10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Mitigating the Impact of Increased Drought-Flood
Abrupt Alternation Events under Climate Change: The
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Abstract. The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological
events, including Drought-Flood Abrupt Alternation (DFAA). The impact of climate change on DFAA
and the efficacy of potential mitigation measures such as reservoirs remain poorly understood. This
study investigates these dynamics using five Global Climate Models (GCMs) from the Coupled Model
Intercomparison Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt
Alteration Index (R-SDFAI), alongside the Tsinghua Representative Elementary Watershed (THREW)
model integrated with the developed reservoir module. Results reveal that future DFAA trend varies
widely in upstream and downstream, with significant increases respectively in FTD (flood to drought)
upstream and DTF (drought to flood) downstream. FTD is more challenging though DTF is more
probable to occur. Under low- and medium-emission scenarios, DFAA risks escalate, especially during
the wet season, whereas under high-emission scenario, their risks decline. Reservoirs as a promising
adaptation strategy can significantly mitigate the year-round DTF and wet season’s FTD, particularly in
regions with higher total reservoir storage. Reservoir operations reduce DFAA’s risks, limit multiple
peaks and shorten its monthly span. Hydrological forecasting and resilient storage are viable options
for climate change to help LMR Basin smooth out DFAA. These insights offer valuable guidance for
effective water resources cooperative management across LMR Basin countries.

Keywords. Drought-Flood Abrupt Alternation; Climate change; Reservoir operation; Lancang-Mekong

River Basin.

1. Introduction

Flood and drought are the two most frequent natural disasters in the world (Adikari et al., 2009;
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ADREM et al., 2024). Drought-Flood Abrupt Alternation (DFAA), defined as the rapid transition flood
and drought (Xiong et al., 2025), has received growing attention in recent years (Chen et al., 2025; Wu
et al., 2023; Zhang et al., 2012; Shan et al., 2018; Song et al., 2023). DFAA is specifically divided into
the rapid change from flood to drought (FTD) and from drought to flood (DTF). Hazards arising from
DFAA are more significant compared to floods and droughts. DFAA not only alters the soil condition
and increases the potential for exceeding water quality standard (Bai et al., 2023; Yang et al., 2019), but
also challenges food security and seriously affects agricultural production. Furthermore, DFAA,
particularly DTF is exposed to triggering severe secondary natural hazards, primarily including flash
floods, landslides, and mudslides (Wang et al., 2023).

Employing indices to characterize DFAA events is a common quantitative method. Since Wu et al.
(2006) proposed the precipitation-based long-cycle drought-flood abrupt alternation index (LDFAI) to
quantitatively characterize the long-term DFAA of wet season, LDFAI has been widely adopted (Ren et
al., 2023; Shi et al., 2021; Yang et al., 2022; Yang et al., 2019). Zhang et al. (2012) proposed the
one-month interval short-cycle drought-flood abrupt alternation index (SDFAI) based on LDFAI to
characterize the short-term DFAA of wet season, and expanded the application from precipitation to
runoff. SDFAI has been extensively applied in various fields such as hydrology, meteorology, ecology,
and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al., 2019). Song et al.
(2023) further refined the SDFAI index and developed the Revised Short-cycle Drought-Flood Abrupt
Alteration Index (R-SDFAI), which is calculated based on the Standardized Runoff Index (SRI) and
designed to characterize short-term DFAA.

It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing
trend (Yang et al., 2022; Chen et al., 2024). However, regional differences are notable. Shan et al.
(2018) observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded
since the 1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that
while droughts and floods in the Huai River Basin have increased, DFAA events have become less
frequent. For future projections, Zhao et al. (2022) indicated that DFAA events in the Han River Basin
will experience an upward trend in both frequency and intensity. Yang et al. (2019) reported that in the
Hetao region, the number and frequency of DFAA events will diminish.

Lancang-Mekong River (LMR) Basin, as an important international river in Southeast Asia, profoundly
affects Southeast Asia's important industries such as hydropower, agriculture, fisheries and transport

2
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(Morovati et al., 2024), while also being the high incidence area of floods and droughts (Liu et al.,
2020; MRC, 2020). It is reported that wet season’s drought accounts for about 40% of annual drought
(Tian et al., 2020) and there is the potential for large floods to happen in the dry season (e.g., May 2006,
May 2007, and December 2016) (Tellman et al., 2021). These non-negligible wet season’s drought and
dry season’s flood are all prerequisites for DFAA.

Continued global warming will further exacerbate extreme wet and dry climate (IPCC, 2023) and
contribute to the increased vulnerability of DFAA in future (Yang et al., 2022; Wang et al., 2023; Chen
et al., 2025). There is a strong tendency for floods and droughts to intensity in Southeast Asia (IPCC
WG1, 2021) as well as in LMR Basin (Wang et al., 2021; Li et al., 2021; Dong et al., 2022; Hoang et
al., 2016). This warns of the serious DFAA pattern in LMR Basin and puts forward new requirements
for water security and sustainable management, especially the early disaster forecasting and prevention
system.

The hydrological regime of LMR Basin is influenced by two main drivers, climate change and human
activities (LMC and MRC, 2023). Despite the severity of climate change impacts, human activity is
capable of adapting to climate change in the hydrological regime in LMR Basin (Zhang et al., 2023;
Khadka et al., 2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021), such as reservoir
operation. Research has shown that reservoirs play a crucial role in preventing extensive damages
during the wet season and in minimizing low-flow occurrences in LMR Basin (Arias et al., 2014;
Résédnen et al., 2012; Dang et al., 2024). The integration of a coupled reservoir module within the
hydrological model is a widely adopted approach for evaluating reservoir impacts under changing
climate. Wang et al. (2017b) utilized this approach to show that reservoir operation can minimize flood
intensity and lower flood occurrence rates. Yun et al. (2021a; 2021b) demonstrated that, despite a
trade-off in hydroelectric benefits, reservoir management can substantially alleviate extreme drought
and wet hydrological events in LMR Basin. These studies collectively indicated that reservoirs
represent a practical solution for addressing the impacts of climate change.

It is crucial to consider the adaptation role of human activities, represented by reservoirs, to DFAA
under climate change, which helps managers to develop effective policies on water resources
management and ensures sustainable development of the basin system. However, little attention has
been paid to this aspect for LMR Basin in previous studies. The statistic, report, and study related to
DFAA in LMR Basin are almost empty currently, let alone the impact of climate change and the

3
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mitigating role of reservoirs on DFAA. Therefore, this study develops the reservoir module for
hydrological modelling, highlights the trend of DFAA in LMR Basin under climate change, and
explores how reservoirs assist basin states to adapt changing climate. It endeavors to generate new

knowledge into DFAA and contributes to water resource management and regional sustainability.

2. Methodology

2.1 Study area

The Lancang-Mekong River (LMR) originates from the Tibetan Plateau in China and flows through
China, Myanmar, Laos, Thailand, Cambodia, and Vietnam before entering the South China Sea at the
Mekong Delta. LMR is approximately 4900 km long, with the basin area of 812400 km? (He, 1995),
and its annual runoff is approximately 475 billion m* (Sabo et al., 2017; Luo et al., 2023). LMR Basin
is characterized by steep slopes and rapid flows in the upstream, along with shallow slopes and slow
mixed flows in the downstream. The wet and dry seasons in LMR Basin extend from June to
November and from December to May (LMC and MRC, 2023), which are mainly influenced by
southwestern and northeastern monsoons respectively. The distribution of the hydrology system and
mainstream hydrological stations in LMR Basin are detailed in Fig. 1a.

LMR Basin nourishes approximately 65 million people. The basin states rely on the river system to
develop economic industries including capture fisheries, irrigation agriculture, and hydropower. LMR
Basin has the largest freshwater capture fishery in the world (MRC, 2010; MRC, 2019), and its
irrigation area is estimated around 4.3 million hectares (Do et al., 2020), with the Mekong Delta
regarded as Southeast Asia’s food basket. LMR Basin is one of the most active regions for hydropower
in the world (MRC, 2019; Williams, 2019), harboring about 235,000 GWh - yr™! of hydroelectric
potential in its mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). LMR Basin
meanwhile is heavily impacted by flood and drought. During past two decades, LMR Basin has
experienced several severe droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and floods
(Liu et al., 2020; Tian et al., 2020; MRC, 2020), which affects crop cultivation and fisheries harvesting,
causing loss of property and lives in riparian countries. Floods of 2013 and 2018 heavily affected the
lower basin (Cambodia, Vietnam, Laos, and Thailand), covering 22.3 and 6.47 thousand km?

respectively (Tellman et al., 2021).
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Figure 1: Hydrology of LMR Basin. (a) Map of rivers and reservoirs, (b) Information of four main
hydrological stations, and (c) distribution of reservoir storage. Here, JH, NK, PA, and KT respectively
denote JingHong, Nong Khai, Pakse, and Kratie stations.

2.2 Data collection

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the
meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios,
namely SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and
high-emission scenarios respectively. Five GCMs (Global Climate Models) with wide utilization and
proven performance in LMR Basin are applied in this study (Li et al. 2021; Yun et al., 2021a; Yun et al.,
2021b), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL.
The detailed information for these five GCMs is shown in Table 1 (Eyring et al., 2016; Gidden et al.,
2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100. This study accordingly considers three
research periods, namely history period from 1980 to 2014 (consistent with CMIP6), near future period
from 2021 to 2060, and far future period from 2061 to 2100.

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980
to 2020 serve to calibrate and validate the hydrological model, and these data are derived from China
Meteorological Administration (CMA) and Mekong River Commission (MRC). The hydrological

5
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stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse and Kratie, whose
locations and basic information are shown in Figs. 1a and 1b. This study treats the ERAS Land data as
the meteorological input when calibrating and validating the hydrological model, and as the correction
dataset when correcting the raw CMIP6 data. ERAS Land data cover the period from 1980 to 2020,
with the spatial resolution of 0.1°, and contain precipitation, temperature, and potential
evapotranspiration. Soil data are obtained from the Global Soil Database (GSD) provided by the Food
and Agriculture Organization of the United Nations (FAO) with the spatial resolution of 10 x 10 km.
Normalized Vegetation Index (NDVI), Leaf Area Index (LAI) and Snow Cover data are obtained from
MODIS (Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500 x 500 m and
a temporal resolution of 16 days.

Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024).
122 reservoirs which simultaneously contain information on location, storage and operation years are
utilized in this study, including 24 reservoirs in Lancang Basin and 98 reservoirs in Mekong Basin. The
earliest and latest operation years for them are 1965 and 2035. The location and storage distribution of

these reservoirs are shown in Figs. 1a and lc.

Resolution
Model Name Modeling Center Realization
(LonxLat)
National Oceanic and Atmospheric Administration Geophysical )
GFDL-ESM4 ) ) ) rlilplfl  1.25°x1°
Fluid Dynamics Laboratory, United States
IPSL-CM6A-LR Institute Pierre Simon Laplace, France rlilplfl  2.5°%x1.25874°
MPI-ESM1-2-HRMax Planck Institute for Meteorology, Germany rlilplfl  0.9375°x0.9375°
MRI-ESM2-0  Meteorological Research Institute, Japan rlilplfl 1. 125°x1.125°
UKESMI1-0-LL Met Office Hadley Centre, UK rlilplf2 1.875°x1.25°

Table 1: Details of S GCMs applied in this study.

2.3 Bias correction method for CMIP6 data

The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al.,
2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation
in LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange et al., 2019; Lange
et al., 2021). ERAS5 Land data are applied as the correction data in this study to correct bias in raw
CMIP6 data.

This study interpolates the five GCMs data of CMIP6 with different spatial resolutions to 0.1°

(consistent with ERAS Land) based on the bilinear interpolation spatial resolution method. The



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

interpolated CMIP6 data are bias-corrected for each GCM according to N-dimensional probability
density function transform of the multivariate bias correction approach (abbreviated as MBCn)
(Cannon, 2016; Cannon, 2018). The MBCn method is trained based on the difference between
precipitation and temperature data from ERAS Land and CMIP6 over history period (1980-2014), and
then applied to future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM.

The MBCn method considers the multivariate dependency structure of meteorological data and enables
the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and
quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as
illustrated in Egs. (1) and (2).

[1— [1 1
[1— 11 (1)

[1— [1 1
Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming
historical observations XQ], historical climate model simulations XE], and climate model projections
XE] using a random orthogonal rotation matrix ROl during the j-th iteration. The rotated data are
represented as XQ], XE], and XE]. This procedure is pivotal for MBCn's multivariate joint distribution
correction, as it transforms the original variable space into new random orientations. In contrast to
conventional uni-variate correction approaches, MBCn employs a random orthogonal matrix to mix

variables, thereby breaking their independence.

A( )[](): ()[]()_ ()[]71( ()[]( ()[]()))

2
()[](): ()[]_1( ()[](()[]()))+A()[]() ()
Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to
n-th dimension of the rotated climate model projection data Xén)[j] (i) within the rotated space of the j-th
iteration. Here, AMUI(i) represents the quantile difference between the historical climate model
simulations and climate model projections in the j-th iteration and the n-th dimension. F,(,n) 01" denotes
the empirical cumulative distribution function for the rotated climate model projection data in the n-th
O™ g FOU

dimension. denote inverse Functions of the empirical cumulative distribution

functions for the rotated historical observation data and historical climate model simulation data in the
n-th dimension. This step preserves the trend of the climate model projection data throughout the
correction process. The number of iterations is typically set to 10-30.
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186 The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying the
187 random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the
188 climate model. The rotation operation breaks dependencies between variables, enabling the quantile
189 delta mapping of single variable to indirectly adjust multivariate correlations. The quantile delta

190 mapping ensures the transmission of absolute or relative trends by computing quantile differences

191 between the historical and projected periods of the climate model. The MBCn method demonstrates a
192 significant improvement in terms of correction precision and accuracy, compared to uni-variate bias
193 correction algorithms along with other multivariate bias correction algorithms (Cannon, 2018).

194 In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential
195 evapotranspiration data for five GCMs under three SSP scenarios, based on daily air temperature. The
196  computational approach is outlined in Eq. (3).

197 PET = [1 + ag(T — Tp)]PET, 3)
198 Where, Ty and PETq correspond to the daily air temperature (°C) and daily potential

199 evapotranspiration (mm day ) in the history period sourced from ERAS Land datasets. T signifies the
200 corrected daily air temperature (°C) from CMIP6 datasets. The parameter 0 is determined by the

201 relationship between daily potential evapotranspiration and daily temperature in ERAS Land data

202 during the history period.

203 2.4 Hydrological model coupled with reservoir module

204 The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this

205 study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for

206 spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone,

207 bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach,
208 saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008).

209  The model is built upon scale coordinated equilibrium equations, geometrical relationships and

210 constitutive relationships, and enables to comprehensively simulate complex hydrological processes

211 from mountain to ocean. The fundamental balance equations in the THREW model are listed in Egs. (4)

212 to(6).

213 —( )= + )
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. . d
Eq. (4) demonstrates the general form of mass conservation equation at the REW scale. p denotes the
time derivative. refers to the time-averaged density of phase o in sub-region j, in kg-m=3.
means the volume fraction of phase O within sub-region j. Yy indicates the time-averaged thickness of
sub-region j, in m. ] means the time-averaged fraction of REW horizontal area occupied by

sub-region j. e® denotes the net mass exchange flux of phase o in sub-region j through interface P

(e.g., with atmosphere, groundwater, neighboring REWs), in kg-m™2 s with the positive value
indicating the inflow to sub-region j. ¢ p refers to the phase transition rate between phase a and phase

B within sub-region j, in kg - m~2 - s™1, with the positive value meaning phase a gains mass from phase

B. Sub-region here refer to the divided eight zones within each REW.

(== L )
Eq. (5) presents the general form of momentum conservation equation at the REW scale. V' indicates
the time-averaged velocity vector of phase o in sub-region j, in m - s™1, gj denotes the time-averaged
gravity vector of phase a in sub-region j, in m-s™2, T means the force vector (pressure, friction,

seepage) exerted on phase O in sub-region j by interface P, in N-s™2, representing the momentum
exchange. T p refers to the interfacial force vector between phase a and phase 3 within sub-region j,
in N- s72, including drag and capillarity.

( )—= + + (6)

=
Eq. (6) exhibits the general form of heat conservation equation at the REW scale. ¢ means the
specific heat capacity (constant volume) of phase o in sub-region j, in J- kg™t - K71, refers to the
time-averaged temperature of phase O in sub-region j, in K. ' denotes the heat generation rate per

unit mass within phase  in sub-region j, in W - kg™* (e.g., radioactive decay, negligible usually). ij

indicates the heat exchange rate between phase 0 in sub-region j and its environment via interface P, in
W - m~2, with the positive value representing the heat is gained by phase o in sub-basin j. Q' B refers

to the heat exchange rate between phase 0 and phase B within sub-region j, in W-m™2 with the
positive value indicating the heat is gained by phase Q.

The THREW model employs an automatic calibration procedure to calibrate hydrological parameters
through parallel computation (Nan et al., 2021). The calibration period of THREW model in LMR
Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The Nash-Sutcliffe

9
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efficiency coefficient (NSE) indicator is adopted to calibrate the objective function and evaluate
simulation effectiveness at daily scale, which is calculated according to Eq. (7). THREW model has
been successfully applied to a number of basins with various climate characteristics worldwide (Tian et

al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang et al., 2023).

N (Q5—QD?

NSE =1 —
N (QB-Q0)?

(7

Where, Qf is the daily observed runoff, Qf is the daily simulated runoff, Q, is the average of
observed runoff, and N is the total number of days.

This study extends the THREW model through the development of a reservoir management module

that can be incorporated into it. This module contains detailed data on 122 reservoirs in the basin, with

operational years ranging from 1965 to 2035. Configuring the module's activation enables the

integrated THREW model to simulate natural runoff without considering reservoirs, and dammed

runoff with reservoirs considered.

The reservoir operation rules are consistent over time and space, with each reservoir following the

same operation rules and starting scheduling according to its respective operational year. The reservoir

module conducts daily-scale reservoir operation based on sub-basins. Each reservoir is allocated to the

corresponding sub-basin according to its location information. The cumulative reservoir storage over

multiple years for each sub-basin is calculated and serves as an input condition for the reservoir module.
The module consists of two phases: the initial phase and the normal phase. The constraints of the

normal phase are further divided into general and emergency cases. Both cases share the same reservoir

operation rules, but their constraints differ, with the emergency case featuring more flexible constraints.

The reservoir module's flowchart is depicted in Fig. 2.

When the cumulative multi-year storage of some REW changes in one year, it indicates that at least one

new reservoir starts operation in that REW in that year. The additional reservoir operates under the

initial phase rules. The rules for initial phase are described as Egs. (8) to (9). The outlet flow is equal to

the inlet flow if the inlet flow is less than the minimum discharge constraint, and otherwise equal to the

minimum discharge constraint. Constraints on storage and discharge are summarized in Egs. (10) to (11)
(Tennant, 1976; Yun et al., 2020). The ending condition for the initial phase is Eq. (12). When the

storage of the additional reservoir is larger than the minimum storage constraint, end the initial phase

and enter the normal phase.

10
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272 S; = St-1 + Qin — Qout ©)
273 Spin = 0.2 X St (10)
274 Qmin = 0.6 X Qae (11)
275  S¢ = Smin (12)

276 Where Qg is the outlet flow, Qj, is the inlet flow, Qpuinis the minimum discharge constraint, S; is
277 the storage for time t, Sp,j, is the minimum storage constraint, Sty 1S the total storage, and Qe is

278 the average multi-year runoff during calibration period (i.e., 2000-2009).

[ Outlet flow before reservoir operation ]

Cumulative
storage
changes

_________________

Initial Phase

satisfies

Reservoir constraints

reaches
minimum
torage

r

[ Outlet flow after reservoir operation ]

279

280 Figure 2: Flowchart of the constructed reservoir module.

281 The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model
282 (SOP) (Wang et al., 2017a; Morris & Fan, 1998), as depicted in Eq. (9) and Egs. (13) to (16). Under the
283 premise of water balance (Eq. (9)), constraints for annual storage (Eq. (13)), outlet flow (Eq. (14)), wet
284 season storage (Eq. (15)), and dry season storage (Eq. (16)) are considered separately, where priority is

285 given to the annual storage constraint (Eq. (13)).

286 Smin = St < Smax (13)

11



287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Qmin = Qout = Qmax (14)
min|S, — S|, month = 6,7,8,9,10,11 (15)
min|S,, — S;|, month = 12,1,2,3,4,5 (16)

Where Qa 1is the maximum discharge constraint, Sy is the maximum storage constraint, S; is
the storage corresponding to the flood control level, and S,, is the storage corresponding to the normal
storage level.

When the reservoir enters the normal phase, constraints of the general case are used by default.
Constraints for the general case are given in Egs. (17) to (22). After scheduling according to general
case’s constraints, if the outlet flow constraint is not fully satisfied (Eq. (14)), constraints are adjusted
to that in the emergency case and the reservoir is re-operated following adjusted constraints. Eq. (23)
characterizes the start condition for the emergency case. The emergency case is set to avoid excessive
high or low outlet flow caused by the strict constraints. Constraints of the emergency case are shown in

Egs. (24) to (25).

Qmax = 2 % Qave (17)
Qmin = 0.6 X Qe (18)
Se = Smin X 1.2 (19)
Sp = Smax % 0.8 (20)
Smin = 0.2 X Sopa 21)
s = {0.18 : Sstm., month = 6,7,8,9,1011 22
otal, Month = 12,12 345
Qmin = Qout’ = Qmax (23)
Qmin = 0.3 % Qqye (24)
Smax = 0.8 X Stora (25)

Where Q' is the outlet flow after the scheduling in general case.

2.5 Indicator for DFAA

The Revised Short-cycle Drought-Flood Abrupt Alteration Index (R-SDFAI), as put forward by Song et

12
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al. (2023), extends the applicable time frame from the flood season of LDFAI and SDFAI to cover the
entire year, making it more suitable for multi-year DFAA analysis. Furthermore, it successfully
mitigates issues like over-identification, under-identification, and inaccurate representation of DFAA
severity inherent in SDFAIL. Thus, this study adopts R-SDFAI for DFAA analysis. The formulas for

R-SDFAI are summarized in Egs. (26) to (31) (Song et al., 2023).

Fi =S4 -5 -

Fo = [Sisal + ISi] -
_|Fy|ISi+n#Sil

- |F_2 (28)

I = F x min(|Si.1], ISi]) )

max(|Si+|[Si)  min(Si+|SiD)
1 R 4 [FlR2

2

| max(SialIsih?
' = (— [Fil+F2  x
(53)

(30)

_max((si 1| [siD
el I5D 0 e

R — SDFAI = sign(F,) x (ri: x L) Tl 31

Where, refers to the SRI in month i, F1 denotes the intensity of DFAA, F2 denotes the absolute
intensity of drought and flood, and F is a weighting factor between 0 and 1. ‘o5 refersto = when
1=0.5.

The calculation process of SRI utilized in this work is explained in Egs. (32) to (37). Eq. (32) gives the

probability density function that satisfies the Gamma distribution for runoff x at a given time period.

L _yo-1g78, x>0 (32)

g(x) =

where, 0 > 0 and 3 > O are respectively the shape and scale parameters. o and 3 are the optimal
values of o and [3, obtained according to the maximum likelihood estimation method, as illustrated in

Eqgs. (33) to (35). I'(0) is the gamma function, as given in Eq. (36).

1 [, 4A

B=2 (34)

A=In(x) ——2 (35)
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M(a)= , y*eVdy (36)

Where, X; is the sample of runoff sequence, X is averaged runoff, and n is the length of runoff
sequence.

Then the cumulative probability of runoff x is illustrated in Eq. (37).

1 X
Bor(a O

G(X) = 49(x)dx = x0~le Bdx, x>0 37)

The threshold for R-SDFAI to recognize DFAA events is =1, which indicates that the identified DFAA
event is at least an abrupt transition between a mild hydrological drought event (SRl <— 1) and a mild
hydrological wet event (SRI > 1) (Song et al., 2023). When R-SDFAI > 1, DTF occurs, and when

R-SDFAI < -1, FTD occurs.
2.6 Scenario Setting

This study concentrates on two scenarios: dammed and natural scenarios. The meteorological data from
five selected GCMs under three SSPs are downscaled from grid scale to REW scale and served as
meteorological inputs for the THREW model. The THREW model, augmented with the reservoir
module, is applied to simulate runoff at key mainstream hydrological stations during history
(1980-2014), near future (2021-2060), and far future (2061-2100) periods, examining both scenarios
with and without reservoir management. The R-SDFAI indicator is then employed to assess the
probabilities of DFAA events for each study period within both dammed and natural scenarios, utilizing
the runoff data generated by the 5 GCMs and 3 SSPs.

This study adopts the difference in DFAA’s probability between natural (without reservoir operations)
and dammed scenarios (considering reservoir operations) to capture reservoir’s impact, as shown in Eq.

(38).

Pimpact of Reservoirs;it = Ppammed,it — PNaturalit (38)
Where Pimpact of Reservoirs,it represents the impact of reservoirs on the probability of event t in period i.
Pnaturarit denotes the probability of event t under the natural scenario in period i while the Ppammedit
denotes the probability of event t under the dammed scenario in period i. Period i refers to the near
future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.

Eqgs. (39) and (40) gives the definitions of Pyauyrait and Ppammed,it described above.
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_ Mnaturait

F)Natural,i,t - T—M, (39)
Mbamme i,
F:'Dammed‘i,t = DTidt (40)

Where Mpaturait denotes the number of months in which event t occurs in period i under the natural
scenario. Mpammed,it denotes the number of months occurred event t occurs in period i under the
dammed scenario. TM; refers to the total number of months in period i. Period i refers to the near
future period and the far future period. Event t indicates the DTF events, FTD events and DFAA events.
As each GCM possesses unique structure and assumptions, projections of climate change by a single
GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of
hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple
GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties,
and ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016;
Hecht et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in
prior studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this
research determines the average DFAA probability from five GCMs to lessen the uncertainty in their
predictions and assesses the fluctuation in these probabilities across the models to demonstrate their

variability.

3. Result

3.1 CMIP6 data bias correction performance

From both regional and seasonal perspectives, the uncorrected raw CMIP6 data exhibits significant
discrepancies with ERA5 Land data during history period (1980-2014). When compared with
ERAS5 Land data for history period, the uncorrected raw CMIP6 data reveals an average annual
precipitation bias of 1800 mm and an average daily temperature of =12 (Figs. 3b and 3e). These
notable inconsistencies underscore that hydrological modeling using uncorrected raw CMIP6 data
would incur considerable inaccuracies. However, CMIP6 data corrected by MBCn method deviate
from ERAS Land data within +120 mm of average annual precipitation and 0.2  of average daily
temperature (Figs. 3¢ and 3f). The bias correction significantly improves the accuracy of CMIP6 data
in LMR Basin. Meanwhile, the corrected CMIP6 data match the seasonal cycle of ERAS Land well in
both precipitation and temperature (Fig. 3g). With respect to raw CMIP6 data before correction, the
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spatial and temporal distribution accuracy of corrected CMIP6 improves dramatically, which
contributes to more accurate and reasonable analyses for DFAA.
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Figure 3: Averaged meteorological data of 5 GCMs for history period (1980-2014). Here, 5 GCMs are
corrected separately. (a)-(c) present the spatial distribution of precipitation based on respectively
ERAS Land, raw CMIP6 (raw CMIP6 minus ERAS Land) and bias-corrected CMIP6 (bias-corrected
CMIP6 minus ERAS_Land). (d)-(f) illustrate the spatial distribution of temperature based on ERAS_Land,
raw CMIP6 (raw CMIP6 minus ERAS Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus
ERAS Land). (g) seasonal cycles of temperature and precipitation from ERAS Land, raw and

bias-corrected CMIP6, as well as their corresponding range.
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3.2 Calibration and validation for hydrological model

The daily observed runoff versus daily simulated runoff given by THREW model for calibration period
(2000-2009) and validation period (2010-2020) are illustrated in Fig. 4. Since there was no massive
reservoir construction in LMR Basin before and during calibration period (Zhang et al., 2023),
THREW model without reservoir module is applied for calibration period. Meanwhile, part of large
scale reservoirs have been commissioned during validation period, thus THREW model configuration
with reservoir module is validated in validation period. THREW model captures the runoff fluctuation
between wet and dry seasons well, with an NSE of at least 0.8 during calibration and validation periods.

THREW model exhibits excellent simulation performance in both upstream and downstream regions.
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Figure 4: Performance of THREW model in calibration (2000-2009) and validation (2010-2020) periods.
Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.

3.3 DFAA under changing climate

Under natural scenario (without reservoir operations), DFAA in LMR Basin is dominated by DTF, i.e.,
the risk of DTF is more critical than that of FTD. DFAA risk moreover is significantly higher in the wet
season than dry season (Fig. 5a). For the average of five GCMs, the probability of FTD in the wet
season is 2 to 5.5 times higher than that in the dry season in history period. In the near and far future
periods, this ratio respectively ranges from 1.1 to 36 times and 3.3 to 41 times. As for DTF, the
probability in the wet season is correspondingly 1.7 to 5.7 times, 1.3 to 3.9 times and 0.9 to 6.3 times

higher than that in the dry season for history, near future and far future. Only JingHong station
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experiences a slightly higher probability of DTF in the dry season (1.25%) than in the wet season
(1.17%) for far future. Furthermore, the annual probability in DFAA is higher remarkably downstream
than upstream (Fig. 5a). The annual FTD’s probability ranges from 1.1% to 2.5% at JingHong station
and 1.3% to 2.8% at Nong Khai station. These probabilities rises to 2.3% to 4.2% and 2.7% to 4.1% at
Pakse and Kratie stations. Similarly, the annual DTF’s probability at JingHong and Nong Khai stations
are 2.4% to 4.1% and 2.3% to 4.5%. These probabilities at Pakse and Kratie stations reaches 3.7% to
6.3% and 4.2% to 6.3%. The DTF risk in the wet season and FTD risk in both dry and wet seasons are
also higher downstream than upstream. Since the FTD probability in the dry season at Nong Khai,
Pakse and Kratie stations is limited, especially under SSP5-8.5 scenario (<0.2%), the FTD risk of dry

season appears more notable at upstream than downstream.
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Figure 5: DFAA under natural scenario. Here, JH, NK, PA, and KT respectively denote JingHong, Nong
Khai, Pakse, and Kratie stations. (a) Seasonal probability of DFAA averaged across five GCMs during
history (1980-2014), near future (2021-2060) and far future (2061-2100) periods, as well as under three SSPs.
The annual probability is half of the sum of wet and dry season probabilities. (b) The annual change in
DFAA probability averaged across five GCMs and their ranges in the near and far future periods with
respect to history period under three SSPs. (c) The seasonal change in DFAA probability averaged across
five GCMs and their ranges in the near and far future periods with respect to history period during wet and

dry seasons under three SSPs.

The annual DFAA risk increases under SSP1-2.6 and SSP2-4.5 scenarios (except for FTD at Pakse
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station) and decreases under SSP5-8.5 scenario (Fig. 5b). Among three scenarios, SSP5-8.5 is
characterized by the lowest DFAA risk. Under this scenario, the average probability of FTD across five
GCMs is 1.1% to 3.5%, while the DTF probability ranges from 2.3% to 5.1%. Conversely, SSP2-4.5 is
associated with the highest DFAA risk, with FTD and DTF probabilities respectively averaging 1.4% to
4.1% and 3.4% to 6.3%. Further, the future growth in DTF is significantly greater than that of FTD. For
the average probabilities across five GCMs, relative to the history period, the future change in DTF
probability at JingHong station is -0.4% to 1.1%, at Nong Khai station is -0.9% to -0.6%, and at Pakse
and Kratie stations respectively is -1.9% to -0.1% and -1% to 0.4%. The future FTD probability change
for JingHong is -0.9% to 0.2%, while it is -0.7% to 1.5%, -0.8% to 1.8%, and -0.5% to 1.7% for Nong
Khai, Pakse and Kratie, respectively. The maximum values from the five GCMs show consistent trends,
with DTF probability increases being significantly greater than FTD probability increases. Additionally,
upstream regions face more significant increases in FTD risks in the future, while downstream regions
experience a more substantial rise in DTF risks. The opposite trends of DFAA risk in upstream and
downstream pose enhanced challenges to the integrated management of LMR Basin. The DFAA risk,
meanwhile, increases most significantly under SSP2-4.5 scenario, while under SSP5-8.5 FTD risk
drops and the growth of DTF risk is also negligible. Similar to the annual DFAA risk, the wet-season
risks for both DTF and FTD rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under SSP5-8.5
scenario (Fig. 5¢). The FTD risk of dry season is reduced, with an increase observed only under
SSP2-4.5 in the near future (average across five GCMs <0.4%, maximum <1.3%). The dry-season risk
for DTF rises in all situations, except at Nong Khai station under SSP5-8.5 in the near future, where it
shows an average decrease of 0.46% across five GCMs. The largest increase is observed at Pakse
station under SSP2-4.5, with an average increase of 1.08% across five GCMs and a maximum increase

0f 2.08%.

3.4 Reservoirs’ impacts on DFAA

Reservoirs exhibit extraordinary mitigation effects on DTF risk under changing climate while showing
weaker effects in FTD risk. (Fig. 6a). Nonetheless, the higher probability of DTF compared to FTD
(Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk.
Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%,

averaged across five GCMs), and in most scenarios, the reservoir plays a positive mitigating role across
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all GCMs (Fig. 6a). Reservoirs exhibit better mitigation effects in the near future at JingHong station.
As for Nong Khai and Pakse stations, The reduction effect of reservoirs on DTF is more pronounced in
the far future under SSP1-2.6 and SSP2-4.5 scenarios while in the near future under SSP5-8.5 scenario.
The effect conversely exhibits greater strength under SSP1-2.6 and SSP5-8.5 scenarios in the near
future while it is stronger under SSP2-4.5 scenario in the far future at Kratie station. These findings are

consistent across both the average of the GCMs and their ranges.
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Figure 6: Reservoir impacts on DFAA during near future (2021-2060) and far future (2061-2100) under
three SSPs. Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations,
respectively. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The

seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges.

The reduction effect of reservoirs on FTD performs slightly better in the near future (0.42%, averaged
across five GCMs) than far future (0.38%, averaged across GCMs) at JingHong station, while slightly
greater in the far future (both 0.21%, GCM average) than in the near future (0.13% and 0.17%, GCM
average) at Nong Khai and Kratie stations, while it remains the same in the near and far future periods
at Pakse station (both 0.17%, GCM average). Reservoirs show the best effects under the SSP5-8.5
scenario, in which they effectively alleviate the FTD probability at all hydrological stations (0.13% to
0.42%, GCM average). Under SSP1-2.6 and SSP2-4.5 scenarios, although the reservoir operation

displays poor mitigation effects (-0.33% to 0.38%, GCM average) at Nong Khai and Pakse stations, it
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demonstrates notable mitigating effects at JingHong and Kratie stations, particularly in certain
scenarios. For instance, under SSP2-4.5 scenario of the far future at JingHong station, the reservoir
reduces the average probability across GCMs by over 1.8% and lowers the maximum probability
values by nearly 3.6%.

Furthermore, reservoirs exhibit superior mitigation capacity against DFAA at JingHong and Kratie
compared to Nong Khai and Pakse stations, which aligns with the storage distribution in LMR Basin
(Fig. 1c). Both the average and maximum probability values across five GCMs confirm this pattern.
This indicates that reservoirs not only function well in flood and drought control (Hecht et al., 2019;
Hoang et al., 2019; Ly et al., 2023), but respond excellently to unexpected events such as DFAA.

The reduction effect of reservoirs on FTD in the wet season (-0.17% to 1.5%, averaged across GCMs)
appears to be more remarkable compared to that in the dry season (-1% to 0.67%, GCM average),
especially at Nong Khai, Pakse and Kratie stations (Fig. 6b). Reservoirs generally demonstrate
significant reduction effects on FTD in the wet season (-0.17% to 0.92%, GCM average) at these
stations, however, increase FTD probability in the dry season (-1% to 0.33%, GCM average). Seasonal
differences of reservoirs mitigation effects on DTF are not as significant as those for FTD. Reservoirs
achieve slightly better reduction effects in the dry season (-0.17% to 1.25%, GCM average) on DTF
than in the wet season (-0.42% to 0.83%, GCM average). Moreover, the reservoir displays superior
mitigation capability in DTF relative to FTD in both dry and wet seasons, which is consistent with the
annual DFAA.

DFAA tends to exhibit multiple monthly peaks under natural scenario, implying there are multiple
months with higher DFAA probability than their adjacent months. The multiple peaks are more
pronounced in DTF than FTD (Fig. 7). As for the monthly DFAA averaged over four mainstream
hydrological stations, DTF shows triple peaks under near-term SSP2-4.5 scenario and far-term
SSP5-8.5 scenario, while FTD both exhibits double peaks. The reservoir serves to regulate DFAA by
reducing peaks and decreasing the number of peaks, where its reduction effect on the number of peaks
appears more pronounced in the near future and for DTF (Fig. 7). Reservoirs provide robust peak
alleviation for far future and FTD, particularly under SSP1-2.6 and SSP2-4.5 scenarios, despite their
limited contribution in decreasing the number of peaks. Reservoirs meanwhile remarkably reduce
DFAA probability in early and middle dry season (i.e., December to April) for both near and far future,
lowering it to within 1% or even 0% (averaged across five GCMs) for most stations. The reservoir
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furthermore potently shortens DFAA’s monthly span from spread out the whole year for natural
scenario to concentrated from May to October for dammed scenario (Fig. 7), which enables LMR
Basin to centralize relevant policies and practices on DFAA to this period. It therefore facilitates
riparian states to integrate resources and concentrate efforts on targeted water resources management to

achieve enhanced response to and control of DFAA along with its secondary hazards.
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Figure 7: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong,
Nong Khai, Pakse and Kratie stations) under natural and dammed scenarios for three SSPs during near
future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this figure

are averaged over 5 GCMs.

4. Discussion

4.1 Different characteristics of DTF and FTD under changing climate

Although flood and drought risks in LMR Basin will decrease respectively in the near and far future
periods (Li et al., 2021; Hoang et al.,2016; Wang et al., 2017b; Yun et al., 2021a; Yun et al., 2021b),
DFAA risk will still increases under SSP1-2.6 and SSP2-4.5 scenarios (Fig. 5). DTF and FTD exhibit
quite different characteristics, in that DTF is more frequent but FTD is more challenging.

The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al.

(2021) found that FTD events are predominant in the Wei River Basin. Wang et al. (2023) projected
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that in the Poyang Lake Basin, the temporal spread of DTF events will expand in future, while that of
FTD events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the
Huang-Huai-Hai River Basin will experience more DTF events, but under SSP3-7.0 and SSP5-8.5
scenarios, it will experience more FTD events.

The probability of DTF is significantly higher than FTD (Fig. 5a) and rises considerably in the near and
far future periods (Fig. 5b). However, reservoirs well control the DTF probability and significantly
reduce the DTF risk in both dry and wet seasons (Fig. 6). This can be attributed to the fact that the
DTF’s demand for water regulation follows the reservoir scheduling logic, whereby the reservoir
releases water to alleviate drought during early DTF, when reservoirs stay at low water level, which
exactly satisfies the storage requirements of the sudden flood in late DTF.

Comparatively, although FTD is less probable than DTF, reservoirs poorly control it, especially in the
dry season, which is pertinent to the challenge that reservoirs hardly spare capacity for floods in early
FTD whilst ensuring storage for drought during late FTD. FTD tends to occur unexpectedly under the
high incidence of DTF, and the current reservoir operation struggles to perfectly control its risk, which
leads to extreme challenges in FTD. Fortunately, the probability of FTD however will drop in most

areas of LMR Basin in future (Fig. 5).

4.2 Reservoir operation integrated with hydrological forecast

Future DFAA in LMR Basin remains severe (Fig. 5). Although reservoirs provide positive impacts to
DFAA under changing climate, there is room for improvement in some situations (Fig. 6). This is
attributed to the fact that relying on general reservoir operation rules such as SOP alone can’t fully
realize reservoirs’ potential (Zhang et al., 2018), and these rules are scheduled with completely
unknown incoming flows. The reservoir's ability in responding to DFAA will be further enhanced if
being scheduled with known incoming flows. Reservoir scheduling combined with hydrological
forecast is a practical approach.

Hydrological forecasting technology enhances the potential of reservoirs, improves their ability to
address disasters and optimizes the resilience of LMR Basin system. Hydrological forecast enables the
prediction of reservoirs inflows and extreme hydrological events at appropriate time scales according to
actual requirements (Brunner et al., 2021b; Ibrahim et al., 2022), and assists in assessing their severity

and possible impacts on production and livelihoods in LMR Basin (Kao et al., 2020; Kumar et al., 2023;
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Prodhan et al., 2022; Hao et al., 2018).

Hydrological forecasts provide insights into runoff and disaster situations, enabling the adaptation of
reservoirs' current and future operational procedures. This adjustment can maximize reservoirs' water
management efficiency, effectively counteracting flood-induced drought (FTD) and drought-induced
flood (DTF). For instance, when a flood is occurring and hydrological forecasts predict an impending
drought, reservoirs' operational methods should be modified to both reserve adequate storage capacity
for the next flood event and maximize water retention to counteract the subsequent drought. Likewise,
if hydrological forecasts indicate that a flood will strike after the current drought, reservoir
management will transition from maximizing water storage to ensuring water availability during the
drought while also setting aside adequate storage capacity for the upcoming flood event. In necessary
situations, especially when severe disasters are forecasted, it is advisable to consider sacrificing some
of the hydroelectric benefits, making the maintenance of normal production and living in LMR Basin

the primary objective of reservoir operation.

4.3 Maximizing utilization of the resilient storage

The mitigation effect of reservoirs on DFAA risk is closely associated with the storage distribution of
mainstream and tributary reservoirs (Figs. 1c and 6). This finding emphasizes a strong connection
between reservoir storage capacity and its mitigation potential on DFAA. It aligns with Ehsani et al.
(2017), who suggested that expanding dam dimensions can offset the vulnerability of water resources
to climate uncertainties, and Feng et al. (2024), whose study highlighted the effectiveness of large
reservoirs in mitigating drought and flood risks.

This study exclusively examines hydroelectric reservoirs in LMR Basin, excluding other water storage
facilities like irrigation reservoirs and minor irrigation systems. The LMR Basin, however, boasts
significant storage capacity through these additional facilities. The MRC reports 1317 irrigation
reservoirs in Mekong Basin, with total storage about 17 billion m* (MRC, 2018; LMC and MRC, 2023).
This storage surpasses than of reservoirs between JingHong and Nong Khai stations (around 9.7 billion
m?), and is marginally less than those between Nong Khai to Pakse region stations (approximately 22.1
billion m?), as depicted in Fig. 1c.

The existing research has pointed out that the mitigating effect of reservoirs on extreme hydrological

events is independent of their main purpose. Even when their main purpose isn't directly tied to
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mitigating such events, they can still offer significant benefits (Brunner, 2021a; Ho et al., 2025). This
study thus emphasizes the need for rationally planning and use of irrigation reservoirs in LMR Basin,
particularly during severe DFAA situations. By integrating these reservoirs as adjustable storage
solutions alongside hydroelectric reservoirs, the basin's ability to handle DFAA can be enhanced,

thereby boosting the system's resilience and adaptability.

5. Conclusion

This study adopts CMIP6 meteorological data under three SSP scenarios and five GCMs, and corrects
them utilizing MBCn method. Combined hydrological model THREW and the developed reservoir
module, it applies R-SDFAI to characterize DFAA, and explores the mitigating role of reservoirs on
DFAA under changing climate in LMR Basin. The study periods are organized into history
(1980-2014), near future (2021-2060) and far future (2061-2100). The main findings are summarized
below:

1. Future DFAA trend varies widely in upstream and downstream of LMR Basin, with significant rises
in upstream FTD and downstream DTF. While DTF occurs more probable, FTD presents more
challenge. Annual and wet-season risks of DFAA increase under SSP1-2.6 and SSP2-4.5 scenarios. The
DFAA risk is considerably higher in the wet season than dry season.

2. Reservoirs competently reduce year-round risk of DTF and wet season’s risk of FTD in LMR Basin,
and perform better in regions with larger total storage of mainstream and tributary reservoirs. Moreover,
reservoirs contribute markedly to control DFAA’s multiple peaks and to shorten its monthly span.

3. Hydrological forecast and resilient storage are able to help smoothly survive DFAA, and could be
robust options to address climate change.

This study provides new insights into the mitigating role of reservoirs on DFAA in LMR Basin and
contributes to water resources management for riparian countries. DFAA remains severe under climate
change and reservoirs do contribute to mitigating it, thus this study calls for information sharing and
joint actions among basin countries on the forecast and prevention of DFAA. The joint efforts of LMR
Basin states will facilitate exploring more effective and feasible measures to mitigate impacts of

climate change and facilitate the long-term sustainable development.
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