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Abstract. The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological events, 9 

including Drought-Flood Abrupt Alternation (DFAA). The efficacy of potential mitigation measures, 10 

such as reservoirs, on DFAA under climate change remains poorly understood. This study investigates 11 

these dynamics using five Global Climate Models (GCMs) from the Coupled Model Intercomparison 12 

Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt Alteration Index 13 

(R-SDFAI), along with the Tsinghua Representative Elementary Watershed (THREW) model integrated 14 

with the developed reservoir module. The findings reveal that DFAA in the LMR Basin is primarily 15 

dominated by DTF (drought to flood), with probabilities of DTF exceeding those of FTD (flood to 16 

drought) at mild, moderate, and severe intensity levels. The increase in DTF probability for future periods 17 

is also significantly higher than that of FTD. Mild DTF and mild FTD account for 58% to 90% and 75% 18 

to 100% of their total probability in the future, making the mild-intensity events the most frequent DFAA. 19 

Reservoirs play a significant role in reducing DTF risks during both dry and wet seasons, though their 20 

effectiveness in controlling FTD risks, particularly during the dry season, is relatively weaker. 21 

Furthermore, there is a positive correlation between the reservoir's capacity to mitigate total DFAA risk 22 

and its total storage. Reservoirs display a stronger ability to regulate high-intensity FTD and high-23 

frequency DTF events, and significantly reduce the monthly duration of DFAA. These insights provide 24 

valuable guidance for the effective management of water resources cooperatives across the LMR Basin. 25 

Keywords. Drought-Flood Abrupt Alternation; Climate change; Reservoir operation; Lancang-Mekong 26 

River Basin. 27 

1. Introduction28 
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Flood and drought are two of the most frequent natural disasters in the world (Adikari and Yoshitani, 29 

2009; ADREM et al., 2024). Drought-Flood Abrupt Alternation (DFAA), which is defined as the rapid 30 

transition between flood and drought conditions within a region (Xiong and Yang, 2025), has received 31 

growing attention in recent years (Chen et al., 2025; Wu et al., 2023; Zhang et al., 2012; Shan et al., 2018; 32 

Song et al., 2023). DFAA specifically consists of two types of rapid transition events: (1) drought to flood 33 

(DTF), where conditions shift quickly from drought to flood, and (2) flood to drought (FTD), where 34 

conditions rapidly change from flood to drought. Hazards arising from DFAA are more significant than 35 

those from floods and droughts. DFAA not only alters soil conditions and increases the potential for 36 

exceeding water quality standards (Bai et al., 2023; Yang et al., 2019) but also challenges food security 37 

and seriously affects agricultural production. Furthermore, DFAA, particularly DTF, is prone to 38 

triggering severe secondary natural hazards, primarily including flash floods, landslides, and mudslides 39 

(Wang et al., 2023). 40 

It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing 41 

trend (Yang et al., 2022; Chen et al., 2024). However, notable regional differences exist. Shan et al. (2018) 42 

observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded since the 43 

1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that although 44 

droughts and floods have increased in the Huai River Basin, DFAA events have become less frequent. 45 

Looking ahead, Zhao et al. (2022) projected that the Han River Basin will experience an upward trend 46 

in both DFAA frequency and intensity, whereas Yang et al. (2019) reported a projected decline in the 47 

frequency of DFAA events in the Hetao region. 48 

The Lancang-Mekong River (LMR) Basin, as a significant international river in Southeast Asia, 49 

profoundly affects key sectors such as hydropower, agriculture, fisheries, and transport (Morovati et al., 50 

2024). At the same time, the basin is a high-incidence area for floods and droughts (Liu et al., 2020; 51 

MRC, 2020). Notably, wet season droughts account for about 40% of annual drought (Tian et al., 2020), 52 

while the region is also prone to large floods during the dry season (e.g., May 2006, May 2007, December 53 

2016) (Tellman et al., 2021). The existence of these wet-season droughts and dry-season floods 54 

establishes the necessary conditions for DFAA in the LMR Basin. 55 

Continued global warming is expected to further intensify both extreme wet and dry climate patterns 56 

(IPCC, 2023), contributing to increased vulnerability to DFAA in the future (Yang et al., 2022; Wang et 57 

al., 2023; Chen et al., 2025). There is a strong tendency toward more intense floods and droughts in 58 
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Southeast Asia (IPCC WG1, 2021) and specifically in the LMR Basin (Wang et al., 2021; Li et al., 2021; 59 

Dong et al., 2022; Hoang et al., 2016). This heightens concerns about DFAA patterns in the LMR Basin, 60 

emphasizing the need for improved water security, sustainable management, and early disaster 61 

forecasting and prevention systems. 62 

The hydrological regime of the LMR Basin is shaped mainly by climate change and human activities 63 

(LMC and MRC, 2023). Despite the severe impacts of climate change, human activities such as reservoir 64 

operation can help adapt the hydrological regime to these changes (Zhang et al., 2023; Khadka et al., 65 

2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021). Research highlights that reservoirs 66 

play a crucial role in reducing flood damage during the wet season and in minimizing low-flow 67 

occurrences (Arias et al., 2014; Räsänen et al., 2012; Dang and Pokhrel, 2024). To evaluate reservoir 68 

impacts under the changing climate, integration of a reservoir module within hydrological models is a 69 

widely adopted practice. For example, Wang et al. (2017b) demonstrated that reservoir operation can 70 

reduce flood intensity and frequency, while Yun et al. (2021a; 2021b) showed that careful reservoir 71 

management can relieve both extreme drought and wet events, though with some trade-offs in 72 

hydroelectric benefits. Collectively, these studies indicate that reservoirs offer practical adaptation 73 

solutions to address climate change impacts. 74 

It is essential to consider how human activities, especially reservoir operations, can help manage DFAA 75 

under climate change. This consideration supports effective water resource management and the 76 

sustainable development of the basin system. However, little research to date has focused on this aspect 77 

for the LMR Basin. The statistics, reports, and studies on DFAA in the LMR Basin remain scarce, 78 

particularly concerning the mitigating role of reservoirs under the changing climate. In response, this 79 

study develops a reservoir module for hydrological modeling, examines the trends of DFAA in the LMR 80 

Basin under climate change, and assesses how reservoirs can help basin states adapt to changing 81 

conditions. This work aims to advance knowledge on DFAA and support regional water resources 82 

management and sustainability. 83 

2. Methodology84 

2.1 Study area 85 

The LMR originates from the Tibetan Plateau in China and flows through China, Myanmar, Laos, 86 
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Thailand, Cambodia, and Vietnam before entering the South China Sea at the Mekong Delta. The LMR 87 

is approximately 4900 km long with a basin area of 812,400 km2 (He, 1995). Its annual runoff is about 88 

446 billion m3 (MRC, 2023). The LMR Basin is characterized by steep slopes and rapid flows in the 89 

upstream. The downstream features shallow slopes and slow, mixed flows. The wet and dry seasons in 90 

the LMR Basin extend from June to November and from December to May, respectively (LMC and 91 

MRC, 2023). These are mainly influenced by the southwestern and northeastern monsoons. The 92 

distribution of the hydrology system and mainstream hydrological stations in the LMR Basin is detailed 93 

in Fig. 1a. 94 

95 
Figure 1: Hydrology of the LMR Basin. (a) Map of rivers and reservoirs, (b) Information on four main 96 
hydrological stations, and (c) distribution of reservoir storage. Here, JH, NK, PA, and KT denote JingHong, 97 
Nong Khai, Pakse, and Kratie stations, respectively. 98 

The LMR Basin nourishes approximately 65 million people (Sabo et al., 2017; Luo et al., 2023). The 99 

basin states rely on the river system to develop economic industries, including capture fisheries, irrigation 100 

agriculture, and hydropower. The LMR Basin has the largest freshwater capture fishery in the world 101 

(MRC, 2010; MRC, 2019). Its irrigation area is estimated at around 4.3 million hectares (Do et al., 2020), 102 

with the Mekong Delta regarded as Southeast Asia’s food basket. The LMR Basin is one of the most 103 

active regions for hydropower in the world (MRC, 2019; Williams, 2019). It harbors about 235,000 104 
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GWhyr−1 of hydroelectric potential in its mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). 105 

The LMR Basin is also heavily impacted by floods and droughts. During the past two decades, the LMR 106 

Basin has experienced several severe droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and 107 

floods (Liu et al., 2020; Tian et al., 2020; MRC, 2020). These disasters affect crop cultivation and 108 

fisheries harvesting, leading to the loss of property and lives in riparian countries. In 2013 and 2018, 109 

floods heavily affected the lower basin, specifically Cambodia, Vietnam, Laos, and Thailand. These 110 

floods covered 22.3 and 6.47 thousand km2, respectively (Tellman et al., 2021). 111 

2.2 Data collection 112 

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the 113 

meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios, namely 114 

SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and high-emission 115 

scenarios, respectively. Five GCMs (Global Climate Models) with wide utilization and proven 116 

performance in the LMR Basin are applied in this study (Li et al., 2021; Yun et al., 2021a; Yun et al., 117 

2021b), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. 118 

The detailed information for these five GCMs is shown in Table 1 (Eyring et al., 2016; Gidden et al., 119 

2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100. This study accordingly considers three 120 

research periods: the history period from 1980 to 2014 (consistent with CMIP6), the near future period 121 

from 2021 to 2060, and the far future period from 2061 to 2100. 122 

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980 to 123 

2020 are used to calibrate and validate the hydrological model. These data are derived from the China 124 

Meteorological Administration (CMA) and the Mekong River Commission (MRC). The hydrological 125 

stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse, and Kratie, whose 126 

locations and basic information are shown in Figs. 1a and 1b. This study uses the ERA5_Land data as 127 

the meteorological input for calibrating and validating the hydrological model, and as the correction 128 

dataset for correcting the raw CMIP6 data. ERA5_Land data cover the period from 1980 to 2020, with a 129 

spatial resolution of 0.1°, and contain precipitation, temperature, and potential evapotranspiration. Soil 130 

data are obtained from the Global Soil Database (GSD) provided by the Food and Agriculture 131 

Organization of the United Nations (FAO) with a spatial resolution of 10 km x 10 km. Normalized 132 

Vegetation Index (NDVI), Leaf Area Index (LAI), and Snow Cover data are obtained from MODIS 133 
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(Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500 m x 500 m and a 134 

temporal resolution of 16 days. 135 

Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024). 136 

This study utilizes 122 reservoirs, which simultaneously contain information on location, storage, and 137 

operation years, including 24 reservoirs in the Lancang Basin and 98 reservoirs in the Mekong Basin. 138 

The earliest and latest operation years for them are 1965 and 2035. The location and storage distribution 139 

of these reservoirs are shown in Figs. 1a and 1c. 140 

Table 1: Details of 5 GCMs applied in this study. 141 

Model Name Modeling Center Realization 
Resolution 

(Lon×Lat) 

GFDL-ESM4 
National Oceanic and Atmospheric Administration Geophysical Fluid 

Dynamics Laboratory, United States 
r1i1p1f1 1.25°×1° 

IPSL-CM6A-

LR 
Institute Pierre Simon Laplace, France r1i1p1f1 2.5°×1.25874° 

MPI-ESM1-2-

HR 
Max Planck Institute for Meteorology, Germany r1i1p1f1 0.9375°×0.9375° 

MRI-ESM2-0 Meteorological Research Institute, Japan r1i1p1f1 1. 125°×1. 125°

UKESM1-0-

LL 
Met Office Hadley Centre, UK r1i1p1f2 1.875°×1.25° 

2.3 Bias correction method for CMIP6 data 142 

The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al., 143 

2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation 144 

in the LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange, 2019; Lange, 145 

2021). ERA5_Land data are used as correction data in this study to address bias in raw CMIP6 data. 146 

This study interpolates the data from the five GCMs of CMIP6, which have different spatial resolutions, 147 

to 0.1° (consistent with ERA5_Land) using the bilinear interpolation spatial resolution method. The 148 

interpolated CMIP6 data are bias-corrected for each GCM according to an N-dimensional probability 149 

density function transform of the multivariate bias correction approach (abbreviated as MBCn) (Cannon, 150 

2016; Cannon, 2018). The MBCn method is trained based on the difference between precipitation and 151 

temperature data from ERA5_Land and CMIP6 over the history period (1980-2014), and then applied to 152 

the future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM. 153 

The MBCn method considers the multivariate dependency structure of meteorological data and enables 154 
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the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and 155 

quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as 156 

illustrated in Eqs. (1) and (2). 157 

{

𝑿̃𝑇
[𝑙]

= 𝑿𝑇
[𝑙]

𝑹[𝑙]

𝑿̃𝑆
[𝑙]

= 𝑿𝑆
[𝑙]

𝑹[𝑙]

𝑿̃𝑃
[𝑙]

= 𝑿𝑃
[𝑙]

𝑹[𝑙]

(1) 158 

Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming 159 

historical observations 𝑋𝑇
[𝑙]

, historical climate model simulations 𝑋𝑆
[𝑙]

, and climate model projections160 

𝑋𝑃
[𝑙]

using a random orthogonal rotation matrix 𝑅[𝑙]  during the l-th iteration. The rotated data are161 

represented as 𝑋̃𝑇
[𝑙]

, 𝑋̃𝑆
[𝑙]

, and 𝑋̃𝑃
[𝑙]

. This procedure is pivotal for MBCn's multivariate joint distribution 162 

correction, as it transforms the original variable space into new random orientations. In contrast to 163 

conventional univariate correction approaches, MBCn employs a random orthogonal matrix to mix 164 

variables, thereby breaking their independence. 165 

{
∆(𝑛)[𝑙](𝑖) = 𝑥̃𝑃

(𝑛)[𝑙]
(𝑖) − 𝐹𝑆

(𝑛)[𝑙]−1

(𝐹𝑃
(𝑛)[𝑙]

(𝑥̃𝑃
(𝑛)[𝑙]

(𝑖)))

𝑥̂𝑃
(𝑛)[𝑙]

(𝑖) = 𝐹𝑇
(𝑛)[𝑙]−1

(𝐹𝑃
(𝑛)[𝑙]

(𝑥̃𝑃
(𝑛)[𝑙]

(𝑖))) + ∆(𝑛)[𝑙](𝑖)
(2) 166 

Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to the 167 

n-th dimension of the rotated climate model projection data 𝑥̃𝑃
(𝑛)[𝑙]

(𝑖) within the rotated space of the 𝑙-168 

th iteration. Here, ∆(𝑛)[𝑙](𝑖)  represents the quantile difference between the historical climate model169 

simulations and climate model projections in the l-th iteration and the n-th dimension. 𝐹𝑃
(𝑛)[𝑙]

 denotes170 

the empirical cumulative distribution function for the rotated climate model projection data in the n-th 171 

dimension. 𝐹𝑇
(𝑛)[𝑙]−1

 and 𝐹𝑆
(𝑛)[𝑙]−1

 denote inverse Functions of the empirical cumulative distribution172 

functions for the rotated historical observation data and historical climate model simulation data in the 173 

n-th dimension. This step preserves the trend of the climate model projection data throughout the174 

correction process. The number of iterations is typically set to 10-30. 175 

The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying 176 

random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the 177 

climate model. The rotation operation breaks dependencies between variables, enabling the quantile delta 178 

mapping of a single variable to indirectly adjust multivariate correlations. The quantile delta mapping 179 

ensures the transmission of absolute or relative trends by computing quantile differences between the 180 

historical and projected periods of the climate model. The MBCn method has been reported to increase 181 
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correction precision and accuracy compared to univariate and other multivariate bias correction 182 

algorithms (Cannon, 2018). 183 

In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential 184 

evapotranspiration data for five GCMs under three SSP scenarios, based on daily temperature. The 185 

computational approach is outlined in Eq. (3). 186 

𝑃𝐸𝑇 = [1 + 𝛼0(𝑇 − 𝑇0̅)]𝑃𝐸𝑇0
̅̅ ̅̅ ̅̅ ̅              (3)187 

Where, 𝑇0̅  and 𝑃𝐸𝑇0
̅̅ ̅̅ ̅̅ ̅  correspond to the daily air temperature (°C) and daily potential188 

evapotranspiration (mm day⁻¹) in the history period sourced from ERA5_Land dataset. 𝑇 signifies the 189 

corrected daily air temperature (°C) from CMIP6 dataset. The parameter 𝛼0  is determined by the190 

relationship between daily potential evapotranspiration and daily temperature in ERA5_Land data during 191 

the history period. 192 

2.4 Hydrological model coupled with reservoir module 193 

The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this 194 

study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for 195 

spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone, 196 

bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach, 197 

saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008). 198 

The model is built upon scale-coordinated equilibrium equations, geometrical relationships, and 199 

constitutive relationships, and enables comprehensive simulation of complex hydrological processes 200 

from mountain to ocean. The fundamental balance equations in the THREW model are listed in Eqs. (4) 201 

to (6). 202 

𝑑

𝑑𝑡
(𝜌𝛼

𝑗̅̅ ̅𝜖𝛼
𝑗

𝑦𝑗𝜔𝑗) = ∑ 𝑒𝛼
𝑗𝑃

𝑃 + ∑ 𝑒𝛼𝛽
𝑗

𝛽≠𝛼 (4) 203 

Eq. (4) demonstrates the general form of the mass conservation equation at the REW scale. 
𝑑

𝑑𝑡
denotes 204 

the time derivative. 𝜌𝛼
𝑗̅̅ ̅ refers to the time-averaged density of phase 𝛼 in sub-region j, in kg·m-3. 𝜖𝛼

𝑗205 

means the volume fraction of phase α within sub-region j. 𝑦𝑗 indicates the time-averaged thickness of206 

sub-region j, in m. 𝜔𝑗 means the time-averaged fraction of REW horizontal area occupied by sub-region207 

j. 𝑒𝛼
𝑗𝑃

 denotes the net mass exchange flux of phase 𝛼 in sub-region j through interface P (e.g., with208 

atmosphere, groundwater, neighboring REWs), in kg·m-2·s-1, where a positive value indicates the inflow 209 
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to sub-region j. 𝑒𝛼𝛽
𝑗

 refers to the phase transition rate between phase 𝛼 and phase 𝛽 within sub-region210 

j, in kg·m-2·s-1, where a positive value indicates phase 𝛼 gains mass from phase 𝛽. Sub-region here 211 

refers to the eight zones within each REW. 212 

(𝜌𝛼
𝑗̅̅ ̅𝜖𝛼

𝑗
𝑦𝑗𝜔𝑗)

𝑑𝑣𝛼
𝑗̅̅ ̅̅

𝑑𝑡
= 𝑔𝛼

𝑗
𝜌𝛼

𝑗̅̅ ̅̅ ̅̅ ̅𝜖𝛼
𝑗

𝑦𝑗𝜔𝑗 + ∑ 𝑇𝛼
𝑗𝑃

𝑃 + ∑ 𝑇𝛼𝛽
𝑗

𝛽≠𝛼 (5) 213 

Eq. (5) presents the general form of the momentum conservation equation at the REW scale. 𝑣𝛼
𝑗̅̅ ̅214 

indicates the time-averaged velocity vector of phase α in sub-region j, in m·s-1. 𝑔𝛼
𝑗̅̅̅̅  denotes the time-215 

averaged gravity vector of phase 𝛼 in sub-region j, in m·s-2. 𝑇𝛼
𝑗𝑃

 means the force vector (pressure,216 

friction, seepage) exerted on phase 𝛼  in sub-region j by interface P, in N·s-2, representing the 217 

momentum exchange. 𝑇𝛼𝛽
𝑗

 refers to the interfacial force vector between phase 𝛼 and phase 𝛽 within 218 

sub-region j, in N·s-2, including drag and capillarity. 219 

(𝜖𝛼
𝑗

𝑦𝑗𝜔𝑗𝑐𝛼
𝑗
)

𝑑𝜃𝛼
𝑗̅̅ ̅̅

𝑑𝑡
= ℎ𝛼

𝑗
𝜌𝛼

𝑗̅̅ ̅̅ ̅̅ ̅𝜖𝛼
𝑗

𝑦𝑗𝜔𝑗 + ∑ 𝑄𝛼
𝑗𝑃

𝑃 + ∑ 𝑄𝛼𝛽
𝑗

𝛽≠𝛼 (6) 220 

Eq. (6) exhibits the general form of the heat conservation equation at the REW scale. 𝑐𝛼
𝑗

means the 221 

specific heat capacity (constant volume) of phase 𝛼 in sub-region j, in J·kg-1·K-1. 𝜃𝛼
𝑗

refers to the time-222 

averaged temperature of phase 𝛼 in sub-region j, in K. ℎ𝛼
𝑗̅̅ ̅ denotes the heat generation rate per unit mass 223 

within phase α in sub-region j, in W·kg-1 (e.g., radioactive decay, negligible usually). 𝑄𝛼
𝑗𝑃

 indicates224 

the heat exchange rate between phase 𝛼 in sub-region j and its environment via interface P, in W·m-2, 225 

with the positive value representing the heat gained by phase 𝛼 in sub-basin j. 𝑄𝛼𝛽
𝑗

 refers to the heat226 

exchange rate between phase 𝛼  and phase 𝛽  within sub-region j, in W·m-2, with a positive value 227 

indicating that heat is gained by phase 𝛼. 228 

The THREW model employs an automatic calibration procedure to calibrate hydrological parameters 229 

through parallel computation (Nan et al., 2021). The calibration period of the THREW model in the LMR 230 

Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The calibration process 231 

involves nine hydrological parameters. A compilation of their explanations and permissible value ranges 232 

is given in Table 2. The Nash-Sutcliffe efficiency coefficient (NSE) indicator is adopted to calibrate the 233 

objective function and evaluate simulation effectiveness at the daily scale, which is calculated according 234 

to Eq. (7). The THREW model has been successfully applied to a number of basins with various climate 235 

characteristics worldwide (Tian et al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang 236 

et al., 2023). 237 
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𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠

𝑛𝑢𝑚−𝑄𝑠𝑖𝑚
𝑛𝑢𝑚)2𝑁

𝑛𝑢𝑚=1

∑ (𝑄𝑜𝑏𝑠
𝑛𝑢𝑚−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑛𝑢𝑚=1
(7) 238 

Where, 𝑄𝑜𝑏𝑠
𝑛𝑢𝑚 is the daily observed runoff, 𝑄𝑠𝑖𝑚

𝑛𝑢𝑚 is the daily simulated runoff, 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the average of239 

observed runoff, and 𝑁 is the total number of days. 240 

Table 2: Calibrated hydrological parameters and their ranges. 241 

Parameter Explanation Range 

kv Fraction of potential transpiration rate over potential evaporation 0-10

nt Roughness of slope 0-2

KKA Exponential coefficient in subsurface runoff calculations 0-100

nr Roughness of river channel 0-1

KKD Linear coefficient in subsurface runoff calculation 0-1

B Shape coefficient 0-1

WM Average water storage capacity (m) 0-5

K Storage factor in Muskingum Method 0-1

X Flow ratio factor in Muskingum Method 0-0.5

This study extends the THREW model by developing and integrating a reservoir management module. 242 

This integration allows the expanded THREW model to use detailed information on 122 reservoirs in the 243 

LMR Basin, with operational years ranging from 1965 to 2035. By specifying whether the module is 244 

active, the model can simulate either natural runoff (without considering reservoirs) or dammed runoff 245 

(with reservoirs included). This setup ensures a seamless interaction between the core model and the 246 

reservoir operations framework. 247 

Reservoir operation follows consistent rules across time and space, with each reservoir starting operation 248 

according to its operational year. Strategies are adapted in response to inflow fluctuations and 249 

administered on a daily scale. Each reservoir is assigned based on location. Cumulative multi-year sub-250 

basin storage is calculated as input for the reservoir module, which operates in two phases: initial and 251 

normal. The normal phase is divided into general and emergency cases, both using the same operation 252 

rules but differing constraints; the emergency case allows more flexibility. The module's flowchart is 253 

illustrated in Fig.2. 254 

If a REW's cumulative multi-year storage changes within a year, it signals the start of a new reservoir's 255 

operation, which follows initial phase rules. During the initial phase, the outlet flow matches the inlet if 256 

it is below the minimum discharge constraint; otherwise, it meets the minimum discharge constraint. The 257 

rules for the initial phase are described as Eqs. (8) to (9). Storage and discharge constraints are defined 258 
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in Eqs. (10) to (11) (Tennant, 1976; Yun et al., 2020). The initial phase ends when reservoir storage 259 

exceeds the minimum constraint (Eq. (12)), then transitions to the normal phase. 260 

𝑄𝑜𝑢𝑡 = {
𝑄𝑖𝑛 , 𝑄𝑖𝑛 < 𝑄𝑚𝑖𝑛

𝑄𝑚𝑖𝑛 , 𝑄𝑖𝑛 ≥ 𝑄𝑚𝑖𝑛
(8) 261 

𝑆𝑡 = 𝑆𝑡−1 + 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡  262 

𝑆𝑚𝑖𝑛 = 0.2 × 𝑆𝑡𝑜𝑡𝑎𝑙  26

(9)

(10)3 

𝑄𝑚𝑖𝑛 = 0.6 × 𝑄𝑎𝑣𝑒  264 

𝑆𝑡 ≥ 𝑆𝑚𝑖𝑛  26

(11)

(12)5 

Where 𝑄𝑜𝑢𝑡  is the outlet flow, 𝑄𝑖𝑛 is the inlet flow, 𝑄𝑚𝑖𝑛  is the minimum discharge constraint, 𝑆𝑡 is266 

the storage for time t, 𝑆𝑚𝑖𝑛  is the minimum storage constraint, 𝑆𝑡𝑜𝑡𝑎𝑙  is the total storage, and 𝑄𝑎𝑣𝑒  is267 

the average multi-year runoff during the calibration period (i.e., 2000-2009). 268 

269 
Figure 2: Flowchart of the constructed reservoir module. 270 

The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model 271 

(SOP) (Wang et al., 2017a; Morris and Fan, 1998), as depicted in Eq. (9) and Eqs. (13) to (16). The SOP 272 

operating policy is proven to effectively capture floods and droughts under reservoir regulation (Wang 273 

et al., 2017a; Yun et al., 2020; 2021a; 2021b). Under the premise of water balance (Eq. (9)), constraints 274 

for annual storage (Eq. (13)), outlet flow (Eq. (14)), wet season storage (Eq. (15)), and dry season storage 275 



12 

(Eq. (16)) are considered separately, where priority is given to the annual storage constraint (Eq. (13)). 276 

𝑆𝑚𝑖𝑛 ≤ 𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥 (13) 277 

𝑄𝑚𝑖𝑛 ≤  𝑄𝑜𝑢𝑡 ≤ 𝑄𝑚𝑎𝑥 (14) 278 

𝑚𝑖𝑛|𝑆𝑐 − 𝑆𝑡|, 𝑚𝑜𝑛𝑡ℎ = 6,7,8,9,10,11 (15) 279 

𝑚𝑖𝑛|𝑆𝑛 − 𝑆𝑡|, 𝑚𝑜𝑛𝑡ℎ = 12,1,2,3,4,5 (16) 280 

Where 𝑄𝑚𝑎𝑥  is the maximum discharge constraint, 𝑆𝑚𝑎𝑥 is the maximum storage constraint, 𝑆𝑐 is the281 

storage corresponding to the flood control level, and 𝑆𝑛 is the storage corresponding to the normal water282 

level. 283 

When in the normal phase, the reservoir first applies general case constraints (Eqs. (17) to (22)). If outlet 284 

flow is not fully satisfied (Eq. (14)), constraints switch to the emergency case, and the reservoir is 285 

rescheduled. Eq. (23) signals an emergency case start, which provides more flexible flow limits to avoid 286 

extremes. Emergency case constraints are in Eqs. (24) to (25). 287 

𝑄𝑚𝑎𝑥 = 2 × 𝑄𝑎𝑣𝑒 (17) 288 

𝑄𝑚𝑖𝑛 = 0.6 × 𝑄𝑎𝑣𝑒 (18) 289 

𝑆𝑐 = 𝑆𝑚𝑖𝑛 × 1.2 (19) 290 

𝑆𝑛 = 𝑆𝑚𝑎𝑥 × 0.8 (20) 291 

𝑆𝑚𝑖𝑛 = 0.2 × 𝑆𝑡𝑜𝑡𝑎𝑙 (21) 292 

𝑆𝑚𝑎𝑥 = {
0.8 × 𝑆𝑡𝑜𝑡𝑎𝑙 , 𝑚𝑜𝑛𝑡ℎ = 6,7,8,9,10,11

1 × 𝑆𝑡𝑜𝑡𝑎𝑙 , 𝑚𝑜𝑛𝑡ℎ = 12,1,2,3,4,5
(22) 293 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑜𝑢𝑡′ ≤ 𝑄𝑚𝑎𝑥 (23) 294 

𝑄𝑚𝑖𝑛 = 0.3 × 𝑄𝑎𝑣𝑒 (24) 295 

𝑆𝑚𝑎𝑥 = 0.8 × 𝑆𝑡𝑜𝑡𝑎𝑙 (25) 296 

Where 𝑄𝑜𝑢𝑡′ is the outlet flow after the scheduling in the general case.297 

2.5 Indicator for DFAA 298 

It is common practice to quantify DFAA incidents via indices. LDFAI, proposed by Wu et al. (2006), 299 

quantitatively characterizes long-term DFAA during the wet season and has been widely adopted (Ren 300 
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et al., 2023; Shi et al., 2021; Yang et al., 2022; Yang et al., 2019). Building on this, Zhang et al. (2012) 301 

introduced the one-month interval SDFAI, extending its application from precipitation to runoff and 302 

characterizing short-term DFAA. SDFAI has since been applied in fields such as hydrology, meteorology, 303 

ecology, and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al., 2019). 304 

Song et al. (2023) proposed the Revised Short-cycle Drought-Flood Abrupt Alteration Index (R-SDFAI), 305 

which extends the LDFAI and SDFAI time frame from only the flood season to the entire year, facilitating 306 

multi-year DFAA analysis. R-SDFAI also addresses issues of over-identification, under-identification, 307 

and misrepresentation of DFAA severity found in SDFAI. Therefore, this study uses R-SDFAI for DFAA 308 

analysis, with the formulas outlined in Eqs. (26) to (31) (Song et al., 2023). 309 

𝐹1 = 𝑆𝑖+1 − 𝑆𝑖 (26) 310 

𝐹2 = |𝑆𝑖+1| + |𝑆𝑖| (27) 311 

𝐹 = |
𝐹1

𝐹2
|

|𝑆𝑖+1+𝑆𝑖|

(28) 312 

𝐼 = 𝐹 × 𝑚𝑖𝑛(|𝑆𝑖+1|, |𝑆𝑖|) (29) 313 

𝐼′ = (
𝐼

0.5
)

𝑚𝑎𝑥(|𝑆𝑖+1|,|𝑆𝑖|)2

|𝐹1|+𝐹2 ×
𝐼

𝑚𝑎𝑥(|𝑆𝑖+1|,|𝑆𝑖|)
|𝐹1|+𝐹2 +𝐼

𝑚𝑖𝑛(|𝑆𝑖+1|,|𝑆𝑖|)
|𝐹1|+𝐹2

2
(30) 314 

𝑅 − 𝑆𝐷𝐹𝐴𝐼 = 𝑠𝑖𝑔𝑛(𝐹1) × (
𝐼′

𝐼′
0.5

×
𝐼

0.5
)

[
𝑚𝑎𝑥(|𝑆𝑖+1|,|𝑆𝑖|)

|𝐹1|+𝐹2
]
[1−

𝑚𝑎𝑥(|𝑆𝑖+1|,|𝑆𝑖|)
|𝐹1|+𝐹2

]

(31) 315 

Where, 𝑆𝑖 refers to the SRI in month 𝑖, 𝐹1 denotes the intensity of DFAA, 𝐹2 denotes the absolute316 

intensity of drought and flood, and 𝐹 is a weighting factor between 0 and 1. 𝐼′
0.5 refers to 𝐼′ when317 

I=0.5. 318 

The calculation process of the SRI indicator utilized in this work is elucidated in Eqs. (32) to (37). The 319 

runoff simulated by the THREW model for the LMR Basin conforms to a Gamma distribution, as detailed 320 

in Appendix 1 of the Supplementary File. Hence, the Gamma distribution is adopted to derive the SRI 321 

index. Eq. (32) gives the probability density function that satisfies the Gamma distribution for runoff 𝑥 322 

at a given time period. 323 

𝑔(𝑥) =
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽,𝑥 > 0 (32)324 
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Where, 𝛼 > 0 and 𝛽 > 0 are respectively the shape and scale parameters. 𝛼̂ and 𝛽̂ are the optimal 325 

values of 𝛼 and 𝛽, obtained according to the maximum likelihood estimation method, as illustrated in 326 

Eqs. (33) to (35). 𝛤(𝛼) is the gamma function, as given in Eq. (36). 327 

𝛼̂ =
1

4𝐴
(1 + √1 +

4𝐴

3
(33) 328 

𝛽̂ =
𝑥̅

𝛼̂
(34) 329 

𝐴 = 𝑙𝑛(𝑥̅) −
∑ 𝑙𝑛(𝑥𝑖)

𝑛𝑢𝑚
(35) 330 

𝛤(𝛼) = ∫ 𝑦𝛼−1𝑒𝑦 𝑑𝑦
∞

0
 (36) 331 

Where, 𝑥𝑖 is the sample of runoff sequence, 𝑥̅ is the average runoff, and 𝑛𝑢𝑚 is the length of the332 

runoff sequence. 333 

Then the cumulative probability of runoff x is illustrated in Eq. (37). 334 

𝐺(𝑥) = ∫ 𝑔(𝑥) 𝑑𝑥
𝑥

0
=

1

𝛽̂𝛼̂𝛤(𝛼̂)
∫ 𝑥𝛼̂−1𝑒

−
𝑥

𝛽̂ 𝑑𝑥
𝑥

0
,𝑥 > 0 (37) 335 

Table 3: The evaluation criteria and intensity classification for DFAA events. 336 

Event Intensity Classification 

DTF 

Mild 1 ≤ R-SDFAI < 1.44 

Moderate 1.44 ≤ R-SDFAI < 1.88 

Severe R-SDFAI ≥ 1.88

FTD 

Mild -1.44 < R-SDFAI ≤ −1

Moderate −1.88 < R-SDFAI ≤ −1.44

Severe R-SDFAI ≤ −1.88

The R-SDFAI index identifies DFAA events with a threshold of ±1 (Song et al., 2023), and further 337 

categorizes DFAA events into three intensity levels—mild, moderate, and severe—using thresholds of 338 

±1, ±1.44, and ±1.88, as demonstrated in Table 3. This classification follows the criteria proposed by 339 

Song et al. (2023). The underlying rationale involves using ±0.5, ±1, and ±1.5 as thresholds for the 340 

SRI index to categorize extreme hydrological events into mild, moderate, and severe droughts and floods 341 

(positive values indicate flood, while negative values indicate drought). The R-SDFAI index values of 342 

± 1, ± 1.44, and ± 1.88 are calculated through the transitions between mild drought and mild flood, 343 

moderate drought and moderate flood, and severe drought and severe flood. These thresholds serve as 344 

the classification criteria for mild, moderate, and severe DFAA events. For a more detailed explanation 345 
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of this classification standard, please refer to Song et al. (2023). In this study, the frequency of DFAA 346 

events is represented by their occurrence probabilities during history, near future, and far future periods, 347 

while the intensity of DFAA is assessed through the probability of different intensity events. 348 

2.6 Scenario Setting 349 

This study examines two scenarios: dammed (with reservoir operations) and natural (without reservoir 350 

operations). Meteorological data from five GCMs under three SSPs are downscaled to the REW scale 351 

and used as input for the THREW model. The model, with the reservoir module, simulates runoff at key 352 

hydrological stations for the history period (1980-2014), the near future (2021-2060), and the far future 353 

(2061-2100). Both scenarios—with and without reservoir management—are examined. The R-SDFAI 354 

indicator evaluates DFAA event probabilities for each period and for each scenario, using runoff 355 

simulated by 5 GCMs and 3 SSPs. 356 

This study adopts the difference in DFAA’s probability between the natural scenario (without reservoir 357 

operations) and the dammed scenario (with reservoir operations) to capture the reservoir’s impact, as 358 

shown in Eq. (38).359 

𝑃𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠,𝑖,𝑒 = 𝑃𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒 − 𝑃𝑁𝑎𝑡𝑢𝑟𝑎𝑙,𝑖,𝑒          (38) 360 

Where 𝑃𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠,𝑖,𝑒  represents the impact of reservoirs on the probability of event e in period361 

i. 𝑃𝑁𝑎𝑡𝑢𝑟𝑎𝑙,𝑖,𝑒 denotes the probability of event e under the natural scenario in period i, while 𝑃𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒362 

denotes the probability of event e under the dammed scenario in period i. Period i refers to the near future 363 

and far future periods. Event e indicates the DTF, FTD, and DFAA events. 364 

Eqs. (39) and (40) give the definitions of 𝑃𝑁𝑎𝑡𝑢𝑟𝑎𝑙,𝑖,𝑒 and 𝑃𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒 described above.365 

𝑃𝑁𝑎𝑡𝑢𝑟𝑎𝑙,𝑖,𝑒 =
𝑀𝑁𝑎𝑡𝑢𝑟𝑎,𝑖,𝑒

𝑇𝑀𝑖
(39) 366 

𝑃𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒 =
𝑀𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒

𝑇𝑀𝑖
(40) 367 

Where 𝑀𝑁𝑎𝑡𝑢𝑟𝑎,𝑖,𝑒 denotes the number of months in which event e occurs in period i under the natural368 

scenario. 𝑀𝐷𝑎𝑚𝑚𝑒𝑑,𝑖,𝑒 denotes the number of months occurred event e in period i under the dammed369 

scenario. 𝑇𝑀𝑖  refers to the total number of months in period i. Period i refers to the near future and far370 

future periods. Event e indicates the DTF, FTD, and DFAA events. 371 
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As each GCM possesses a unique structure and assumptions, projections of climate change by a single 372 

GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of 373 

hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple 374 

GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties, and 375 

ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016; Hecht 376 

et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in prior 377 

studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this research 378 

determines the average DFAA probability from five GCMs to lessen the uncertainty in their predictions 379 

and assesses the fluctuation in these probabilities across the models to demonstrate their variability. 380 

3. Results381 

3.1 CMIP6 data bias correction performance 382 

From both regional and seasonal perspectives, the uncorrected raw CMIP6 data show significant 383 

discrepancies with ERA5_Land data during the history period (1980-2014). When compared with 384 

ERA5_Land data, the uncorrected raw CMIP6 data reveal an average annual precipitation bias of around 385 

±1800 mm and an average daily temperature bias of approximately ±12 ℃ (Figs. 3b and 3e). These 386 

notable inconsistencies highlight that using uncorrected CMIP6 data for hydrological modeling would 387 

incur considerable inaccuracies. However, CMIP6 data corrected by the MBCn method deviate from 388 

ERA5_Land data by less than ±120 mm of average annual precipitation and ±0.2 ℃ of average daily 389 

temperature (Figs. 3c and 3f). The bias correction greatly improves CMIP6 data accuracy in the LMR 390 

Basin. The corrected CMIP6 data also match the seasonal cycle of ERA5_Land well for both 391 

precipitation and temperature (Fig. 3g). Compared to the raw data, the corrected CMIP6 shows much 392 

improved spatial and temporal accuracy, leading to more accurate and reasonable analyses for DFAA. 393 

3.2 Calibration and validation for the hydrological model 394 

The daily observed runoff and daily simulated runoff from the THREW model for the calibration period 395 

(2000-2009) and validation period (2010-2020) are illustrated in Fig. 4, demonstrating the model’s strong 396 

performance. Importantly, since there was no massive reservoir construction in the LMR Basin before 397 

and during the calibration period (Zhang et al., 2023), the THREW model without the reservoir module 398 

is applied for calibration. Meanwhile, the addition of large-scale reservoirs during the validation period 399 
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allows validation of the THREW model configuration with the reservoir module, Notably, the THREW 400 

model captures runoff fluctuations between wet and dry seasons with high accuracy, achieving an NSE 401 

of at least 0.8 during both periods. This excellent simulation performance extends across both upstream 402 

and downstream regions, emphasizing the robustness of the model under observed conditions. 403 

404 
Figure 3: Averaged meteorological data of 5 GCMs for the history period (1980-2014). Here, 5 GCMs are 405 
corrected separately. The red and blue star symbols respectively indicate the locations of the maximum and 406 
minimum values in (a) to (f). (a) to (c) present the spatial distribution of precipitation based on respectively 407 
ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected 408 
CMIP6 minus ERA5_Land). (d) to (f) illustrate the spatial distribution of temperature based on ERA5_Land, 409 
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raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus 410 
ERA5_Land). (g) shows seasonal cycles of temperature and precipitation from ERA5_Land, raw and bias-411 
corrected CMIP6, as well as their corresponding range. 412 

413 
Figure 4: Performance of the THREW model in calibration (2000-2009) and validation (2010-2020) periods. 414 
Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively. 415 

3.3 DFAA under the changing climate 416 

Under the natural scenario (without reservoir operations), DFAA in the LMR Basin is dominated by DTF, 417 

that is, the risk of DTF is more critical than that of FTD (Table 4). The probability of FTD ranges from 418 

0.7% to 2.1% in the history period, 0.6% to 2.0% in the near future, and 0.5% to 2.0% in the far future. 419 

Conversely, DTF probabilities are higher, ranging from 1.6% to 2.3%, 1.2% to 3.2%, and 1.2% to 3.0% 420 

respectively in these three periods. 421 

Table 4: The year-round DFAA probability averaged across five GCMs during each period under the natural 422 
scenario. 423 

Natural Station History 
Near Future Far Future 

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5 

DTF 

JingHong 1.67% 2.04% 1.71% 1.63% 1.67% 1.75% 1.21% 

Nong Khai 1.52% 1.71% 2.08% 1.17% 1.96% 2.25% 1.71% 

Pakse 2.24% 2.38% 3.13% 1.83% 2.67% 2.75% 2.04% 

Kratie 2.33% 3.17% 2.83% 2.08% 3.04% 2.92% 2.54% 

FTD 

JingHong 0.72% 0.83% 1.17% 0.63% 0.79% 1.25% 0.54% 

Nong Khai 1.10% 1.25% 1.42% 0.71% 1.13% 1.12% 0.67% 

Pakse 2.10% 1.33% 2.04% 1.54% 1.58% 1.71% 1.17% 

Kratie 1.86% 1.71% 1.92% 1.33% 2.04% 1.87% 1.75% 
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DFAA risk is substantially elevated during the wet season compared to the dry season (Table S1). For 424 

the average of five GCMs, the probability of FTD in the wet season is 2 to 5.5 times higher than that in 425 

the dry season in the history period. In the near and far future periods, this ratio ranges from 1.1 to 36 426 

times and 3.3 to 41 times, respectively. As for DTF, the probability in the wet season is correspondingly 427 

1.7 to 5.7 times, 1.3 to 3.9 times, and 0.9 to 6.3 times higher than that in the dry season for history, near 428 

future, and far future. Only JingHong station experiences a slightly higher probability of DTF in the dry 429 

season (1.25%) than in the wet season (1.17%) for the far future. 430 

431 
Figure 5: DFAA under the natural scenario. (a) The annual change in DFAA probability averaged across five 432 
GCMs and their ranges in the near and far future periods with respect to the history period under three SSPs. 433 
(b) The seasonal change in DFAA probability averaged across five GCMs and their ranges in the near and434 
far future periods with respect to the history period during wet and dry seasons under three SSPs. Here, JH, 435 
NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent 436 
the near future period and the far future period. 1-2.6, 2-4.5 and 5-8.5 respectively denote SSP1-2.6, SSP2-437 
4.5, and SSP 5-8.5 scenarios. Please note that this figure illustrates variations in DFAA events under climate 438 
change. The annual and seasonal probabilities of DFAA under the natural scenario are presented in Table 4 439 
and Table S1, respectively. 440 

DFAA risks show marked spatial variation, with annual probability consistently higher downstream than 441 

upstream (Table 4). The annual probability of FTD ranges from 0.6% to 1.3% at JingHong station and 442 

0.7% to 1.4% at Nong Khai station. These probabilities rise to 1.2% to 2.1% and 1.4% to 2.1% at Pakse 443 

and Kratie stations, respectively. Similarly, the annual probability of DTF at JingHong and Nong Khai 444 

stations is 1.2% to 2.1% and 1.2% to 2.3%. The probabilities at Pakse and Kratie stations range from 1.4% 445 
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to 3.2% and 3.1% to 3.2%, respectively. The DTF risk in the wet season and the FTD risk in both dry 446 

and wet seasons are also higher downstream than upstream. Since the probability of FTD in the dry 447 

season at Nong Khai, Pakse, and Kratie stations is limited, especially under the SSP5-8.5 scenario 448 

(<0.2%), the risk of FTD in the dry season appears more notable upstream than downstream. 449 

The annual DFAA probability increases under SSP1-2.6 and SSP2-4.5 scenarios (except for FTD at Pakse 450 

station) and decreases under the SSP5-8.5 scenario (Fig. 5a). Such a pattern is attributable to the enhanced 451 

tendency for flood and drought events in the LMR Basin to cluster rather than alternate under the SSP5-452 

8.5 scenario (Dong et al., 2022). Under SSP5-8.5 scenario, the average probability of FTD across five 453 

GCMs is 0.6% to 1.8%, while the probability of DTF ranges from 1.2% to 2.6%. Conversely, the average 454 

probabilities of FTD and DTF under the SSP2-4.5 scenario range from 0.7% to 2.1% and 1.7% to 3.2%, 455 

respectively. 456 

The future growth in DTF is significantly greater than that in FTD. For the average probabilities across 457 

five GCMs, relative to the history period, the future change in DTF probability at JingHong station is -458 

0.5% to 0.4%, at Nong Khai station is -0.4% to 0.7%, and at Pakse and Kratie stations, respectively, is -459 

0.5% to 0.9% and -0.2% to 0.8%. The future FTD probability change for JingHong is -0.2% to 0.5%, 460 

while for Nong Khai, Pakse, and Kratie, it is -0.4% to 0.3%, -1% to -0.1%, and -0.6% to 0.2%, 461 

respectively. The maximum values from the five GCMs show a consistent trend, with increases in DTF 462 

probability being significantly greater than those in FTD probability. 463 

Upstream and downstream regions experience contrasting future risk increases, with FTD risks rising 464 

more upstream and DTF risks rising more downstream (Fig. 5a). Under three climate models, JingHong 465 

Station experiences the maximum increase of 0.37% and 0.08% in DTF risks, respectively, in the near 466 

and far future. Meanwhile, FTD risks at this station rise by 0.45% and 0.53%, respectively. Conversely, 467 

Kratie Station exhibits the highest increase of 0.83% and 0.71% in DTF risks, alongside 0.06% and 0.02% 468 

increases in FTD risks. The opposite trends of DFAA risk in upstream and downstream pose enhanced 469 

challenges to the integrated management of the LMR Basin. 470 

Future seasonal DFAA risks follow scenario-dependent trends: wet-season risks for both DTF and FTD 471 

rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under the SSP5-8.5 scenario (Fig. 5b). This is 472 

similar to the annual DFAA risk. The risk of FTD during the dry season decreases, with an upward trend 473 

emerging only in the near future under the SSP2-4.5 scenario (average across five GCMs <0.4%, 474 

maximum <1.3%). The risk of DTF during the dry season rises in most situations, except at Nong Khai 475 
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station in the near future under the SSP5-8.5 scenario, where it shows an average decrease of 0.46% 476 

across five GCMs. The largest increase of dry-season risk of DTF is found at Pakse station under the 477 

SSP2-4.5 scenario, with an average increase of 1.08% across five GCMs and a maximum increase of 478 

2.08%. 479 

Mild-intensity DFAA events constitute the majority of all DFAA occurrences (Fig. 6). The probability of 480 

mild DTF varies across scenarios, with values ranging from 0.7% to 2.4%, which corresponds to 58% to 481 

90% of the total DTF probability. Likewise, mild FTD probabilities range from 0.6% to 1.8% (Fig. 6), 482 

comprising a larger share of the total FTD probability, specifically 75% to 100%. Mild DTF events 483 

account for 2 to 13 times the possibility of moderate DTF events. This ratio escalates to 3 to 31 times for 484 

FTD events. Notably, severe FTD events are extremely rare, often occurring at 0% probability. However, 485 

severe DTF events are notable, with probabilities ranging from 0% to 0.38%, and in some instances, 486 

accounting for up to 13% of total DTF probability. 487 

488 

Figure 6: Annual probability of DFAA at different intensities under the natural scenario, averaged across five 489 
GCMs and their ranges in the near future (2021-2060) and far future (2061-2100) periods under three SSPs. 490 
Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF 491 
represent the near future period and the far future period. The specific value shown in this figure can be 492 
found in Table S2. 493 

The total probabilities of DTF events exceed that of FTD events (Fig. 5a), and this holds true for mild, 494 

moderate, and severe intensity events (Fig. 6). The disparity between DTF and FTD events is not as 495 

pronounced in mild intensity events, but it becomes significant in moderate intensity events. The 496 

probabilities of moderate DTF range from 0.08% to 0.75%, whereas the probabilities of moderate FTD 497 
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range from 0.04% to 0.42% (Fig. 6). The marked disparity in severe intensity events is even more 498 

pronounced by the extremely low probability of severe FTD. 499 

Mild DTF probabilities are projected to increase in the far future, while moderate and severe DTF 500 

probabilities are projected to decrease. Specifically, the probability of mild DTF rises to 1.1% to 2.4% in 501 

the far future, compared to 0.7% to 2.3% in the near future. The probabilities of moderate and severe 502 

DTF drop from an average of 0.42% and 0.19% in the near future to 0.38% and 0.12%, respectively, in 503 

the far future. However, the probabilities of FTD events across all three intensity levels remain relatively 504 

consistent between the near and far future. 505 

3.4 Reservoirs’ impacts on DFAA 506 

Reservoirs exhibit extraordinary mitigation effects on DTF risk under the changing climate while 507 

showing weaker effects in FTD risk (Fig. 7a). Nonetheless, the higher probability of DTF compared to 508 

FTD (Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk. The 509 

distinct controlling role of reservoirs on DTF risk versus FTD risk is associated with the consistency 510 

between these two types of DFAA events and the logic of reservoir operation. Section 4.1 will delve into 511 

the mechanistic details. 512 

Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%, 513 

averaged across five GCMs. Throughout this section, a negative value indicates that reservoirs increase 514 

the probability of DFAA, while positive values indicate a reduction. In most scenarios, the reservoir plays 515 

a positive mitigating role across all GCMs (Fig. 7a). Reservoirs are expected to have better mitigation 516 

effects in the near future at JingHong station. As for Nong Khai and Pakse stations, the reduction effect 517 

of reservoirs on DTF is more pronounced in the far future under SSP1-2.6 and SSP2-4.5 scenarios, while 518 

in the near future under the SSP5-8.5 scenario. The effect conversely, exhibits greater strength under 519 

SSP1-2.6 and SSP5-8.5 scenarios in the near future, while it is stronger under the SSP2-4.5 scenario in 520 

the far future at Kratie station. These findings are consistent across both the average of the GCMs and 521 

their ranges. 522 

Reservoirs are more effective in reducing FTD in the near future than in the far future at JingHong, Pakse, 523 

and Kratie, while the effect at Nong Khai is slightly less in the far future (Fig. 7b). Reservoirs are most 524 

effective under high emissions (SSP5-8.5), reducing FTD probability at all stations (0.13% to 0.42%, 525 

GCM average). Under lower emissions (SSP1-2.6 and SSP2-4.5), mitigation is weaker (-0.33% to 0.38%, 526 
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GCM average) at Nong Khai and Pakse, but notable at JingHong and Kratie, especially in certain future 527 

periods. For example, under intermediate emissions (SSP2-4.5) in the far future at JingHong, reservoirs 528 

lower the average probability by over 0.9% and maximum by nearly 1.8%. 529 

530 
Figure 7: Reservoir impacts on DFAA during the near future (2021-2060) and the far future (2061-2100) 531 
under three SSPs. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The 532 
seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges. Here, JH, 533 
NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent 534 
the near future period and the far future period. 1-2.6, 2-4.5 and 5-8.5 respectively denote SSP1-2.6, SSP2-535 
4.5, and SSP 5-8.5 scenarios. Please note that this figure illustrates the impact of reservoir operations on 536 
DFAA events. The annual and seasonal probabilities of DFAA under the dammed scenario are presented in 537 
Table S3. 538 

Reservoirs reduce FTD more in the wet season (-0.17% to 1.5%, GCM average) than in the dry season 539 

(-1% to 0.67%), especially at Nong Khai, Pakse, and Kratie (Fig. 7b). Negative values mean a reservoir 540 

increases FTD probability. In the wet season, reduction is notable (-0.17% to 0.92%), but in the dry 541 

season, FTD probability increases (-1% to 0.33%). Seasonal differences in DTF mitigation are less 542 

pronounced. Reservoirs slightly better reduce DTF in the dry season (-0.17% to 1.25%) than in the wet 543 

season (-0.42% to 0.83%). Reservoirs mitigate DTF more effectively than FTD in both seasons, aligning 544 

with the annual DFAA. 545 

Reservoirs effectively manage DFAA events, which are predominantly characterized by mild intensity. 546 

They decrease the probability of mild DTF by -0.1% to 0.9% (Fig. 8), whereas the probability of such 547 
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events is 0.7% to 2.4% under the natural scenario (Fig. 6), indicating that reservoirs decrease their 548 

likelihood by -0.12 to 0.64 times. Reservoir reduces the probability of mild FTD by -0.4% to 0.8% (Fig. 549 

8). They increase the probability of mild FTD at the Nong Khai station under the SSP1-2.6 scenario. 550 

Since the probability of mild FTD is 0.6% to 1.8% under the natural scenario (Fig. 6), reservoir operation 551 

reduces their probability by -0.38 to 0.69 times. 552 

553 
Figure 8: Reservoir impacts on DFAA under different intensities, averaged across five GCMs and their ranges 554 
in the near future (2021-2060) and far future (2061-2100) periods under three SSPs. Here, JH, NK, PA, and 555 
KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent the near 556 
future period and the far future period. Please note that this figure shows how the reservoir affects DFAA 557 
events at different intensities. The probabilities of DFAA events at each intensity under the dammed scenario 558 
are presented in Table S4. 559 

While the reservoir's mitigation effect on FTD events is less pronounced than on DTF events (Fig. 7), it 560 

demonstrates a commendable mitigation effect on moderate FTD, reducing their probability by -0.08% 561 

to 0.17% (Fig. 8). This reduction represents -0.4 to 1 times the probability under the natural scenario. 562 

This ratio surpasses the reservoir's mitigation effect on moderate DTF, where the probability is reduced 563 

by -0.3% to 0.3% (Fig. 8), accounting for -0.70 to 1 times the natural probability. This highlights that the 564 

reservoir exerts a more significant mitigating force on high-intensity FTD events compared to high-565 

frequency FTD events. 566 

Reservoir exhibits notable mitigating effects for DTF events across all three intensity levels. However, 567 

their ability to alleviate moderate DTF is relatively weaker than that for mild DTF (Fig. 8), which differs 568 

from the characteristic of FTD events. This implies that reservoirs possess a stronger capability to 569 

manage high-frequency DTF events than higher-intensity events. 570 



25 

571 
Figure 9: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong, 572 
Nong Khai, Pakse, and Kratie stations) under natural and dammed scenarios for three SSPs during the near 573 
future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this figure 574 
are averaged over 5 GCMs. 575 

DFAA often shows several monthly peaks under the natural scenario. This means some months have a 576 

higher DFAA probability than their neighbors. The multiple peaks are clearer in DTF than in FTD (Fig. 577 

9). When averaging monthly DFAA over four mainstream hydrological stations, DTF shows three peaks 578 

under near-term SSP2-4.5 and far-term SSP5-8.5 scenarios, while FTD only shows two peaks in both 579 

cases. Reservoirs help regulate DFAA by lowering and reducing peaks, with a stronger peak reduction 580 

effect anticipated in the near future for DTF (Fig. 9). In the far future, for FTD, especially under SSP1-581 

2.6 and SSP2-4.5, reservoirs still alleviate peaks, though less so in terms of reducing their number. 582 

Reservoirs also lower DFAA probability during early and middle dry seasons (December to April) for 583 

both near and far futures, often 1% or less at most stations. Sometimes, such as the SSP2-4.5 scenario in 584 

the near future, reservoirs actually increase the probability of DFAA in May. This happens because 585 

helping during the dry season before May reduces the capacity of reservoirs for water regulation in May, 586 

making it hard to control DFAA risks that month. Reservoirs also shorten DFAA’s monthly span. Instead 587 

of occurring throughout the year under the natural scenario, DFAA is to concentrated from May to 588 

October under the dammed scenario (Fig. 9). This allows the LMR Basin to focus DFAA policies and 589 
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actions on those months. As a result, riparian states can combine resources and coordinate their efforts 590 

more efficiently to manage and respond to DFAA and related hazards. 591 

4. Discussion592 

4.1 Different characteristics of DTF and FTD events 593 

The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al. 594 

(2021) found that FTD events predominate in the Wei River Basin. Wang et al. (2023) projected that in 595 

the Poyang Lake Basin, the temporal spread of DTF events will expand in the future, while that of FTD 596 

events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the Huang-597 

Huai-Hai River Basin will experience more DTF events, whereas under SSP3-7.0 and SSP5-8.5 scenarios, 598 

it will experience more FTD events. This study identifies differences between DTF and FTD events as 599 

well, and further highlights the different characteristics of reservoirs' mitigating effects on these events. 600 

The average probability of DTF across all periods is 2.1% under the natural scenario, which is 601 

significantly higher than the 1.4% average for FTD (Fig. 5a). The probability of DTF consistently 602 

exceeds that of FTD under three different intensities (Fig. 6). Additionally, DTF probabilities show a 603 

significant increase in both the near and far future, averaging 0.23%, which exceeds the increase in FTD 604 

probabilities, averaging 0.13% (Fig. 5a). 605 

Compared with FTD events, reservoirs more effectively control DTF probabilities, significantly lowering 606 

DTF risk in both dry and wet seasons (Fig. 7). The reason is that the timing of DTF’s water regulation 607 

matches the way reservoirs operate. At the start of DTF, reservoirs typically hold water at the storage 608 

corresponding to the normal water level, which equates to 0.8 times the maximum storage (Eq. (20)). 609 

Hence, reservoirs possess sufficient storage capacity to mitigate the drought conditions. In parallel, the 610 

water release during the initial phase of the DTF reduced the water level, thereby meeting the storage 611 

needs for sudden floods that occur later in the DTF. As a result, even if DTF events are frequent, 612 

reservoirs can manage them well. Reservoirs especially succeed in reducing mild DTF events (Fig. 8). 613 

However, they control moderate DTF events less effectively. In intense DTF cases, the rules for operating 614 

reservoirs are not enough. For example, if a severe drought at DTF’s beginning exceeds reservoir storage, 615 

they cannot effectively relieve the extreme drought and thus fail to control such DTF events. 616 

Although FTD is less likely than DTF, reservoirs control FTD less effectively, especially in the dry season 617 
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(Fig. 7). The problem is that when the FTD event occurs, reservoirs are generally maintained at their 618 

target storage for the wet season. The storage corresponds to the flood control water level, which is 1.2 619 

times the minimum storage capacity (Eq. (19)). Consequently, reservoirs, while fully meeting flood 620 

control requirements at the start of FTD, struggle to maintain sufficient water storage to satisfy water 621 

supply demands for the subsequent drought stage. If FTD occur frequently, reservoirs’ control decrease 622 

further. While reservoirs do little for mild FTD, they noticeably reduce moderate FTD (Fig. 8). This 623 

means that, for rare but strong FTD events, reservoirs can help by storing water for later droughts. 624 

However, if FTD is frequent, current reservoir operations do not help much. This difficulty in regulation 625 

is what makes FTD a major challenge. It is encouraging, though, that FTD is expected to become less 626 

common in most areas of the LMR Basin in the future (Fig. 5). 627 

4.2 The relationship between reservoirs’ mitigation roles and their storage 628 

The reservoir systems provide enhanced mitigation efficiency against DFAA at JingHong and Kratie 629 

compared to those at Nong Khai and Pakse (Fig. 7). Reservoir storage in the region above JingHong and 630 

the Pakse to Kratie region is significantly larger than storage in the JingHong to Nong Khai and Nong 631 

Khai to Pakse regions (Fig. 1c). Reservoirs' capacity to reduce total DFAA risk closely relates to the total 632 

storage of mainstream and tributary reservoirs, consistently showing a positive correlation for DTF and 633 

FTD events (Fig. 10a). These findings highlight reservoirs’ multifaceted role in managing flood 634 

prevention and drought resistance (Hecht et al., 2019; Hoang et al., 2019; Ly et al., 2023) while also 635 

addressing sudden DFAA challenges. These results align with Feng et al.’ s (2024) discovery that large 636 

reservoirs significantly reduce drought and flood risks and corroborate Ehsani et al.’ s (2017) conclusion 637 

that increased dam dimensions can mitigate water resource vulnerability to climate uncertainties. 638 

The positive correlation between total reservoir storage and the reduction of total DFAA risk indicates 639 

that basins with larger total storage are better equipped to resist DFAA events. However, this study 640 

examines only hydroelectric reservoirs in the LMR Basin and excludes other water storage facilities such 641 

as irrigation reservoirs. In the LMR Basin, total storage of irrigation reservoirs is considerable. According 642 

to the MRC, the Mekong Basin contains 1317 irrigation reservoirs, with total storage of about 17 billion 643 

m3 (MRC, 2018; LMC and MRC, 2023). This storage exceeds the total storage of reservoirs between 644 

JingHong and Nong Khai stations (around 9.7 billion m3). It is slightly lower than the storage between 645 

Nong Khai and Pakse stations (approximately 22.1 billion m3) (Figs. 1c and 10). Since reservoirs mitigate 646 
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extreme hydrological events regardless of their primary function (Brunner, 2021a; Ho and Ehret, 2025), 647 

even irrigation reservoirs can play a beneficial role in addressing DFAA events. Fully utilizing irrigation 648 

reservoirs and implementing coordinated operation of all reservoir types across the LMR Basin could 649 

effectively lower DFAA risks and enhance the basin's resistance to these events. 650 

651 

Figure 10: The relationship between reservoirs' mitigation effects and their total storage. Symbol points 652 
denote the average values for each station under three SSP scenarios during the near future (2021-2060) and 653 
far future (2061-2100) periods, while error bars indicate the maximum and minimum values. (a) The impact 654 
of reservoirs on the total probability of DFAA. (b) The impact of reservoirs on DFAA of different intensities. 655 
Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. Please note 656 
that, as JingHong and Nong Khai stations are not expected to experience severe FTD events in the future, the 657 
relevant information has not been included in this figure. 658 

Both mild DTF and mild FTD show a positive correlation with total reservoir storage, consistent with 659 

total DFAA events (Fig. 10b). In contrast, moderate and severe DFAA events do not strongly correlate 660 

with reservoir storage (Fig. 10b). This implies that for moderate to severe DFAA events, increasing 661 

reservoir storage capacity does not enhance the reservoirs' control capabilities. Therefore, refining 662 

reservoir operation rules presents a more appropriate strategy to strengthen control of moderate and 663 

severe DFAA events in the LMR Basin. 664 

4.3 Limitations of reservoir regulation rules 665 

The reservoir operation rule SOP adopted in this study is a commonly used method. Previous studies 666 

have widely employed this method (Wang et al., 2017a; Yun et al., 2020). The SOP rule is proven 667 

appropriate for hydrological modeling in large-scale basins such as the LMR Basin. It is also effective 668 
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for extended simulation periods in future hydrological assessments (Wang et al., 2017b; Yun et al., 2021a; 669 

Yun et al., 2021b). 670 

This study further improved the standard SOP operation rules by adding the general case and emergency 671 

case (Fig. 2). This scheduling approach manages reservoir operations using real-time inflow data. It also 672 

considers the operational year of each reservoir. As a result, the reservoir module developed in this study 673 

is robust and adaptable. It reflects reservoir scheduling scenarios with high reliability. 674 

Despite this, the study uses uniform operation rules for reservoirs of different storage scales within the 675 

LMR Basin. It implements daily regulation for all reservoirs. The study does not use differentiated 676 

regulation scales (daily, annual, or multi-annual) based on storage. It also does not consider unique 677 

operation rules in different sub-basins. These simplifications may cause uncertainties in how reservoirs 678 

mitigate effects. This is a limitation of the study. 679 

5. Conclusion680 

This study adopts CMIP6 meteorological data, applying three SSP scenarios and five GCMs. It corrects 681 

these data using the MBCn method. The study integrates the THREW distributed hydrological model 682 

and the developed reservoir module. It describes DFAA through R-SDFAI, assessing mild, moderate, 683 

and severe intensities. The study explores how reservoirs help reduce DFAA under the changing climate 684 

in the LMR Basin. It examines three periods: history (1980-2014), near future (2021-2060), and far future 685 

(2061-2100). The main findings are summarized below: 686 

1. DFAA in the LMR Basin is dominated by DTF, with a mean probability of 2.1%. This is much higher687 

than the FTD probability of 1.4%. DTF remains higher than FTD at all intensity levels. The future 688 

increase in DTF probability (average 0.23%) is also greater than the increase for FTD (average 0.13%). 689 

Mild-intensity DFAA events are most common. They account for 58% to 90% of future DTF probability 690 

and 75% to 100% of FTD probability. Both DTF and FTD present higher DFAA risk during the wet 691 

season than the dry season. 692 

2. Reservoirs manage DTF probability well, cutting DTF risks in both dry and wet seasons. However,693 

they have less influence over FTD risks, especially during dry-season FTD events. Limited capacity to 694 

control FTD risks is a challenge. Reservoirs do better at managing high-frequency DTF and high-695 

intensity FTD events. They also cut down multi-peak DFAA events and reduce their monthly duration. 696 
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3. Reservoirs' ability to lower DFAA total risk is linked to their combined storage. Using large irrigation 697 

reservoirs within the LMR Basin can help withstand mild DFAA risks and overall events. To better handle 698 

moderate and severe DFAA events, reservoir operations need to be optimized. 699 

This study gives new insights into how reservoirs help mitigate DFAA in the LMR Basin. It also aids 700 

water management for riparian countries. DFAA remains a serious challenge. This shows the need for 701 

LMR Basin countries to work together, build capacity against DFAA events, reduce climate change 702 

effects, and support sustainable development. 703 
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