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Abstract  16 

The lidar backscattering properties of Asian dust particles, namely the lidar ratio (𝑆) and 17 

backscattering depolarization ratio (𝛿), were studied using a discrete dipole approximation 18 

(DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine 19 

detail using the focused ion-beam (FIB) tomography technique. An index based on the symmetry 20 

of the scattering matrix was developed to assess the convergence for the random orientation 21 

conditionusing DDA. Both the 𝑆 and 𝛿 exhibit an asymptotic trend with dust particle size: the 𝑆 22 

initially decreases while the 𝛿 increases with size, before both approach their asymptotic values. 23 

The lidar properties were found to have statistically insignificant dependence on effective 24 

sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce 25 

the dust's single-scattering albedo and 𝛿. Utilizing the robust asymptotic trend behavior, two 26 

parameterization schemes were developed: one to estimate the 𝛿 of a single dust particle given 27 

its size, and the other to estimate the 𝛿 of polydisperse dust particles with a lognormal particle 28 

size distribution given the effective radius. The parameterization scheme was compared with 29 

results based on the TAMUdust2020 database, showing that hexahedralsreasonably represent 30 

realistic particle geometries for light-scattering computations.  31 

 32 

   33 
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1. Introduction 34 

Dust aerosols are an important component of the Earth System, interacting with Earth’s energy, 35 

water, and carbon cycles. Directly, dust aerosols scatter and absorb both shortwave and longwave 36 

radiation, influencing the planet's energy balance (Tegen et al., 1996; Miller and Tegen, 1998; 37 

Myhre et al., 2013; Song et al., 2018, 2022). By scattering incoming solar radiation, dust aerosols 38 

contribute to cooling the atmosphere and surface regionally, impacting temperatures and 39 

affecting atmospheric circulation patterns (Evan et al., 2006; Lau and Kim, 2007; Zhang et al., 40 

2022).  41 

 42 

The transport of dust aerosols also has far-reaching implications. The long-range transport of 43 

Asian dust is frequently observed on the United States’ west coast with considerable impacts on 44 

the air quality and climate (Yu et al., 2012; Creamean et al., 2014; Wu et al., 2015). It is also 45 

observed impacting Taiwan through similar transport mechanisms (Lin et al., 2007). In fact, 46 

mineral dust from the Taklimakan desert has been found to be transported a full rotation around 47 

the globe (Uno et al., 2009). Moreover, the deposition of dust aerosol during the long-range 48 

transport brings essential nutrients such as iron and phosphorus from terrestrial sources to marine 49 

ecosystems, being part of biogeochemical cycles across vast distances (Baker et al., 2003; Yu et 50 

al., 2015b; Westberry et al., 2023). Asian dust deposition in the East China Sea stimulates 51 

phytoplankton growth and primary productivity, influencing marine food webs and carbon 52 

cycling (Kong, S. S.-K. et al., 2022). 53 

 54 

Lidar is an important tool for remote sensing measurements of airborne dust particles. As 55 

demonstrated in many previous studies (Omar et al., 2009; Burton et al., 2012), it allows us to 56 
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distinguish dust aerosols from clouds and other types of aerosols, track their long-range transport 57 

and study their evolution as they interact with the environment such as clouds, atmospheric 58 

gases, and other aerosols. Among others, elastic backscattering lidars are one of the most widely 59 

used types of lidar. For example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 60 

Observations (CALIPSO), is a NASA-French satellite mission that implements a two-61 

wavelength elastic lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) at 532 62 

nm and 1064 nm wavelengths (Winker et al., 2009). Ground-based lidar networks such as the 63 

NASA Micro-Pulse Lidar Network (MPLNET) use single wavelength measurements for 64 

extinction, backscattering, and depolarization profiles (Welton et al., 2001). The EarthCARE 65 

mission utilizes ATmospheric LIDar (ATLID), a 355 nm wavelength laser and high-spectral 66 

resolution receiver, allowing it to directly measure both lidar ratio and extinction coefficient 67 

(Illingworth et al., 2015; Donovan et al., 2024). Ground based lidars operating at 532 nm and 68 

1064 nm throughout Eastern Asia are also useful for monitoring dust transport and air quality, 69 

running as part of Asian Development Bank (ADB) and Global Environment Facility (GEF) 70 

(Sugimoto et al., 2008). 71 

 72 

2. Theoretical Background 73 

Lidar ratio (𝑆) and depolarization ratio (𝛿) are two most important parameters for lidar-based 74 

remote sensing of aerosols and clouds. For a single dust particle, the 𝑆, referred to as the 75 

extinction-to-backscatter coefficient, is defined as (Platt, 1979; Ansmann et al., 1992; Mattis et 76 

al., 2002; Liu et al., 2002) 77 

 78 
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𝑆 = 𝜎/𝛽 =
4𝜋

𝜔𝑃!!(𝜃" = 𝜋),	
(1) 

where 𝜎 is the extinction coefficient and 𝜔 and 𝑃!! are the single-scattering albedo and phase 79 

function of the dust particle, respectively. For the purposes of this paper, 𝑃!! is normalized to 1 80 

when integrating across all scattering directions. 𝛽 = 𝑃11(𝜃𝑠 = 𝜋)𝐶𝑠𝑐𝑎 is the backscattering 81 

coefficient at the exact backscattering direction. When considering a multitude of particles,  82 

𝛽 = ∫∞−∞ 𝑃11(𝑟𝑣, 𝜃𝑠 = 𝜋)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 , (2) 

Where 𝑟* is the volume-equivalent sphere radius and 𝑛(𝑟*) = 𝑑𝑁/𝑑𝑙𝑛𝑟* defines a normalized 83 

particle size distribution (𝑛(𝑟*)). 84 

 85 

 For Raman lidar and high spectral resolution lidar systems, the lidar ratio can be derived directly 86 

from the observed extinction and backscatter without assumptions about the composition (Müller 87 

et al., 2007). However, for elastic backscattering lidars, the lidar ratio cannot be directly 88 

measured. As a result, assumptions need to be made about the composition of the atmosphere. 89 

Therefore, the lidar ratio is fundamentally important for elastic lidars like CALIOP and 90 

MPLNET to convert the direct attenuated backscatter observations to an extinction profile 91 

(Young et al., 2018) and derived quantities such as dust aerosol optical depth (Yu et al., 2015a; 92 

Song et al., 2021).  93 

 94 

Depolarization ratio 𝛿 is the ratio of the perpendicular or cross-polarized component to the 95 

parallel component of polarized backscattering signal. For backscattering lidar the 96 

depolarization ratio is defined as  97 

 98 
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𝛿  =  
1 − 𝑃22

(𝜃𝑠 = 𝜋)
𝑃11(𝜃𝑠 = 𝜋)

1 + 𝑃22
(𝜃𝑠 = 𝜋)

𝑃11(𝜃𝑠 = 𝜋)

 , 
(3) 

where 𝑃-. is the ij-th element of the particle’s scattering matrix (Kong, S. et al., 2022). 𝛿 is often 99 

used for aerosol type (Kim et al., 2018) and cloud phase classifications (Hu et al., 2009). First, 100 

if lidar backscattering is dominated by single scattering, 𝛿 is close to zero for spherical particles 101 

like sulfate aerosols and water droplets. In contrast, 𝛿 is notably greater for nonspherical particles 102 

like dust aerosols and ice crystals. Moreover, the considerable 𝛿 differences between spherical 103 

fine particles and nonspherical coarse dust particles also enables the separation of dust extinction 104 

from the total extinction profile retrieved by CALIOP (Yu et al., 2015; Song et al., 2021).  105 

 106 

Because of the fundamental importance of 𝑆 and 𝛿 for lidar based dust remote sensing, previous 107 

studies have made substantial effort to understand the connection between dust particle 108 

properties, e.g., shape and size, and their lidar characteristics, in particular the 𝑆 and 𝛿 (e.g., 109 

Dubovik et al., 2006; Gasteiger et al., 2011; Liu J. et al., 2015; Kahnert et al., 2020; Saito et al., 110 

2021; Saito and Yang, 2021; Kong, S. et al., 2022). The common methodology used in these 111 

studies is to use light scattering models, such as the T-matrix (Mishchenko et al., 1996; Bi and 112 

Yang, 2014b) and Discrete Dipole Approximation (DDA) model (Draine and Flatau, 1994, 2013; 113 

Yurkin and Hoekstra, 2007, 2011), to compute the scattering properties including 𝑆 and 𝛿 of dust 114 

aerosols and then study the potential dependence on particle properties. Although these studies 115 

have greatly improved our understanding and paved the foundation for the current aerosol 116 

retrieval algorithms, they share a common limitation as they all used hypothetical dust particle 117 

shape models, such as spheroid (Dubovik et al., 2006), irregular polyhedron (Saito et al., 2021), 118 

Gaussian random sphere (Muinonen et al., 1996; Liu J. et al., 2015; Kahnert et al., 2020), tri-119 
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axial spheroids (Meng et al., 2010; Huang et al., 2023), and super-spheroid (Kong, S. et al., 2022) 120 

to simulate dust particle shapes that are weakly or not constrained by observations. The reason 121 

for this is probably two-fold. Most microscopic observations of dust particles in the literature are 122 

two-dimensional (2D) images based on scanning or transmission electron microscopes (SEM or 123 

TEM), while three-dimensional (3-D) observations are extremely rare. In addition, the 124 

implementation of complex shapes in scattering models is also a challenging task. For example, 125 

until recently the widely used T-matrix code based on the extended boundary condition method 126 

(Mishchenko et al., 1996) is primarily applicable only to rotationally symmetric particles such 127 

as spheroid. It is worth noting that the T-matrix method implementation based on the invariant 128 

imbedding T-matrix method is applicable to arbitrary shapes (Bi and Yang, 2014a). Aware of 129 

the limitation of hypothetical dust particle shape, these studies often use dust scattering 130 

properties from laboratory measurements as benchmark to select an optimal set of hypothetical 131 

shapes that can generate similar scattering properties, e.g., lidar characteristics, as measurements 132 

(Saito et al., 2021; Kong, S. et al., 2022). Nevertheless, the use of hypothetical instead of realistic 133 

dust shape inevitably leads to some important questions. Is the match of the dust scattering 134 

properties a result of a good shape model or a fortunate coincidence? If an optimal shape model 135 

is selected based on one set of dust scattering observations (e.g., 𝛿 at 532 nm), can this model 136 

automatically simulate other scattering properties (e.g., 𝛿 at other wavelengths)? Obviously, one 137 

way to address the above questions is to use realistic shape models in the computation of dust 138 

scattering properties. A few studies have made attempts in this direction. For example, Lindqvist 139 

et al. (2014) developed a so-called stereogrammetric surface retrieval method to construct 3-D 140 

dust shapes from 2D SEM dust images and Kemppinen et al. (2015 b) used a surface roughening 141 

model to add detail to the model. Ishimoto et al. (2010) and Kemppinen et al. (2015 a) used a 142 
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Voronoi tessellation-based algorithm to mimic dust internal structure. Järvinen et al. (2016) 143 

compared the lidar backscattering properties based on the constructed 3-D dust shapes with 144 

laboratory measurements and found reasonable agreements. An important finding from this 145 

study is that 𝛿 of realistic dust particles at 532 nm first increase with particle size but seems to 146 

approach an asymptotic constant value of ~ 0.30 for coarse dust particles.  147 

 148 

The main objective of this study is to better understand the lidar backscattering properties of dust 149 

particles with realistic shapes. The dust shape models used here are based on the focused ion-150 

beam (FIB) tomography technique, aided by the energy dispersive X-ray spectroscopy (EDX) 151 

and SEM imagining, developed by Conny et al. (2014) and Conny and Ortiz-Montalvo (2017), 152 

which as far as we know is the most direct and faithful measurement of the shape and 153 

morphology of single dust particles. In addition to shape measurement, the EDX is used to 154 

measure the mineral composition of dust particles, which in turn enables the estimation of the 155 

complex refractive index (CRI) of dust particles. Based on the measured dust particle shape and 156 

estimated CRI, Conny et al. (2019, 2020) simulated and studied the scattering properties such as 157 

single scattering albedo and phase functions of the dust samples using the DDASCAT model 158 

(Draine and Flatau, 1994, 2013). 159 

 160 

In this study, we focus on the lidar backscattering properties of realistic dust samples obtained 161 

from FIB tomography measurements (Conny et al., 2019). For simplicity, we will refer to these 162 

dust samples as "FIB dust samples." We are particularly interested in the following questions: 163 

How do the 𝑆 and 𝛿 of realistic dust samples vary with particle size, shape, mineral composition, 164 

and lidar spectral channel? The remaining portion of the paper is organized as follows: First, in 165 
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Section 2, we introduce the dust samples used in this study, along with their origins and 166 

properties. We also explain the Amsterdam Discrete Dipole Approximation (ADDA) model and 167 

introduce a convergence index to determine the number of orientations necessary for calculating 168 

the optical properties under the random orientation condition. In Section 3, we examine how the 169 

lidar backscattering properties of the dust samples depend on dust properties, including size, 170 

shape, and mineral composition. In Section 4, we present two dust 𝛿 parameterization schemes: 171 

one to estimate the 𝛿 of a single dust particle based on its size, and the other to estimate the 𝛿 of 172 

dust particles with a lognormal particle size distribution based on the effective radius. Finally, in 173 

Section 5, we summarize the main findings and conclusions of this study.  174 

 175 

3. Data and model 176 

3.1. FIB Dust Samples 177 

The thirteen dust particles measured by FIB were obtained from the Mauna Loa Observatory 178 

(19° 32′ 10′′N, 155° 34′ 34′′W) on the island of Hawaii between March 15 and April 26, 2011. 179 

Six of these particles were collected during the daytime. Following Conny et al. (2019), these 180 

particles will be referred to as the "D" sample (e.g., "3D" indicates that the sample was collected 181 

during the daytime of day 3). The other eight particles were collected at night and are referred to 182 

as "N" samples. The properties of these particles, including their shape, size, and composition, 183 

as well as the measurement techniques, have been extensively documented in (Conny et al., 184 

2019, 2020). Conny et al., (2019) analyzed the back trajectories from the Mauna Loa 185 

Observatory during this time interval, suggesting that their samples likely originated as Asian 186 

dust. Out of curiosity, we collocated the CALIOP observations with the back trajectories from 187 

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 188 



10 

2015; Rolph et al., 2017) from March 25, 2011, 0000 UTC to March 18, 2011, 0000 UTC, 189 

starting from the Mauna Loa Observatory. The lidar depolarization ratio observations and 190 

aerosol classification (Figure 1c and e) results show large amounts of dust along the later portion 191 

of the projected path March 23rd, 2011. The back trajectories and CALIOP observations confirm 192 

that the FIB dust samples are likely long-range transported Asian dust particles, more specifically 193 

from the Gobi Desert, consistent with Conny et al. (2019). This may be an important distinction 194 

as Asian dust exhibits some differences in optical properties when compared to other regions 195 

such as the Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly in regards to the mineral 196 

composition discussion in Section 3.2 and 4.3. However, to our knowledge, there is no evidence 197 

to suggest that morphology of dust particles is strongly tied to regional origin. Therefore, while 198 

these dust particles are suspected to be of Gobi origin, we believe these dust samples to be useful 199 

for characterization of atmospheric dust more generally. 200 
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 202 

Figure 1. (a) NOAA HYSPLIT Backward Trajectory paths from March 25th, 2011 0000 UTC 203 

to March 18th, 2011 0000 UTC starting from Mauna Loa Observatory shown in solid lines. 204 

North-South running dashed lines show CALIPSO tracks intersecting with the modeled dust 205 

paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting 206 

with modeled dust paths from NOAA HYSPLIT Backward Trajectory for March 19th and 23rd, 207 

2011 (b-e, respectively). Through 𝛿 and aerosol subtype classification, a dust plume was found 208 

to be present. In subplots b and c, yellow (labeled 2) corresponds with desert dust. 209 

 210 

3.2. Dust particle shape and refractive index 211 

As emphasized above, the primary advantage of using FIB dust samples for this study is that the 212 

shape and composition of these samples are directly measured. To determine the dust shape, the 213 

FIB uses a gallium ion beam, milling through each particle in 15 nm to 20 nm increments. This 214 

process results in a stack of 100 to 200 cross-sectional images with dimensions of 1024 by 884 215 

pixels for each particle. These cross-sectional images are then combined to reconstruct highly 216 

detailed 3-D dust shapes, composed of three-dimensional pixels or voxels as illustrated by an 217 

example in Figure 2.  218 

 219 

The collection of dust samples spans a range of sizes. In this study, we quantify this for irregular 220 

geometries using the volume equivalent sphere radius (𝑟*). Using this metric, our library covers 221 

a range from 0.46 μm to 0.93 μm in 𝑟*. The particle geometries are also assigned two aspect 222 

ratios, where orientation is determined through principal component analysis of the voxel 223 

coordinates. This analysis aligns the longest axis along the z-direction and the greatest variation 224 
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from this axis with the x- and y-directions, aligning with an intuitive understanding of defining 225 

aspect ratios in three dimensions. The aspect ratios of these particles vary from 0.629 and 0.398 226 

(particle 2N Ca-S) to more symmetrical particles with aspect ratios of 0.582 and 0.575 (particle 227 

4N1 CaMg).  228 

 229 

 230 

Figure 2. Orthographic projection of a sample dust particle from the FIB reconstructed 231 

database, 3D Ca-Rich. 232 

 233 

In addition to the FIB-based dust shape reconstruction, Conny et al. (2019) also performed the 234 

element composition and mineral phase analysis for the FIB dust samples using the SEM and 235 

energy-dispersive X-ray spectroscopy (EDX). They found that the dust samples can be loosely 236 

classified into three categories based on the element compositions, the mainly Calcium 237 

Magnesium based (Ca-Mg), the Calcium rich (Ca-rich) ones and lastly those primarily composed 238 

of Calcium Sulfide (Ca-S). In this study we follow this naming convention of Conny et al., 2019. 239 

To determine the refractive index of the dust samples, Conny et al. (2019) first estimated the 240 

volume fractions of possible mineral phases in the particles based on the composition analysis 241 

results. Then, the complex refractive index of each particle was determined through the average 242 

Maxwell‐Garnett dielectric function based on the estimated volume fraction of each mineral 243 
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phase. It should be noted that the iron-phase composition in the particle was assumed to be either 244 

siderite, hematite, or magnetite which have different complex refractive indices. Moreover, two 245 

sets of complex refractive index were used for each iron-phase mineral to account for the 246 

variability induced by optical anisotropy. The combination of mineral differences and refractive 247 

index variability lead to several sets of final refractive index after the Maxwell‐Garnett average. 248 

Take the 3D Ca-Rich particle in Figure 2 for example. Table 1 provides the complex refractive 249 

indices at 589 nm from Conny et al. (2019) for a single particle. Interested readers are referred 250 

to their study for more information. 251 

  252 

Table 1. The possible complex refractive index at 589 nm of the 3D Ca-Rich particle in Figure 253 

2 from Conny et al. (2019). 254 

Iron-phase 

mineral 

Minimum 

Refractive Index 

Real 

Minimum 

Refractive Index 

Imaginary 

Maximum 

Refractive Index 

Real 

Maximum  

Refractive Index  

Imaginary 

Magnetite 1.532 2.14E-02 1.660 2.36E-02 

Hematite 1.544 2.32E-03 1.681 2.28E-03 

Siderite 1.508 1.34E-05 1.648 1.34E-05 

 255 

In this study, we are interested in the dust scattering properties at three commonly encountered 256 

lidar wavelengths, namely, 355 nm, 532 nm, and 1064 nm. For simplicity, we assume the same 257 

refractive index from Conny et al. (2019) for all three wavelengths, which is probably reasonable 258 

only for the 532 nm. On the other hand, because we assume the refractive index to be invariant 259 

with wavelength, the wavelength variation essentially corresponds to the variation of dust 260 
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particle size parameter 𝑥 = 2𝜋𝑟/𝜆, allowing us to focus on the impact of dust particle size on 261 

the lidar scattering properties. The impacts of the spectral variation of refractive index will be 262 

investigated in future studies.  263 

 264 

 265 

3.3. ADDA model and convergence index of random orientation. 266 

In this study, we utilize the ADDA model version 1.4.0 to compute the single scattering 267 

properties, including the extinction cross section 𝐶/01, single scattering albedo 𝜔, and scattering 268 

matrix 𝑃, of each FIB dust particle. The scattering properties of dust particles depend on not only 269 

their size, shape, and refractive index, but also their orientations with respect to the incident light 270 

and the wavelength of incident light. In this study we assume that dust particles are randomly 271 

oriented. The theoretical basis and numerical implementation of the ADDA model have been 272 

well documented (Yurkin and Hoekstra, 2007, 2011). It has been used in numerous previous 273 

studies to compute the scattering properties of aerosol and cloud particles (Yang et al, 2013; 274 

Gasteiger, 2011; Collier et al, 2016). The process to generate the inputs from the FIB shape 275 

measurements for the discrete dipole approximation (DDA) model has been described in detail 276 

in Conny et al. (2019). We use the same inputs and configurations in this study. The only 277 

difference is that we use the ADDA model while Conny et al. (2019) used a different DDA 278 

model, DDSCAT, by Draine and Flatau (1994). The reason we cannot directly use the DDA 279 

simulation results from Conny et al. (2019) is twofold. Firstly, their computations are conducted 280 

for an incident light at the 589 nm wavelength, whereas we are interested in lidar wavelengths 281 

of 355 nm, 532 nm, and 1064 nm. Secondly, as will be explained later, we will need a greater 282 

number of orientations to simulate random orientation for 𝑃 and lidar backscattering properties 283 
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(Konoshonkin et al., 2020) than may be sufficient for the 𝜎/ and 𝜔 to converge. In the remainder 284 

of this section, we will introduce a practical method to determine if a sufficient number of 285 

orientations have been used in the ADDA simulations to ensure convergence in the results for 286 

random orientation computations. 287 

 288 

For a particle with an irregular shape and arbitrary orientation, the scattering matrix 𝑃 that 289 

relates the incident and scattering Stokes parameters is a 4x4 matrix with 16 elements 290 

 291 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃13(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃21(𝜃𝑠)	𝑃22(𝜃𝑠)	𝑃23(𝜃𝑠)	𝑃24(𝜃𝑠)	𝑃31(𝜃𝑠)	𝑃32(𝜃𝑠)	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	𝑃41(𝜃𝑠)	𝑃42(𝜃𝑠)	𝑃43(𝜃𝑠)	𝑃44(𝜃𝑠)	]

, 

 

(4) 

where 𝜃" is the scattering angle. If the particle is randomly oriented, for any orientation its 292 

reciprocal orientation is equally likely. Because of the reciprocal symmetry, the scattering matrix 293 

for randomly oriented particle with irregular shape reduces to (van de Hulst 1957; Mishchenko 294 

et al., 2002; Mishchenko and Yurkin, 2017) 295 

 296 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃13(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃22(𝜃𝑠)	𝑃23(𝜃𝑠)	𝑃24(𝜃𝑠)	−𝑃13(𝜃𝑠) 	−

𝑃23(𝜃𝑠)	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃24(𝜃𝑠) 	− 𝑃34(𝜃𝑠)	𝑃44(𝜃𝑠)	]. 

 

(5) 

The symmetry property of the 𝑃 matrix for randomly oriented particles in Eq. (5) provides a 297 

basis to assess the convergence of random orientation simulations in ADDA. For example, 298 

utilizing the fact that 𝑃5! = 𝑃!5 for a randomly oriented particle we can define a convergence 299 

index (CI) for random orientation as 300 
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 301 

𝐶𝐼 = ∫67 <𝑃!5(𝜃") − 𝑃5!(𝜃")=
8𝑑𝑐𝑜𝑠 (𝜃") .  

(6) 

As such, CI approaches zero when the random orientation computation converges. It should be 302 

noted that CI can also be defined based on other symmetric elements of the scattering matrix 303 

such as 𝑃8! = 𝑃!8, 𝑃9! = −𝑃!9 . For practical applications, we usually assume that particles are 304 

randomly oriented with an equal number of mirror particles. Under such a condition, or if the 305 

particle in question has mirror symmetry itself, the scattering matrix has only 6 independent 306 

elements in the form (van de Hulst 1957; Mishchenko and Yurkin, 2017; Yang et al., 2023): 307 

 308 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	0	0	𝑃12(𝜃𝑠)	𝑃22(𝜃𝑠)	0	0	0	0	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	0	0	−𝑃34(𝜃𝑠)	𝑃44(𝜃𝑠)	]

, 

 

(7) 

and a CI based on 𝑃!8 = 𝑃8! or 𝑃95 = −𝑃59 must be used. 309 

 310 

In the context of ADDA, the orientation of a particle with respect to the incidence is defined by 311 

using three Euler angles 𝛼, 𝛽, and 𝛾. To specify a certain orientation, the particle is rotated first 312 

𝛼 on the z-axis, then 𝛽 on the y-axis, and finally 𝛾 across the new z-axis through the zyz 313 

convention (Yurkin and Hoekstra, 2020). Then, to produce the scattering properties for a 314 

randomly oriented particle, ADDA averages across a large number of orientations. ADDA can 315 

do this internally through specified number of evenly spaced intervals across 𝛼, 𝛽, and 𝛾. For 𝛼 316 

and 𝛽, ADDA calculates the scattering properties for the new orientation while for 𝛾, or the self-317 

rotation angle, it equivalently rotates the scattering plane to improve computational time. It 318 
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calculates orientations in intervals of 2: + 1 for each of 𝛼, 𝛽, and 𝛾 resulting in {(2}: + 1)9 total 319 

orientations. To assess if the random orientation convergence has been achieved, one can 320 

examine the behavior of CI as well as other scattering properties of interest, as a function of the 321 

number of orientations. An example using the 3D Ca-Rich dust particle is shown in Figure 3 for 322 

𝑛 = 1,2, … ,6. As expected, all properties converge to asymptotic values as 𝑛 increases from 𝑛 =323 

1 (i.e., 27 orientations) to 𝑛 = 6 (i.e., 274,625 orientations). On the other hand, it is important to 324 

note that the scalar properties such as extinction efficiency and asymmetry factor (Figure 3a), 325 

and 𝑆 and 𝛿 (Figure 3b) have converged when 𝑛 = 4, while the CI based on certain scattering 326 

matrix elements (Figure 3c) only converged after 𝑛 = 5. Based on this result, we employ 𝑛 = 5 327 

for the computations in this study. The results in Figure 3 clearly show that although one can 328 

assess the convergence of random orientation computation by observing the asymptotic behavior 329 

of scalar properties, the CI based on scattering matrix elements is a more robust index supported 330 

by fundamental physics. 331 

 332 

 333 

Figure 3. (a) Change in extinction efficiency and asymmetry factor with increasing number of 334 

orientations for a representation of a randomly oriented dust particle 3D Ca-Rich. (b) 𝑆  and 335 

linear depolarization ratio as function of the number of orientations for dust particle 3D Ca-336 
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Rich. (c) Convergence Index for each of dust particle 3D Ca-Rich’s Mueller index pairs at 532 337 

nm. Note figures start at 𝑛 = 2. 338 

 339 

Thus, the error in computations of optical properties through ADDA is strongly tied to the 340 

number of orientations used. We find in section 3 constraining refractive index through 341 

mineralogy and size through proper characterization of particle size distribution are the largest 342 

potential sources of error in these calculations, as ADDA’s integration error has been set to less 343 

than 10-5 and the geometries used are highly detailed, with individual dipole sizes on the order 344 

of 103 nm3. This makes the numerical error negligible compared to the error in chosen 345 

parameters, convergence level, and sample size through the limited set of geometries. The CI is 346 

a tool to minimize computational error while considering computational cost. 347 

 348 

With the help of the newly developed CI, we computed the scattering properties of the FIB dust 349 

samples for three commonly encountered lidar wavelengths 355 nm, 532 nm, and 1064 nm. For 350 

each wavelength, more than 60 ADDA simulations are carried out corresponding to different 351 

particles, as well as different refractive indices for each particle as explained above (see section 352 

2.2). Figure 4 shows the scattering matrix elements 𝑃!! and 𝑃88/𝑃!! for the FIB dust samples for 353 

the three lidar wavelengths for their minimum refractive index for each mineral typing. Given 354 

the realistic morphology of the FIB dust samples and extensive computational methods of 355 

determining these optical properties, the FIB dust samples can serve as a benchmark for future 356 

studies on simulated mineral dust scattering properties. As one can see in Figure 4 a-c, the values 357 

of 𝑃!!in the forward scattering directions increase systematically from 1064 nm to 532 nm, and 358 

355 nm, which can be explained by the increase of size parameter as wavelength decreases. In 359 
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Figure 4 d-f, 𝑃88(𝜋)/𝑃!!(𝜋) shows considerable decreases from 1064 nm to 532 nm, down 360 

~13% on average. In contrast, the changes are relatively small from 532 nm to 355 nm. These 361 

features will help us understand the spectral dependence of 𝑆 and 𝛿 shown and discussed in the 362 

next section.  363 

 364 

 365 

Figure 4. 𝑃!!  and 𝑃88/𝑃!! for each particle geometry. Results for (a, d) 355 nm, (b, e) 532 nm, 366 

(c, f) 1064 nm of each iron-containing mineral phase’s minimum refractive index. Highlighted 367 

in black is particle 3D Ca-Rich. 368 

 369 

 370 
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4. Sensitivities of lidar ratio and depolarization ratio to particle properties 371 

4.1. Sensitivity to dust particle size 372 

In lidar-based aerosol remote sensing, the 𝑆 - 𝛿 diagram is often used to classify aerosols into 373 

different types (Burton et al., 2012; Illingworth et al., 2015). The 𝑆 - 𝛿 diagram for the FIB dust 374 

samples is shown in Figure 5. Notably, 𝑆 is negatively correlated with 𝛿 when the results for all 375 

three wavelengths are combined (correlation coefficient of 0.83). Specifically, the 𝛿 at 1064 nm 376 

is smaller than the corresponding values at 532 nm and 355 nm, while the opposite is true for the 377 

𝑆. The results for 532 nm and 355 nm largely overlap with each other. Recall that the same CRI 378 

is used for all three wavelengths, so these spectral differences are caused by the size parameter 379 

difference, i.e., the relative size of the particle with respect to the lidar wavelength. To further 380 

illustrate this point, we plotted the 𝑆 and 𝛿 separately as a function of the dust particle size 381 

parameter, shown in Figure 6. Note that the size of the irregular particle can be defined in 382 

different ways; here, we adopt the volume-equivalent size.  383 

 384 
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  385 

Figure 5. 𝑆 - 𝛿 graph of FIB dust particles at each of 355 nm, 532 nm, and 1064 nm 386 

wavelengths for the refractive index of each mineral type found present in the particle. 387 

 388 

Figure 6 reveals an interesting asymptotic behavior of lidar properties with respect to size, where 389 

𝑆 (Figure 6a) and 𝛿 (Figure 6b) first decreases and increases, respectively, with size parameters 390 

and then seemingly approach their asymptotic values. We use a locally weighted scatterplot 391 

smoothing regression (or LOWESS) to fit the trend in lidar optical properties with size 392 

parameters. We find that both 𝑆 and 𝛿 plateau around size parameter x ≈ 8 and then 393 

approach to their asymptotic values, 𝑆 = 35 𝑠𝑟 and 𝛿 = 0.41 . Notably, these 394 

results span a limited size distribution due to the sizes present in the dust particles analyzed and 395 
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the computational expense to produce simulations of larger particles. However, the asymptotic 396 

behavior of lidar properties has also been reported in several previous studies. For example, the 397 

𝑆 and 𝛿 based on the so-called super-spheroid dust model in Kong, S. et al. (2022) showed a 398 

similar asymptotic behavior for the size parameter range between 2 and 20 (see their Figure 3), 399 

and so is the laboratory measured dust 𝛿 in Järvinen et al. (2016) (see their Figure 9). 400 

 401 

 402 

Figure 6. Relationship between dust particle size parameter and (a) 𝑆 and (b) 𝛿. The red line is 403 

a LOWESS fit of the data for 𝑆 and a Sigmoid function for 𝛿. The black lines correspond to (a) 404 

𝑆 = 44 𝑠𝑟, the 𝑆 used for CALIPSO’s aerosol classification of dust (Kim et al., 2018) and (b) 405 

𝛿 = 0.277, the median observed 𝛿 at 532 nm of the Atlantic dust transport region using CALIOP 406 

(Liu Z. et al., 2015). 407 

 408 

Since 𝑆 is a function of both 𝑃!!(𝜋) and the 𝜔, we investigate their relative roles in determining 409 

the size dependence of 𝑆. Figure 7a shows that the values of 𝑆 lie closely around the 1/𝑃!!(𝜋) 410 

line, with the r-square value around 0.97 for a simple regression of 𝑆 = 12.9/𝑃!!(𝜋). In contrast, 411 
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single-scattering albedo 𝜔 plays a lesser role in 𝑆 among the particles tested due to greater 412 

similarities in values (Figure 7b). However, the outliers in Figure 7a correspond to points with 413 

much lesser 𝜔 in Figure 7b, particularly the FIB sample 3D Ca-rich (see Figure 2) using the 414 

magnetite refractive index, which has an imaginary refractive index of 0.021 to 0.024, an outlier 415 

with a magnitude ten times greater than the other mineral types present (See Table 1). In Figure 416 

7c and d, we plot the variation of 𝑃!!(𝜋) and 𝜔 respectively as a function of size parameter. 417 

Although the variability of 𝑃!!(𝜋) is quite large, especially in the size parameter range between 418 

5 and 10, it generally increases with size parameter. In contrast, the 𝜔 in Figure 7b shows a slight 419 

decrease with size. These results indicate that 𝑃!!(𝜋) plays a more dominant role than the 𝜔 in 420 

determining the size dependence of 𝑆 in these dust samples.  421 

 422 
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Figure 7. 𝑆 as a function of a) 𝑃!! and b) 𝜔. c) 𝑃!! and d) 𝜔 as a function of dust size 423 

parameter. The color of each dot corresponds to the imaginary refractive index. 424 

 425 

Following the same thought for the above 𝑆 analysis, we analyze the role of 𝑃!!(𝜋) and 𝑃88(𝜋) 426 

in determining the asymptotic behavior of 𝛿 in Figure 6b. It is seen in Figure 8a and b that both 427 

𝑃!!(𝜋) and 𝑃88(𝜋) increase with dust size. Interestingly, their ratio 𝑃88(𝜋)/𝑃!!(𝜋) first 428 

decreases with size and then seems to approach an asymptotic value of 0.4 when dust particles 429 

are large. So, the result suggests that the asymptotic trend of 𝛿 with respect to dust size is a result 430 

of the asymptotic behavior of 𝑃88(𝜋)/𝑃!!(𝜋).  431 

 432 

 433 

Figure 8. a) 𝑃!!(𝜋),  b) 𝑃88(𝜋) and c) 𝑃88(𝜋)/𝑃!!(𝜋) as a function of the dust particle size 434 

parameter. 435 

 436 

 437 

4.2. Sensitivity to dust shape and sphericity  438 

Several studies have shown that constraining particle morphology is important for quantifying 439 

the 𝛿 of dust particles (Dubovik et al., 2006; Saito et al., 2021; Liu J. et al., 2015; Kahnert et al., 440 

2020; Kong, S. et al., 2022). As explained in the introduction, most of these studies are based on 441 
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simple hypothetical shape models such as ellipsoid and irregular hexahedrons. In this section, 442 

we investigate the dependence of 𝛿 on dust sphericity based on the FIB dust samples. As 443 

explained in section 2.2, in the baseline simulations each dust sample has different sizes and CRI 444 

that corresponds to laboratory measured dust mineralogy. As a result, the differences in 𝛿 445 

between different sample particles in the baseline simulations are caused by not only shape but 446 

also size and CRI differences. To eliminate the influence of size and CRI and focus on the effect 447 

of sphericity, we carried out an additional set of ADDA computations for the 532 nm wavelength, 448 

where we used the same CRI of n = 1.5 + 0.005i and the same volume-equivalent radius of 0.5 449 

𝜇m for all the FIB particles but kept the original shape of each particle. The use of the common 450 

size and CRI allows us to investigate the dependence of 𝛿 on the sphericity index defined as 451 

follows (Wadell, 1935; Saito and Yang, 2022): 452 

 453 

𝛹 = 𝜋1/3(6𝑉)2/3

𝐴𝑠
,  

(8) 

Where 𝛹 is the sphericity, 𝑉 is the volume of the particle, and 𝐴" is the surface area. By 454 

definition, a sphere is 𝛹=1, and a perfectly spherical particle has a 𝛿 of 0. However, due to the 455 

irregularity of the FIB dust sample geometries, their 𝛹, more specifically the surface area, is 456 

heavily impacted by the level of granularity in voxel size, similar to the well-known coastline 457 

paradox (Steinhaus, 1954). Therefore, we employ the effective sphericity as the average 458 

projected area of a particle is not susceptible to the same issues of increasing value with precision 459 

(Vouk, 1948; Saito and Yang, 2022): 460 

𝛹/?? =
6+/,(AB)-/,

5D./01
,  
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(9) 

 461 

Where 𝛹/?? is the effective sphericity and 𝐴EFG. is the average projected area across all 462 

projection directions. This gives us a wide range of effective sphericity between 0.49-0.89. As 463 

shown in Figure 9, we find no clear relationship between effective sphericity and 𝛿 or 𝑆 (null 464 

hypothesis rejected with p > 0.05 for both 𝑆 and 𝛿). This may be a result of a limited set of 465 

geometries of the FIB dust samples. It could also be due to the limitation of the effective 466 

sphericity index in Eq. (9) failing to capture the subtle dependence of 𝛿 on dust particle shape. 467 

Note that other previous studies have also found weak dependence of 𝛿 in particle sphericity 468 

(e.g., Saito and Yang, 2021; Kong, S. et al., 2022). Further studies are warranted to better 469 

understand the relationship between the 𝛿 and morphology of dust particles. But overall, our 470 

results seem to suggest that the impact of particle sphericity on 𝛿 and 𝑆 is less important than 471 

particle size.  472 

 473 

Figure 9. (a) Effective sphericity dependence of 𝛿. (b) Lidar ratio variance with effective 474 

sphericity. A common volume is used by constraining the volume equivalent sphere radius to 475 
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0.5 𝜇m for each particle as well as a refractive index of 𝑛  =  1.5  +  . 005𝑖. A wavelength of 476 

532 nm was used. 477 

 478 

 479 

4.3. Sensitivity to dust mineralogy 480 

Each particle from Conny et al.’s study (2019) was determined to have different amounts of iron 481 

in its composition through their EDX spectroscopy tests. Using this data, they determined the 482 

refractive index of each particle with the Maxwell‐Garnett dielectric function described in 483 

section 2.3. The tests resulted in the percentage of elements by mass and volume, but did not 484 

reveal the mineral phase within the dust. To account for this, the study uses various possible iron 485 

containing mineral phases for each particle to determine the refractive index, as these phases 486 

have the greatest variability in possible refractive index for these particles. They also account for 487 

birefringence through a minimum and maximum value for refractive index. Each particle was 488 

given a hematite phase, while some had magnetite, ankerite, and/or siderite present. Interested 489 

readers are directed to Conny et al. 2019 for further details.  490 

 491 

Figure 10. Variation of a) 𝜔, b) 𝑆, and c) 𝛿 for each particle with its magnetite phase and 492 

corresponding hematite phase.  493 
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Each of these mineral phases has a different CRI, with magnetite being the most absorbing of 494 

the iron-containing phases present (see Table 1). This results in considerable variations (up to 495 

32%) in single scattering albedo (Figure 10a), particularly for the 3D Ca-Rich particle, which 496 

has the highest iron content by mass, ranging from 11.4 % to 7.90 % depending on the mineral 497 

phase used. In contrast, the next most iron-dense particle (4N1 Ca‐Mg) contains only 4.35 % to 498 

1.56 %. Accompanying the reduction in single scattering albedo, the 𝑆 becomes systematically 499 

larger (Figure 10b), and the 𝛿 becomes smaller (Figure 10c) when hematite is replaced by 500 

magnetite. These results underscore the critical role of dust mineralogy in influencing the SSA 501 

of dust particles, as highlighted in previous studies (Li et al., 2021; Song et al., 2022, 2024). 502 

However, the effects of mineralogy on lidar-derived 𝛿 and 𝑆 are comparatively smaller than the 503 

impacts from dust particle size. An important caveat to keep in mind when interpreting these 504 

results is that the same dust CRI has been used for all three wavelengths, as mentioned earlier. 505 

Dust absorption typically increases with decreasing wavelength in the visible to ultraviolet 506 

spectral region, which is not accounted for in our computations. Therefore, the impacts of 507 

mineralogy on lidar properties at the 355 nm wavelength, where dust can have strong absorption, 508 

may be underestimated. We will leave this for future studies because the spectral dependence of 509 

dust CRI is still highly uncertain due to the lack of reliable observations.  510 

 511 

 512 

5. Parameterization schemes for dust 𝛿  513 

The results in Section 3 indicate that particle size plays a dominant role in determining the dust 514 

𝛿 of FIB dust particles. As shown in Section 3.1, the dust 𝛿 exhibits an asymptotic trend with 515 

increasing size (see Figure 6b), a pattern also noted in several previous studies (Kong, S. et al., 516 
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2022; Järvinen et al., 2016; Kemppinen et al., 2015 a, b). The robustness of this asymptotic trend 517 

inspired us to develop two parameterization schemes for 𝛿 as a function of dust size, which will 518 

be introduced in this section. This will allow us to extend the utility of the dust particle data to a 519 

larger range of sizes, as the individual particles have a limited range of size parameters. One 520 

scheme is designed for single particles, while the other is intended for ensembles of particles 521 

with a particle size distribution. We hope that these parameterization schemes can be used to 522 

efficiently estimate the 𝛿 of dust particles without resorting to time-consuming scattering 523 

simulations.  524 

 525 

The parameterization for single particles is straightforward. To model the asymptotic trend of 526 

individual particle 𝛿 with dust particle size, we employed a sigmoid function as follows: 527 

𝛿(𝑥) = 𝛿∞
1+𝑒−𝑎(𝑥+𝑏) =

0.41
1+𝑒−1.09(𝑥−3.7). 

(10) 

The sigmoid function has three parameters: 𝛿# is the asymptotic value of 𝛿 when the size 528 

parameter is large. The other two parameters 𝑎  and 𝑏 control the shape of the sigmoid 529 

function. After a nonlinear curve fitting, we find 𝛿#  = 0.41,  𝑎  = 1.09 and 𝑏 =   − 3.7 (𝑅8  =530 

 0.72). This simple parameterization can be used to estimate the 𝛿 of a single dust particle 531 

given its size and the wavelength of interest.  532 

 533 

Next, we will use Eq. (10) to construct a parameterization scheme for the volumetric 534 

depolarization ratio, ⟨𝛿⟩ of a dust plume following the widely used lognormal particle size 535 

distribution (𝑛(𝑟*)) giving us a value for 𝛿 for the ensemble of particles. To this end, we need to 536 

first make an approximation. For a given dust particle size distribution 𝑛(𝑟*) = 𝑑𝑁/𝑑𝑙𝑛𝑟*, the 537 

rigorous definition of the volumetric 𝛿 is given by 538 
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⟨𝛿⟩ = 1−⟨𝑃22(𝜋)⟩/⟨𝑃11(𝜋)⟩
1+⟨𝑃22(𝜋)⟩/⟨𝑃11(𝜋)⟩

,  

(11) 

where  ⟨𝑃!!⟩ and ⟨𝑃22⟩ are the bulk scattering matrix elements after the averaging over 𝑛(𝑟*). 539 

For example,  540 

⟨𝑃11⟩ =
∫∞−∞ 𝑃11(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 

∫∞−∞ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 
,  

(12) 

where 𝐶"ST  is the scattering cross section of dust particle with the size of 𝑟*. We found that it is 541 

difficult to use Eq. (11) to estimate ⟨𝛿⟩, because neither ⟨𝑃11⟩ nor ⟨𝑃22⟩ can be easily 542 

parameterized with size parameter. To avoid this difficulty, we propose the following 543 

approximate way to estimate the ⟨𝛿⟩ as 544 

⟨𝛿⟩ ≈
∫∞−∞ 𝛿(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣) 𝑑𝑙𝑛 𝑟𝑣 
∫∞−∞ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣) 𝑑𝑙𝑛 𝑟𝑣 

,	
 

(13) 

which allows us to use the simple parameterization in Eq. (10). The accuracy of this 545 

approximation will be evaluated momentarily. Here, we convert from size parameter to volume 546 

median radius through 𝑥*U = 2𝜋𝑟*U/ as 𝛿 will vary with wavelength. Next, we need to specify 547 

the 𝐶"ST(𝑟*) of single particles. Unfortunately, the size parameter span of the FIB dust samples 548 

is too small to cover the whole dust 𝑛(𝑟*). To solve this problem, we use the TAUMdust2020 549 

database to estimate 𝐶"ST(𝑟*). TAMUdust2020 is a comprehensive database by Saito et al. (2021) 550 

that covers the scattering properties of 20 irregular hexahedral shape models over the entire 551 

practical range of particle sizes, wavelengths, and CRI of mineral dust particles. Based on the 552 

regional dust models recommended by Saito et al. (2021), an ensemble-weighted degree of 553 

sphericity of 0.7 is selected to represent the dust particles. For the dust CRI, we use the data from 554 
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Song et al. (2022) to interpolate the TAMUdust2020 to obtain the 𝐶"ST(𝑟*). In Song et al. (2022), 555 

three sets of dust CRI corresponding to the low, mean, and high concentration of hematite (Di 556 

Biagio et al., 2019) were used to compute the dust scattering properties and their direct radiative 557 

effects. Here we adopt the CRI corresponding to the mean concentration of hematite. Note that 558 

the CRI from Song et al. (2022) is spectrally dependent with increasing absorption with 559 

decreasing wavelength (see their Figure 2), which means that the 355 nm has the strongest 560 

absorption among the three lidar wavelengths considered here. Finally, for the dust 𝑛(𝑟*), we 561 

use the lognormal distribution 562 

 563 

𝑛(𝑟*) =
VW

VX: (F>) 
= W?

√86Z[@\
𝑒𝑥𝑝  V− ZF>/F>@\ 

Z𝜎@\
- W  ,  

(14) 

 564 

 where 𝑁7 is a constant and 𝑟*U is the volume median radius. We use a fixed standard deviation 565 

of 𝜎U = 0.529, the same standard deviation of the fine mode dust from AERONET’s 𝑛(𝑟*) in 566 

Cape Verde from Dubovik et al. (2002) shown in Figure 12, when creating the parameterization 567 

in Figure 11.  568 

 569 

Using the combination of the 𝛿(𝑥) parameterization in Eq. (10), the 𝐶"ST(𝑟*) from the 570 

TAMUdust2020 database and the lognormal 𝑛(𝑟*) in Eq. (14), we computed the volumetric dust 571 

depolarization ratio ⟨𝛿⟩ based on the proposed approximation in Eq. (13). The result for the 532 572 

nm ⟨𝛿⟩ as a function of the effective size parameter is shown in Figure 11a. It is not surprising to 573 

see that the volumetric dust depolarization ratio ⟨𝛿:𝑥𝑣𝑔;⟩ resembles the 𝛿(𝑥) for the single 574 

particles in terms of its size dependence. Further simplification is possible through a fitting of 575 
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the newly bulk averaged depolarization ratio. We find the depolarization of the FIB realistic 576 

particles are well approximated by the following hyperbolic tangent equation: 577 

⟨𝛿:𝑥𝑣𝑔;⟩ ≈ 0.41𝑡𝑎𝑛ℎ :0.14𝑥𝑣𝑔 + 0.09; , (15) 

with an r-squared value of 0.79 as shown in Figure 11a. While this function is fitted for a 578 

wavelength of 532 nm in particular, we found that the results for the 355 nm and 1064 nm 579 

wavelengths are almost identical. This is probably because we used the same 𝛿(𝑥) 580 

parameterization for all three wavelengths, and only different 𝐶"ST due to the use of spectrally 581 

dependent CRI in Song et al. (2022). It turns out that the 𝐶"ST plays a minimal role in the 𝛿 value 582 

making Eq. (15) a reasonable approximation for all three lidar wavelengths given an effective 583 

particle size parameter, 𝑥*U. This is supported by the comparison results shown in Figure 11b. 584 

The solid lines correspond to the volumetric ⟨𝛿⟩ for the three wavelengths predicted based on the 585 

parameterization Eq. (15). The dotted line corresponds to the ⟨𝛿⟩ of irregular hexahedral 586 

computed based on the TAMUdust2020 database using the Song et al. (2022) dust CRI. It is 587 

important to note that the computation for irregular hexahedral is based on the rigorous definition 588 

of 𝛿 in Eq. (11) without any approximation. Evidently, the two sets of ⟨𝛿⟩ agree reasonably well 589 

in terms of both spectral and size parameter dependencies. Interestingly, a decreasing trend was 590 

observed for the 355 nm 𝛿 based on the irregular hexahedral when 𝑟*U is larger than about 2 µm 591 

to 3 µm, which is not seen in either our parameterization or hexahedral results for other 592 

wavelengths. As mentioned above, in the computation for the irregular hexahedral we used the 593 

spectrally dependent CRI that has a higher absorption at 355 nm. Recall the result in Figure 10c 594 

that indicates 𝛿 to decrease with dust absorption. This decreasing with size trend of 𝛿 for large 595 

𝑟*U is a result of stronger absorption at 355 nm, as it is reflected in a decrease in SSA for those 596 

particles (Saito and Yang, 2021).  597 
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 598 

 599 

Figure 11: (a) Parameterization of realistic 𝛿 for effective size parameter using a hyperbolic 600 

tangent function. (b) Depolarization Ratio predicted for a monomodal size distribution with 601 

varying volume-equivalent median radius. The 𝛿 for realistic geometries was derived through 602 

equation 15, while hexahedral shapes used P11 and P22 parameters. 603 

 604 

The utility of the simple parameterization scheme in Eq. (15) is further demonstrated in terms 605 

of simulating the spectral dependence of 𝛿 as shown in the following case. Here, we use the 606 

climatological dust 𝑛(𝑟*) retrieved by the AERONET at Cape Verde as reported in Dubovik et 607 

al., (2002) (Figure 12a) to compute three sets of volumetric dust ⟨𝛿⟩ for the three lidar 608 

wavelengths using the following three methods: 609 

1. In the first method (black solid lines in Figure 12b), dust scattering properties are based 610 

on the irregular hexahedral model from the TAMUdust2020 database. The dust CRI is 611 

spectrally dependent from the Song et al. (2022). The ⟨𝛿⟩ is computed based on the 612 

rigorous definition in Eq. (11) with ⟨𝑃11⟩ and ⟨𝑃22⟩ averaged over 𝑛(𝑟*).  613 

2. In the second method (blue dashed lines in Figure 12b), same as the first method except 614 

that the ⟨𝛿⟩ is computed based on the approximation method in Eq. (13).  615 
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3. In the third method (red dotted lines in Figure 12b), the ⟨𝛿⟩ for each wavelength is 616 

simply predicted using the parameterization in Eq. (15) by converting the 𝑥*U to 𝑟*U. 617 

As such, the comparisons between the three methods enable us to assess the uncertainty 618 

associated with each step of approximation. For example, the comparison between method 1 and 619 

2 can help us understand the uncertainty associated with the ⟨𝛿⟩ computation using the 620 

approximation method in Eq. (13). The comparison of method 3 to the other two methods helps 621 

us understand the overall accuracy of our simple parameterization.  622 

 623 

In order to use the full 𝑛(𝑟*) with method 3, a weighting by backscatter coefficient is utilized 624 

such that (Mamouri and Ansmann, 2014) 625 

⟨𝛿⟩ =
𝛽𝑓𝛿𝑓(1+𝛿𝑐)+𝛽𝑐𝛿𝑐)1+𝛿𝑓*

𝛽𝑓(1+𝛿𝑐)+𝛽𝑐)1+𝛿𝑓*
, (16) 

 626 

where 𝛽 is calculated from the TAMUdust2020 database.  627 

 628 

 629 



36 

Figure 12. (a) Dust particle size distribution for Cape Verde using AERONET, adapted from 630 

Dubovik et al. (2002). (b) Depolarization Ratio of fine and coarse mode for hexahedral dust 631 

and FIB reconstruction using approximation methods 1, 2, and 3 as described in the text. 632 

 633 

The resulting comparison in Figure 12 shows all three methods simulate a substantially smaller 634 

𝛿 for the fine mode than the coarse mode. Additionally, the fine mode 𝛿 based on all three 635 

methods exhibits a decreasing trend with wavelength which is a result of the fast-increasing trend 636 

of 𝛿 with dust particle size parameter for fine mode dust particles (See Figure 6). The differences 637 

in the fine mode 𝛿 between the three methods are mostly smaller than 0.05, with the method 3 638 

result based on the simple parameterization scheme slightly larger than the other two methods. 639 

Finally, for the coarse mode dust 𝛿, the results based on the simple parameterization (method 3) 640 

are close to spectrally neutral and smaller than methods 1 and 2 for 355 and 532 nm, while the 641 

use of TAMUdust2020 decreases 𝛿 at 1064 nm. 642 

 643 

Interestingly, the full-size distribution 𝛿s based on methods 1 and 2 exhibit an inverse “v” shape, 644 

with the maximum at the 532nm and decreasing toward both 355 nm and 1064 nm. Such an 645 

inverse “v” shape spectral signature of dust 𝛿 has also been observed recently by (Haarig et al., 646 

2022) over Leipzig, Germany, in February and March 2021 during a transported Sahara dust 647 

event (see their Figure 5). As aforementioned, our 𝛿 parameterization scheme using method 3 648 

and the parameterization of the FIB dust samples does not take into account the spectral 649 

dependence of dust CRI and the corresponding change of absorption. In methods 1 and 2, we 650 

use the CRI from Song et al. (2022) which has a stronger absorption at 355 nm, which leads to 651 

a decrease of 𝛿 from 532 nm to 355 nm. Therefore, our results indicate that the inverse “v” shape 652 
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spectral signature of dust 𝛿 is a result of competing effects of dust size and absorption. The 653 

decrease of 𝛿 from 532 nm to 1064 nm is the result of dust size while the decrease from 532 nm 654 

to 355 nm is a result of dust absorption.  655 

 656 

Despite the limitation of spectrally independent CRI, the overall accuracy of our 657 

parameterization scheme is satisfying, partly due to the error cancellation between the 658 

overestimation of the fine mode 𝛿 and underestimation of coarse mode 𝛿. For example, after 659 

summation of fine and coarse modes, the 𝛿 of the whole 𝑛(𝑟*) for the 532nm wavelength is ⟨𝛿⟩ ≈660 

 0.335 based on method 1, while method 3 based on our simple parameterization is  ⟨𝛿⟩ ≈  0.334.  661 

 662 

Comparing the dust 𝛿 of the full 𝑛(𝑟*) to that of fine mode 𝛿 and coarse mode 𝛿 also gives us 663 

interesting results. Both fine and coarse modes individually decrease with wavelength despite 664 

the inverse “v” shape spectral signature of the full 𝑛(𝑟*). This characteristic is quite nicely 665 

explained by an interpretation of Eq. (16). Across each wavelength, 𝛽? < 𝛽S so ⟨𝛿⟩ is greater 666 

than a simple average of both fine and coarse modes. But 𝛽S increases with wavelength. 667 

Therefore, despite 𝛿? and 𝛿S decreasing spectrally, 𝛿S has a greater weighting in the equation. In 668 

other words, more of the backscattered signal is due to larger particles as wavelength increases, 669 

which are the particles exhibiting greater depolarization. Competing factors of 𝛽 and 𝛿 further 670 

reinforces the absorption and size impact on 𝛿. Thus, the comparisons shown in Figure 12 are 671 

promising. 672 

 673 

The utility of this parameterization likely comes from the inverse problem. Given the reliance 674 

on TAMUdust2020 for 𝛽, reconstructing the 𝛿 from a 𝑛(𝑟*) still requires use of simplified 675 
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theoretical geometries for some amount of the calculation. However, given a retrieved 676 

backscattering coefficient, 𝛿, and 𝑛(𝑟*), using Eq. (15) and (16) creates a succinct method of 677 

retrieving 𝛽? and 𝛽S, separating fine and coarse fraction of dust according to Mamouri and 678 

Ansmann (2014). 679 

 680 

Specifically in coarse mode analysis, there are some limitations of our study. The sigmoid 681 

parameterization leads to a very flat parameterization of 𝛿 for particles greater than 1 𝜇m in 682 

volume equivalent radius seen in both Figure 11b and 12b which may be further refined with 683 

larger particles, currently unavailable due to computational cost. It is also important to note our 684 

study uses a wavelength-independent refractive index based on 589 nm, causing this work to 685 

miss some spectral dependency that may cause the coarse mode differences in each wavelength 686 

when using the globally averaged refractive index (see Figure 11b). The competing effects of 687 

size and mineral composition of dust particles have been observed in studies of spectral 688 

dependence of 𝛿 (Haarig et al., 2022), which we will investigate in future studies.  689 

 690 

 691 

6. Conclusions and summary  692 

In this study, we utilized the ADDA model to compute the scattering properties of FIB dust 693 

samples and derived the 𝑆 and 𝛿 at three widely used lidar wavelengths: 355 nm, 532 nm, and 694 

1064 nm. The advantage of this study compared to previous work is the use of realistic dust 695 

shapes reconstructed through the FIB tomography technique. The characterization of single 696 

scattering properties of these realistic samples through rigorous computational techniques should 697 

serve well as benchmark data for the dust scattering community. We investigated the dependence 698 
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of dust 𝑆 and 𝛿 on dust particle size, shape, and mineral composition. The results lead to the 699 

following conclusions: 700 

● Both the 𝑆 and 𝛿 exhibit an asymptotic trend with dust particle size: the 𝑆 initially 701 

decreases while the 𝛿 increases with size, before both approach their asymptotic values. 702 

● The lidar properties were found to have only a weak dependence on effective sphericity. 703 

● The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the 704 

dust's single scattering albedo and 𝛿, while increasing 𝑆. 705 

In addition to these scientific findings, the convergence index introduced in Section 3.3 and the 706 

𝛿 parameterization schemes described in Section 5 may be useful for future research on light 707 

scattering by nonspherical particles and lidar-based remote sensing. The convergence index can 708 

be used to assess the convergence of random orientation computation using the DDA method. 709 

The 𝛿 parameterization scheme in Eq. (15) can be used to estimate the 𝛿 of dust with a lognormal 710 

size distribution 𝑛(𝑟*), which can help us understand the variation of dust size based on 𝛿 711 

observations and the separation of fine and coarse mode dust (Mamouri and Ansmann, 2014).  712 

 713 

Certain limitations of this study need also to be addressed, particularly regarding the 714 

parameterization scheme of Section 5. This model’s parameterization leads to a flattened coarse-715 

mode in an attempt to extrapolate upon the limited size range available due to computational 716 

limits of DDA. Therefore, it may not have fully captured the optical properties for use with 717 

particularly large size parameters. Additionally, the wavelength-independent complex refractive 718 

index based on 589 nm measurements was applied to all three lidar wavelengths, simplifying the 719 

spectral differences in lidar properties, particularly at 355 nm where absorption from iron-phase 720 

minerals is more significant. Future studies on the coarse mode and spectral variation of dust 721 
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lidar properties will improve the parameterization and applicability of the parameterization 722 

scheme and ability to utilize the FIB dust samples for atmospheric observations. 723 
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