

1 **Mitigating the Impact of Increased Drought-Flood 2 Abrupt Alternation Events under Climate Change: The 3 Role of Reservoirs in the Lancang-Mekong River Basin**

4 Keer Zhang¹, Zilong Zhao¹, Fuqiang Tian^{1,2}

5 ¹Department of Hydraulic Engineering & State Key Laboratory of Hydroscience and Engineering,
6 Tsinghua University, 100084, Beijing, China

7 ²Southwest United Graduate School, Kunming 650091, China

8 *Correspondence to:* Fuqiang Tian (tianfq@mail.tsinghua.edu.cn)

9 **Abstract.** The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological
10 events, including Drought-Flood Abrupt Alternation (DFAA). The impact of climate change on DFAA
11 and the efficacy of potential mitigation measures such as reservoirs remain poorly understood. This
12 study investigates these dynamics using five Global Climate Models (GCMs) from the Coupled Model
13 Intercomparison Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt
14 Alteration Index (R-SDFAI), alongside the Tsinghua Representative Elementary Watershed (THREW)
15 model integrated with the developed reservoir module. Results reveal that future DFAA trend varies
16 widely in upstream and downstream, with significant increases respectively in FTD (flood to drought)
17 upstream and DTF (drought to flood) downstream. FTD is more challenging though DTF is more
18 probable to occur. Under **low-** and **medium-emission** scenarios, DFAA risks escalate, especially during
19 the wet season, whereas under **high-emission scenario**, **their** risks decline. Reservoirs as a promising
20 adaptation strategy can significantly mitigate the year-round DTF and wet season's FTD, particularly in
21 regions with higher total reservoir storage. Reservoir operations reduce DFAA's **risks**, limit multiple
22 peaks and shorten its monthly span. Hydrological forecasting and resilient storage **are** viable options
23 for climate change to help LMR Basin smooth out DFAA. These insights offer valuable guidance for
24 effective water **resources** cooperative management across LMR Basin countries.

25 **Keywords.** Drought-Flood Abrupt Alternation; Climate change; Reservoir operation; Lancang-Mekong
26 River Basin.

27 **1. Introduction**

28 Flood and drought are the two most frequent natural disasters in the world (Adikari et al., 2009;

29 ADREM et al., 2024). Drought-Flood Abrupt Alteration (DFAA), **defined** as the rapid transition flood
30 and drought (Xiong et al., 2025), has received growing attention in recent years (Chen et al., 2025; Wu
31 et al., 2023; Zhang et al., 2012; Shan et al., 2018; Song et al., 2023). DFAA is specifically divided into
32 the rapid change from flood to drought (FTD) and from drought to flood (DTF). Hazards arising from
33 DFAA are more significant compared to floods and droughts. DFAA not only alters the soil condition
34 and increases the potential for exceeding water quality standard (Bai et al., 2023; Yang et al., 2019), but
35 also challenges food security and seriously affects agricultural production. Furthermore, DFAA,
36 particularly DTF is exposed to triggering severe secondary natural hazards, **primarily including** flash
37 **floods, landslides, and mudslides** (Wang et al., 2023).

38 Employing indices to characterize DFAA events is a common quantitative method. Since Wu et al.
39 (2006) proposed the precipitation-based long-cycle drought-flood abrupt alternation index (LDFAI) to
40 quantitatively characterize the long-term DFAA of wet season, LDFAI has been widely adopted (Ren et
41 al., 2023; Shi et al., 2021; Yang et al., 2022; Yang et al., 2019). Zhang et al. (2012) proposed the
42 one-month interval short-cycle drought-flood abrupt alternation index (SDFAI) based on LDFAI to
43 characterize the short-term DFAA of wet season, and expanded the application from precipitation to
44 runoff. SDFAI has been extensively applied in various fields such as hydrology, meteorology, ecology,
45 and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al., 2019). Song et al.
46 (2023) further refined the SDFAI index and developed the Revised Short-cycle Drought-Flood Abrupt
47 Alteration Index (R-SDFAI), which is calculated based on the Standardized Runoff Index (SRI) and
48 designed to characterize short-term DFAA.

49 It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing
50 trend (Yang et al., 2022; Chen et al., 2024). However, regional differences are notable. Shan et al.
51 (2018) observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded
52 since the 1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that
53 while droughts and floods in the Huai River Basin have increased, DFAA events have become less
54 frequent. For future projections, Zhao et al. (2022) indicated that DFAA events in the Han River Basin
55 will experience an upward trend in both frequency and intensity. Yang et al. (2019) reported that in the
56 Hetao region, the number and frequency of DFAA events will diminish.

57 Lancang-Mekong River (LMR) Basin, as an important international river in Southeast Asia, profoundly
58 affects Southeast Asia's important **industries** such as hydropower, agriculture, **fisheries** and transport

59 (Morovati et al., 2024), while also being the high incidence area of floods and droughts (Liu et al.,
60 2020; MRC, 2020). It is reported that wet season's drought accounts for about 40% of annual drought
61 (Tian et al., 2020) and **there is** the potential for large floods **to happen** in **the** dry season (e.g., May 2006,
62 May 2007, and December 2016) (Tellman et al., 2021). These non-negligible wet season's drought and
63 dry season's flood are all prerequisites for DFAA.

64 Continued global warming will further exacerbate extreme wet and dry climate (IPCC, 2023) and
65 contribute to the increased vulnerability of DFAA in future (Yang et al., 2022; Wang et al., 2023; Chen
66 et al., 2025). There is a strong tendency **for** floods and droughts **to intensity** in Southeast Asia (IPCC
67 WG1, 2021) as well as in LMR Basin (Wang et al., 2021; Li et al., 2021; Dong et al., 2022; Hoang et
68 al., 2016). This warns of the serious DFAA pattern in LMR Basin and puts forward new requirements
69 for water security and sustainable management, especially the early disaster forecasting and prevention
70 system.

71 The hydrological regime of LMR Basin is influenced by two main drivers, climate change and human
72 **activities** (LMC and MRC, 2023). Despite the severity of climate change impacts, human activity is
73 capable of adapting **to** climate change **in the** hydrological regime in LMR Basin (Zhang et al., 2023;
74 Khadka et al., 2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021), such as reservoir
75 operation. **Research has shown that reservoirs play a crucial role in preventing extensive damages**
76 **during the wet season and in minimizing low-flow occurrences in LMR Basin** (Arias et al., 2014;
77 Räsänen et al., 2012; Dang et al., 2024). The integration of a coupled reservoir module within the
78 hydrological model is a widely adopted approach for evaluating reservoir impacts under changing
79 climate. Wang et al. (2017b) utilized this approach to show that reservoir operation can minimize flood
80 intensity and lower flood occurrence rates. Yun et al. (2021a; 2021b) demonstrated that, despite a
81 trade-off in hydroelectric benefits, reservoir management can substantially alleviate extreme drought
82 and wet hydrological events in LMR Basin. These studies collectively indicated that reservoirs
83 represent a practical solution for addressing the impacts of climate change.

84 It is crucial to consider the adaptation role of human activities, represented by reservoirs, **to DFAA**
85 under climate change, which helps managers to develop effective policies on water **resources**
86 management and ensures sustainable development of **the** basin system. However, little attention has
87 been paid to this aspect for LMR Basin in previous studies. The statistic, report, and study related to
88 DFAA in LMR Basin are almost empty currently, let alone the impact of climate change and the

89 mitigating role of reservoirs on DFAA. Therefore, this study develops the reservoir module for
90 hydrological modelling, highlights the trend of DFAA in LMR Basin under climate change, and
91 explores how reservoirs assist basin states to adapt changing climate. It endeavors to generate new
92 knowledge into DFAA and contributes to water resource management and regional sustainability.

93 **2. Methodology**

94 **2.1 Study area**

95 The Lancang-Mekong River (LMR) originates from the Tibetan Plateau in China and flows through
96 China, Myanmar, Laos, Thailand, Cambodia, and Vietnam before entering the South China Sea at **the**
97 **Mekong Delta**. LMR is approximately 4900 km long, with the basin area of 812400 km² (He, 1995),
98 and its annual runoff is approximately 475 billion m³ (Sabo et al., 2017; Luo et al., 2023). LMR Basin
99 is characterized by steep slopes and rapid flows in **the** upstream, along with shallow slopes and slow
100 mixed flows in **the** downstream. The wet and dry seasons in LMR Basin **extend** from June to
101 November and from December to May (LMC and MRC, 2023), which are mainly influenced by
102 southwestern and northeastern monsoons respectively. The distribution of the hydrology system and
103 mainstream hydrological stations in LMR Basin are detailed in Fig. 1a.

104 LMR Basin nourishes approximately 65 million people. The basin states rely on the river system to
105 develop economic industries including capture **fisheries**, irrigation agriculture, and hydropower. LMR
106 Basin has the largest freshwater capture fishery in the world (MRC, 2010; MRC, 2019), and its
107 irrigation area is estimated around 4.3 million hectares (Do et al., 2020), with the Mekong Delta
108 regarded as Southeast Asia's food basket. LMR Basin is one of the most active regions for hydropower
109 in the world (MRC, 2019; Williams, 2019), harboring about 235,000 GWh · yr⁻¹ of **hydroelectric**
110 potential in its mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). LMR Basin
111 meanwhile is heavily impacted by flood and drought. During past two decades, LMR Basin has
112 experienced several severe droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and floods
113 (Liu et al., 2020; Tian et al., 2020; MRC, 2020), which **affects** crop cultivation and **fisheries** harvesting,
114 causing loss of property and lives in riparian countries. Floods of 2013 and 2018 heavily affected **the**
115 lower basin (Cambodia, Vietnam, Laos, and Thailand), covering 22.3 and 6.47 thousand km²
116 respectively (Tellman et al., 2021).

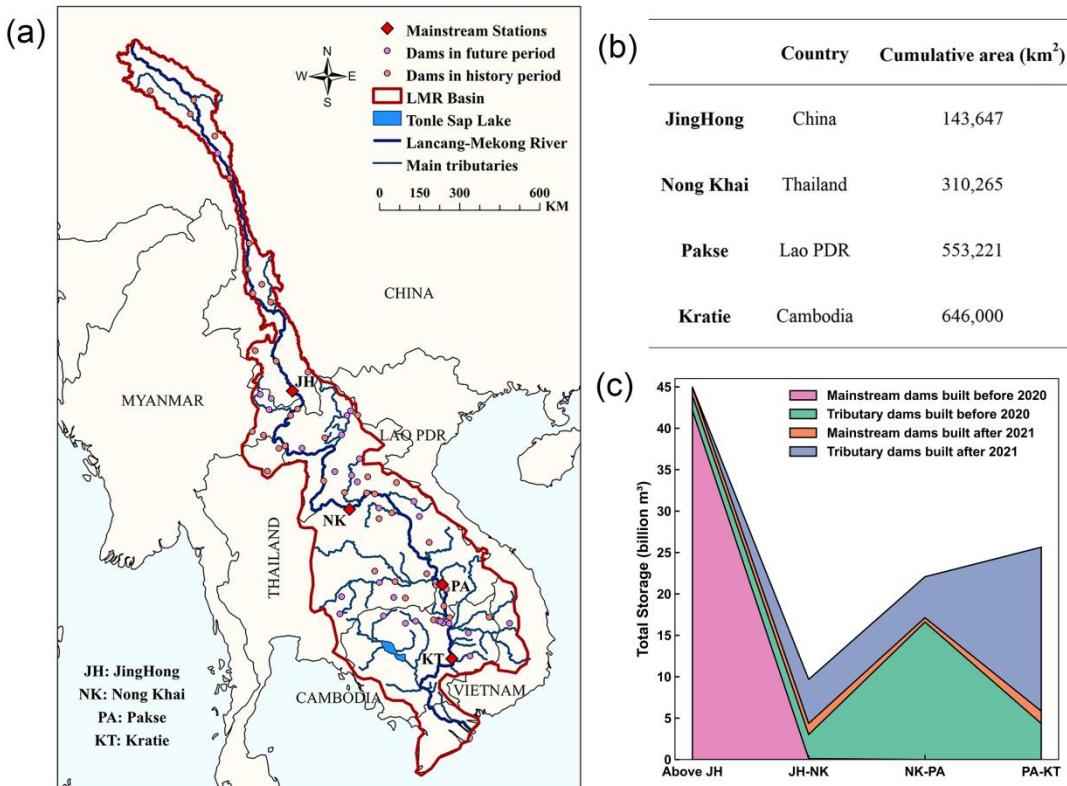


Figure 1: Hydrology of LMR Basin. (a) Map of rivers and reservoirs, (b) Information of four main hydrological stations, and (c) distribution of reservoir storage. [Here](#), JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations.

2.2 Data collection

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios, namely SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and high-emission scenarios respectively. Five GCMs (Global Climate Models) with wide utilization and proven performance in LMR Basin are applied in this study ([Li et al. 2021](#); [Yun et al., 2021a](#); [Yun et al., 2021b](#)), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. The detailed information for these five GCMs is shown in Table 1 ([Eyring et al., 2016](#); [Gidden et al., 2019](#); [Cui et al., 2023](#)). CMIP6 data span from 1980 to 2100. This study accordingly considers three research periods, namely history period from 1980 to 2014 (consistent with CMIP6), near future period from 2021 to 2060, and far future period from 2061 to 2100.

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980 to 2020 serve to calibrate and validate the hydrological model, and these data are derived from China Meteorological Administration (CMA) and Mekong River Commission (MRC). The hydrological

135 stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse and Kratie, whose
 136 locations and basic information are shown in Figs. 1a and 1b. This study treats the ERA5_Land data as
 137 the meteorological input when calibrating and validating the hydrological model, and as the correction
 138 dataset when correcting the raw CMIP6 data. ERA5_Land data cover the period from 1980 to 2020,
 139 with the spatial resolution of 0.1° , and contain precipitation, temperature, and potential
 140 evapotranspiration. Soil data are obtained from the Global Soil Database (GSD) provided by the Food
 141 and Agriculture Organization of the United Nations (FAO) with the spatial resolution of 10×10 km.
 142 Normalized Vegetation Index (NDVI), Leaf Area Index (LAI) and Snow Cover data are obtained from
 143 MODIS (Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500×500 m and
 144 a temporal resolution of 16 days.
 145 Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024).
 146 122 reservoirs which simultaneously contain information on location, storage and operation years are
 147 utilized in this study, including 24 reservoirs in Lancang Basin and 98 reservoirs in Mekong Basin. The
 148 earliest and latest operation years for them are 1965 and 2035. The location and storage distribution of
 149 these reservoirs are shown in Figs. 1a and 1c.

Model Name	Modeling Center	Realization	Resolution (Lon \times Lat)
GFDL-ESM4	National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, United States	r1i1p1f1	$1.25^\circ \times 1^\circ$
IPSL-CM6A-LR	Institute Pierre Simon Laplace, France	r1i1p1f1	$2.5^\circ \times 1.25874^\circ$
MPI-ESM1-2-HR	Max Planck Institute for Meteorology, Germany	r1i1p1f1	$0.9375^\circ \times 0.9375^\circ$
MRI-ESM2-0	Meteorological Research Institute, Japan	r1i1p1f1	$1.125^\circ \times 1.125^\circ$
UKESM1-0-LL	Met Office Hadley Centre, UK	r1i1p1f2	$1.875^\circ \times 1.25^\circ$

150 **Table 1: Details of 5 GCMs applied in this study.**

151 **2.3 Bias correction method for CMIP6 data**

152 The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al.,
 153 2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation
 154 in LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange et al., 2019; Lange
 155 et al., 2021). ERA5_Land data are applied as the correction data in this study to correct bias in raw
 156 CMIP6 data.

157 This study interpolates the five GCMs data of CMIP6 with different spatial resolutions to 0.1°
 158 (consistent with ERA5_Land) based on the bilinear interpolation spatial resolution method. The

159 interpolated CMIP6 data are bias-corrected for each GCM according to N-dimensional probability
 160 density function transform of the multivariate bias correction approach (abbreviated as MBCn)
 161 (Cannon, 2016; Cannon, 2018). The MBCn method is trained based on the difference between
 162 precipitation and temperature data from ERA5_Land and CMIP6 over history period (1980-2014), and
 163 then applied to future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM.
 164 The MBCn method considers the multivariate dependency structure of meteorological data and enables
 165 the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and
 166 quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as
 167 illustrated in Eqs. (1) and (2).

$$168 \begin{cases} \tilde{\mathbf{X}}_T^{[j]} = \mathbf{X}_T^{[j]} \mathbf{R}^{[j]} \\ \tilde{\mathbf{X}}_S^{[j]} = \mathbf{X}_S^{[j]} \mathbf{R}^{[j]} \\ \tilde{\mathbf{X}}_P^{[j]} = \mathbf{X}_P^{[j]} \mathbf{R}^{[j]} \end{cases} \quad (1)$$

169 Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming
 170 historical observations $\mathbf{X}_T^{[j]}$, historical climate model simulations $\mathbf{X}_S^{[j]}$, and climate model projections
 171 $\mathbf{X}_P^{[j]}$ using a random orthogonal rotation matrix $\mathbf{R}^{[j]}$ during the j-th iteration. The rotated data are
 172 represented as $\tilde{\mathbf{X}}_T^{[j]}$, $\tilde{\mathbf{X}}_S^{[j]}$, and $\tilde{\mathbf{X}}_P^{[j]}$. This procedure is pivotal for MBCn's multivariate joint distribution
 173 correction, as it transforms the original variable space into new random orientations. In contrast to
 174 conventional uni-variate correction approaches, MBCn employs a random orthogonal matrix to mix
 175 variables, thereby breaking their independence.

$$176 \begin{cases} \Delta^{(n)[j]}(i) = \tilde{x}_P^{(n)[j]}(i) - F_S^{(n)[j]-1}(F_P^{(n)[j]}(\tilde{x}_P^{(n)[j]}(i))) \\ \hat{x}_P^{(n)[j]}(i) = F_T^{(n)[j]-1}(F_P^{(n)[j]}(\tilde{x}_P^{(n)[j]}(i))) + \Delta^{(n)[j]}(i) \end{cases} \quad (2)$$

177 Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to
 178 n-th dimension of the rotated climate model projection data $\tilde{x}_P^{(n)[j]}(i)$ within the rotated space of the j-th
 179 iteration. Here, $\Delta^{(n)[j]}(i)$ represents the quantile difference between the historical climate model
 180 simulations and climate model projections in the j-th iteration and the n-th dimension. $F_P^{(n)[j]}$ denotes
 181 the empirical cumulative distribution function for the rotated climate model projection data in the n-th
 182 dimension. $F_T^{(n)[j]-1}$ and $F_S^{(n)[j]-1}$ denote inverse Functions of the empirical cumulative distribution
 183 functions for the rotated historical observation data and historical climate model simulation data in the
 184 n-th dimension. This step preserves the trend of the climate model projection data throughout the
 185 correction process. The number of iterations is typically set to 10-30.

186 The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying the
 187 random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the
 188 climate model. The rotation operation breaks dependencies between variables, enabling the quantile
 189 delta mapping of single variable to indirectly adjust multivariate correlations. The quantile delta
 190 mapping ensures the transmission of absolute or relative trends by computing quantile differences
 191 between the historical and projected periods of the climate model. The MBCn method demonstrates a
 192 significant improvement in terms of correction precision and accuracy, compared to uni-variate bias
 193 correction algorithms along with other multivariate bias correction algorithms (Cannon, 2018).
 194 In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential
 195 evapotranspiration data for five GCMs under three SSP scenarios, based on daily air temperature. The
 196 computational approach is outlined in Eq. (3).

$$197 \text{PET} = [1 + \alpha_0(T - \bar{T}_0)]\bar{\text{PET}}_0 \quad (3)$$

198 Where, \bar{T}_0 and $\bar{\text{PET}}_0$ correspond to the daily air temperature ($^{\circ}\text{C}$) and daily potential
 199 evapotranspiration (mm day^{-1}) in the history period sourced from ERA5_Land datasets. T signifies the
 200 corrected daily air temperature ($^{\circ}\text{C}$) from CMIP6 datasets. The parameter α_0 is determined by the
 201 relationship between daily potential evapotranspiration and daily temperature in ERA5_Land data
 202 during the history period.

203 **2.4 Hydrological model coupled with reservoir module**

204 The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this
 205 study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for
 206 spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone,
 207 bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach,
 208 saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008).
 209 The model is built upon scale coordinated equilibrium equations, geometrical relationships and
 210 constitutive relationships, and enables to comprehensively simulate complex hydrological processes
 211 from mountain to ocean. The fundamental balance equations in the THREW model are listed in Eqs. (4)
 212 to (6).

$$213 \frac{d}{dt}(\bar{\rho}_\alpha^j e_\alpha^j y^j \omega^j) = \sum_p e_\alpha^{jp} + \sum_{\beta \neq \alpha} e_{\alpha\beta}^j \quad (4)$$

214 Eq. (4) demonstrates the general form of mass conservation equation at the REW scale. $\frac{d}{dt}$ denotes the
 215 time derivative. $\overline{\rho_\alpha^j}$ refers to the time-averaged density of phase α in sub-region j , in $\text{kg} \cdot \text{m}^{-3}$. ϵ_α^j
 216 means the volume fraction of phase α within sub-region j . y^j indicates the time-averaged thickness of
 217 sub-region j , in m. ω^j means the time-averaged fraction of REW horizontal area occupied by
 218 sub-region j . e_α^{jP} denotes the net mass exchange flux of phase α in sub-region j through interface P
 219 (e.g., with atmosphere, groundwater, neighboring REWs), in $\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, with the positive value
 220 indicating the inflow to sub-region j . $e_{\alpha\beta}^j$ refers to the phase transition rate between phase α and phase
 221 β within sub-region j , in $\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, with the positive value meaning phase α gains mass from phase
 222 β . Sub-region here refer to the divided eight zones within each REW.

$$223 (\overline{\rho_\alpha^j} \epsilon_\alpha^j y^j \omega^j) \frac{d\overline{\rho_\alpha^j}}{dt} = \overline{g_\alpha^j} \overline{\rho_\alpha^j} \epsilon_\alpha^j y^j \omega^j + \sum_P T_\alpha^{jP} + \sum_{\beta \neq \alpha} T_{\alpha\beta}^j \quad (5)$$

224 Eq. (5) presents the general form of momentum conservation equation at the REW scale. $\overline{v_\alpha^j}$ indicates
 225 the time-averaged velocity vector of phase α in sub-region j , in $\text{m} \cdot \text{s}^{-1}$. $\overline{g_\alpha^j}$ denotes the time-averaged
 226 gravity vector of phase α in sub-region j , in $\text{m} \cdot \text{s}^{-2}$. T_α^{jP} means the force vector (pressure, friction,
 227 seepage) exerted on phase α in sub-region j by interface P, in $\text{N} \cdot \text{s}^{-2}$, representing the momentum
 228 exchange. $T_{\alpha\beta}^j$ refers to the interfacial force vector between phase α and phase β within sub-region j ,
 229 in $\text{N} \cdot \text{s}^{-2}$, including drag and capillarity.

$$230 (\epsilon_\alpha^j y^j \omega^j c_\alpha^j) \frac{d\overline{\theta_\alpha^j}}{dt} = \overline{h_\alpha^j} \overline{\rho_\alpha^j} \epsilon_\alpha^j y^j \omega^j + \sum_P Q_\alpha^{jP} + \sum_{\beta \neq \alpha} Q_{\alpha\beta}^j \quad (6)$$

231 Eq. (6) exhibits the general form of heat conservation equation at the REW scale. c_α^j means the
 232 specific heat capacity (constant volume) of phase α in sub-region j , in $\text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$. θ_α^j refers to the
 233 time-averaged temperature of phase α in sub-region j , in K. $\overline{h_\alpha^j}$ denotes the heat generation rate per
 234 unit mass within phase α in sub-region j , in $\text{W} \cdot \text{kg}^{-1}$ (e.g., radioactive decay, negligible usually). Q_α^{jP}
 235 indicates the heat exchange rate between phase α in sub-region j and its environment via interface P, in
 236 $\text{W} \cdot \text{m}^{-2}$, with the positive value representing the heat is gained by phase α in sub-basin j . $Q_{\alpha\beta}^j$ refers
 237 to the heat exchange rate between phase α and phase β within sub-region j , in $\text{W} \cdot \text{m}^{-2}$, with the
 238 positive value indicating the heat is gained by phase α .

239 The THREW model employs an automatic calibration procedure to calibrate hydrological parameters
 240 through parallel computation (Nan et al., 2021). The calibration period of THREW model in LMR
 241 Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The Nash-Sutcliffe

242 efficiency coefficient (NSE) indicator is adopted to calibrate **the** objective function and evaluate
243 simulation effectiveness at daily scale, which is calculated according to Eq. (7). THREW model has
244 been successfully applied to a number of basins with **various** climate characteristics worldwide (Tian et
245 al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang et al., 2023).

246
$$NSE = 1 - \frac{\sum_{n=1}^N (Q_o^n - Q_s^n)^2}{\sum_{n=1}^N (Q_o^n - \bar{Q}_o)^2} \quad (7)$$

247 Where, Q_o^n is the daily observed runoff, Q_s^n is the daily simulated runoff, \bar{Q}_o is the average of
248 observed runoff, and N is the total number of days.

249 This study extends the THREW model through the development of a reservoir management module
250 that can be incorporated into it. This module contains detailed data on 122 reservoirs in the basin, with
251 operational years ranging from 1965 to 2035. Configuring the module's activation enables the
252 integrated THREW model to simulate natural runoff without considering reservoirs, and dammed
253 runoff with reservoirs considered.

254 The reservoir **operation** rules are consistent over time and space, with each reservoir following the
255 same **operation** rules and starting **scheduling** according to **its** respective operational year. The reservoir
256 module conducts daily-scale reservoir operation based on sub-basins. Each reservoir is **allocated** to the
257 corresponding sub-basin according to its location **information**. The cumulative **reservoir** storage **over**
258 multiple years for each sub-basin is calculated and **serves** as an input condition for the reservoir **module**.
259 The module consists of two **phases**: the initial phase and the normal phase. **The constraints of the**
260 **normal phase** are further divided into general and emergency cases. Both cases share the same reservoir
261 **operation** rules, but their **constraints** differ, with the emergency case featuring more flexible **constraints**.
262 The reservoir module's flowchart is depicted in Fig. 2.

263 When the cumulative multi-year storage of some REW changes in one year, it indicates that at least one
264 new reservoir starts operation in that REW in that year. The additional reservoir operates under the
265 initial phase rules. The rules for initial phase are described as Eqs. (8) to (9). The outlet flow is equal to
266 the inlet flow if the inlet flow is less than the minimum discharge constraint, and otherwise equal to the
267 minimum discharge constraint. Constraints on storage and discharge are summarized in Eqs. (10) to (11)
268 (Tennant, 1976; Yun et al., 2020). The ending condition for **the** initial phase is Eq. (12). When the
269 storage of the additional reservoir is larger than the minimum storage constraint, end the initial phase
270 and enter the normal phase.

271
$$Q_{out} = \begin{cases} Q_{in}, & Q_{in} < Q_{min} \\ Q_{min}, & Q_{in} \geq Q_{min} \end{cases} \quad (8)$$

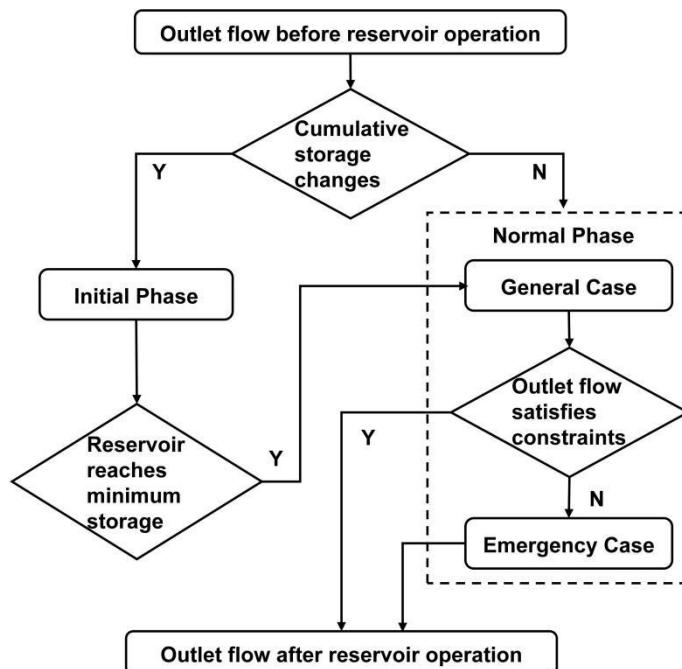
272
$$S_t = S_{t-1} + Q_{in} - Q_{out} \quad (9)$$

273
$$S_{min} = 0.2 \times S_{total} \quad (10)$$

274
$$Q_{min} = 0.6 \times Q_{ave} \quad (11)$$

275
$$S_t \geq S_{min} \quad (12)$$

276 Where Q_{out} is the outlet flow, Q_{in} is the inlet flow, Q_{min} is the minimum discharge constraint, S_t is
 277 the storage for time t , S_{min} is the minimum storage constraint, S_{total} is the total storage, and Q_{ave} is
 278 the average multi-year runoff during calibration period (i.e., 2000-2009).



279

280 **Figure 2: Flowchart of the constructed reservoir module.**

281 The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model
 282 (SOP) (Wang et al., 2017a; Morris & Fan, 1998), as depicted in Eq. (9) and Eqs. (13) to (16). Under the
 283 premise of water balance (Eq. (9)), constraints for annual storage (Eq. (13)), outlet flow (Eq. (14)), wet
 284 season storage (Eq. (15)), and dry season storage (Eq. (16)) are considered separately, where priority is
 285 given to the annual storage constraint (Eq. (13)).

286
$$S_{min} \leq S_t \leq S_{max} \quad (13)$$

287 $Q_{\min} \leq Q_{\text{out}} \leq Q_{\max}$ (14)

288 $\min|S_c - S_t|$, month = 6,7,8,9,10,11 (15)

289 $\min|S_n - S_t|$, month = 12,1,2,3,4,5 (16)

290 Where Q_{\max} is the maximum discharge constraint, S_{\max} is the maximum storage constraint, S_c is
 291 the storage corresponding to the flood control level, and S_n is the storage corresponding to the normal
 292 storage level.

293 When the reservoir enters the normal phase, constraints of the general case are used by default.
 294 Constraints for the general case are given in Eqs. (17) to (22). After scheduling according to general
 295 case's constraints, if the outlet flow constraint is not fully satisfied (Eq. (14)), constraints are adjusted
 296 to that in the emergency case and the reservoir is re-operated following adjusted constraints. Eq. (23)
 297 characterizes the start condition for the emergency case. The emergency case is set to avoid excessive
 298 high or low outlet flow caused by the strict constraints. Constraints of the emergency case are shown in
 299 Eqs. (24) to (25).

300 $Q_{\max} = 2 \times Q_{\text{ave}}$ (17)

301 $Q_{\min} = 0.6 \times Q_{\text{ave}}$ (18)

302 $S_c = S_{\min} \times 1.2$ (19)

303 $S_n = S_{\max} \times 0.8$ (20)

304 $S_{\min} = 0.2 \times S_{\text{total}}$ (21)

305 $S_{\max} = \begin{cases} 0.8 \times S_{\text{total}}, & \text{month} = 6,7,8,9,10,11 \\ 1 \times S_{\text{total}}, & \text{month} = 12,1,2,3,4,5 \end{cases}$ (22)

306 $Q_{\min} \leq Q_{\text{out}'} \leq Q_{\max}$ (23)

307 $Q_{\min} = 0.3 \times Q_{\text{ave}}$ (24)

308 $S_{\max} = 0.8 \times S_{\text{total}}$ (25)

309 Where $Q_{\text{out}'}$ is the outlet flow after the scheduling in general case.

310 **2.5 Indicator for DFAA**

311 The Revised Short-cycle Drought-Flood Abrupt Alteration Index (R-SDFAI), as put forward by Song et

312 al. (2023), extends the applicable time frame from the flood season of LDFAI and SDFAI to cover the
 313 entire year, making it more suitable for multi-year DFAA analysis. Furthermore, it successfully
 314 mitigates issues like over-identification, under-identification, and inaccurate representation of DFAA
 315 severity inherent in SDFAI. Thus, this study adopts R-SDFAI for DFAA analysis. The formulas for
 316 R-SDFAI are summarized in Eqs. (26) to (31) (Song et al., 2023).

317 $F_1 = S_{i+1} - S_i$ (26)

318 $F_2 = |S_{i+1}| + |S_i|$ (27)

319 $F = \left| \frac{F_1}{F_2} \right|^{|S_{i+1}|+|S_i|}$ (28)

320 $I = F \times \min(|S_{i+1}|, |S_i|)$ (29)

321 $I' = \left(\frac{I}{0.5} \right)^{\frac{\max(|S_{i+1}|, |S_i|)^2}{|F_1|+|F_2}}} \times \frac{\frac{\max(|S_{i+1}|, |S_i|)}{|F_1|+|F_2}} + \frac{\min(|S_{i+1}|, |S_i|)}{|F_1|+|F_2}}{2}$ (30)

322 $R - SDFAI = \text{sign}(F_1) \times \left(\frac{I'}{I_{0.5}} \times \frac{1}{0.5} \right)^{\left[\frac{\max(|S_{i+1}|, |S_i|)}{|F_1|+|F_2}} \right]^{[1 - \frac{\max(|S_{i+1}|, |S_i|)}{|F_1|+|F_2}}]}}$ (31)

323 Where, S_i refers to the SRI in month i , F_1 denotes the intensity of DFAA, F_2 denotes the absolute
 324 intensity of drought and flood, and F is a weighting factor between 0 and 1. $I'_{0.5}$ refers to I' when
 325 $I=0.5$.

326 The calculation process of SRI utilized in this work is explained in Eqs. (32) to (37). Eq. (32) gives the
 327 probability density function that satisfies the Gamma distribution for runoff x at a given time period.

328 $g(x) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}, x > 0$ (32)

329 where, $\alpha > 0$ and $\beta > 0$ are respectively the shape and scale parameters. $\hat{\alpha}$ and $\hat{\beta}$ are the optimal
 330 values of α and β , obtained according to the maximum likelihood estimation method, as illustrated in
 331 Eqs. (33) to (35). $\Gamma(\alpha)$ is the gamma function, as given in Eq. (36).

332 $\hat{\alpha} = \frac{1}{4A} \left(1 + \sqrt{1 + \frac{4A}{3}} \right)$ (33)

333 $\hat{\beta} = \frac{\bar{x}}{\hat{\alpha}}$ (34)

334 $A = \ln(\bar{x}) - \frac{\sum \ln(x_i)}{n}$ (35)

335 $\Gamma(\alpha) = \int_0^{\infty} y^{\alpha-1} e^{-y} dy$ (36)

336 Where, x_i is the sample of runoff sequence, \bar{x} is averaged runoff, and n is the length of runoff
337 sequence.

338 Then the cumulative probability of runoff x is illustrated in Eq. (37).

339 $G(x) = \int_0^x g(x) dx = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^x x^{\alpha-1} e^{-\frac{x}{\beta}} dx, \quad x > 0$ (37)

340 The threshold for R-SDFAI to recognize DFAA events is ± 1 , which indicates that the identified DFAA
341 event is at least an abrupt transition between a mild hydrological drought event ($SRI < -1$) and a mild
342 hydrological wet event ($SRI > 1$) (Song et al., 2023). When $R\text{-SDFAI} > 1$, DTF occurs, and when
343 $R\text{-SDFAI} < -1$, FTD occurs.

344 **2.6 Scenario Setting**

345 This study concentrates on two scenarios: dammed and natural scenarios. The meteorological data from
346 five selected GCMs under three SSPs are downscaled from grid scale to REW scale and served as
347 meteorological inputs for the THREW model. The THREW model, augmented with the reservoir
348 module, is applied to simulate runoff at key mainstream hydrological stations during history
349 (1980-2014), near future (2021-2060), and far future (2061-2100) periods, examining both scenarios
350 with and without reservoir management. The R-SDFAI indicator is then employed to assess the
351 probabilities of DFAA events for each study period within both dammed and natural scenarios, utilizing
352 the runoff data generated by the 5 GCMs and 3 SSPs.

353 This study adopts the difference in DFAA's probability between natural (without reservoir operations)
354 and dammed scenarios (considering reservoir operations) to capture reservoir's impact, as shown in Eq.
355 (38).

356 $P_{\text{Impact of Reservoirs},i,t} = P_{\text{Dammed},i,t} - P_{\text{Natural},i,t}$ (38)

357 Where $P_{\text{Impact of Reservoirs},i,t}$ represents the impact of reservoirs on the probability of event t in period i .
358 $P_{\text{Natural},i,t}$ denotes the probability of event t under the natural scenario in period i while the $P_{\text{Dammed},i,t}$
359 denotes the probability of event t under the dammed scenario in period i . Period i refers to the near
360 future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.
361 Eqs. (39) and (40) gives the definitions of $P_{\text{Natural},i,t}$ and $P_{\text{Dammed},i,t}$ described above.

362 $P_{Natural,i,t} = \frac{M_{Natural,i,t}}{TM_i}$ (39)

363 $P_{Dammed,i,t} = \frac{M_{Dammed,i,t}}{TM_i}$ (40)

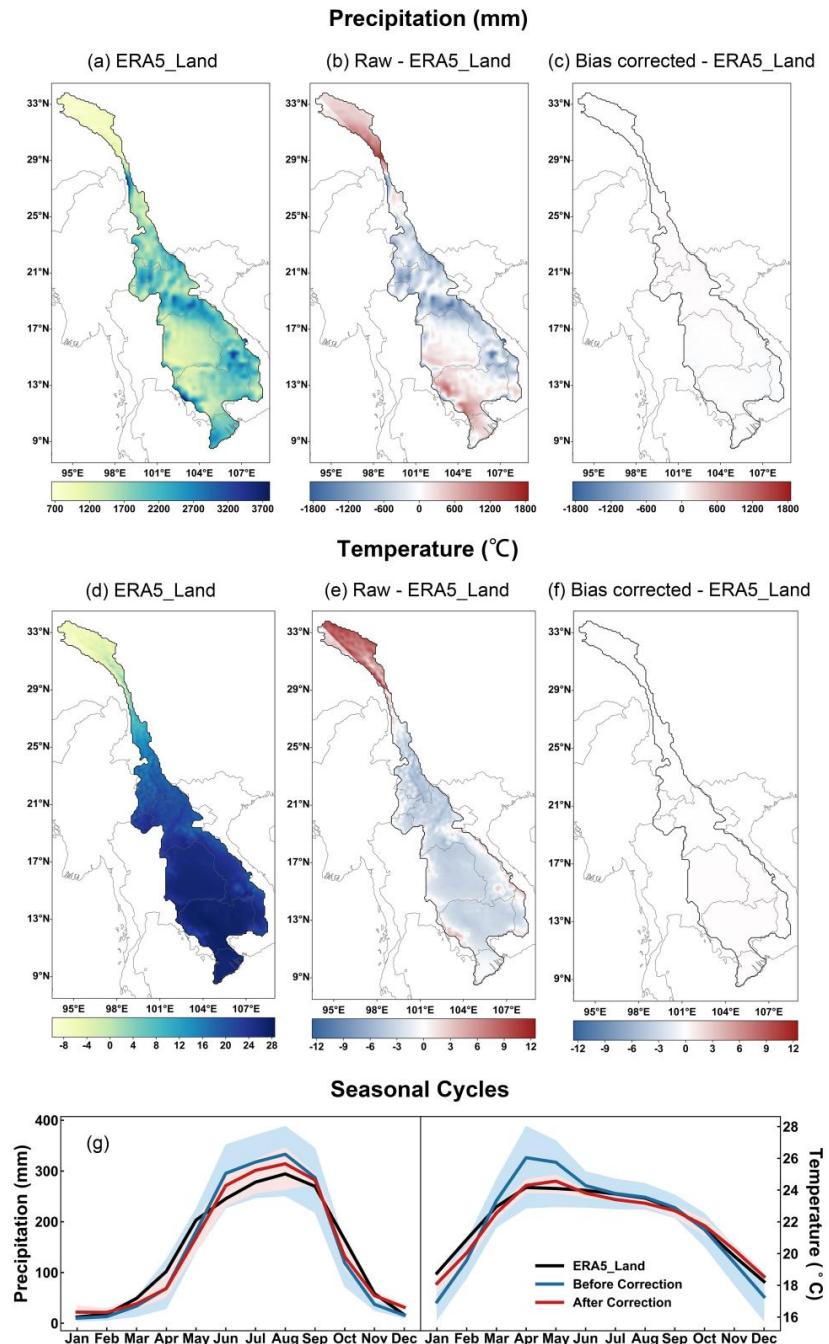
364 Where $M_{Natural,i,t}$ denotes the number of months in which event t occurs in period i under the natural
 365 scenario. $M_{Dammed,i,t}$ denotes the number of months occurred event t occurs in period i under the
 366 dammed scenario. TM_i refers to the total number of months in period i. Period i refers to the near
 367 future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.
 368 As each GCM possesses unique structure and assumptions, projections of climate change by a single
 369 GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of
 370 hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple
 371 GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties,
 372 and ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016;
 373 Hecht et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in
 374 prior studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this
 375 research determines the average DFAA probability from five GCMs to lessen the uncertainty in their
 376 predictions and assesses the fluctuation in these probabilities across the models to demonstrate their
 377 variability.

378 **3. Result**

379 **3.1 CMIP6 data bias correction performance**

380 From both regional and seasonal perspectives, the uncorrected raw CMIP6 data exhibits significant
 381 discrepancies with ERA5_Land data during history period (1980-2014). When compared with
 382 ERA5_Land data for history period, the uncorrected raw CMIP6 data reveals an average annual
 383 precipitation bias of ± 1800 mm and an average daily temperature of $\pm 12^\circ\text{C}$ (Figs. 3b and 3e). These
 384 notable inconsistencies underscore that hydrological modeling using uncorrected raw CMIP6 data
 385 would incur considerable inaccuracies. However, CMIP6 data corrected by MBCn method deviate
 386 from ERA5_Land data within ± 120 mm of average annual precipitation and $\pm 0.2^\circ\text{C}$ of average daily
 387 temperature (Figs. 3c and 3f). The bias correction significantly improves the accuracy of CMIP6 data
 388 in LMR Basin. Meanwhile, the corrected CMIP6 data match the seasonal cycle of ERA5_Land well in
 389 both precipitation and temperature (Fig. 3g). With respect to raw CMIP6 data before correction, the

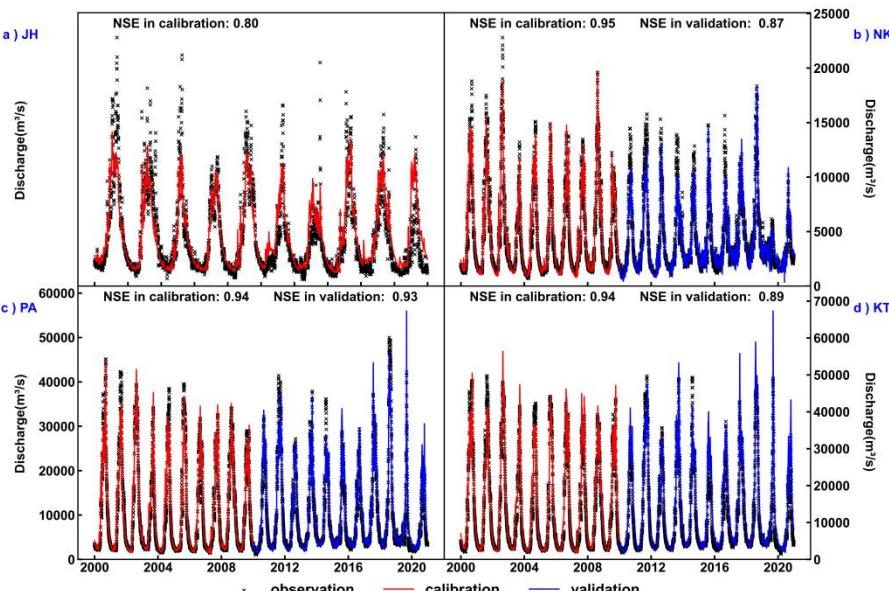
390 spatial and temporal distribution accuracy of corrected CMIP6 improves dramatically, which
 391 contributes to more accurate and reasonable analyses for DFAA.



392
 393 **Figure 3: Averaged meteorological data of 5 GCMs for history period (1980-2014). Here, 5 GCMs are**
 394 **corrected separately. (a)-(c) present the spatial distribution of precipitation based on respectively**
 395 **ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected**
 396 **CMIP6 minus ERA5_Land). (d)-(f) illustrate the spatial distribution of temperature based on ERA5_Land,**
 397 **raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus**
 398 **ERA5_Land). (g) seasonal cycles of temperature and precipitation from ERA5_Land, raw and**
 399 **bias-corrected CMIP6, as well as their corresponding range.**

400 **3.2 Calibration and validation for hydrological model**

401 The daily observed runoff versus daily simulated runoff given by THREW model for calibration period
 402 (2000-2009) and validation period (2010-2020) are illustrated in Fig. 4. Since there was no massive
 403 reservoir construction in LMR Basin before and during calibration period (Zhang et al., 2023),
 404 THREW model without reservoir module is applied for calibration period. Meanwhile, part of large
 405 scale reservoirs have been commissioned during validation period, thus THREW model configuration
 406 with reservoir module is validated in validation period. THREW model captures the runoff fluctuation
 407 between wet and dry seasons well, with an NSE of at least 0.8 during calibration and validation periods.
 408 THREW model exhibits excellent simulation performance in both upstream and downstream regions.

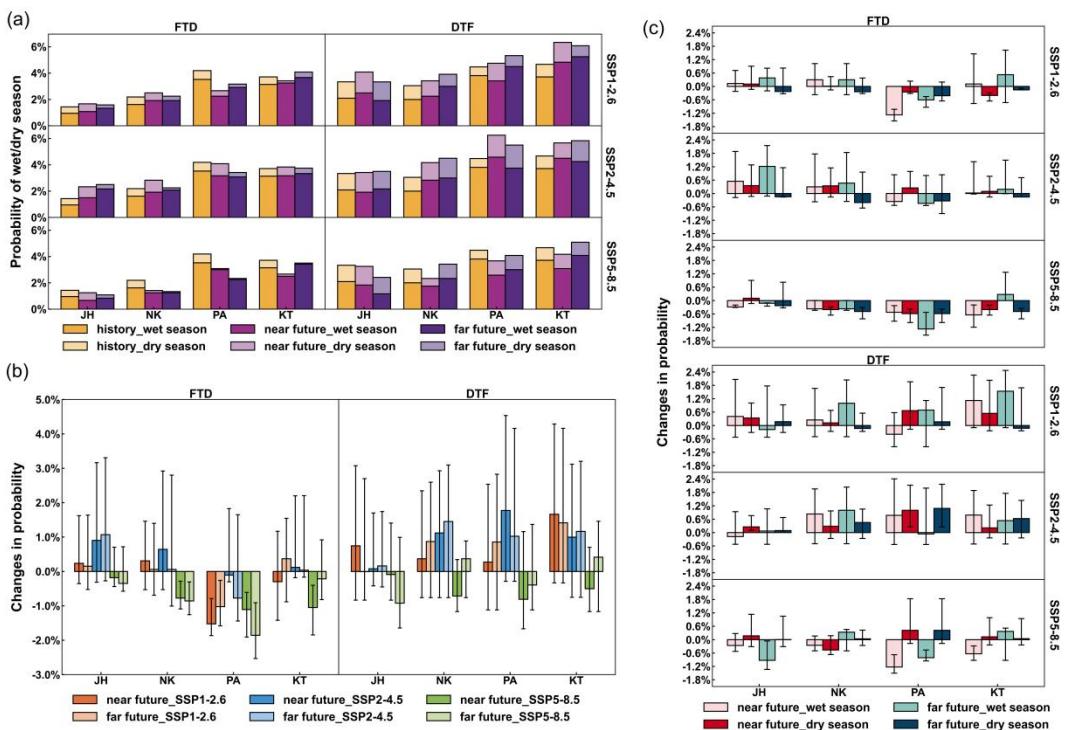


409
 410 **Figure 4: Performance of THREW model in calibration (2000-2009) and validation (2010-2020) periods.**
 411 **Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.**

412 **3.3 DFAA under changing climate**

413 Under natural scenario (without reservoir operations), DFAA in LMR Basin is dominated by DTF, i.e.,
 414 the risk of DTF is more critical than that of FTD. DFAA risk moreover is significantly higher in the wet
 415 season than dry season (Fig. 5a). For the average of five GCMs, the probability of FTD in the wet
 416 season is 2 to 5.5 times higher than that in the dry season in history period. In the near and far future
 417 periods, this ratio respectively ranges from 1.1 to 36 times and 3.3 to 41 times. As for DTF, the
 418 probability in the wet season is correspondingly 1.7 to 5.7 times, 1.3 to 3.9 times and 0.9 to 6.3 times
 419 higher than that in the dry season for history, near future and far future. Only JingHong station

420 experiences a slightly higher probability of DTF in **the dry season** (1.25%) than **in the wet season**
 421 (1.17%) for far future. Furthermore, the annual probability in DFAA is higher remarkably downstream
 422 than upstream (Fig. 5a). The annual FTD's probability ranges from 1.1% to 2.5% at JingHong station
 423 and 1.3% to 2.8% at Nong Khai station. **These probabilities** rises to 2.3% to 4.2% and 2.7% to 4.1% at
 424 Pakse and Kratie stations. Similarly, the annual DTF's probability at JingHong and Nong Khai stations
 425 are 2.4% to 4.1% and 2.3% to 4.5%. **These probabilities** at Pakse and Kratie stations reaches 3.7% to
 426 6.3% and 4.2% to 6.3%. The DTF risk in **the wet season** and FTD risk in both dry and wet seasons are
 427 also higher downstream than upstream. Since the FTD probability in **the dry season** at Nong Khai,
 428 Pakse and Kratie stations is limited, especially under **SSP5-8.5 scenario** (<0.2%), the FTD risk of dry
 429 season **appears** more notable **at upstream** than downstream.



430
 431 **Figure 5: DFAA under natural scenario.** Here, JH, NK, PA, and KT respectively denote JingHong, Nong
 432 Khai, Pakse, and Kratie stations. (a) Seasonal probability of DFAA **averaged across five GCMs** during
 433 history (1980-2014), near future (2021-2060) and far future (2061-2100) periods, as well as under three SSPs.
 434 The annual probability is half of the sum of wet and dry season probabilities. (b) The annual change in
 435 DFAA probability **averaged across five GCMs and their ranges** in the near and far future **periods** with
 436 respect to history period under three SSPs. (c) The seasonal change in DFAA probability **averaged across**
 437 **five GCMs and their ranges** in the near and far future **periods** with respect to history period during wet and
 438 dry seasons under three SSPs.

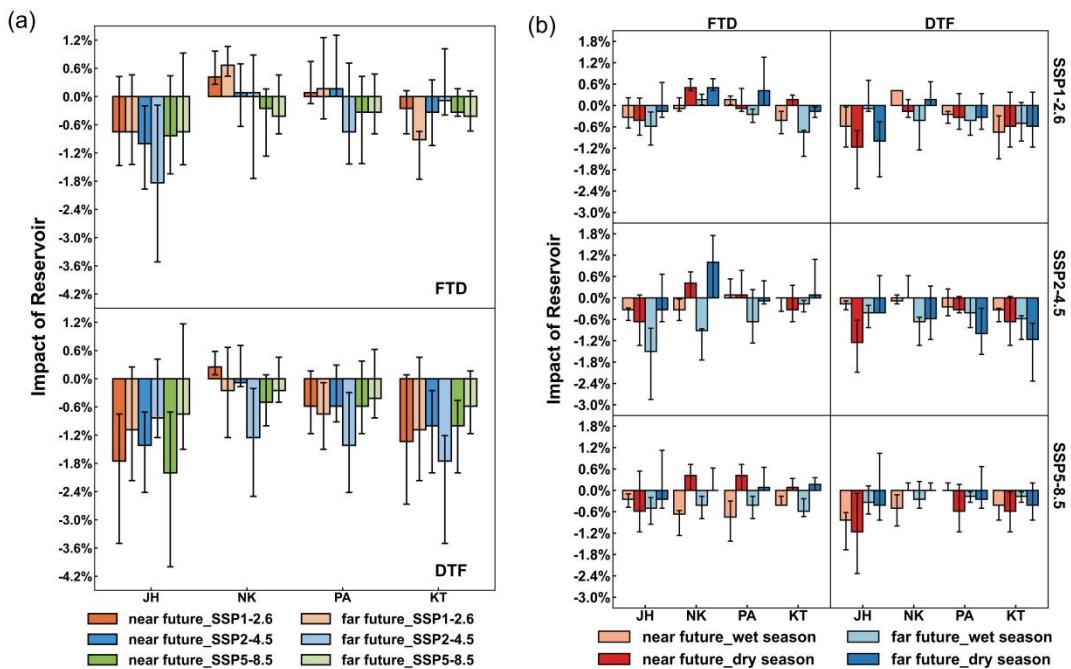
439 The annual DFAA risk increases under **SSP1-2.6** and **SSP2-4.5** scenarios (except for FTD at Pakse

440 station) and decreases under SSP5-8.5 scenario (Fig. 5b). Among three scenarios, SSP5-8.5 is
441 characterized by the lowest DFAA risk. Under this scenario, the average probability of FTD across five
442 GCMs is 1.1% to 3.5%, while the DTF probability ranges from 2.3% to 5.1%. Conversely, SSP2-4.5 is
443 associated with the highest DFAA risk, with FTD and DTF probabilities respectively averaging 1.4% to
444 4.1% and 3.4% to 6.3%. Further, the future growth in DTF is significantly greater than that of FTD. For
445 the average probabilities across five GCMs, relative to the history period, the future change in DTF
446 probability at JingHong station is -0.4% to 1.1%, at Nong Khai station is -0.9% to -0.6%, and at Pakse
447 and Kratie stations respectively is -1.9% to -0.1% and -1% to 0.4%. The future FTD probability change
448 for JingHong is -0.9% to 0.2%, while it is -0.7% to 1.5%, -0.8% to 1.8%, and -0.5% to 1.7% for Nong
449 Khai, Pakse and Kratie, respectively. The maximum values from the five GCMs show consistent trends,
450 with DTF probability increases being significantly greater than FTD probability increases. Additionally,
451 upstream regions face more significant increases in FTD risks in the future, while downstream regions
452 experience a more substantial rise in DTF risks. The opposite trends of DFAA risk in upstream and
453 downstream pose enhanced challenges to the integrated management of LMR Basin. The DFAA risk,
454 meanwhile, increases most significantly under SSP2-4.5 scenario, while under SSP5-8.5 FTD risk
455 drops and the growth of DTF risk is also negligible. Similar to the annual DFAA risk, the wet-season
456 risks for both DTF and FTD rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under SSP5-8.5
457 scenario (Fig. 5c). The FTD risk of dry season is reduced, with an increase observed only under
458 SSP2-4.5 in the near future (average across five GCMs <0.4%, maximum <1.3%). The dry-season risk
459 for DTF rises in all situations, except at Nong Khai station under SSP5-8.5 in the near future, where it
460 shows an average decrease of 0.46% across five GCMs. The largest increase is observed at Pakse
461 station under SSP2-4.5, with an average increase of 1.08% across five GCMs and a maximum increase
462 of 2.08%.

463 **3.4 Reservoirs' impacts on DFAA**

464 Reservoirs exhibit extraordinary mitigation effects on DTF risk under changing climate while showing
465 weaker effects in FTD risk. (Fig. 6a). Nonetheless, the higher probability of DTF compared to FTD
466 (Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk.
467 Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%,
468 averaged across five GCMs), and in most scenarios, the reservoir plays a positive mitigating role across

469 all GCMs (Fig. 6a). Reservoirs exhibit better mitigation effects in the near future at JingHong station.
 470 As for Nong Khai and Pakse stations, The reduction effect of reservoirs on DTF is more pronounced in
 471 the far future under SSP1-2.6 and SSP2-4.5 scenarios while in the near future under SSP5-8.5 scenario.
 472 The effect conversely exhibits greater strength under SSP1-2.6 and SSP5-8.5 scenarios in the near
 473 future while it is stronger under SSP2-4.5 scenario in the far future at Kratie station. These findings are
 474 consistent across both the average of the GCMs and their ranges.



475
 476 **Figure 6: Reservoir impacts on DFAA during near future (2021-2060) and far future (2061-2100) under**
 477 **three SSPs. Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations,**
 478 **respectively. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The**
 479 **seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges.**

480 The reduction effect of reservoirs on FTD performs slightly better in the near future (0.42%, averaged
 481 across five GCMs) than far future (0.38%, averaged across GCMs) at JingHong station, while slightly
 482 greater in the far future (both 0.21%, GCM average) than in the near future (0.13% and 0.17%, GCM
 483 average) at Nong Khai and Kratie stations, while it remains the same in the near and far future periods
 484 at Pakse station (both 0.17%, GCM average). Reservoirs show the best effects under the SSP5-8.5
 485 scenario, in which they effectively alleviate the FTD probability at all hydrological stations (0.13% to
 486 0.42%, GCM average). Under SSP1-2.6 and SSP2-4.5 scenarios, although the reservoir operation
 487 displays poor mitigation effects (-0.33% to 0.38%, GCM average) at Nong Khai and Pakse stations, it

488 demonstrates notable mitigating effects at JingHong and Kratie stations, particularly in certain
489 scenarios. For instance, under SSP2-4.5 scenario of the far future at JingHong station, the reservoir
490 reduces the average probability across GCMs by over 1.8% and lowers the maximum probability
491 values by nearly 3.6%.

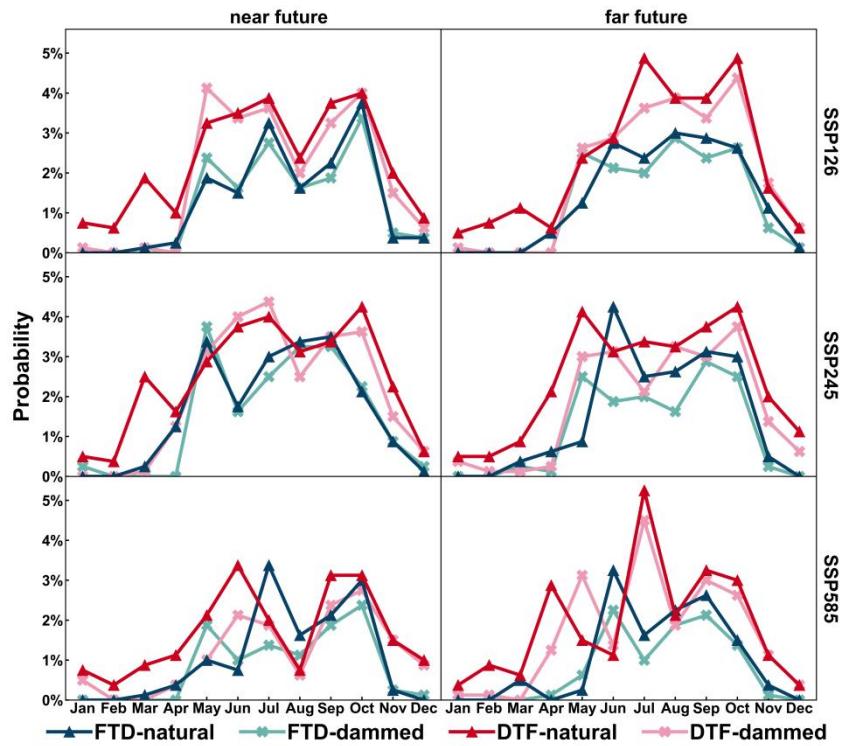
492 Furthermore, reservoirs exhibit superior mitigation capacity against DFAA at JingHong and Kratie
493 compared to Nong Khai and Pakse stations, which aligns with the storage distribution in LMR Basin
494 (Fig. 1c). Both the average and maximum probability values across five GCMs confirm this pattern.

495 This indicates that reservoirs not only function well in flood and drought control (Hecht et al., 2019;
496 Hoang et al., 2019; Ly et al., 2023), but respond excellently to unexpected events such as DFAA.

497 The reduction effect of reservoirs on FTD in the wet season (-0.17% to 1.5%, averaged across GCMs)
498 appears to be more remarkable compared to that in the dry season (-1% to 0.67%, GCM average),
499 especially at Nong Khai, Pakse and Kratie stations (Fig. 6b). Reservoirs generally demonstrate
500 significant reduction effects on FTD in the wet season (-0.17% to 0.92%, GCM average) at these
501 stations, however, increase FTD probability in the dry season (-1% to 0.33%, GCM average). Seasonal
502 differences of reservoirs mitigation effects on DTF are not as significant as those for FTD. Reservoirs
503 achieve slightly better reduction effects in the dry season (-0.17% to 1.25%, GCM average) on DTF
504 than in the wet season (-0.42% to 0.83%, GCM average). Moreover, the reservoir displays superior
505 mitigation capability in DTF relative to FTD in both dry and wet seasons, which is consistent with the
506 annual DFAA.

507 DFAA tends to exhibit multiple monthly peaks under natural scenario, implying there are multiple
508 months with higher DFAA probability than their adjacent months. The multiple peaks are more
509 pronounced in DTF than FTD (Fig. 7). As for the monthly DFAA averaged over four mainstream
510 hydrological stations, DTF shows triple peaks under near-term SSP2-4.5 scenario and far-term
511 SSP5-8.5 scenario, while FTD both exhibits double peaks. The reservoir serves to regulate DFAA by
512 reducing peaks and decreasing the number of peaks, where its reduction effect on the number of peaks
513 appears more pronounced in the near future and for DTF (Fig. 7). Reservoirs provide robust peak
514 alleviation for far future and FTD, particularly under SSP1-2.6 and SSP2-4.5 scenarios, despite their
515 limited contribution in decreasing the number of peaks. Reservoirs meanwhile remarkably reduce
516 DFAA probability in early and middle dry season (i.e., December to April) for both near and far future,
517 lowering it to within 1% or even 0% (averaged across five GCMs) for most stations. The reservoir

518 furthermore potently shortens DFAA's monthly span from spread out the whole year for natural
 519 scenario to concentrated from May to October for dammed scenario (Fig. 7), which enables LMR
 520 Basin to centralize relevant policies and practices on DFAA to this period. It therefore facilitates
 521 riparian states to integrate resources and concentrate efforts on targeted water resources management to
 522 achieve enhanced response to and control of DFAA along with its secondary hazards.



523
 524 **Figure 7: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong,
 525 Nong Khai, Pakse and Kratie stations) under natural and dammed scenarios for three SSPs during near
 526 future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this figure
 527 are averaged over 5 GCMs.**

528 **4. Discussion**

529 **4.1 Different characteristics of DTF and FTD under changing climate**

530 Although flood and drought risks in LMR Basin will decrease respectively in the near and far future
 531 periods (Li et al., 2021; Hoang et al., 2016; Wang et al., 2017b; Yun et al., 2021a; Yun et al., 2021b),
 532 DFAA risk will still increase under SSP1-2.6 and SSP2-4.5 scenarios (Fig. 5). DTF and FTD exhibit
 533 quite different characteristics, in that DTF is more frequent but FTD is more challenging.
 534 The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al.
 535 (2021) found that FTD events are predominant in the Wei River Basin. Wang et al. (2023) projected

536 that in the Poyang Lake Basin, the temporal spread of DTF events will expand in future, while that of
537 FTD events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the
538 Huang-Huai-Hai River Basin will experience more DTF events, but under SSP3-7.0 and SSP5-8.5
539 scenarios, it will experience more FTD events.

540 The probability of DTF is significantly higher than FTD (Fig. 5a) and rises considerably in the near and
541 far future periods (Fig. 5b). However, reservoirs well control the DTF probability and significantly
542 reduce the DTF risk in both dry and wet seasons (Fig. 6). This can be attributed to the fact that the
543 DTF's demand for water regulation follows the reservoir scheduling logic, whereby the reservoir
544 releases water to alleviate drought during early DTF, when reservoirs stay at low water level, which
545 exactly satisfies the storage requirements of the sudden flood in late DTF.

546 Comparatively, although FTD is less probable than DTF, reservoirs poorly control it, especially in the
547 dry season, which is pertinent to the challenge that reservoirs hardly spare capacity for floods in early
548 FTD whilst ensuring storage for drought during late FTD. FTD tends to occur unexpectedly under the
549 high incidence of DTF, and the current reservoir operation struggles to perfectly control its risk, which
550 leads to extreme challenges in FTD. Fortunately, the probability of FTD however will drop in most
551 areas of LMR Basin in future (Fig. 5).

552 **4.2 Reservoir operation integrated with hydrological forecast**

553 Future DFAA in LMR Basin remains severe (Fig. 5). Although reservoirs provide positive impacts to
554 DFAA under changing climate, there is room for improvement in some situations (Fig. 6). This is
555 attributed to the fact that relying on general reservoir operation rules such as SOP alone can't fully
556 realize reservoirs' potential (Zhang et al., 2018), and these rules are scheduled with completely
557 unknown incoming flows. The reservoir's ability in responding to DFAA will be further enhanced if
558 being scheduled with known incoming flows. Reservoir scheduling combined with hydrological
559 forecast is a practical approach.

560 Hydrological forecasting technology enhances the potential of reservoirs, improves their ability to
561 address disasters and optimizes the resilience of LMR Basin system. Hydrological forecast enables the
562 prediction of reservoirs inflows and extreme hydrological events at appropriate time scales according to
563 actual requirements (Brunner et al., 2021b; Ibrahim et al., 2022), and assists in assessing their severity
564 and possible impacts on production and livelihoods in LMR Basin (Kao et al., 2020; Kumar et al., 2023;

565 Prodhan et al., 2022; Hao et al., 2018).

566 Hydrological forecasts provide insights into runoff and disaster situations, enabling the adaptation of
567 reservoirs' current and future operational procedures. This adjustment can maximize reservoirs' water
568 management efficiency, effectively counteracting flood-induced drought (FTD) and drought-induced
569 flood (DTF). For instance, when a flood is occurring and hydrological forecasts predict an impending
570 drought, reservoirs' operational methods should be modified to both reserve adequate storage capacity
571 for the next flood event and maximize water retention to counteract the subsequent drought. Likewise,
572 if hydrological forecasts indicate that a flood will strike after the current drought, reservoir
573 management will transition from maximizing water storage to ensuring water availability during the
574 drought while also setting aside adequate storage capacity for the upcoming flood event. In necessary
575 situations, especially when severe disasters are forecasted, it is advisable to consider sacrificing some
576 of the hydroelectric benefits, making the maintenance of normal production and living in LMR Basin
577 the primary objective of reservoir operation.

578 **4.3 Maximizing utilization of the resilient storage**

579 The mitigation effect of reservoirs on DFAA risk is closely associated with the storage distribution of
580 mainstream and tributary reservoirs (Figs. 1c and 6). This finding emphasizes a strong connection
581 between reservoir storage capacity and its mitigation potential on DFAA. It aligns with Ehsani et al.
582 (2017), who suggested that expanding dam dimensions can offset the vulnerability of water resources
583 to climate uncertainties, and Feng et al. (2024), whose study highlighted the effectiveness of large
584 reservoirs in mitigating drought and flood risks.

585 This study exclusively examines hydroelectric reservoirs in LMR Basin, excluding other water storage
586 facilities like irrigation reservoirs and minor irrigation systems. The LMR Basin, however, boasts
587 significant storage capacity through these additional facilities. The MRC reports 1317 irrigation
588 reservoirs in Mekong Basin, with total storage about 17 billion m³ (MRC, 2018; LMC and MRC, 2023).
589 This storage surpasses that of reservoirs between JingHong and Nong Khai stations (around 9.7 billion
590 m³), and is marginally less than those between Nong Khai to Pakse region stations (approximately 22.1
591 billion m³), as depicted in Fig. 1c.

592 The existing research has pointed out that the mitigating effect of reservoirs on extreme hydrological
593 events is independent of their main purpose. Even when their main purpose isn't directly tied to

594 mitigating such events, they can still offer significant benefits (Brunner, 2021a; Ho et al., 2025). This
595 study thus emphasizes the need for rationally planning and use of irrigation reservoirs in LMR Basin,
596 particularly during severe DFAA situations. By integrating these reservoirs as adjustable storage
597 solutions alongside hydroelectric reservoirs, the basin's ability to handle DFAA can be enhanced,
598 thereby boosting the system's resilience and adaptability.

599 **5. Conclusion**

600 This study adopts CMIP6 meteorological data under three SSP scenarios and five GCMs, and corrects
601 them utilizing MBCn method. Combined hydrological model THREW and the developed reservoir
602 module, it applies R-SDFAI to characterize DFAA, and explores the mitigating role of reservoirs on
603 DFAA under changing climate in LMR Basin. The study periods are organized into history
604 (1980-2014), near future (2021-2060) and far future (2061-2100). The main findings are summarized
605 below:

- 606 1. Future DFAA trend varies widely in upstream and downstream of LMR Basin, with significant rises
607 in upstream FTD and downstream DTF. While DTF occurs more probable, FTD presents more
608 challenge. Annual and wet-season risks of DFAA increase under **SSP1-2.6** and **SSP2-4.5** scenarios. The
609 DFAA risk is considerably higher in **the** wet season than dry season.
- 610 2. Reservoirs competently reduce year-round risk of DTF and wet season's risk of FTD in LMR Basin,
611 and perform better in regions with larger total storage of mainstream and tributary reservoirs. Moreover,
612 reservoirs contribute markedly to control DFAA's multiple peaks and to shorten its monthly span.
- 613 3. Hydrological forecast and resilient storage are able to help smoothly survive DFAA, and could be
614 robust options to address climate change.

615 This study provides new insights into the mitigating role of reservoirs on DFAA in LMR Basin and
616 contributes to water **resources** management for riparian countries. DFAA remains severe under climate
617 change and reservoirs do contribute to mitigating it, thus this study calls for information sharing and
618 joint actions among basin countries on the forecast and prevention of DFAA. The joint efforts of LMR
619 Basin states will **facilitate exploring** more effective and feasible measures to mitigate impacts of
620 climate change and facilitate the long-term sustainable development.

621 **Author contribution**

622 **KZ:** Conceptualization; Data curation; Model development; Investigation; Methodology; Validation;
623 Visualization; Writing - original draft; Writing - review & editing. **ZZ:** Writing - review & editing. **FT:**
624 Conceptualization; Funding acquisition; Investigation; Methodology; Supervision; Writing - review &
625 editing.

626 **Competing interests**

627 At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System
628 Sciences.

629 **Data availability**

630 The hydrological data can be accessed and requested from the MRC Data Portal
631 (<https://portal.mrcmekong.org/home>, last access: March 2025). Information related to dams is available
632 on the Mekong Region Futures Institute (MERFI) website
633 (<https://www.merfi.org/mekong-region-dams-database>, last access: March 2025). The raw CMIP6 data
634 without correction is available at (<https://esgf-node.llnl.gov/search/cmip6/>, last access: March 2025).
635 The MBCn algorithm can be accessed and implemented through an R package, which is available at
636 (<https://CRAN.R-project.org/package=MBC>, last access: July, 2025).

637 **Acknowledgment**

638 This research was funded by the National Natural Science Foundation of China (51961125204,
639 U2442201).

640 **Reference**

641 Adikari, Y., Yoshitani, J.: Global Trends in Water-Related Disasters: An Insight for Policymakers,
642 International Centre for Water Hazard and Risk Management (ICHARM). The United Nations World
643 Water Development Report 3, Tsukuba, Japan, <https://unesdoc.unesco.org/ark:/48223/pf0000181793>
644 (last access: March 2025), 2009.
645 ADREM, SNSE, NDRC, IFRC and IRDR: 2023 Global Natural Disaster Assessment Report. Bejing,
646 <https://reliefweb.int/report/world/2023-global-natural-disaster-assessment-report> (last access: March
647 2025), 2024.
648 Arias, M.E., Piman, T., Lauri, H., Cochrane, T.A., Kummu, M.: Dams on Mekong tributaries as
649 significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia. *Hydrol.*

650 Earth Syst. Sci. 18, 5305-5315. <https://doi.org/10.5194/hess-18-5303-2014>, 2014.

651 Bai X., Zhao C., Tang Y., Zhang Z., Yang B. and Wang Z.: Identification, physical mechanisms and
652 impacts of drought–flood abrupt alternation: a review. Front. Earth Sci. 11:1203603,
653 <https://doi.org/10.3389/feart.2023.1203603>, 2023.

654 Brunner, M.: Reservoir regulation affects droughts and floods at local and regional scales. Environ. Res.
655 Lett. 16 (12). <https://doi.org/10.1088/1748-9326/ac36f6>, 2021a.

656 Brunner, M. I., Slater, L., Tallaksen, L. M., Clark, M.: Challenges in modeling and predicting floods
657 and droughts: A review. WIREs Water, 8(3), e1520, <https://doi.org/10.1002/wat2.1520>, 2021b.

658 Chen Z., Li X., Zhang X., et al.: Global drought-flood abrupt alternation: Spatio-temporal patterns,
659 drivers, and projections. The Innovation Geoscience 3:100113,
660 <https://doi.org/10.59717/j.xinn-geo.2024.100113>, 2025.

661 Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Tian, F.: Non-monotonic changes in Asian Water
662 Towers' streamflow at increasing warming levels. Nature Communication, 14(1), 1176,
663 <https://doi.org/10.1038/s41467-023-36804-6>, 2023.

664 Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching Marginal
665 Distributions and Intervariable Dependence Structure. J. Clim. 29, 7045–7064,
666 <https://doi.org/10.1175/JCLI-D-15-0679.1>, 2016

667 Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density
668 function transform for climate model simulations of multiple variables. Clim. Dyn. 50, 31–49,
669 <https://doi.org/10.1007/s00382-017-3580-6>, 2018.

670 Dang, H. and Pokhrel, Y.: Evolution of river regimes in the Mekong River basin over 8 decades and the
671 role of dams in recent hydrological extremes, Hydrol. Earth Syst. Sci., 28, 3347–3365,
672 <https://doi.org/10.5194/hess-28-3347-2024>, 2024.

673 Do, P., Tian, F., Zhu, T., Zohidov, B., Ni, G., Lu, H., Liu, H.: Exploring synergies in the
674 water-food-energy nexus by using an integrated hydro-economic optimization model for the
675 Lancang-Mekong River basin. Sci. Total Environ. 728, 137996,
676 <https://doi.org/10.1016/j.scitotenv.2020.137996>, 2020.

677 Dong, Z., Liu, H., Baiyinbaoligao, Hu, H., Khan, M., Wen, J., Chen, L., Tian, F.: Future projection of
678 seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 610,
679 <https://doi.org/10.1016/j.jhydrol.2022.127815>, 2022.

680 Ehsani, N., Vörösmarty, C., Fekete, B., Stakhiv, E.: Reservoir operations under climate change: storage
681 capacity options to mitigate risk. J. Hydrol. 555, 435–446.
682 <https://doi.org/10.1016/j.jhydrol.2017.09.008>, 2017.

683 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and
684 organization, Geosci. Model Dev., 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

685 Feng, J., Qin, T., Yan, D., Lv, X., Yan, D., Zhang, X., Li, W.: The role of large reservoirs in drought and
686 flood disaster risk mitigation: a case of the Yellow River Basin. Sci. Total Environ. 949, 175255.
687 <https://doi.org/10.1016/j.scitotenv.2024.175255>, 2024.

688 Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den
689 Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M.,
690 Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of
691 harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475,
692 693

694 <https://doi.org/10.5194/gmd-12-1443-2019>, 2019.

695 Gunawardana, S.K., Shrestha, S., Mohanasundaram, S., Salin, K.R., Piman, T.: Multiple drivers of
696 hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region. *J.*
697 *Environ. Manage.* 278, 111524, <https://doi.org/10.1016/j.jenvman.2020.111524>, 2021.

698 Hao, Z., Singh, V. P., Xia, Y.: Seasonal drought prediction: Advances, challenges, and future prospects.
699 *Reviews of Geophysics*, 56, 108–141, <https://doi.org/10.1002/2016RG000549>, 2018.

700 He D.: Analysis on the hydrological characteristics of Lancang-Meigong River. *Yunnan Geographic*
701 *Environment Research*, 1, 58-74 (in Chinese), 1995.

702 Hecht, J.S., Lacombe, G., Arias, M.E., Dang, T.D., Piman, T.: Hydropower dams of the Mekong River
703 basin: A review of their hydrological impacts. *J. Hydrol.* 568, 285–300,
704 <https://doi.org/10.1016/j.jhydrol.2018.10.045>, 2019.

705 Ho, S. Q.-G. and Ehret, U.: Is drought protection possible without compromising flood protection?
706 Estimating the potential dual-use benefit of small flood reservoirs in southern Germany, *Hydrol. Earth*
707 *Syst. Sci.*, 29, 2785–2810, <https://doi.org/10.5194/hess-29-2785-2025>, 2025.

708 Hoang, L. P., Lauri, H., Kummu, M., Koponen, J., van Vliet, M. T. H., Supit, I., Leemans, R., Kabat, P.,
709 and Ludwig, F.: Mekong River flow and hydrological extremes under climate change, *Hydrol. Earth*
710 *Syst. Sci.*, 20, 3027–3041, <https://doi.org/10.5194/hess-20-3027-2016>, 2016.

711 Hoang, L.P., van Vliet, M.T.H., Kummu, M., Lauri, H., Koponen, J., Supit, I., Leemans, R., Kabat, P.,
712 Ludwig, F.: The Mekong's future flows under multiple drivers: How climate change, hydropower
713 developments and irrigation expansions drive hydrological changes. *Sci. Tot. Environ.*,
714 <https://doi.org/10.1016/j.scitotenv.2018.08.160>, 2019.

715 Ibrahim, K.S.M.H., Huang, Y.F., Ahmed, A.N., Koo, C.H., El-Shafie, A.: A review of the hybrid
716 artificial intelligence and optimization modelling of hydrological streamflow forecasting. *Alex. Eng. J.*
717 61 (1), 279–303, <https://doi.org/10.1016/j.aej.2021.04.100>, 2022.

718 IPCC: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and
719 III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing
720 Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115,
721 <https://doi.org/10.59327/IPCC/AR6-9789291691647>, 2023.

722 IPCC Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on
723 Climate Change. *Climate Change; The Physical Science Basis. TS-93*,
724 <https://www.ipcc.ch/report/ar6/syr/> (last access: March 2025), 2021.

725 Kao, I.F., Zhou, Y., Chang, L.C., Chang, F.J.: Exploring a long short-term memory based
726 encoder-decoder framework for multi-step-ahead flood forecasting. *Journal of Hydrology* 124631,
727 <https://doi.org/10.1016/j.jhydrol.2020.124631>, 2020.

728 Khadka, D., Babel, M. S., Kamalamma, A. G.: Assessing the Impact of Climate and Land-Use Changes
729 on the Hydrologic Cycle Using the SWAT Model in the Mun River Basin in Northeast Thailand. *Water*,
730 15, 3672, <https://doi.org/10.3390/w15203672>, 2023.

731 Kingston, D. G., Thompson, J. R., and Kite, G.: Uncertainty in climate change projections of discharge
732 for the Mekong River Basin, *Hydrol. Earth Syst. Sci.*, 15, 1459–1471,
733 <https://doi.org/10.5194/hess-15-1459-2011>, 2011.

734 Kumar, V., Azamathulla, H. M., Sharma, K. V., Mehta, D. J., Maharaj, K. T.: The State of the Art in
735 Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood
736 Forecasting and Management. *Sustainability*, 15(13), 10543, <https://doi.org/10.3390/su151310543>,
737 2023.

738 Lancang-Mekong Water Resources Cooperation Center (LMC) and Mekong River Commission (MRC):
739 Technical Report - Phase 1 of the Joint Study on the Changing Patterns of Hydrological Conditions of
740 the Lancang-Mekong River Basin and Adaptation Strategies. Beijing: LMC Water Center or Vientiane:
741 MRC Secretariat, http://www.lmcwater.org.cn/cooperative_achievements/collaborative_projects/ (last
742 access: March 2025), <https://www.mrcmekong.org/publication/> (last access: March 2025), 2023.

743 Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0),
744 Geoscientific Model Development, 12, 3055–3070, <https://doi.org/10.5194/gmd-12-3055-2019>, 2019.

745 Lange, S.: ISIMIP3BASD v2.5.0, <https://doi.org/10.5281/zenodo.4686991>, 2021.

746 Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M., and Kummu, M.: Future changes in
747 Mekong River hydrology: impact of climate change and reservoir operation on discharge, *Hydrol.*
748 *Earth Syst. Sci.*, 16, 4603–4619, <https://doi.org/10.5194/hess-16-4603-2012>, 2012.

749 Lei X., Song X., Guo H., Ma R., Song S.: Analysis on spatio-temporal evolution characteristics of
750 short-cycle drought-flood sudden alteration and potential driving factors in the north-south transitional
751 zone of China. *Journal of Natural Disasters.* 31(4), 31–43 (in Chinese),
752 <https://doi.org/10.13577/j.jnd.2022.0403>, 2022.

753 Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., Yang, F., Huang, Y.: Meteorological and
754 hydrological droughts in Mekong River Basin and surrounding areas under climate change, *J. Hydrol.:
755 Reg. Stud.* 36, 100873, <https://doi.org/10.1016/j.ejrh.2021.100873>, 2021.

756 Liu, H., Yang, Z., Xu, F., Zhang, X., Baiyin, B., Mu, X., Hu, H.: Drought in Lancang-Mekong River
757 Basin and the impact of upstream reservoirs. *J. China Inst. Water Resour. Hydropower Res.* 6, 479–485
758 (in Chinese), <https://doi.org/10.13244/j.cnki.jiwhr.20200058>, 2020.

759 Lu, Y., Tian, F., Guo, L., Borzi, I., Patil, R., Wei, J., Liu, D., Wei, Y., Yu, D. J., Sivapalan, M.:
760 Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong
761 River, *Hydrol. Earth Syst. Sci.*, 25, 1883–1903, <https://doi.org/10.5194/hess-25-1883-2021>, 2021.

762 Lu, X.X., Li, S., Kummu, M., Padawangi, R., Wang, J. J.: Observed changes in the water flow at
763 Chiang Saen in the lower Mekong: impacts of Chinese dams? *Quatern. Int.*,
764 <https://doi.org/10.1016/j.quaint.2014.02.006>, 2014.

765 Luo, X., Luo, X., Ji, X., Ming, W., Wang, L., Xiao, X., Xu, J., Liu, Y., Li, Y.: Meteorological and
766 hydrological droughts in the Lancang-Mekong River Basin: spatiotemporal patterns and propagation.
767 *Atmospheric Research* 293, 106913. <https://doi.org/10.1016/j.atmosres.2023.106913>, 2023.

768 Ly, S., Sayama, T., Try, S.: Integrated impact assessment of climate change and hydropower operation
769 on streamflow and inundation in the lower Mekong Basin. *Prog. Earth Planet. Sci.* 10, 55,
770 <https://doi.org/10.1186/s40645-023-00586-8>, 2023.

771 MERFI: Dataset on the Dams of the Greater Mekong. Bangkok, Mekong Region Futures Institute,
772 <https://www.merfi.org/mekong-region-dams-database> (last access: March 2025), 2024.

773 Mishra, V., Bhatia, U., Tiwari, A.D.: Bias-corrected climate projections for South Asia from Coupled
774 Model Intercomparison Project-6. *Sci Data* 7, 338, <https://doi.org/10.1038/s41597-020-00681-1>, 2020.

775 Morovati, K., Tian, F., Kummu, M., Shi, L., Tudaji, M., Nakhaei, P., Olivares, M. A.: Contributions
776 from climate variation and human activities to flow regime change of Tonle Sap Lake from 2001 to
777 2020. *Journal of Hydrology*, 616, 128800, <https://doi.org/10.1016/j.jhydrol.2022.128800>, 2023.

778 Morovati, K., Tian, F., Pokhrel, Y., Someth, P., Shi, L., Zhang, K., Ly, S.: Fishery and agriculture
779 amidst human activities and climate change in the Mekong River: A review of gaps in data and
780 effective approaches towards sustainable development, *J. Hydrol.*, 132043,
781 <https://doi.org/10.1016/j.jhydrol.2024.132043>, 2024.

782 Morris, G. L., & Fan, J.: Reservoir sedimentation handbook: Design and management of dams,
783 reservoirs, and watersheds for sustainable use. New York, NY: McGraw-Hill, 1998.

784 Mou, L., Tian, F., Hu, H., and Sivapalan, M.: Extension of the Representative Elementary Watershed
785 approach for cold regions: constitutive relationships and an application, *Hydrol. Earth Syst. Sci.*, 12,
786 565–585, <https://doi.org/10.5194/hess-12-565-2008>, 2008.

787 MRC: Assessment of Basin-Wide Development Scenarios—Main Report, Mekong River Commission,
788 <https://reliefweb.int/report/lao-peoples-democratic-republic/assessment-basin-wide-development-scenarios-main-report> (last access: March 2025), 2010.

789 MRC: Irrigation Database Improvement for the Lower Mekong Basin. Vientiane, Lao PDR,
790 <https://www.mrcmekong.org/publications/irrigation-database-improvement-for-the-lower-mekong-river-basin/#:~:text=It%20reviews%20the%20current%20situation%20of%20irrigation%20in,%28LMB%20and%20provides%20recommendations%20for%20further%20database%20impro> (last access:
791 March 2025), 2018.

792 MRC: State of the Basin Report 2018, <https://www.mrcmekong.org/publications/state-of-the-basin-report-2018-2/> (last access: March 2025),
793 2019.

794 MRC: Annual Mekong hydrology, flood and drought report 2019: Drought in the Lower Mekong River
795 Basin. Vientiane: MRC Secretariat,
796 <https://www.mrcmekong.org/publications/annual-mekong-hydrology-flood-and-drought-report-2019-drought-in-the-lower-mekong-basin/> (last access: March 2025), 2020.

797 Nan, Y., Tian, L., He, Z., Tian, F., and Shao, L.: The value of water isotope data on improving process
798 understanding in a glacierized catchment on the Tibetan Plateau, *Hydrol. Earth Syst. Sci.*, 25,
799 3653–3673, <https://doi.org/10.5194/hess-25-3653-2021>, 2021.

800 Prodhan, F.A., Zhang, J., Hasan, S.S., Pangali Sharma, T.P., Mohana, H.P.: A review of machine
801 learning methods for drought hazard monitoring and forecasting: current research trends, challenges,
802 and future research directions. *Environ. Model. Software* 149, 105327,
803 <https://doi.org/10.1016/j.envsoft.2022.105327>, 2022.

804 Räsänen, T.A., Koponen, J., Lauri, H. et al.: Downstream Hydrological Impacts of Hydropower
805 Development in the Upper Mekong Basin. *Water Resour. Manage.* 26, 3495–3513.
806 <https://doi.org/10.1007/s11269-012-0087-0>, 2012.

807 Ren, J., Wang, W., Wei, J., Li, H., Li, X., Liu, G., Chen, Y., Ye, S.: Evolution and prediction of
808 drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. *Sci. Total Environ.* 869,
809 <https://doi.org/10.1016/j.scitotenv.2023.161707>, 2023.

810 Sabo, J. L., Puhi, A., Holtgrieve, G. W., Elliott, V., Arias, M. E., Ngor, B. P., Räsänen, T. A., Nam, S.:
811 Designing river flows to improve food security futures in the lower Mekong Basin. *Science* 358 (6368).
812 <https://doi.org/10.1126/science.aa01053>, 2017.

813 Schmitt, R.J.P., Bizzi, S., Castelletti, A. et al.: Improved trade-offs of hydropower and sand
814 connectivity by strategic dam planning in the Mekong. *Nat Sustain.* 1, 96–104,
815 <https://doi.org/10.1038/s41893-018-0022-3>, 2018.

816 Shan, L., Zhang, L., Song, J., Zhang, Y., She, D., Xia, J., 2018. Characteristics of dry-wet abrupt
817 alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with
818 ENSO. *Acta Geographica Sinica*, 73(1): 25-40 (in Chinese), <https://doi.org/10.11821/dlx201801003>,
819 2018.

820 Shi, W., Huang, S., Liu, D., Huang, Q., Han, Z., Leng, G., Wang, H., Hao, L., Li, P., Wei, X.:

826 Drought-flood abrupt alternation dynamics and their potential driving forces in a changing environment.
827 J. Hydrol. 597, 126179, <https://doi.org/10.1016/j.jhydrol.2021.126179>, 2021.

828 Sridhar, V., Kang, H., Ali, S.A.: Human-Induced Alterations to Land Use and Climate and Their
829 Responses for Hydrology and Water Management in the Mekong River Basin. Water, 11, 1307,
830 <https://doi.org/10.3390/w11061307>, 2019.

831 Song, X., Lei, X., Ma, R., Hou, J., Liu, W.: Spatiotemporal variation and multivariate controls of
832 short-cycle drought–flood abrupt alteration: A case in the Qinling-Daba Mountains of China.
833 International Journal of Climatology, 43(10), 4756–4769, <https://doi.org/10.1002/joc.8115>, 2023.

834 Sun, P., Zou, Y., Yao, R., Ma, Z., Bian, Y., Ge, C., Lv, Y.: Compound and successive events of extreme
835 precipitation and extreme runoff under heatwaves based on CMIP6 models. Science of the Total
836 Environment, 878, 162980, <https://doi.org/10.1016/j.scitotenv.2023.16298>, 2023.

837 Tellman, B., Sullivan, J.A., Kuhn, C. et al.: Satellite imaging reveals increased proportion of population
838 exposed to floods. Nature 596, 80–86, <https://doi.org/10.1038/s41586-021-03695-w>, 2021.

839 Tennant, D. L.: Instream flow regimens for fish, wildlife, recreation and related environmental
840 resources. FISHERIES, 1(4), 6–10,
841 [https://doi.org/10.1577/1548-8446\(1976\)001<0006:IFRFFW>2.0.CO;2](https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2) 1976.

842 Thompson, J., Green, A., & Kingston, D: Potential evapotranspiration-related uncertainty in climate
843 change impacts on river flow: An assessment for the Mekong River basin. Journal of Hydrology, 510,
844 259–279. <https://doi.org/10.1016/j.jhydrol.2013.12.010>, 2014.

845 Tian, F., Liu, H., Hou, S., Li, K., Lu, H., Ni, G., Mu, X., Baiyinbaoligao: Drought characteristics of the
846 Lancang-Mekong Basin and the role of reservoir regulation on streamflow. The international journal of
847 hydropower&dams, 5, 81-89,
848 <http://www.thuwater.org/admin/tp/Report-on-Lancang-Mekong-Drought-and-Reservoir-Regulation.pdf>
849 (last access: March 2025), 2020.

850 Tian, F., Hu, H., Lei, Z., and Sivapalan, M.: Extension of the Representative Elementary Watershed
851 approach for cold regions via explicit treatment of energy related processes, Hydrol. Earth Syst. Sci.,
852 10, 619–644, <https://doi.org/10.5194/hess-10-619-2006>, 2006.

853 Tian, F., Li, H., Sivapalan, M.: Model diagnostic analysis of seasonal switching of runoff generation
854 mechanisms in the Blue River basin, Oklahoma. J. Hydrol. 418 (419), 136–149,
855 <https://doi.org/10.1016/j.jhydrol.2010.03.011>, 2012.

856 Van Pelt, S. C., Kabat, P., ter Maat, H. W., van den Hurk, B. J. J. M., and Weerts, A. H.: Discharge
857 simulations performed with a hydrological model using bias corrected regional climate model input,
858 Hydrol. Earth Syst. Sci., 13, 2387–2397, <https://doi.org/10.5194/hess-13-2387-2009>, 2009.

859 Wang, A., Miao, Y., Kong, X., & Wu, H: Future changes in global runoff and runoff coefficient from
860 CMIP6 multi-model simulation under SSP1-2.6 and SSP5-8.5 scenarios. Earth's Future, 10(12),
861 e2022EF002910. <https://doi.org/10.1029/2022EF002910>, 2022.

862 Wang, C., Leisz, S., Li, L., Shi, X., Mao, J., Zheng, Y., and Chen, A.: Historical and projected future
863 runoff over the Mekong River basin, Earth Syst. Dynam., 15, 75–90,
864 <https://doi.org/10.5194/esd-15-75-2024>, 2024.

865 Wang, R., Li, X., Zhang, Q., Cheng, J., Li, J., Zhang, D., Liu, Y.: Projection of drought-flood abrupt
866 alternation in a humid subtropical region under changing climate. J. Hydrol. 624, 129875,
867 <https://doi.org/10.1016/j.jhydrol.2023.129875>, 2023.

868 Wang, S., Zhang, L., She, D., Wang, G., Zhang, Q.: Future projections of flooding characteristics in the
869 Lancang-Mekong River Basin under climate change. J. Hydrol. 602,

870 <https://doi.org/10.1016/j.jhydrol.2021.126778>, 2021.

871 Wang, W., Li, H. Y., Leung, L. R., Yigzaw, W., Zhao, J., Lu, H., Deng, Z., Demisie, Y., Blöschl, G.:
872 Nonlinear filtering effects of reservoirs on flood frequency curves at the regional scale, *Water Resour.*
873 *Res.*, 53, 8277–8292, <https://doi.org/10.1002/2017WR020871>, 2017a.

874 Wang, W., Lu, H., Leung, L. R., Li, H.-Y., Zhao, J., Tian, F., Yang, K., Sothea, K.: Dam construction in
875 Lancang-Mekong River Basin could mitigate future flood risk from warming-induced intensified
876 rainfall. *Geophysical Research Letters*, 44, 10,378–10,386, <https://doi.org/10.1002/2017GL075037>,
877 2017b.

878 Wu, Z., Li, J., He, J., Jiang, Z.: Large-scale atmospheric singularities and summer long-cycle
879 droughts–floods abrupt alternation in the middle and lower reaches of the Yangtze River. *Chinese*
880 *Science Bulletin*, 51(16), 2027–2034, <https://doi.org/10.1007/s11434-006-2060-x>, 2006.

881 Williams, J. M.: The hydropower myth. *Environ. Sci. Pollut. R*,
882 <https://doi.org/10.1007/s11356-019-04657-6>, 2019.

883 Xiong, J., Yang, Y.: Climate Change and Hydrological Extremes. *Curr Clim Change Rep* 11, 1,
884 <https://doi.org/10.1007/s40641-024-00198-4>, 2025.

885 Yang, P., Zhang, S., Xia, J., Zhan, C., Cai, W., Wang, W., Luo, X., Chen, N., Li, J.: Analysis of drought
886 and flood alternation and its driving factors in the Yangtze River Basin under climate change. *J.*
887 *ATMOS. RES.* 270, 106087, <https://doi.org/10.1016/j.atmosres.2022.106087>, 2022.

888 Yang, Y., Weng, B., Bi, W., Xu, T., Yan, D., Ma, J.: Climate Change Impacts on Drought-Flood Abrupt
889 Alternation and Water Quality in the Hetao Area, China. *Water*, 11, 652,
890 <https://doi.org/10.3390/w11040652>, 2019.

891 Yuan, X., Wang, J.H., He, D.M., Lu, Y., Sun, J.R., Li, Y., Guo, Z.P., Zhang, K.Y., Li, F.: Influence of
892 cascade reservoir operation in the upper Mekong River on the general hydrological regime: a combined
893 data-driven modeling approach. *J. Environ. Manag.* 324, 116339,
894 <https://doi.org/10.1016/j.jenvman.2022.116339>, 2022.

895 Yun, X.B., Tang, Q.H., Wang, J., Liu, X.C., Zhang, Y.Q., Lu, H., Wang, Y.L., Zhang, L., Chen, D.L.:
896 Impacts of climate change and reservoir operation on streamflow and flood characteristics in the
897 Lancang-Mekong River Basin. *J. Hydrol.* 590, 125472, <https://doi.org/10.1016/j.jhydrol.2020.125472>,
898 2020.

899 Yun, X., Tang, Q., Li, J., Lu, H., Zhang, L., Chen, D.: Can reservoir regulation mitigate future climate
900 change induced hydrological extremes in the Lancang-Mekong River Basin? *Sci. Total Environ.* 785,
901 <https://doi.org/10.1016/j.scitotenv.2021.147322>, 2021a.

902 Yun, X., Tang, Q., Sun, S., Wang, J.: Reducing climate change induced flood at the cost of hydropower
903 in the Lancang-Mekong River Basin. *Geophysical Research Letters*, 48, e2021GL094243,
904 <https://doi.org/10.1029/2021GL094243>, 2021b.

905 Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., Zhuang, J.: Modeling and
906 simulating of reservoir operation using the artificial neural network, support vector regression, deep
907 learning algorithm. *J. Hydrol.* 565, 720–736, <https://doi.org/10.1016/j.jhydrol.2018.08.050>, 2018.

908 Zhang, K., Morovati, K., Tian, F., Yu, L., Liu, B., Olivares, M.A.: Regional contributions of climate
909 change and human activities to altered flow of the Lancang-Mekong river. *J. Hydrol.: Reg. Stud.* 50,
910 101535, <https://doi.org/10.1016/j.ejrh.2023.101535>, 2023.

911 Zhang, S., Zhang, J., Min, J., Zhang, Z., Zhuang, J., Lin, J.: Drought–flood abrupt alternation based on
912 runoff in the Huaihe River Basin during rainy season. *Journal of Lake Sciences*, 24(5), 679–686 (in
913 Chinese), <https://doi.org/10.18307/2012.0506>, 2012.

914 Zhang, Z.Z., Yuan, Y.J., Shen, D.F., Fan, H.: Identification of drought-flood Abrupt alternation in
915 tobacco growth period in Xingren county under climate change in China. *Appl. Ecol. Environ. Res.* 17,
916 12259–12269, https://doi.org/10.15666/aeer/1705_1225912269, 2019.

917 Zhao, D., Deng, S., Zhang, J.: Spatiotemporal characteristics of dry-wet abrupt alternation events in
918 China during 1960–2018. *International Journal of Climatology*, 42(16), 9612–9625,
919 <https://doi.org/10.1002/joc.7850>, 2022.