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Abstract. The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological9

events, including Drought-Flood Abrupt Alternation (DFAA). The impact of climate change on DFAA10

and the efficacy of potential mitigation measures such as reservoirs remain poorly understood. This11

study investigates these dynamics using five Global Climate Models (GCMs) from the Coupled Model12

Intercomparison Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt13

Alteration Index (R-SDFAI), alongside the Tsinghua Representative Elementary Watershed (THREW)14

model integrated with the developed reservoir module. Results reveal that future DFAA trend varies15

widely in upstream and downstream, with significant increases respectively in FTD (flood to drought)16

upstream and DTF (drought to flood) downstream. FTD is more challenging though DTF is more17

probable to occur. Under low- and medium-emission scenarios, DFAA risks escalate, especially during18

the wet season, whereas under high-emission scenario, their risks decline. Reservoirs as a promising19

adaptation strategy can significantly mitigate the year-round DTF and wet season’s FTD, particularly in20

regions with higher total reservoir storage. Reservoir operations reduce DFAA’s risks, limit multiple21

peaks and shorten its monthly span. Hydrological forecasting and resilient storage are viable options22

for climate change to help LMR Basin smooth out DFAA. These insights offer valuable guidance for23

effective water resources cooperative management across LMR Basin countries.24

Keywords. Drought-Flood Abrupt Alternation; Climate change; Reservoir operation; Lancang-Mekong25

River Basin.26

1. Introduction27

Flood and drought are the two most frequent natural disasters in the world (Adikari et al., 2009;28
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ADREM et al., 2024). Drought-Flood Abrupt Alternation (DFAA), defined as the rapid transition flood29

and drought (Xiong et al., 2025), has received growing attention in recent years (Chen et al., 2025; Wu30

et al., 2023; Zhang et al., 2012; Shan et al., 2018; Song et al., 2023). DFAA is specifically divided into31

the rapid change from flood to drought (FTD) and from drought to flood (DTF). Hazards arising from32

DFAA are more significant compared to floods and droughts. DFAA not only alters the soil condition33

and increases the potential for exceeding water quality standard (Bai et al., 2023; Yang et al., 2019), but34

also challenges food security and seriously affects agricultural production. Furthermore, DFAA,35

particularly DTF is exposed to triggering severe secondary natural hazards, primarily including flash36

floods, landslides, and mudslides (Wang et al., 2023).37

Employing indices to characterize DFAA events is a common quantitative method. Since Wu et al.38

(2006) proposed the precipitation-based long-cycle drought-flood abrupt alternation index (LDFAI) to39

quantitatively characterize the long-term DFAA of wet season, LDFAI has been widely adopted (Ren et40

al., 2023; Shi et al., 2021; Yang et al., 2022; Yang et al., 2019). Zhang et al. (2012) proposed the41

one-month interval short-cycle drought-flood abrupt alternation index (SDFAI) based on LDFAI to42

characterize the short-term DFAA of wet season, and expanded the application from precipitation to43

runoff. SDFAI has been extensively applied in various fields such as hydrology, meteorology, ecology,44

and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al., 2019). Song et al.45

(2023) further refined the SDFAI index and developed the Revised Short-cycle Drought-Flood Abrupt46

Alteration Index (R-SDFAI), which is calculated based on the Standardized Runoff Index (SRI) and47

designed to characterize short-term DFAA.48

It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing49

trend (Yang et al., 2022; Chen et al., 2024). However, regional differences are notable. Shan et al.50

(2018) observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded51

since the 1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that52

while droughts and floods in the Huai River Basin have increased, DFAA events have become less53

frequent. For future projections, Zhao et al. (2022) indicated that DFAA events in the Han River Basin54

will experience an upward trend in both frequency and intensity. Yang et al. (2019) reported that in the55

Hetao region, the number and frequency of DFAA events will diminish.56

Lancang-Mekong River (LMR) Basin, as an important international river in Southeast Asia, profoundly57

affects Southeast Asia's important industries such as hydropower, agriculture, fisheries and transport58
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(Morovati et al., 2024), while also being the high incidence area of floods and droughts (Liu et al.,59

2020; MRC, 2020). It is reported that wet season’s drought accounts for about 40% of annual drought60

(Tian et al., 2020) and there is the potential for large floods to happen in the dry season (e.g., May 2006,61

May 2007, and December 2016) (Tellman et al., 2021). These non-negligible wet season’s drought and62

dry season’s flood are all prerequisites for DFAA.63

Continued global warming will further exacerbate extreme wet and dry climate (IPCC, 2023) and64

contribute to the increased vulnerability of DFAA in future (Yang et al., 2022; Wang et al., 2023; Chen65

et al., 2025). There is a strong tendency for floods and droughts to intensity in Southeast Asia (IPCC66

WG1, 2021) as well as in LMR Basin (Wang et al., 2021; Li et al., 2021; Dong et al., 2022; Hoang et67

al., 2016). This warns of the serious DFAA pattern in LMR Basin and puts forward new requirements68

for water security and sustainable management, especially the early disaster forecasting and prevention69

system.70

The hydrological regime of LMR Basin is influenced by two main drivers, climate change and human71

activities (LMC and MRC, 2023). Despite the severity of climate change impacts, human activity is72

capable of adapting to climate change in the hydrological regime in LMR Basin (Zhang et al., 2023;73

Khadka et al., 2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021), such as reservoir74

operation. Research has shown that reservoirs play a crucial role in preventing extensive damages75

during the wet season and in minimizing low-flow occurrences in LMR Basin (Arias et al., 2014;76

Räsänen et al., 2012; Dang et al., 2024). The integration of a coupled reservoir module within the77

hydrological model is a widely adopted approach for evaluating reservoir impacts under changing78

climate. Wang et al. (2017b) utilized this approach to show that reservoir operation can minimize flood79

intensity and lower flood occurrence rates. Yun et al. (2021a; 2021b) demonstrated that, despite a80

trade-off in hydroelectric benefits, reservoir management can substantially alleviate extreme drought81

and wet hydrological events in LMR Basin. These studies collectively indicated that reservoirs82

represent a practical solution for addressing the impacts of climate change.83

It is crucial to consider the adaptation role of human activities, represented by reservoirs, to DFAA84

under climate change, which helps managers to develop effective policies on water resources85

management and ensures sustainable development of the basin system. However, little attention has86

been paid to this aspect for LMR Basin in previous studies. The statistic, report, and study related to87

DFAA in LMR Basin are almost empty currently, let alone the impact of climate change and the88
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mitigating role of reservoirs on DFAA. Therefore, this study develops the reservoir module for89

hydrological modelling, highlights the trend of DFAA in LMR Basin under climate change, and90

explores how reservoirs assist basin states to adapt changing climate. It endeavors to generate new91

knowledge into DFAA and contributes to water resource management and regional sustainability.92

2. Methodology93

2.1 Study area94

The Lancang-Mekong River (LMR) originates from the Tibetan Plateau in China and flows through95

China, Myanmar, Laos, Thailand, Cambodia, and Vietnam before entering the South China Sea at the96

Mekong Delta. LMR is approximately 4900 km long, with the basin area of 812400 km2 (He, 1995),97

and its annual runoff is approximately 475 billion m3 (Sabo et al., 2017; Luo et al., 2023). LMR Basin98

is characterized by steep slopes and rapid flows in the upstream, along with shallow slopes and slow99

mixed flows in the downstream. The wet and dry seasons in LMR Basin extend from June to100

November and from December to May (LMC and MRC, 2023), which are mainly influenced by101

southwestern and northeastern monsoons respectively. The distribution of the hydrology system and102

mainstream hydrological stations in LMR Basin are detailed in Fig. 1a.103

LMR Basin nourishes approximately 65 million people. The basin states rely on the river system to104

develop economic industries including capture fisheries, irrigation agriculture, and hydropower. LMR105

Basin has the largest freshwater capture fishery in the world (MRC, 2010; MRC, 2019), and its106

irrigation area is estimated around 4.3 million hectares (Do et al., 2020), with the Mekong Delta107

regarded as Southeast Asia’s food basket. LMR Basin is one of the most active regions for hydropower108

in the world (MRC, 2019; Williams, 2019), harboring about 235,000 GWh · yr−1 of hydroelectric109

potential in its mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). LMR Basin110

meanwhile is heavily impacted by flood and drought. During past two decades, LMR Basin has111

experienced several severe droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and floods112

(Liu et al., 2020; Tian et al., 2020; MRC, 2020), which affects crop cultivation and fisheries harvesting,113

causing loss of property and lives in riparian countries. Floods of 2013 and 2018 heavily affected the114

lower basin (Cambodia, Vietnam, Laos, and Thailand), covering 22.3 and 6.47 thousand km2115

respectively (Tellman et al., 2021).116
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117
Figure 1: Hydrology of LMR Basin. (a) Map of rivers and reservoirs, (b) Information of four main118
hydrological stations, and (c) distribution of reservoir storage. Here, JH, NK, PA, and KT respectively119
denote JingHong, Nong Khai, Pakse, and Kratie stations.120

2.2 Data collection121

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the122

meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios,123

namely SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and124

high-emission scenarios respectively. Five GCMs (Global Climate Models) with wide utilization and125

proven performance in LMR Basin are applied in this study (Li et al. 2021; Yun et al., 2021a; Yun et al.,126

2021b), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL.127

The detailed information for these five GCMs is shown in Table 1 (Eyring et al., 2016; Gidden et al.,128

2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100. This study accordingly considers three129

research periods, namely history period from 1980 to 2014 (consistent with CMIP6), near future period130

from 2021 to 2060, and far future period from 2061 to 2100.131

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980132

to 2020 serve to calibrate and validate the hydrological model, and these data are derived from China133

Meteorological Administration (CMA) and Mekong River Commission (MRC). The hydrological134
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stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse and Kratie, whose135

locations and basic information are shown in Figs. 1a and 1b. This study treats the ERA5_Land data as136

the meteorological input when calibrating and validating the hydrological model, and as the correction137

dataset when correcting the raw CMIP6 data. ERA5_Land data cover the period from 1980 to 2020,138

with the spatial resolution of 0.1°, and contain precipitation, temperature, and potential139

evapotranspiration. Soil data are obtained from the Global Soil Database (GSD) provided by the Food140

and Agriculture Organization of the United Nations (FAO) with the spatial resolution of 10 x 10 km.141

Normalized Vegetation Index (NDVI), Leaf Area Index (LAI) and Snow Cover data are obtained from142

MODIS (Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500 x 500 m and143

a temporal resolution of 16 days.144

Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024).145

122 reservoirs which simultaneously contain information on location, storage and operation years are146

utilized in this study, including 24 reservoirs in Lancang Basin and 98 reservoirs in Mekong Basin. The147

earliest and latest operation years for them are 1965 and 2035. The location and storage distribution of148

these reservoirs are shown in Figs. 1a and 1c.149

Model Name Modeling Center Realization
Resolution

(Lon×Lat)

GFDL-ESM4
National Oceanic and Atmospheric Administration Geophysical

Fluid Dynamics Laboratory, United States
r1i1p1f1 1.25°×1°

IPSL-CM6A-LR Institute Pierre Simon Laplace, France r1i1p1f1 2.5°×1.25874°

MPI-ESM1-2-HRMax Planck Institute for Meteorology, Germany r1i1p1f1 0.9375°×0.9375°

MRI-ESM2-0 Meteorological Research Institute, Japan r1i1p1f1 1. 125°×1. 125°

UKESM1-0-LL Met Office Hadley Centre, UK r1i1p1f2 1.875°×1.25°

Table 1: Details of 5 GCMs applied in this study.150

2.3 Bias correction method for CMIP6 data151

The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al.,152

2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation153

in LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange et al., 2019; Lange154

et al., 2021). ERA5_Land data are applied as the correction data in this study to correct bias in raw155

CMIP6 data.156

This study interpolates the five GCMs data of CMIP6 with different spatial resolutions to 0.1°157

(consistent with ERA5_Land) based on the bilinear interpolation spatial resolution method. The158
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interpolated CMIP6 data are bias-corrected for each GCM according to N-dimensional probability159

density function transform of the multivariate bias correction approach (abbreviated as MBCn)160

(Cannon, 2016; Cannon, 2018). The MBCn method is trained based on the difference between161

precipitation and temperature data from ERA5_Land and CMIP6 over history period (1980-2014), and162

then applied to future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM.163

The MBCn method considers the multivariate dependency structure of meteorological data and enables164

the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and165

quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as166

illustrated in Eqs. (1) and (2).167

���
[�] = ��

[�]�[�]

���
[�] = ��

[�]�[�]

���
[�] = ��

[�]�[�]

(1)168

Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming169

historical observations XT
[j], historical climate model simulations XS

[j], and climate model projections170

XP
[j] using a random orthogonal rotation matrix R[j] during the j-th iteration. The rotated data are171

represented as X�T
[j], X�S

[j], and X�P
[j]. This procedure is pivotal for MBCn's multivariate joint distribution172

correction, as it transforms the original variable space into new random orientations. In contrast to173

conventional uni-variate correction approaches, MBCn employs a random orthogonal matrix to mix174

variables, thereby breaking their independence.175

∆(�)[�](�) = ���
(�)[�](�) − ��

(�)[�]−1
(��

(�)[�](���
(�)[�](�)))

���
(�)[�](�) = ��

(�)[�]−1
(��

(�)[�](���
(�)[�](�))) + ∆(�)[�](�)

(2)176

Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to177

n-th dimension of the rotated climate model projection data x�P
(n)[j](i) within the rotated space of the j-th178

iteration. Here, ∆(n)[j](i) represents the quantile difference between the historical climate model179

simulations and climate model projections in the j-th iteration and the n-th dimension. FP
(n)[j] denotes180

the empirical cumulative distribution function for the rotated climate model projection data in the n-th181

dimension. FT
(n)[j]−1

and FS
(n)[j]−1

denote inverse Functions of the empirical cumulative distribution182

functions for the rotated historical observation data and historical climate model simulation data in the183

n-th dimension. This step preserves the trend of the climate model projection data throughout the184

correction process. The number of iterations is typically set to 10-30.185
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The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying the186

random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the187

climate model. The rotation operation breaks dependencies between variables, enabling the quantile188

delta mapping of single variable to indirectly adjust multivariate correlations. The quantile delta189

mapping ensures the transmission of absolute or relative trends by computing quantile differences190

between the historical and projected periods of the climate model. The MBCn method demonstrates a191

significant improvement in terms of correction precision and accuracy, compared to uni-variate bias192

correction algorithms along with other multivariate bias correction algorithms (Cannon, 2018).193

In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential194

evapotranspiration data for five GCMs under three SSP scenarios, based on daily air temperature. The195

computational approach is outlined in Eq. (3).196

PET = [1 + α0(T − T0� �� )]PET0� ����� (3)197

Where, T0� �� and PET0� ����� correspond to the daily air temperature (°C) and daily potential198

evapotranspiration (mm day⁻¹) in the history period sourced from ERA5_Land datasets. T signifies the199

corrected daily air temperature (°C) from CMIP6 datasets. The parameter α0 is determined by the200

relationship between daily potential evapotranspiration and daily temperature in ERA5_Land data201

during the history period.202

2.4 Hydrological model coupled with reservoir module203

The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this204

study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for205

spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone,206

bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach,207

saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008).208

The model is built upon scale coordinated equilibrium equations, geometrical relationships and209

constitutive relationships, and enables to comprehensively simulate complex hydrological processes210

from mountain to ocean. The fundamental balance equations in the THREW model are listed in Eqs. (4)211

to (6).212

�
��

(��
�� �� ��

� ����) = � ��
��� + �≠� ���

�� (4)213
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Eq. (4) demonstrates the general form of mass conservation equation at the REW scale. d
dt

denotes the214

time derivative. ��
�� �� refers to the time-averaged density of phase α in sub-region j, in kg ∙ m−3 . ��

j215

means the volume fraction of phase α within sub-region j. yj indicates the time-averaged thickness of216

sub-region j, in m. �j means the time-averaged fraction of REW horizontal area occupied by217

sub-region j. e�
jP denotes the net mass exchange flux of phase α in sub-region j through interface P218

(e.g., with atmosphere, groundwater, neighboring REWs), in kg ∙ m−2 ∙ s−1 , with the positive value219

indicating the inflow to sub-region j. e�β
j refers to the phase transition rate between phase α and phase220

β within sub-region j, in kg ∙ m−2 ∙ s−1, with the positive value meaning phase α gains mass from phase221

β. Sub-region here refer to the divided eight zones within each REW.222

(��
�� �� ��

� ����) ���
�� ��

��
= ��

� ��
�� ���� ��

� ���� + � ��
��� + �≠� ���

�� (5)223

Eq. (5) presents the general form of momentum conservation equation at the REW scale. v�
j��� indicates224

the time-averaged velocity vector of phase α in sub-region j, in m ∙ s−1. g�
j��� denotes the time-averaged225

gravity vector of phase α in sub-region j, in m ∙ s−2 . T�
jP means the force vector (pressure, friction,226

seepage) exerted on phase α in sub-region j by interface P, in N ∙ s−2 , representing the momentum227

exchange. T�β
j refers to the interfacial force vector between phase α and phase β within sub-region j,228

in N∙ s−2, including drag and capillarity.229

(��
� ������

� ) ���
�� ��

��
= ℎ�

� ��
�� ���� ��

� ���� + � ��
��� + �≠� ���

�� (6)230

Eq. (6) exhibits the general form of heat conservation equation at the REW scale. c�
j means the231

specific heat capacity (constant volume) of phase α in sub-region j, in J ∙ kg−1 ∙ K−1 . ��
� refers to the232

time-averaged temperature of phase α in sub-region j, in K. ℎ�
j� �� denotes the heat generation rate per233

unit mass within phase α in sub-region j, in W ∙ kg−1 (e.g., radioactive decay, negligible usually). Q�
jP234

indicates the heat exchange rate between phase α in sub-region j and its environment via interface P, in235

W ∙ m−2 , with the positive value representing the heat is gained by phase α in sub-basin j. Q�β
j refers236

to the heat exchange rate between phase α and phase β within sub-region j, in W ∙ m−2 , with the237

positive value indicating the heat is gained by phase α.238

The THREW model employs an automatic calibration procedure to calibrate hydrological parameters239

through parallel computation (Nan et al., 2021). The calibration period of THREW model in LMR240

Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The Nash-Sutcliffe241
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efficiency coefficient (NSE) indicator is adopted to calibrate the objective function and evaluate242

simulation effectiveness at daily scale, which is calculated according to Eq. (7). THREW model has243

been successfully applied to a number of basins with various climate characteristics worldwide (Tian et244

al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang et al., 2023).245

NSE = 1 − n=1
N (Qon−Qsn)2�

n=1
N (Qon−Qo� �� )2�

(7)246

Where, Qo
n is the daily observed runoff, Qs

n is the daily simulated runoff, Qo� �� is the average of247

observed runoff, and N is the total number of days.248

This study extends the THREW model through the development of a reservoir management module249

that can be incorporated into it. This module contains detailed data on 122 reservoirs in the basin, with250

operational years ranging from 1965 to 2035. Configuring the module's activation enables the251

integrated THREW model to simulate natural runoff without considering reservoirs, and dammed252

runoff with reservoirs considered.253

The reservoir operation rules are consistent over time and space, with each reservoir following the254

same operation rules and starting scheduling according to its respective operational year. The reservoir255

module conducts daily-scale reservoir operation based on sub-basins. Each reservoir is allocated to the256

corresponding sub-basin according to its location information. The cumulative reservoir storage over257

multiple years for each sub-basin is calculated and serves as an input condition for the reservoir module.258

The module consists of two phases: the initial phase and the normal phase. The constraints of the259

normal phase are further divided into general and emergency cases. Both cases share the same reservoir260

operation rules, but their constraints differ, with the emergency case featuring more flexible constraints.261

The reservoir module's flowchart is depicted in Fig. 2.262

When the cumulative multi-year storage of some REW changes in one year, it indicates that at least one263

new reservoir starts operation in that REW in that year. The additional reservoir operates under the264

initial phase rules. The rules for initial phase are described as Eqs. (8) to (9). The outlet flow is equal to265

the inlet flow if the inlet flow is less than the minimum discharge constraint, and otherwise equal to the266

minimum discharge constraint. Constraints on storage and discharge are summarized in Eqs. (10) to (11)267

(Tennant, 1976; Yun et al., 2020). The ending condition for the initial phase is Eq. (12). When the268

storage of the additional reservoir is larger than the minimum storage constraint, end the initial phase269

and enter the normal phase.270
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Qout = Qin, Qin < Qmin
Qmin, Qin ≥ Qmin

(8)271

St = St−1 + Qin − Qout (9)272

Smin = 0.2 × Stotal (10)273

Qmin = 0.6 × Qave (11)274

St ≥ Smin (12)275

Where Qout is the outlet flow, Qin is the inlet flow, Qmin is the minimum discharge constraint, St is276

the storage for time t, Smin is the minimum storage constraint, Stotal is the total storage, and Qave is277

the average multi-year runoff during calibration period (i.e., 2000-2009).278

279

Figure 2: Flowchart of the constructed reservoir module.280

The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model281

(SOP) (Wang et al., 2017a; Morris & Fan, 1998), as depicted in Eq. (9) and Eqs. (13) to (16). Under the282

premise of water balance (Eq. (9)), constraints for annual storage (Eq. (13)), outlet flow (Eq. (14)), wet283

season storage (Eq. (15)), and dry season storage (Eq. (16)) are considered separately, where priority is284

given to the annual storage constraint (Eq. (13)).285

Smin ≤ St ≤ Smax (13)286
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Qmin ≤ Qout ≤ Qmax (14)287

min Sc − St , month = 6,7,8,9,10,11 (15)288

min Sn − St , month = 12,1,2,3,4,5 (16)289

Where Qmax is the maximum discharge constraint, Smax is the maximum storage constraint, Sc is290

the storage corresponding to the flood control level, and Sn is the storage corresponding to the normal291

storage level.292

When the reservoir enters the normal phase, constraints of the general case are used by default.293

Constraints for the general case are given in Eqs. (17) to (22). After scheduling according to general294

case’s constraints, if the outlet flow constraint is not fully satisfied (Eq. (14)), constraints are adjusted295

to that in the emergency case and the reservoir is re-operated following adjusted constraints. Eq. (23)296

characterizes the start condition for the emergency case. The emergency case is set to avoid excessive297

high or low outlet flow caused by the strict constraints. Constraints of the emergency case are shown in298

Eqs. (24) to (25).299

Qmax = 2 × Qave (17)300

Qmin = 0.6 × Qave (18)301

Sc = Smin × 1.2 (19)302

Sn = Smax × 0.8 (20)303

Smin = 0.2 × Stotal (21)304

Smax = 0.8 × Stotal, month = 6,7,8,9,10,11
1 × Stotal, month = 12,1,2,3,4,5 (22)305

Qmin ≤ Qout' ≤ Qmax (23)306

Qmin = 0.3 × Qave (24)307

Smax = 0.8 × Stotal (25)308

Where Qout' is the outlet flow after the scheduling in general case.309

2.5 Indicator for DFAA310

The Revised Short-cycle Drought-Flood Abrupt Alteration Index (R-SDFAI), as put forward by Song et311
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al. (2023), extends the applicable time frame from the flood season of LDFAI and SDFAI to cover the312

entire year, making it more suitable for multi-year DFAA analysis. Furthermore, it successfully313

mitigates issues like over-identification, under-identification, and inaccurate representation of DFAA314

severity inherent in SDFAI. Thus, this study adopts R-SDFAI for DFAA analysis. The formulas for315

R-SDFAI are summarized in Eqs. (26) to (31) (Song et al., 2023).316

F1 = Si+1 − Si (26)317

F2 = Si+1 + Si (27)318

F = F1
F2

Si+1+Si
(28)319

I = F × min( Si+1 , Si ) (29)320

I' = ( I
0.5

)
max( Si+1 , Si )2

F1 +F2 × I
max( Si+1 , Si )

F1 +F2 +I
min( Si+1 , Si )

F1 +F2

2
(30)321

R − SDFAI = sign(F1) × ( I'

I'0.5
× I

0.5
)

[
max( Si+1 , Si )

F1 +F2
]
[1−

max( Si+1 , Si )
F1 +F2

]

(31)322

Where, �� refers to the SRI in month i, F1 denotes the intensity of DFAA, F2 denotes the absolute323

intensity of drought and flood, and F is a weighting factor between 0 and 1. �'
0.5 refers to �' when324

I=0.5.325

The calculation process of SRI utilized in this work is explained in Eqs. (32) to (37). Eq. (32) gives the326

probability density function that satisfies the Gamma distribution for runoff x at a given time period.327

g(x) = 1
βαΓ(α)

xα−1e−x
β, x > 0 (32)328

where, α > 0 and β > 0 are respectively the shape and scale parameters. α� and β� are the optimal329

values of α and β, obtained according to the maximum likelihood estimation method, as illustrated in330

Eqs. (33) to (35). Γ(α) is the gamma function, as given in Eq. (36).331

α� = 1
4A

(1 + 1 + 4A
3

(33)332

β� = x�
α�

(34)333

A = ln (x�) − ln (xi)�
n

(35)334
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Γ(α) = 0
∞ yα−1ey dydy� (36)335

Where, xi is the sample of runoff sequence, x� is averaged runoff, and n is the length of runoff336

sequence.337

Then the cumulative probability of runoff x is illustrated in Eq. (37).338

G(x) = 0
x g(x) dxdx� = 1

β�α�Γ(α�) 0
x xα�−1e

−x
β� dxdx� , x > 0 (37)339

The threshold for R-SDFAI to recognize DFAA events is ±1, which indicates that the identified DFAA340

event is at least an abrupt transition between a mild hydrological drought event (SRI <− 1) and a mild341

hydrological wet event ( SRI > 1 ) (Song et al., 2023). When R-SDFAI > 1, DTF occurs, and when342

R-SDFAI < -1, FTD occurs.343

2.6 Scenario Setting344

This study concentrates on two scenarios: dammed and natural scenarios. The meteorological data from345

five selected GCMs under three SSPs are downscaled from grid scale to REW scale and served as346

meteorological inputs for the THREW model. The THREW model, augmented with the reservoir347

module, is applied to simulate runoff at key mainstream hydrological stations during history348

(1980-2014), near future (2021-2060), and far future (2061-2100) periods, examining both scenarios349

with and without reservoir management. The R-SDFAI indicator is then employed to assess the350

probabilities of DFAA events for each study period within both dammed and natural scenarios, utilizing351

the runoff data generated by the 5 GCMs and 3 SSPs.352

This study adopts the difference in DFAA’s probability between natural (without reservoir operations)353

and dammed scenarios (considering reservoir operations) to capture reservoir’s impact, as shown in Eq.354

(38).355

PImpact of Reservoirs,i,t = PDammed,i,t − PNatural,i,t (38)356

Where PImpact of Reservoirs,i,t represents the impact of reservoirs on the probability of event t in period i.357

PNatural,i,t denotes the probability of event t under the natural scenario in period i while the PDammed,i,t358

denotes the probability of event t under the dammed scenario in period i. Period i refers to the near359

future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.360

Eqs. (39) and (40) gives the definitions of PNatural,i,t and PDammed,i,t described above.361
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PNatural,i,t = MNatura,i,t
TMi

(39)362

PDammed,i,t = MDammed,i,t
TMi

(40)363

Where MNatura,i,t denotes the number of months in which event t occurs in period i under the natural364

scenario. MDammed,i,t denotes the number of months occurred event t occurs in period i under the365

dammed scenario. TMi refers to the total number of months in period i. Period i refers to the near366

future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.367

As each GCM possesses unique structure and assumptions, projections of climate change by a single368

GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of369

hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple370

GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties,371

and ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016;372

Hecht et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in373

prior studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this374

research determines the average DFAA probability from five GCMs to lessen the uncertainty in their375

predictions and assesses the fluctuation in these probabilities across the models to demonstrate their376

variability.377

3. Result378

3.1 CMIP6 data bias correction performance379

From both regional and seasonal perspectives, the uncorrected raw CMIP6 data exhibits significant380

discrepancies with ERA5_Land data during history period (1980-2014). When compared with381

ERA5_Land data for history period, the uncorrected raw CMIP6 data reveals an average annual382

precipitation bias of ±1800 mm and an average daily temperature of ±12℃ (Figs. 3b and 3e). These383

notable inconsistencies underscore that hydrological modeling using uncorrected raw CMIP6 data384

would incur considerable inaccuracies. However, CMIP6 data corrected by MBCn method deviate385

from ERA5_Land data within ±120 mm of average annual precipitation and ±0.2℃ of average daily386

temperature (Figs. 3c and 3f). The bias correction significantly improves the accuracy of CMIP6 data387

in LMR Basin. Meanwhile, the corrected CMIP6 data match the seasonal cycle of ERA5_Land well in388

both precipitation and temperature (Fig. 3g). With respect to raw CMIP6 data before correction, the389
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spatial and temporal distribution accuracy of corrected CMIP6 improves dramatically, which390

contributes to more accurate and reasonable analyses for DFAA.391

392
Figure 3: Averaged meteorological data of 5 GCMs for history period (1980-2014). Here, 5 GCMs are393
corrected separately. (a)-(c) present the spatial distribution of precipitation based on respectively394
ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected395
CMIP6 minus ERA5_Land). (d)-(f) illustrate the spatial distribution of temperature based on ERA5_Land,396
raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus397
ERA5_Land). (g) seasonal cycles of temperature and precipitation from ERA5_Land, raw and398
bias-corrected CMIP6, as well as their corresponding range.399
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3.2 Calibration and validation for hydrological model400

The daily observed runoff versus daily simulated runoff given by THREW model for calibration period401

(2000-2009) and validation period (2010-2020) are illustrated in Fig. 4. Since there was no massive402

reservoir construction in LMR Basin before and during calibration period (Zhang et al., 2023),403

THREW model without reservoir module is applied for calibration period. Meanwhile, part of large404

scale reservoirs have been commissioned during validation period, thus THREW model configuration405

with reservoir module is validated in validation period. THREW model captures the runoff fluctuation406

between wet and dry seasons well, with an NSE of at least 0.8 during calibration and validation periods.407

THREW model exhibits excellent simulation performance in both upstream and downstream regions.408

409
Figure 4: Performance of THREW model in calibration (2000-2009) and validation (2010-2020) periods.410
Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.411

3.3 DFAAunder changing climate412

Under natural scenario (without reservoir operations), DFAA in LMR Basin is dominated by DTF, i.e.,413

the risk of DTF is more critical than that of FTD. DFAA risk moreover is significantly higher in the wet414

season than dry season (Fig. 5a). For the average of five GCMs, the probability of FTD in the wet415

season is 2 to 5.5 times higher than that in the dry season in history period. In the near and far future416

periods, this ratio respectively ranges from 1.1 to 36 times and 3.3 to 41 times. As for DTF, the417

probability in the wet season is correspondingly 1.7 to 5.7 times, 1.3 to 3.9 times and 0.9 to 6.3 times418

higher than that in the dry season for history, near future and far future. Only JingHong station419
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experiences a slightly higher probability of DTF in the dry season (1.25%) than in the wet season420

(1.17%) for far future. Furthermore, the annual probability in DFAA is higher remarkably downstream421

than upstream (Fig. 5a). The annual FTD’s probability ranges from 1.1% to 2.5% at JingHong station422

and 1.3% to 2.8% at Nong Khai station. These probabilities rises to 2.3% to 4.2% and 2.7% to 4.1% at423

Pakse and Kratie stations. Similarly, the annual DTF’s probability at JingHong and Nong Khai stations424

are 2.4% to 4.1% and 2.3% to 4.5%. These probabilities at Pakse and Kratie stations reaches 3.7% to425

6.3% and 4.2% to 6.3%. The DTF risk in the wet season and FTD risk in both dry and wet seasons are426

also higher downstream than upstream. Since the FTD probability in the dry season at Nong Khai,427

Pakse and Kratie stations is limited, especially under SSP5-8.5 scenario (<0.2%), the FTD risk of dry428

season appears more notable at upstream than downstream.429

430
Figure 5: DFAA under natural scenario. Here, JH, NK, PA, and KT respectively denote JingHong, Nong431
Khai, Pakse, and Kratie stations. (a) Seasonal probability of DFAA averaged across five GCMs during432
history (1980-2014), near future (2021-2060) and far future (2061-2100) periods, as well as under three SSPs.433
The annual probability is half of the sum of wet and dry season probabilities. (b) The annual change in434
DFAA probability averaged across five GCMs and their ranges in the near and far future periods with435
respect to history period under three SSPs. (c) The seasonal change in DFAA probability averaged across436
five GCMs and their ranges in the near and far future periods with respect to history period during wet and437
dry seasons under three SSPs.438

The annual DFAA risk increases under SSP1-2.6 and SSP2-4.5 scenarios (except for FTD at Pakse439
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station) and decreases under SSP5-8.5 scenario (Fig. 5b). Among three scenarios, SSP5-8.5 is440

characterized by the lowest DFAA risk. Under this scenario, the average probability of FTD across five441

GCMs is 1.1% to 3.5%, while the DTF probability ranges from 2.3% to 5.1%. Conversely, SSP2-4.5 is442

associated with the highest DFAA risk, with FTD and DTF probabilities respectively averaging 1.4% to443

4.1% and 3.4% to 6.3%. Further, the future growth in DTF is significantly greater than that of FTD. For444

the average probabilities across five GCMs, relative to the history period, the future change in DTF445

probability at JingHong station is -0.4% to 1.1%, at Nong Khai station is -0.9% to -0.6%, and at Pakse446

and Kratie stations respectively is -1.9% to -0.1% and -1% to 0.4%. The future FTD probability change447

for JingHong is -0.9% to 0.2%, while it is -0.7% to 1.5%, -0.8% to 1.8%, and -0.5% to 1.7% for Nong448

Khai, Pakse and Kratie, respectively. The maximum values from the five GCMs show consistent trends,449

with DTF probability increases being significantly greater than FTD probability increases. Additionally,450

upstream regions face more significant increases in FTD risks in the future, while downstream regions451

experience a more substantial rise in DTF risks. The opposite trends of DFAA risk in upstream and452

downstream pose enhanced challenges to the integrated management of LMR Basin. The DFAA risk,453

meanwhile, increases most significantly under SSP2-4.5 scenario, while under SSP5-8.5 FTD risk454

drops and the growth of DTF risk is also negligible. Similar to the annual DFAA risk, the wet-season455

risks for both DTF and FTD rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under SSP5-8.5456

scenario (Fig. 5c). The FTD risk of dry season is reduced, with an increase observed only under457

SSP2-4.5 in the near future (average across five GCMs <0.4%, maximum <1.3%). The dry-season risk458

for DTF rises in all situations, except at Nong Khai station under SSP5-8.5 in the near future, where it459

shows an average decrease of 0.46% across five GCMs. The largest increase is observed at Pakse460

station under SSP2-4.5, with an average increase of 1.08% across five GCMs and a maximum increase461

of 2.08%.462

3.4 Reservoirs’ impacts on DFAA463

Reservoirs exhibit extraordinary mitigation effects on DTF risk under changing climate while showing464

weaker effects in FTD risk. (Fig. 6a). Nonetheless, the higher probability of DTF compared to FTD465

(Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk.466

Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%,467

averaged across five GCMs), and in most scenarios, the reservoir plays a positive mitigating role across468
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all GCMs (Fig. 6a). Reservoirs exhibit better mitigation effects in the near future at JingHong station.469

As for Nong Khai and Pakse stations, The reduction effect of reservoirs on DTF is more pronounced in470

the far future under SSP1-2.6 and SSP2-4.5 scenarios while in the near future under SSP5-8.5 scenario.471

The effect conversely exhibits greater strength under SSP1-2.6 and SSP5-8.5 scenarios in the near472

future while it is stronger under SSP2-4.5 scenario in the far future at Kratie station. These findings are473

consistent across both the average of the GCMs and their ranges.474

475

Figure 6: Reservoir impacts on DFAA during near future (2021-2060) and far future (2061-2100) under476
three SSPs. Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations,477
respectively. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The478
seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges.479

The reduction effect of reservoirs on FTD performs slightly better in the near future (0.42%, averaged480

across five GCMs) than far future (0.38%, averaged across GCMs) at JingHong station, while slightly481

greater in the far future (both 0.21%, GCM average) than in the near future (0.13% and 0.17%, GCM482

average) at Nong Khai and Kratie stations, while it remains the same in the near and far future periods483

at Pakse station (both 0.17%, GCM average). Reservoirs show the best effects under the SSP5-8.5484

scenario, in which they effectively alleviate the FTD probability at all hydrological stations (0.13% to485

0.42%, GCM average). Under SSP1-2.6 and SSP2-4.5 scenarios, although the reservoir operation486

displays poor mitigation effects (-0.33% to 0.38%, GCM average) at Nong Khai and Pakse stations, it487
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demonstrates notable mitigating effects at JingHong and Kratie stations, particularly in certain488

scenarios. For instance, under SSP2-4.5 scenario of the far future at JingHong station, the reservoir489

reduces the average probability across GCMs by over 1.8% and lowers the maximum probability490

values by nearly 3.6%.491

Furthermore, reservoirs exhibit superior mitigation capacity against DFAA at JingHong and Kratie492

compared to Nong Khai and Pakse stations, which aligns with the storage distribution in LMR Basin493

(Fig. 1c). Both the average and maximum probability values across five GCMs confirm this pattern.494

This indicates that reservoirs not only function well in flood and drought control (Hecht et al., 2019;495

Hoang et al., 2019; Ly et al., 2023), but respond excellently to unexpected events such as DFAA.496

The reduction effect of reservoirs on FTD in the wet season (-0.17% to 1.5%, averaged across GCMs)497

appears to be more remarkable compared to that in the dry season (-1% to 0.67%, GCM average),498

especially at Nong Khai, Pakse and Kratie stations (Fig. 6b). Reservoirs generally demonstrate499

significant reduction effects on FTD in the wet season (-0.17% to 0.92%, GCM average) at these500

stations, however, increase FTD probability in the dry season (-1% to 0.33%, GCM average). Seasonal501

differences of reservoirs mitigation effects on DTF are not as significant as those for FTD. Reservoirs502

achieve slightly better reduction effects in the dry season (-0.17% to 1.25%, GCM average) on DTF503

than in the wet season (-0.42% to 0.83%, GCM average). Moreover, the reservoir displays superior504

mitigation capability in DTF relative to FTD in both dry and wet seasons, which is consistent with the505

annual DFAA.506

DFAA tends to exhibit multiple monthly peaks under natural scenario, implying there are multiple507

months with higher DFAA probability than their adjacent months. The multiple peaks are more508

pronounced in DTF than FTD (Fig. 7). As for the monthly DFAA averaged over four mainstream509

hydrological stations, DTF shows triple peaks under near-term SSP2-4.5 scenario and far-term510

SSP5-8.5 scenario, while FTD both exhibits double peaks. The reservoir serves to regulate DFAA by511

reducing peaks and decreasing the number of peaks, where its reduction effect on the number of peaks512

appears more pronounced in the near future and for DTF (Fig. 7). Reservoirs provide robust peak513

alleviation for far future and FTD, particularly under SSP1-2.6 and SSP2-4.5 scenarios, despite their514

limited contribution in decreasing the number of peaks. Reservoirs meanwhile remarkably reduce515

DFAA probability in early and middle dry season (i.e., December to April) for both near and far future,516

lowering it to within 1% or even 0% (averaged across five GCMs) for most stations. The reservoir517
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furthermore potently shortens DFAA’s monthly span from spread out the whole year for natural518

scenario to concentrated from May to October for dammed scenario (Fig. 7), which enables LMR519

Basin to centralize relevant policies and practices on DFAA to this period. It therefore facilitates520

riparian states to integrate resources and concentrate efforts on targeted water resources management to521

achieve enhanced response to and control of DFAA along with its secondary hazards.522

523

Figure 7: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong,524
Nong Khai, Pakse and Kratie stations) under natural and dammed scenarios for three SSPs during near525
future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this figure526
are averaged over 5 GCMs.527

4. Discussion528

4.1 Different characteristics of DTF and FTD under changing climate529

Although flood and drought risks in LMR Basin will decrease respectively in the near and far future530

periods (Li et al., 2021; Hoang et al.,2016; Wang et al., 2017b; Yun et al., 2021a; Yun et al., 2021b),531

DFAA risk will still increases under SSP1-2.6 and SSP2-4.5 scenarios (Fig. 5). DTF and FTD exhibit532

quite different characteristics, in that DTF is more frequent but FTD is more challenging.533

The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al.534

(2021) found that FTD events are predominant in the Wei River Basin. Wang et al. (2023) projected535
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that in the Poyang Lake Basin, the temporal spread of DTF events will expand in future, while that of536

FTD events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the537

Huang-Huai-Hai River Basin will experience more DTF events, but under SSP3-7.0 and SSP5-8.5538

scenarios, it will experience more FTD events.539

The probability of DTF is significantly higher than FTD (Fig. 5a) and rises considerably in the near and540

far future periods (Fig. 5b). However, reservoirs well control the DTF probability and significantly541

reduce the DTF risk in both dry and wet seasons (Fig. 6). This can be attributed to the fact that the542

DTF’s demand for water regulation follows the reservoir scheduling logic, whereby the reservoir543

releases water to alleviate drought during early DTF, when reservoirs stay at low water level, which544

exactly satisfies the storage requirements of the sudden flood in late DTF.545

Comparatively, although FTD is less probable than DTF, reservoirs poorly control it, especially in the546

dry season, which is pertinent to the challenge that reservoirs hardly spare capacity for floods in early547

FTD whilst ensuring storage for drought during late FTD. FTD tends to occur unexpectedly under the548

high incidence of DTF, and the current reservoir operation struggles to perfectly control its risk, which549

leads to extreme challenges in FTD. Fortunately, the probability of FTD however will drop in most550

areas of LMR Basin in future (Fig. 5).551

4.2 Reservoir operation integrated with hydrological forecast552

Future DFAA in LMR Basin remains severe (Fig. 5). Although reservoirs provide positive impacts to553

DFAA under changing climate, there is room for improvement in some situations (Fig. 6). This is554

attributed to the fact that relying on general reservoir operation rules such as SOP alone can’t fully555

realize reservoirs’ potential (Zhang et al., 2018), and these rules are scheduled with completely556

unknown incoming flows. The reservoir's ability in responding to DFAA will be further enhanced if557

being scheduled with known incoming flows. Reservoir scheduling combined with hydrological558

forecast is a practical approach.559

Hydrological forecasting technology enhances the potential of reservoirs, improves their ability to560

address disasters and optimizes the resilience of LMR Basin system. Hydrological forecast enables the561

prediction of reservoirs inflows and extreme hydrological events at appropriate time scales according to562

actual requirements (Brunner et al., 2021b; Ibrahim et al., 2022), and assists in assessing their severity563

and possible impacts on production and livelihoods in LMR Basin (Kao et al., 2020; Kumar et al., 2023;564
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Prodhan et al., 2022; Hao et al., 2018).565

Hydrological forecasts provide insights into runoff and disaster situations, enabling the adaptation of566

reservoirs' current and future operational procedures. This adjustment can maximize reservoirs' water567

management efficiency, effectively counteracting flood-induced drought (FTD) and drought-induced568

flood (DTF). For instance, when a flood is occurring and hydrological forecasts predict an impending569

drought, reservoirs' operational methods should be modified to both reserve adequate storage capacity570

for the next flood event and maximize water retention to counteract the subsequent drought. Likewise,571

if hydrological forecasts indicate that a flood will strike after the current drought, reservoir572

management will transition from maximizing water storage to ensuring water availability during the573

drought while also setting aside adequate storage capacity for the upcoming flood event. In necessary574

situations, especially when severe disasters are forecasted, it is advisable to consider sacrificing some575

of the hydroelectric benefits, making the maintenance of normal production and living in LMR Basin576

the primary objective of reservoir operation.577

4.3 Maximizing utilization of the resilient storage578

The mitigation effect of reservoirs on DFAA risk is closely associated with the storage distribution of579

mainstream and tributary reservoirs (Figs. 1c and 6). This finding emphasizes a strong connection580

between reservoir storage capacity and its mitigation potential on DFAA. It aligns with Ehsani et al.581

(2017), who suggested that expanding dam dimensions can offset the vulnerability of water resources582

to climate uncertainties, and Feng et al. (2024), whose study highlighted the effectiveness of large583

reservoirs in mitigating drought and flood risks.584

This study exclusively examines hydroelectric reservoirs in LMR Basin, excluding other water storage585

facilities like irrigation reservoirs and minor irrigation systems. The LMR Basin, however, boasts586

significant storage capacity through these additional facilities. The MRC reports 1317 irrigation587

reservoirs in Mekong Basin, with total storage about 17 billion m³ (MRC, 2018; LMC and MRC, 2023).588

This storage surpasses than of reservoirs between JingHong and Nong Khai stations (around 9.7 billion589

m³), and is marginally less than those between Nong Khai to Pakse region stations (approximately 22.1590

billion m³), as depicted in Fig. 1c.591

The existing research has pointed out that the mitigating effect of reservoirs on extreme hydrological592

events is independent of their main purpose. Even when their main purpose isn't directly tied to593
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mitigating such events, they can still offer significant benefits (Brunner, 2021a; Ho et al., 2025). This594

study thus emphasizes the need for rationally planning and use of irrigation reservoirs in LMR Basin,595

particularly during severe DFAA situations. By integrating these reservoirs as adjustable storage596

solutions alongside hydroelectric reservoirs, the basin's ability to handle DFAA can be enhanced,597

thereby boosting the system's resilience and adaptability.598

5. Conclusion599

This study adopts CMIP6 meteorological data under three SSP scenarios and five GCMs, and corrects600

them utilizing MBCn method. Combined hydrological model THREW and the developed reservoir601

module, it applies R-SDFAI to characterize DFAA, and explores the mitigating role of reservoirs on602

DFAA under changing climate in LMR Basin. The study periods are organized into history603

(1980-2014), near future (2021-2060) and far future (2061-2100). The main findings are summarized604

below:605

1. Future DFAA trend varies widely in upstream and downstream of LMR Basin, with significant rises606

in upstream FTD and downstream DTF. While DTF occurs more probable, FTD presents more607

challenge. Annual and wet-season risks of DFAA increase under SSP1-2.6 and SSP2-4.5 scenarios. The608

DFAA risk is considerably higher in the wet season than dry season.609

2. Reservoirs competently reduce year-round risk of DTF and wet season’s risk of FTD in LMR Basin,610

and perform better in regions with larger total storage of mainstream and tributary reservoirs. Moreover,611

reservoirs contribute markedly to control DFAA’s multiple peaks and to shorten its monthly span.612

3. Hydrological forecast and resilient storage are able to help smoothly survive DFAA, and could be613

robust options to address climate change.614

This study provides new insights into the mitigating role of reservoirs on DFAA in LMR Basin and615

contributes to water resources management for riparian countries. DFAA remains severe under climate616

change and reservoirs do contribute to mitigating it, thus this study calls for information sharing and617

joint actions among basin countries on the forecast and prevention of DFAA. The joint efforts of LMR618

Basin states will facilitate exploring more effective and feasible measures to mitigate impacts of619

climate change and facilitate the long-term sustainable development.620

Author contribution621



26

KZ: Conceptualization; Data curation; Model development; Investigation; Methodology; Validation;622

Visualization; Writing - original draft; Writing - review & editing. ZZ: Writing - review & editing. FT:623

Conceptualization; Funding acquisition; Investigation; Methodology; Supervision; Writing - review &624

editing.625

Competing interests626

At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System627

Sciences.628

Data availability629

The hydrological data can be accessed and requested from the MRC Data Portal630

(https://portal.mrcmekong.org/home, last access: March 2025). Information related to dams is available631

on the Mekong Region Futures Institute (MERFI) website632

(https://www.merfi.org/mekong-region-dams-database, last access: March 2025). The raw CMIP6 data633

without correction is available at (https://esgf-node.llnl.gov/search/cmip6/, last access: March 2025).634

The MBCn algorithm can be accessed and implemented through an R package, which is available at635

(https://CRAN.R-project.org/package=MBC, last access: July, 2025).636

Acknowledgment637

This research was funded by the National Natural Science Foundation of China (51961125204,638

U2442201).639

Reference640

Adikari, Y., Yoshitani, J.: Global Trends in Water-Related Disasters: An Insight for Policymakers,641
International Centre for Water Hazard and Risk Management (ICHARM). The United Nations World642
Water Development Report 3, Tsukuba, Japan, https://unesdoc.unesco.org/ark:/48223/pf0000181793643
(last access: March 2025), 2009.644
ADREM, SNSE, NDRC, IFRC and IRDR: 2023 Global Natural Disaster Assessment Report. Bejing,645
https://reliefweb.int/report/world/2023-global-natural-disaster-assessment-report (last access: March646
2025), 2024.647
Arias, M.E., Piman, T., Lauri, H., Cochrane, T.A., Kummu, M.: Dams on Mekong tributaries as648
significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia. Hydrol.649

https://portal.mrcmekong.org/home
https://www.merfi.org/mekong-region-dams-database
https://esgf-node.llnl.gov/search/cmip6/
https://CRAN.R-project.org/package=MBC
https://unesdoc.unesco.org/ark:/48223/pf0000181793
https://reliefweb.int/report/world/2023-global-natural-disaster-assessment-report


27

Earth Syst. Sci. 18, 5305-5315. https://doi.org/10.5194/hess-18-5303-2014, 2014.650
Bai X., Zhao C., Tang Y., Zhang Z., Yang B. and Wang Z.: Identification, physical mechanisms and651
impacts of drought–flood abrupt alternation: a review. Front. Earth Sci. 11:1203603,652
https://doi.org/10.3389/feart.2023.1203603, 2023.653
Brunner, M.: Reservoir regulation affects droughts and floods at local and regional scales. Environ. Res.654
Lett. 16 (12). https://doi.org/10.1088/1748-9326/ac36f6, 2021a.655
Brunner, M. I., Slater, L., Tallaksen, L. M., Clark, M.: Challenges in modeling and predicting floods656
and droughts: A review. WIREs Water, 8(3), e1520, https://doi.org/10.1002/wat2.1520, 2021b.657
Chen Z., Li X., Zhang X., et al.: Global drought-flood abrupt alternation: Spatio-temporal patterns,658
drivers, and projections. The Innovation Geoscience 3:100113,659
https://doi.org/10.59717/j.xinn-geo.2024.100113, 2025.660
Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Tian, F.: Non-monotonic changes in Asian Water661
Towers' streamflow at increasing warming levels. Nature Communication, 14(1), 1176,662
https://doi.org/10.1038/s41467-023-36804-6, 2023.663
Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching Marginal664
Distributions and Intervariable Dependence Structure. J. Clim. 29, 7045–7064,665
https://doi.org/10.1175/JCLI-D-15-0679.1, 2016666
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density667
function transform for climate model simulations of multiple variables. Clim. Dyn. 50, 31–49,668
https://doi.org/10.1007/s00382-017-3580-6, 2018.669
Dang, H. and Pokhrel, Y.: Evolution of river regimes in the Mekong River basin over 8 decades and the670
role of dams in recent hydrological extremes, Hydrol. Earth Syst. Sci., 28, 3347–3365,671
https://doi.org/10.5194/hess-28-3347-2024, 2024.672
Do, P., Tian, F., Zhu, T., Zohidov, B., Ni, G., Lu, H., Liu, H.: Exploring synergies in the673
water-food-energy nexus by using an integrated hydro-economic optimization model for the674
Lancang-Mekong River basin. Sci. Total Environ. 728, 137996,675
https://doi.org/10.1016/j.scitotenv.2020.137996, 2020.676
Dong, Z., Liu, H., Baiyinbaoligao, Hu, H., Khan, M., Wen, J., Chen, L., Tian, F.: Future projection of677
seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 610,678
https://doi.org/10.1016/j.jhydrol.2022.127815, 2022.679
Ehsani, N., Vörösmarty, C., Fekete, B., Stakhiv, E.: Reservoir operations under climate change: storage680
capacity options to mitigate risk. J. Hydrol. 555, 435–446.681
https://doi.org/10.1016/j.jhydrol.2017.09.008, 2017.682
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.:683
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and684
organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.685
Feng, J., Qin, T., Yan, D., Lv, X., Yan, D., Zhang, X., Li, W.: The role of large reservoirs in drought and686
flood disaster risk mitigation: a case of the Yellow River Basin. Sci. Total Environ. 949, 175255.687
https://doi.org/10.1016/j.scitotenv.2024.175255, 2024.688
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den689
Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M.,690
Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.:691
Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of692
harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475,693

https://doi.org/10.5194/hess-18-5303-2014
https://doi.org/10.3389/feart.2023.1203603
https://doi.org/10.1088/1748-9326/ac36f6,
https://doi.org/10.1002/wat2.1520
https://doi.org/10.59717/j.xinn-geo.2024.100113
https://doi.org/10.1038/s41467-023-36804-6
https://doi.org/10.1175/JCLI-D-15-0679.1
https://doi.org/10.1007/s00382-017-3580-6
https://doi.org/10.5194/hess-28-3347-2024
https://doi.org/10.1016/j.scitotenv.2020.137996
https://doi.org/10.1016/j.jhydrol.2022.127815
https://doi.org/10.1016/j.jhydrol.2017.09.008,
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1016/j.scitotenv.2024.175255


28

https://doi.org/10.5194/gmd-12-1443-2019, 2019.694
Gunawardana, S.K., Shrestha, S., Mohanasundaram, S., Salin, K.R., Piman, T.: Multiple drivers of695
hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region. J.696
Environ. Manage. 278, 111524, https://doi.org/10.1016/j.jenvman.2020.111524, 2021.697
Hao, Z., Singh, V. P., Xia, Y.: Seasonal drought prediction: Advances, challenges, and future prospects.698
Reviews of Geophysics, 56, 108–141, https://doi.org/10.1002/2016RG000549, 2018.699
He D.: Analysis on the hydrological characteristics of Lancang-Meigong River. Yunnan Geographic700
Environment Research, 1, 58-74 (in Chinese), 1995.701
Hecht, J.S., Lacombe, G., Arias, M.E., Dang, T.D., Piman, T.: Hydropower dams of the Mekong River702
basin: A review of their hydrological impacts. J. Hydrol. 568, 285–300,703
https://doi.org/10.1016/j.jhydrol.2018.10.045, 2019.704
Ho, S. Q.-G. and Ehret, U.: Is drought protection possible without compromising flood protection?705
Estimating the potential dual-use benefit of small flood reservoirs in southern Germany, Hydrol. Earth706
Syst. Sci., 29, 2785–2810, https://doi.org/10.5194/hess-29-2785-2025, 2025.707
Hoang, L. P., Lauri, H., Kummu, M., Koponen, J., van Vliet, M. T. H., Supit, I., Leemans, R., Kabat, P.,708
and Ludwig, F.: Mekong River flow and hydrological extremes under climate change, Hydrol. Earth709
Syst. Sci., 20, 3027–3041, https://doi.org/10.5194/hess-20-3027-2016, 2016.710
Hoang, L.P., van Vliet, M.T.H., Kummu, M., Lauri, H., Koponen, J., Supit, I., Leemans, R., Kabat, P.,711
Ludwig, F.: The Mekong’s future flows under multiple drivers: How climate change, hydropower712
developments and irrigation expansions drive hydrological changes. Sci. Tot. Environ,713
https://doi.org/10.1016/j.scitotenv.2018.08.160, 2019.714
Ibrahim, K.S.M.H., Huang, Y.F., Ahmed, A.N., Koo, C.H., El-Shafie, A.: A review of the hybrid715
artificial intelligence and optimization modelling of hydrological streamflow forecasting. Alex. Eng. J.716
61 (1), 279–303, https://doi.org/10.1016/j.aej.2021.04.100, 2022.717
IPCC: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and718
III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing719
Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115,720
https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.721
IPCC Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on722
Climate Change. Climate Change; The Physical Science Basis. TS-93,723
https://www.ipcc.ch/report/ar6/syr/ (last access: March 2025), 2021.724
Kao, I.F., Zhou, Y., Chang, L.C., Chang, F.J.: Exploring a long short-term memory based725
encoder-decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology 124631,726
https://doi.org/10.1016/j.jhydrol.2020.124631, 2020.727
Khadka, D., Babel, M. S., Kamalamma, A. G.: Assessing the Impact of Climate and Land-Use Changes728
on the Hydrologic Cycle Using the SWAT Model in the Mun River Basin in Northeast Thailand. Water,729
15, 3672, https://doi.org/10.3390/w15203672, 2023.730
Kingston, D. G., Thompson, J. R., and Kite, G.: Uncertainty in climate change projections of discharge731
for the Mekong River Basin, Hydrol. Earth Syst. Sci., 15, 1459–1471,732
https://doi.org/10.5194/hess-15-1459-2011, 2011.733
Kumar, V., Azamathulla, H. M., Sharma, K. V., Mehta, D. J., Maharaj, K. T.: The State of the Art in734
Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood735
Forecasting and Management. Sustainability, 15(13), 10543, https://doi.org/10.3390/su151310543,736
2023.737

https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.1016/j.jenvman.2020.111524
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1016/j.jhydrol.2018.10.045
https://doi.org/10.5194/hess-29-2785-2025
https://doi.org/10.5194/hess-20-3027-2016
https://doi.org/10.1016/j.scitotenv.2018.08.160
https://doi.org/10.1016/j.aej.2021.04.100
https://doi.org/10.59327/IPCC/AR6-9789291691647
https://www.ipcc.ch/report/ar6/syr/
https://doi.org/10.1016/j.jhydrol.2020.124631
https://doi.org/10.3390/w15203672
https://doi.org/10.5194/hess-15-1459-2011
https://doi.org/10.3390/su151310543


29

Lancang-Mekong Water Resources Cooperation Center (LMC) and Mekong River Commission (MRC):738
Technical Report - Phase 1 of the Joint Study on the Changing Patterns of Hydrological Conditions of739
the Lancang-Mekong River Basin and Adaptation Strategies. Beijing: LMC Water Center or Vientiane:740
MRC Secretariat, http://www.lmcwater.org.cn/cooperative_achievements/collaborative_projects/ (last741
access: March 2025), https://www.mrcmekong.org/publication/ (last access: March 2025), 2023.742
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0),743
Geoscientific Model Development, 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.744
Lange, S.: ISIMIP3BASD v2.5.0, https://doi.org/10.5281/zenodo.4686991, 2021.745
Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M., and Kummu, M.: Future changes in746
Mekong River hydrology: impact of climate change and reservoir operation on discharge, Hydrol.747
Earth Syst. Sci., 16, 4603–4619, https://doi.org/10.5194/hess-16-4603-2012, 2012.748
Lei X., Song X., Guo H., Ma R., Song S.: Analysis on spatio-temporal evolution characteristics of749
short-cycle drought-flood sudden alteration and potential driving factors in the north-south transitional750
zone of China. Journal of Natural Disasters. 31(4), 31-43 (in Chinese),751
https://doi.org/10.13577/j.jnd.2022.0403, 2022.752
Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., Yang, F., Huang, Y.: Meteorological and753
hydrological droughts in Mekong River Basin and surrounding areas under climate change, J. Hydrol.:754
Reg. Stud. 36, 100873, https://doi.org/10.1016/j.ejrh.2021.100873, 2021.755
Liu, H., Yang, Z., Xu, F., Zhang, X., Baiyin, B., Mu, X., Hu, H.: Drought in Lancang-Mekong River756
Basin and the impact of upstream reservoirs. J. China Inst. Water Resour. Hydropower Res. 6, 479–485757
(in Chinese), https://doi.org/10.13244/j.cnki.jiwhr.20200058, 2020.758
Lu, Y., Tian, F., Guo, L., Borzì, I., Patil, R., Wei, J., Liu, D., Wei, Y., Yu, D. J., Sivapalan, M.:759
Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong760
River, Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, 2021.761
Lu, X.X., Li, S., Kummu, M., Padawangi, R., Wang, J. J.: Observed changes in the water flow at762
Chiang Saen in the lower Mekong: impacts of Chinese dams? Quatern. Int.,763
https://doi.org/10.1016/j.quaint.2014.02.006, 2014.764
Luo, X., Luo, X., Ji, X., Ming, W., Wang, L., Xiao, X., Xu, J., Liu, Y., Li, Y.: Meteorological and765
hydrological droughts in the Lancang-Mekong River Basin: spatiotemporal patterns and propagation.766
Atmospheric Research 293, 106913. https://doi.org/10.1016/j.atmosres.2023.106913, 2023.767
Ly, S., Sayama, T., Try, S.: Integrated impact assessment of climate change and hydropower operation768
on streamflow and inundation in the lower Mekong Basin. Prog Earth Planet Sci 10, 55,769
https://doi.org/10.1186/s40645-023-00586-8, 2023.770
MERFI: Dataset on the Dams of the Greater Mekong. Bangkok, Mekong Region Futures Institute,771
https://www.merfi.org/mekong-region-dams-database (last access: March 2025), 2024.772
Mishra, V., Bhatia, U., Tiwari, A.D.: Bias-corrected climate projections for South Asia from Coupled773
Model Intercomparison Project-6. Sci Data 7, 338, https://doi.org/10.1038/s41597-020-00681-1, 2020.774
Morovati, K., Tian, F., Kummu, M., Shi, L., Tudaji, M., Nakhaei, P., Olivares, M. A.: Contributions775
from climate variation and human activities to flow regime change of Tonle Sap Lake from 2001 to776
2020. Journal of Hydrology, 616, 128800, https://doi.org/10.1016/j.jhydrol.2022.128800, 2023.777
Morovati, K., Tian, F., Pokhrel, Y., Someth, P., Shi, L., Zhang, K., Ly, S.: Fishery and agriculture778
amidst human activities and climate change in the Mekong River: A review of gaps in data and779
effective approaches towards sustainable development, J. Hydrol., 132043,780
https://doi.org/10.1016/j.jhydrol.2024.132043, 2024.781

http://www.lmcwater.org.cn/cooperative_achievements/collaborative_projects/
https://www.mrcmekong.org/publication/
https://doi.org/10.5194/gmd-12-3055-2019
https://doi.org/10.5281/zenodo.4686991
https://doi.org/10.5194/hess-16-4603-2012
https://doi.org/10.13577/j.jnd.2022.0403
https://doi.org/10.1016/j.ejrh.2021.100873
https://doi.org/10.13244/j.cnki.jiwhr.20200058
https://doi.org/10.5194/hess-25-1883-2021
https://doi.org/10.1016/j.quaint.2014.02.006
https://doi.org/10.1186/s40645-023-00586-8
https://www.merfi.org/mekong-region-dams-database
https://doi.org/10.1038/s41597-020-00681-1
https://doi.org/10.1016/j.jhydrol.2022.128800
https://doi.org/10.1016/j.jhydrol.2024.132043


30

Morris, G. L., & Fan, J.: Reservoir sedimentation handbook: Design and management of dams,782
reservoirs, and watersheds for sustainable use. New York, NY: McGraw-Hill, 1998.783
Mou, L., Tian, F., Hu, H., and Sivapalan, M.: Extension of the Representative Elementary Watershed784
approach for cold regions: constitutive relationships and an application, Hydrol. Earth Syst. Sci., 12,785
565–585, https://doi.org/10.5194/hess-12-565-2008, 2008.786
MRC: Assessment of Basin-Wide Development Scenarios—Main Report, Mekong River Commission,787
https://reliefweb.int/report/lao-peoples-democratic-republic/assessment-basin-wide-development-scena788
rios-main-report (last access: March 2025), 2010.789
MRC: Irrigation Database Improvement for the Lower Mekong Basin. Vientiane, Lao PDR,790
https://www.mrcmekong.org/publications/irrigation-database-improvement-for-the-lower-mekong-river791
-basin/#:~:text=It%20reviews%20the%20current%20situation%20of%20irrigation%20in,%28LMB%2792
9%20and%20provides%20recommendations%20for%20further%20database%20impro (last access:793
March 2025), 2018.794
MRC: State of the Basin Report 2018,795
https://www.mrcmekong.org/publications/state-of-the-basin-report-2018-2/ (last access: March 2025),796
2019.797
MRC: Annual Mekong hydrology, flood and drought report 2019: Drought in the Lower Mekong River798
Basin. Vientiane: MRC Secretariat,799
https://www.mrcmekong.org/publications/annual-mekong-hydrology-flood-and-drought-report-2019-dr800
ought-in-the-lower-mekong-basin/ (last access: March 2025), 2020.801
Nan, Y., Tian, L., He, Z., Tian, F., and Shao, L.: The value of water isotope data on improving process802
understanding in a glacierized catchment on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 25,803
3653–3673, https://doi.org/10.5194/hess-25-3653-2021, 2021.804
Prodhan, F.A., Zhang, J., Hasan, S.S., Pangali Sharma, T.P., Mohana, H.P.: A review of machine805
learning methods for drought hazard monitoring and forecasting: current research trends, challenges,806
and future research directions. Environ. Model. Software 149, 105327,807
https://doi.org/10.1016/j.envsoft.2022.105327, 2022.808
Räsänen, T.A., Koponen, J., Lauri, H. et al.: Downstream Hydrological Impacts of Hydropower809
Development in the Upper Mekong Basin. Water Resour Manage 26, 3495–3513.810
https://doi.org/10.1007/s11269-012-0087-0, 2012.811
Ren, J., Wang, W., Wei, J., Li, H., Li, X., Liu, G., Chen, Y., Ye, S.: Evolution and prediction of812
drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Sci. Total Environ. 869,813
https://doi.org/10.1016/j.scitotenv.2023.161707, 2023.814
Sabo, J. L., Puhi, A., Holtgrieve, G. W., Elliott, V., Arias, M. E., Ngor, B. P., Räsänen, T. A., Nam, S.:815
Designing river flows to improve food security futures in the lower Mekong Basin. Science 358 (6368).816
https://doi.org/10.1126/science.aao1053, 2017.817
Schmitt, R.J.P., Bizzi, S., Castelletti, A. et al.: Improved trade-offs of hydropower and sand818
connectivity by strategic dam planning in the Mekong. Nat Sustain 1, 96–104,819
https://doi.org/10.1038/s41893-018-0022-3, 2018.820
Shan, L., Zhang, L., Song, J., Zhang, Y., She, D., Xia, J., 2018. Characteristics of dry-wet abrupt821
alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with822
ENSO. Acta Geographica Sinica, 73(1): 25-40 (in Chinese), https://doi.org/10.11821/dlxb201801003,823
2018.824
Shi, W., Huang, S., Liu, D., Huang, Q., Han, Z., Leng, G., Wang, H., Hao, L., Li, P., Wei, X.:825

https://doi.org/10.5194/hess-12-565-2008
https://reliefweb.int/report/lao-peoples-democratic-republic/assessment-basin-wide-development-scenarios-main-report
https://reliefweb.int/report/lao-peoples-democratic-republic/assessment-basin-wide-development-scenarios-main-report
https://www.mrcmekong.org/publications/irrigation-database-improvement-for-the-lower-mekong-river-basin/
https://www.mrcmekong.org/publications/irrigation-database-improvement-for-the-lower-mekong-river-basin/
https://www.mrcmekong.org/publications/irrigation-database-improvement-for-the-lower-mekong-river-basin/
https://www.mrcmekong.org/publications/state-of-the-basin-report-2018-2/
https://www.mrcmekong.org/publications/annual-mekong-hydrology-flood-and-drought-report-2019-drought-in-the-lower-mekong-basin/
https://www.mrcmekong.org/publications/annual-mekong-hydrology-flood-and-drought-report-2019-drought-in-the-lower-mekong-basin/
https://doi.org/10.5194/hess-25-3653-2021
https://doi.org/10.1016/j.envsoft.2022.105327
https://doi.org/10.1007/s11269-012-0087-0
https://doi.org/10.1016/j.scitotenv.2023.161707
https://doi.org/10.1126/science.aao1053
https://doi.org/10.1038/s41893-018-0022-3
https://doi.org/10.11821/dlxb201801003


31

Drought-flood abrupt alternation dynamics and their potential driving forces in a changing environment.826
J. Hydrol. 597, 126179, https://doi.org/10.1016/j.jhydrol.2021.126179, 2021.827
Sridhar, V., Kang, H., Ali, S.A.: Human-Induced Alterations to Land Use and Climate and Their828
Responses for Hydrology and Water Management in the Mekong River Basin. Water, 11, 1307,829
https://doi.org/10.3390/w11061307, 2019.830
Song, X., Lei, X., Ma, R., Hou, J., Liu, W.: Spatiotemporal variation and multivariate controls of831
short-cycle drought–flood abrupt alteration: A case in the Qinling-Daba Mountains of China.832
International Journal of Climatology, 43(10), 4756–4769, https://doi.org/10.1002/joc.8115, 2023.833
Sun, P., Zou, Y., Yao, R., Ma, Z., Bian, Y., Ge, C., Lv, Y.: Compound and successive events of extreme834
precipitation and extreme runoffunder heatwaves based on CMIP6 models. Science of the Total835
Environment, 878, 162980, https://doi.org/10.1016/j.scitotenv.2023.16298, 2023.836
Tellman, B., Sullivan, J.A., Kuhn, C. et al.: Satellite imaging reveals increased proportion of population837
exposed to floods. Nature 596, 80–86, https://doi.org/10.1038/s41586-021-03695-w, 2021.838
Tennant, D. L.: Instream flow regimens for fish, wildlife, recreation and related environmental839
resources. FISHERIES, 1(4), 6–10,840
https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2 1976.841
Thompson, J., Green, A., & Kingston, D: Potential evapotranspiration-related uncertainty in climate842
change impacts on river flow: An assessment for the Mekong River basin. Journal of Hydrology, 510,843
259–279. https://doi.org/10.1016/j.jhydrol.2013.12.010, 2014.844
Tian, F., Liu, H., Hou, S., Li, K., Lu, H., Ni, G., Mu, X., Baiyinbaoligao: Drought characteristics of the845
Lancang-Mekong Basin and the role of reservoir regulation on streamflow. The international journal of846
hydropower&dams, 5, 81-89,847
http://www.thuwater.org/admin/tp/Report-on-Lancang-Mekong-Drought-and-Reservoir-Regulation.pdf848
(last access: March 2025), 2020.849
Tian, F., Hu, H., Lei, Z., and Sivapalan, M.: Extension of the Representative Elementary Watershed850
approach for cold regions via explicit treatment of energy related processes, Hydrol. Earth Syst. Sci.,851
10, 619–644, https://doi.org/10.5194/hess-10-619-2006, 2006.852
Tian, F., Li, H., Sivapalan, M.: Model diagnostic analysis of seasonal switching of runoff generation853
mechanisms in the Blue River basin, Oklahoma. J. Hydrol. 418 (419), 136–149,854
https://doi.org/10.1016/j.jhydrol.2010.03.011, 2012.855
Van Pelt, S. C., Kabat, P., ter Maat, H. W., van den Hurk, B. J. J. M., and Weerts, A. H.: Discharge856
simulations performed with a hydrological model using bias corrected regional climate model input,857
Hydrol. Earth Syst. Sci., 13, 2387–2397, https://doi.org/10.5194/hess-13-2387-2009, 2009.858
Wang, A., Miao, Y., Kong, X., & Wu, H: Future changes in global runoff and runoff coefficient from859
CMIP6 multi-model simulation under SSP1-2.6 and SSP5-8.5 scenarios. Earth's Future, 10(12),860
e2022EF002910. https://doi.org/10.1029/2022EF002910, 2022.861
Wang, C., Leisz, S., Li, L., Shi, X., Mao, J., Zheng, Y., and Chen, A.: Historical and projected future862
runoff over the Mekong River basin, Earth Syst. Dynam., 15, 75–90,863
https://doi.org/10.5194/esd-15-75-2024, 2024.864
Wang, R., Li, X., Zhang, Q., Cheng, J., Li, J., Zhang, D., Liu, Y.: Projection of drought-flood abrupt865
alternation in a humid subtropical region under changing climate. J. Hydrol. 624, 129875,866
https://doi.org/10.1016/j.jhydrol.2023.129875, 2023.867
Wang, S., Zhang, L., She, D., Wang, G., Zhang, Q.: Future projections of flooding characteristics in the868
Lancang-Mekong River Basin under climate change. J. Hydrol. 602,869

https://doi.org/10.1016/j.jhydrol.2021.126179
https://doi.org/10.3390/w11061307
https://doi.org/10.1002/joc.8115
https://doi.org/10.1016/j.scitotenv.2023.16298
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1577/1548-8446(1976)001%3c0006:IFRFFW%3e2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2013.12.010
http://www.thuwater.org/admin/tp/Report-on-Lancang-Mekong-Drought-and-Reservoir-Regulation.pdf
https://doi.org/10.5194/hess-10-619-2006
https://doi.org/10.1016/j.jhydrol.2010.03.011
https://doi.org/10.5194/hess-13-2387-2009
https://doi.org/10.1029/2022EF002910
https://doi.org/10.5194/esd-15-75-2024
https://doi.org/10.1016/j.jhydrol.2023.129875


32

https://doi.org/10.1016/j.jhydrol.2021.126778, 2021.870
Wang, W., Li, H. Y., Leung, L. R., Yigzaw, W., Zhao, J., Lu, H., Deng, Z., Demisie, Y., Blöschl, G.:871
Nonlinear filtering effects of reservoirs on flood frequency curves at the regional scale, Water Resour.872
Res., 53, 8277–8292, https://doi.org/10.1002/2017WR020871,2017, 2017a.873
Wang, W., Lu, H., Leung, L. R., Li, H.-Y., Zhao, J., Tian, F., Yang, K., Sothea, K.: Dam construction in874
Lancang-Mekong River Basin could mitigate future flood risk from warming-induced intensified875
rainfall. Geophysical Research Letters, 44, 10,378–10,386, https://doi.org/10.1002/2017GL075037,876
2017b.877
Wu, Z., Li, J., He, J., Jiang, Z.: Large-scale atmospheric singularities and summer long-cycle878
droughts–floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chinese879
Science Bulletin, 51(16), 2027–2034, https://doi.org/10.1007/s11434-006-2060-x, 2006.880
Williams, J. M.: The hydropower myth. Environ. Sci. Pollut. R,881
https://doi.org/10.1007/s11356-019-04657-6, 2019.882
Xiong, J., Yang, Y.: Climate Change and Hydrological Extremes. Curr Clim Change Rep 11, 1,883
https://doi.org/10.1007/s40641-024-00198-4, 2025.884
Yang, P., Zhang, S., Xia, J., Zhan, C., Cai, W., Wang, W., Luo, X., Chen, N., Li, J.: Analysis of drought885
and flood alternation and its driving factors in the Yangtze River Basin under climate change. J.886
ATMOS. RES. 270, 106087, https://doi.org/10.1016/j.atmosres.2022.106087, 2022.887
Yang, Y., Weng, B., Bi, W., Xu, T., Yan, D., Ma, J.: Climate Change Impacts on Drought-Flood Abrupt888
Alternation and Water Quality in the Hetao Area, China. Water, 11, 652,889
https://doi.org/10.3390/w11040652, 2019.890
Yuan, X., Wang, J.H., He, D.M., Lu, Y., Sun, J.R., Li, Y., Guo, Z.P., Zhang, K.Y., Li, F.: Influence of891
cascade reservoir operation in the upper Mekong River on the general hydrological regime: a combined892
data-driven modeling approach. J. Environ. Manag. 324, 116339,893
https://doi.org/10.1016/j.jenvman.2022.116339, 2022.894
Yun, X.B., Tang, Q.H., Wang, J., Liu, X.C., Zhang, Y.Q., Lu, H., Wang, Y.L., Zhang, L., Chen, D.L.:895
Impacts of climate change and reservoir operation on streamflow and flood characteristics in the896
Lancang-Mekong River Basin. J. Hydrol. 590, 125472, https://doi.org/10.1016/j.jhydrol.2020.125472,897
2020.898
Yun, X., Tang, Q., Li, J., Lu, H., Zhang, L., Chen, D.: Can reservoir regulation mitigate future climate899
change induced hydrological extremes in the Lancang-Mekong River Basin? Sci. Total Environ. 785,900
https://doi.org/10.1016/j.scitotenv.2021.147322, 2021a.901
Yun, X., Tang, Q., Sun, S., Wang, J.: Reducing climate change induced flood at the cost of hydropower902
in the Lancang-Mekong River Basin. Geophysical Research Letters, 48, e2021GL094243,903
https://doi.org/10.1029/2021GL094243, 2021b.904
Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., Zhuang, J.: Modeling and905
simulating of reservoir operation using the artificial neural network, support vector regression, deep906
learning algorithm. J. Hydrol. 565, 720–736, https://doi.org/10.1016/j.jhydrol.2018.08.050, 2018.907
Zhang, K., Morovati, K., Tian, F., Yu, L., Liu, B., Olivares, M.A.: Regional contributions of climate908
change and human activities to altered flow of the Lancang-Mekong river. J. Hydrol.: Reg. Stud. 50,909
101535, https://doi.org/10.1016/j.ejrh.2023.101535, 2023.910
Zhang, S., Zhang, J., Min, J., Zhang, Z., Zhuang, J., Lin, J.: Drought–flood abrupt alternation based on911
runoff in the Huaihe River Basin during rainy season. Journal of Lake Sciences, 24(5), 679–686 (in912
Chinese), https://doi.org/10.18307/2012.0506, 2012.913

https://doi.org/10.1016/j.jhydrol.2021.126778
https://doi.org/10.1002/2017WR020871,2017
https://doi.org/10.1002/2017GL075037
https://doi.org/10.1007/s11434-006-2060-x
https://doi.org/10.1007/s11356-019-04657-6
https://doi.org/10.1007/s40641-024-00198-4
https://doi.org/10.1016/j.atmosres.2022.106087
https://doi.org/10.3390/w11040652
https://doi.org/10.1016/j.jenvman.2022.116339
https://doi.org/10.1016/j.jhydrol.2020.125472.
https://doi.org/10.1016/j.jhydrol.2020.125472.
https://doi.org/10.1016/j.scitotenv.2021.147322
https://doi.org/10.1029/2021GL094243
https://doi.org/10.1016/j.jhydrol.2018.08.050
https://doi.org/10.1016/j.ejrh.2023.101535.
https://doi.org/10.18307/2012.0506


33

Zhang, Z.Z., Yuan, Y.J., Shen, D.F., Fan, H.: Identification of drought-flood Abrupt alternation in914
tobacco growth period in Xingren county under climate change in China. Appl. Ecol. Environ. Res. 17,915
12259–12269, https://doi.org/10.15666/aeer/1705_1225912269, 2019.916
Zhao, D., Deng, S., Zhang, J.: Spatiotemporal characteristics of dry-wet abrupt alternation events in917
China during 1960–2018. International Journal of Climatology, 42(16), 9612–9625,918
https://doi.org/10.1002/joc.7850, 2022.919

https://doi.org/10.15666/aeer/1705_1225912269
https://doi.org/10.1002/joc.7850

	2.1 Study area
	2.2 Data collection
	2.3 Bias correction method for CMIP6 data
	2.4 Hydrological model coupled with reservoir modu
	2.5 Indicator for DFAA
	2.6 Scenario Setting
	3.1 CMIP6 data bias correction performance
	3.2 Calibration and validation for hydrological mo
	3.3 DFAA under changing climate
	3.4 Reservoirs’ impacts on DFAA
	4.1 Different characteristics of DTF and FTD under
	4.2 Reservoir operation integrated with hydrologic
	4.3 Maximizing utilization of the resilient storag

