability.483

The total probability of DTF events exceeds that of FTD events (Fig. 5a), and this holds true for mild,484

moderate, and severe intensity events (Fig. 6). The disparity between DTF and FTD events is not as485

pronounced in mild intensity events, but it becomes significant in moderate intensity events. The486

probabilities of moderate DTF range from 0.08% to 0.75%, whereas the probabilities of moderate FTD487

range from 0.04% to 0.42% (Fig. 6). The marked disparity in severe intensity events is even more488

pronounced by the extremely low probability of severe FTD.489

490
Figure 6: Annual probability of DFAA at different intensities under the natural scenario, averaged across491
five GCMs and their ranges in the near future (2021-2060) and far future (2061-2100) periods under three492
SSPs. Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations.493

Mild DTF probabilities are projected to increase in the far future, while moderate and severe DTF494

probabilities are projected to decrease. Specifically, the probability of mild DTF rises to 1.1% to 2.4%495

in the far future, compared to 0.7% to 2.3% in the near future. The probabilities of moderate and severe496

DTF drop from an average of 0.42% and 0.19% in the near future to 0.38% and 0.12%, respectively, in497

the far future. However, the probabilities of FTD events across all three intensity levels remain498

relatively consistent between the near and far future.499

3.4 Reservoirs’ impacts on DFAA500

Reservoirs exhibit extraordinary mitigation effects on DTF risk under the changing climate while501

showing weaker effects in FTD risk (Fig. 7a). Nonetheless, the higher probability of DTF compared to502

FTD (Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk.503
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Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%,504

averaged across five GCMs. Throughout this section, a negative value indicates that reservoirs increase505

the probability of DFAA, while positive values indicate a reduction. In most scenarios, the reservoir506

plays a positive mitigating role across all GCMs (Fig. 7a). Reservoirs are expected to have better507

mitigation effects in the near future at JingHong station. As for Nong Khai and Pakse stations, the508

reduction effect of reservoirs on DTF is more pronounced in the far future under SSP1-2.6 and509

SSP2-4.5 scenarios, while in the near future under the SSP5-8.5 scenario. The effect conversely,510

exhibits greater strength under SSP1-2.6 and SSP5-8.5 scenarios in the near future, while it is stronger511

under the SSP2-4.5 scenario in the far future at Kratie station. These findings are consistent across both512

the average of the GCMs and their ranges.513

514
Figure 7: Reservoir impacts on DFAA during the near future (2021-2060) and the far future (2061-2100)515
under three SSPs. Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations,516
respectively. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The517
seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges.518

Reservoirs are more effective in reducing FTD in the near future than in the far future at JingHong,519

Pakse, and Kratie, while the effect at Nong Khai is slightly less in the far future (Fig. 7b). Reservoirs520

are most effective under high emissions (SSP5-8.5), reducing FTD probability at all stations (0.13% to521

0.42%, GCM average). Under lower emissions (SSP1-2.6 and SSP2-4.5), mitigation is weaker (-0.33%522

to 0.38%, GCM average) at Nong Khai and Pakse, but notable at JingHong and Kratie, especially in523
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certain future periods. For example, under intermediate emissions (SSP2-4.5) in the far future at524

JingHong, reservoirs lower the average probability by over 0.9% and maximum by nearly 1.8%.525

Reservoirs reduce FTD more in the wet season (-0.17% to 1.5%, GCM average) than in the dry season526

(-1% to 0.67%), especially at Nong Khai, Pakse, and Kratie (Fig. 7b). Negative values mean a reservoir527

increases FTD probability. In the wet season, reduction is notable (-0.17% to 0.92%), but in the dry528

season, FTD probability increases (-1% to 0.33%). Seasonal differences in DTF mitigation are less529

pronounced. Reservoirs slightly better reduce DTF in the dry season (-0.17% to 1.25%) than in the wet530

season (-0.42% to 0.83%). Reservoirs mitigate DTF more effectively than FTD in both seasons,531

aligning with the annual DFAA.532

Reservoirs effectively manage DFAA events, which are predominantly characterized by mild intensity.533

They decrease the probability of mild DTF by -0.1% to 0.9% (Fig. 8), whereas the probability of such534

events is 0.7% to 2.4% under the natural scenario (Fig. 6), indicating that reservoirs decrease their535

likelihood by -0.12 to 0.64 times. Reservoir reduces the probability of mild FTD by -0.4% to 0.8% (Fig.536

8). They increase the probability of mild FTD at the Nong Khai station under the SSP1-2.6 scenario.537

Since the probability of mild FTD is 0.6% to 1.8% under the natural scenario (Fig. 6), reservoir538

operation reduces their probability by -0.38 to 0.69 times.539

540
Figure 8: Reservoir impacts on DFAA under different intensities, averaged across five GCMs and their541
ranges in the near future (2021-2060) and far future (2061-2100) periods under three SSPs. Here, JH, NK,542
PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations.543

While the reservoir's mitigation effect on FTD events is less pronounced than on DTF events (Fig. 7), it544

demonstrates a commendable mitigation effect on moderate FTD, reducing their probability by -0.08%545
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to 0.17% (Fig. 8). This reduction represents -0.4 to 1 times the probability under the natural scenario.546

This ratio surpasses the reservoir's mitigation effect on moderate DTF, where the probability is reduced547

by -0.3% to 0.3% (Fig. 8), accounting for -0.70 to 1 times the natural probability. This highlights that548

the reservoir exerts a more significant mitigating force on high-intensity FTD events compared to549

high-frequency FTD events.550

Reservoir exhibits notable mitigating effects for DTF events across all three intensity levels. However,551

their ability to alleviate moderate DTF is relatively weaker than that for mild DTF (Fig. 8), which552

differs from the characteristic of FTD events. This implies that reservoirs possess a stronger capability553

to manage high-frequency DTF events than higher-intensity events.554

555
Figure 9: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong,556
Nong Khai, Pakse, and Kratie stations) under natural and dammed scenarios for three SSPs during the557
near future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this558
figure are averaged over 5 GCMs.559

DFAA often shows several monthly peaks under the natural scenario. This means some months have a560

higher DFAA probability than their neighbors. The multiple peaks are clearer in DTF than in FTD (Fig.561

9). When averaging monthly DFAA over four mainstream hydrological stations, DTF shows three562

peaks under near-term SSP2-4.5 and far-term SSP5-8.5 scenarios, while FTD only shows two peaks in563

both cases. Reservoirs help regulate DFAA by lowering and reducing peaks, with a stronger peak564
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reduction effect anticipated in the near future for DTF (Fig. 9). In the far future, for FTD, especially565

under SSP1-2.6 and SSP2-4.5, reservoirs still alleviate peaks, though less so in terms of reducing their566

number. Reservoirs also lower DFAA probability during early and middle dry seasons (December to567

April) for both near and far futurefutures, often 1% or less at most stations. Sometimes, such as the568

SSP2-4.5 scenario in the near future, reservoirs actually increase the probability of DFAA in May. This569

happens because helping during the dry season before May reduces the capacity of reservoirs for water570

regulation in May, making it hard to control DFAA risks that month. Reservoirs also shorten DFAA’s571

monthly span. Instead of occurring throughout the year under the natural scenario, DFAA is to572

concentrated from May to October under the dammed scenario (Fig. 9). This allows the LMR Basin to573

focus DFAA policies and actions on those months. As a result, riparian states can combine resources574

and coordinate their efforts more efficiently to manage and respond to DFAA and related hazards.575

4. Discussion576

4.1 Different characteristics of DTF and FTD events577

The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al.578

(2021) found that FTD events predominate in the Wei River Basin. Wang et al. (2023) projected that in579

the Poyang Lake Basin, the temporal spread of DTF events will expand in the future, while that of FTD580

events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the581

Huang-Huai-Hai River Basin will experience more DTF events, whereas under SSP3-7.0 and SSP5-8.5582

scenarios, it will experience more FTD events. This study identifies differences between DTF and FTD583

events as well, and further highlights the different characteristics of reservoirs' mitigating effects on584

these events.585

The average probability of DTF across all periods is 2.1% under the natural scenario, which is586

significantly higher than the 1.4% average for FTD (Fig. 5a). The probability of DTF consistently587

exceeds that of FTD under three different intensities (Fig. 6). Additionally, DTF probabilities show a588

significant increase in both the near and far future, averaging 0.23%, which exceeds the increase in589

FTD probabilities, averaging 0.13% (Fig. 5b).590

Compared with FTD events, reservoirs more effectively control DTF probabilities, significantly591

lowering DTF risk in both dry and wet seasons (Fig. 7). The reason is that the timing of DTF’s water592
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regulation matches the way reservoirs operate. At the start of DTF, reservoirs typically hold water at the593

storage corresponding to the normal water level, which equates to 0.8 times the maximum storage (Eq.594

(20)). Hence, reservoirs possess sufficient storage capacity to mitigate the drought conditions. In595

parallel, the water release during the initial phase of the DTF reduced the water level, thereby meeting596

the storage needs for sudden floods that occur later in the DTF. As a result, even if DTF events are597

frequent, reservoirs can manage them well. Reservoirs especially succeed in reducing mild DTF events598

(Fig. 8). However, they control moderate DTF events less effectively. In intense DTF cases, the rules599

for operating reservoirs are not enough. For example, if a severe drought at DTF’s beginning exceeds600

reservoir storage, they cannot effectively relieve the extreme drought and thus fail to control such DTF601

events.602

Although FTD is less likely than DTF, reservoirs control FTD less effectively, especially in the dry603

season (Fig. 7). The problem is that when the FTD event occurs, reservoirs are generally maintained at604

their target storage for the wet season. The storage corresponds to the flood control water level, which605

is 1.2 times the minimum storage capacity (Eq. (19)). Consequently, reservoirs, while fully meeting606

flood control requirements at the start of FTD, struggle to maintain sufficient water storage to satisfy607

water supply demands for the subsequent drought stage. If FTD happens often, the reservoir’s control608

decreases further. While reservoirs do little for mild FTD, they noticeably reduce moderate FTD (Fig.609

8). This means that, for rare but strong FTD events, reservoirs can help by storing water for later610

droughts. However, if FTD is frequent, current reservoir operations do not help much. This difficulty in611

regulation is what makes FTD a major challenge. It is encouraging, though, that FTD is expected to612

become less common in most areas of the LMR Basin in the future (Fig. 5).613

4.2 The relationship between reservoirs’ mitigation roles and their storage614

The reservoir systems provide enhanced mitigation efficiency against DFAA at JingHong and Kratie615

compared to those at Nong Khai and Pakse (Fig. 7). Reservoir storage in the region above JingHong616

and the Pakse to Kratie region is significantly larger than storage in the JingHong to Nong Khai and617

Nong Khai to Pakse regions (Fig. 1c). Reservoirs' capacity to reduce total DFAA risk closely relates to618

the total storage of mainstream and tributary reservoirs, consistently showing a positive correlation for619

DTF and FTD events (Fig. 10a). These findings highlight reservoirs’ multifaceted role in managing620

flood prevention and drought resistance (Hecht et al., 2019; Hoang et al., 2019; Ly et al., 2023) while621
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also addressing sudden DFAA challenges. These results align with Feng et al.’ s (2024) discovery that622

large reservoirs significantly reduce drought and flood risks and corroborate Ehsani et al.’ s (2017)623

conclusion that increased dam dimensions can mitigate water resource vulnerability to climate624

uncertainties.625

The positive correlation between total reservoir storage and the reduction of total DFAA risk indicates626

that basins with larger total storage are better equipped to resist DFAA events. However, this study627

examines only hydroelectric reservoirs in the LMR Basin and excludes other water storage facilities628

such as irrigation reservoirs. In the LMR Basin, total storage of irrigation reservoirs is considerable.629

According to the MRC, the Mekong Basin contains 1317 irrigation reservoirs, with total storage of630

about 17 billion m3 (MRC, 2018; LMC and MRC, 2023). This storage exceeds the total storage of631

reservoirs between JingHong and Nong Khai stations (around 9.7 billion m3). It is slightly lower than632

the storage between Nong Khai and Pakse stations (approximately 22.1 billion m3) (Figs. 1c and 10).633

Since reservoirs mitigate extreme hydrological events regardless of their primary function (Brunner,634

2021a; Ho and Ehret, 2025), even irrigation reservoirs can play a beneficial role in addressing DFAA635

events. Fully utilizing irrigation reservoirs and implementing coordinated operation of all reservoir636

types across the LMR Basin could effectively lower DFAA risks and enhance the basin's resistance to637

these events.638

639

Figure 10: The relationship between reservoirs' mitigation effects and their total storage. Symbol points640
denote the average values for each station under three SSP scenarios during the near future (2021-2060)641
and far future (2061-2100) periods, while error bars indicate the maximum and minimum values. Here, JH,642
NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. (a) The impact of643
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reservoirs on the total probability of DFAA. (b) The impact of reservoirs on DFAA of different intensities.644
Please note that, as Jinghong and Nong Khai stations are not expected to experience severe FTD in the645
future, the relevant information has not been included in the figure.646

Both mild DTF and mild FTD show a positive correlation with total reservoir storage, consistent with647

total DFAA events (Fig. 10b). In contrast, moderate and severe DFAA events do not strongly correlate648

with reservoir storage (Fig. 10b). This implies that for moderate to severe DFAA events, increasing649

reservoir storage capacity does not enhance the reservoirs' control capabilities. Therefore, refining650

reservoir operation rules presents a more appropriate strategy to strengthen control of moderate and651

severe DFAA events in the LMR Basin.652

4.3 Limitations of reservoir regulation rules653

The reservoir operation rule SOP adopted in this study is a commonly used method. Previous studies654

have widely employed this method (Wang et al., 2017a; Yun et al., 2020). The SOP rule is proven655

appropriate for hydrological modeling in large-scale basins such as the LMR Basin. It is also effective656

for extended simulation periods in future hydrological assessments (Wang et al., 2017b; Yun et al.,657

2021a; Yun et al., 2021b).658

This study further improved the standard SOP operation rules by adding the general case and659

emergency case (Fig. 2). This scheduling approach manages reservoir operations using real-time inflow660

data. It also considers the operational year of each reservoir. As a result, the reservoir module661

developed in this study is robust and adaptable. It reflects reservoir scheduling scenarios with high662

reliability.663

Despite this, the study uses uniform operation rules for reservoirs of different storage scales within the664

LMR Basin. It implements daily regulation for all reservoirs. The study does not use differentiated665

regulation scales (daily, annual, or multi-annual) based on storage. It also does not consider unique666

operation rules in different sub-basins. These simplifications may cause uncertainties in how reservoirs667

mitigate effects. This is a limitation of the study.668

5. Conclusion669

This study adopts CMIP6 meteorological data, applying three SSP scenarios and five GCMs. It corrects670

these data using the MBCn method. The study integrates the THREW distributed hydrological model671
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and the developed reservoir module. It describes DFAA through R-SDFAI, assessing mild, moderate,672

and severe intensities. The study explores how reservoirs help reduce DFAA under the changing673

climate in the LMR Basin. It examines three periods: history (1980-2014), near future (2021-2060),674

and far future (2061-2100). The main findings are summarized below:675

1. DFAA in the LMR Basin is dominated by DTF, with a mean probability of 2.1%. This is much676

higher than the FTD probability of 1.4%. DTF remains higher than FTD at all intensity levels. The677

future increase in DTF probability (average 0.23%) is also greater than the increase for FTD (average678

0.13%). Mild-intensity DFAA events are most common. They account for 58% to 90% of future DTF679

probability and 75% to 100% of FTD probability. Both DTF and FTD present higher DFAA risk during680

the wet season than the dry season.681

2. Reservoirs manage DTF probability well, cutting DTF risks in both dry and wet seasons. However,682

they have less influence over FTD risks, especially during dry-season FTD events. Limited capacity to683

control FTD risks is a challenge. Reservoirs do better at managing high-frequency DTF and684

high-intensity FTD events. They also cut down multi-peak DFAA events and reduce their monthly685

duration.686

3. Reservoirs' ability to lower DFAA total risk is linked to their combined storage. Using large687

irrigation reservoirs within the LMR Basin can help withstand mild DFAA risks and overall events. To688

better handle moderate and severe DFAA events, reservoir operations need to be optimized.689

This study gives new insights into how reservoirs help mitigate DFAA in the LMR Basin. It also aids690

water management for riparian countries. DFAA remains a serious challenge. This shows the need for691

LMR Basin countries to work together, build capacity against DFAA events, reduce climate change692

effects, and support sustainable development.693
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