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Abstract  16 

The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and 17 

backscattering depolarization ratio (δ), were studied using a discrete dipole approximation 18 

(DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine 19 

detail using the focused ion-beam (FIB) tomography technique. An index based on the symmetry 20 

of the scattering matrix was developed to assess the convergence of random orientation 21 

computation using DDA. Both the S and δ exhibit an asymptotic trend with dust particle size: 22 

the S initially decreases while the δ increases with size, before both approach their asymptotic 23 

values. The lidar properties were found to have statistically insignificant dependence on effective 24 

sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce 25 

the dust's single-scattering albedo and δ. Utilizing the robust asymptotic trend behavior, two 26 

parameterization schemes were developed: one to estimate the δ of a single dust particle given 27 

its size, and the other to estimate the δ of dust particles with a lognormal particle size distribution 28 

given the effective radius. The parameterization scheme was compared with results based on the 29 

TAMUdust2020 database, showing hexahedrals to reasonably represent realistic geometries 30 

with similar physical properties.  31 

 32 

   33 
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1. Introduction 34 

Dust aerosols are an important component of the Earth System, interacting with Earth’s energy, 35 

water, and carbon cycles. Directly, dust aerosols scatter and absorb both shortwave and longwave 36 

radiation, influencing the planet's energy balance (Tegen et al., 1996; Miller and Tegen, 1998; 37 

Myhre et al., 2013; Song et al., 2018, 2022). By scattering incoming solar radiation, dust aerosols 38 

contribute to cooling the atmosphere and surface regionally, impacting temperatures and 39 

affecting atmospheric circulation patterns (Evan et al., 2006; Lau and Kim, 2007; Zhang et al., 40 

2022).  41 

 42 

The transport of dust aerosols also has far-reaching implications. The long-range transport of 43 

Asian dust is frequently observed on the United States’ west coast with considerable impacts on 44 

the air quality and climate (Yu et al., 2012; Creamean et al., 2014; Wu et al., 2015). It is also 45 

observed impacting Taiwan through similar transport mechanisms (Lin et al., 2007). In fact, 46 

mineral dust from the Taklimakan desert has been found to be transported a full rotation around 47 

the globe (Uno et al., 2009). Moreover, the deposition of dust aerosol during the long-range 48 

transport brings essential nutrients such as iron and phosphorus from terrestrial sources to marine 49 

ecosystems, being part of biogeochemical cycles across vast distances (Baker et al., 2003; Yu et 50 

al., 2015b; Westberry et al., 2023). Asian dust deposition in the East China Sea stimulates 51 

phytoplankton growth and primary productivity, influencing marine food webs and carbon 52 

cycling (Kong, S. S.-K. et al., 2022). 53 

 54 

Lidar is an important tool for remote sensing measurements of airborne dust particles. As 55 

demonstrated in many previous studies (Omar et al., 2009; Burton et al., 2012), it allows us to 56 
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distinguish dust aerosols from clouds and other types of aerosols, track their long-range transport 57 

and study their evolution as they interact with the environment such as clouds, atmospheric 58 

gases, and other aerosols. Among others, elastic backscattering lidars are one of the most widely 59 

used types of lidar. For example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 60 

Observations (CALIPSO), is a NASA-French satellite mission that implements a two-61 

wavelength elastic lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) at 532 62 

nm and 1064 nm wavelengths (Winker et al., 2009). Ground-based lidar networks such as the 63 

NASA Micro-Pulse Lidar Network (MPLNET) use single wavelength measurements for 64 

extinction, backscattering, and depolarization profiles (Welton et al., 2001). The EarthCARE 65 

mission utilizes ATmospheric LIDar (ATLID), a 355 nm wavelength laser and high-spectral 66 

resolution receiver, allowing it to directly measure both lidar ratio and extinction coefficient 67 

(Illingworth et al., 2015; Donovan et al., 2024). Ground based lidars operating at 532 nm and 68 

1064 nm throughout Eastern Asia are also useful for monitoring dust transport and air quality, 69 

running as part of Asian Development Bank (ADB) and Global Environment Facility (GEF) 70 

(Sugimoto et al., 2008). 71 

 72 

2. Theoretical Background 73 

Lidar ratio (S) and depolarization ratio (δ) are two most important parameters for lidar-based 74 

remote sensing of aerosols and clouds. For a single dust particle, the S, referred to as the 75 

extinction-to-backscatter coefficient, is defined as (Platt, 1979; Ansmann et al., 1992; Mattis et 76 

al., 2002; Liu et al., 2002) 77 

 78 



 

5 

S = σ/β =
4π

ω𝑃11(θ𝑠 = π)
, 

(1) 

where σ is the extinction coefficient and ω and 𝑃11 are the single-scattering albedo and phase 79 

function of the dust particle, respectively. For the purposes of this paper, 𝑃11 is normalized to 1 80 

when integrating across all scattering directions. β = 𝑃11(θ𝑠 = π)𝐶𝑠𝑐𝑎 is the backscattering 81 

coefficient at the exact backscattering direction. When considering a multitude of particles,  82 

β = ∫ 𝑃11(𝑟𝑣, θ𝑠 = π)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑ln 𝑟𝑣
∞

−∞
 , (2) 

Where 𝑟𝑣 is the volume-equivalent sphere radius and n(𝑟𝑣) = dN/dln𝑟𝑣 defines a normalized 83 

particle size distribution (n(𝑟𝑣)). 84 

 85 

 For Raman lidar and high spectral resolution lidar systems, the lidar ratio can be derived directly 86 

from the observed extinction and backscatter without assumptions about the composition (Müller 87 

et al., 2007). However, for elastic backscattering lidars, the lidar ratio cannot be directly 88 

measured. As a result, assumptions need to be made about the composition of the atmosphere. 89 

Therefore, the lidar ratio is fundamentally important for elastic lidars like CALIOP and 90 

MPLNET to convert the direct attenuated backscatter observations to an extinction profile 91 

(Young et al., 2018) and derived quantities such as dust aerosol optical depth (Yu et al., 2015a; 92 

Song et al., 2021).  93 

 94 

Depolarization ratio δ is the ratio of the perpendicular or cross-polarized component to the 95 

parallel component of polarized backscattering signal. For backscattering lidar the 96 

depolarization ratio is defined as  97 

 98 
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δ  =  
1 − 

𝑃22(θ𝑠 = π)

𝑃11(θ𝑠 = π)

1 + 
𝑃22(θ𝑠 = π)

𝑃11(θ𝑠 = π)

 , 
(3) 

where 𝑃𝑖𝑗 is the ij-th element of the particle’s scattering matrix (Kong, S. et al., 2022). δ is often 99 

used for aerosol type (Kim et al., 2018) and cloud phase classifications (Hu et al., 2009). First, 100 

if lidar backscattering is dominated by single scattering, δ is close to zero for spherical particles 101 

like sulfate aerosols and water droplets. In contrast, δ is notably greater for nonspherical particles 102 

like dust aerosols and ice crystals. Moreover, the considerable δ differences between spherical 103 

fine particles and nonspherical coarse dust particles also enables the separation of dust extinction 104 

from the total extinction profile retrieved by CALIOP (Yu et al., 2015; Song et al., 2021).  105 

 106 

Because of the fundamental importance of S and δ for lidar based dust remote sensing, previous 107 

studies have made substantial effort to understand the connection between dust particle 108 

properties, e.g., shape and size, and their lidar characteristics, in particular the S and δ (e.g., 109 

Dubovik et al., 2006; Gasteiger et al., 2011; Liu J. et al., 2015; Kahnert et al., 2020; Saito et al., 110 

2021; Saito and Yang, 2021; Kong, S. et al., 2022). The common methodology used in these 111 

studies is to use light scattering models, such as the T-matrix (Mishchenko et al., 1996; Bi and 112 

Yang, 2014b) and Discrete Dipole Approximation (DDA) model (Draine and Flatau, 1994, 2013; 113 

Yurkin and Hoekstra, 2007, 2011), to compute the scattering properties including S and δ of dust 114 

aerosols and then study the potential dependence on particle properties. Although these studies 115 

have greatly improved our understanding and paved the foundation for the current aerosol 116 

retrieval algorithms, they share a common limitation as they all used hypothetical dust particle 117 

shape models, such as spheroid (Dubovik et al., 2006), irregular polyhedron (Saito et al., 2021), 118 

Gaussian random sphere (Muinonen et al., 1996; Liu J. et al., 2015; Kahnert et al., 2020), tri-119 
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axial spheroids (Meng et al., 2010; Huang et al., 2023), and super-spheroid (Kong, S. et al., 2022) 120 

to simulate dust particle shapes that are weakly or not constrained by observations. The reason 121 

for this is probably two-fold. Most microscopic observations of dust particles in the literature are 122 

two-dimensional (2D) images based on scanning or transmission electron microscopes (SEM or 123 

TEM), while three-dimensional (3-D) observations are extremely rare. In addition, the 124 

implementation of complex shapes in scattering models is also a challenging task. For example, 125 

until recently the widely used T-matrix code based on the extended boundary condition method 126 

(Mishchenko et al., 1996) is primarily applicable only to rotationally symmetric particles such 127 

as spheroid. It is worth noting that the T-matrix method implementation based on the invariant 128 

imbedding T-matrix method is applicable to arbitrary shapes (Bi and Yang, 2014a). Aware of 129 

the limitation of hypothetical dust particle shape, these studies often use dust scattering 130 

properties from laboratory measurements as benchmark to select an optimal set of hypothetical 131 

shapes that can generate similar scattering properties, e.g., lidar characteristics, as measurements 132 

(Saito et al., 2021; Kong, S. et al., 2022). Nevertheless, the use of hypothetical instead of realistic 133 

dust shape inevitably leads to some important questions. Is the match of the dust scattering 134 

properties a result of a good shape model or a fortunate coincidence? If an optimal shape model 135 

is selected based on one set of dust scattering observations (e.g., δ at 532 nm), can this model 136 

automatically simulate other scattering properties (e.g., δ at other wavelengths)? Obviously, one 137 

way to address the above questions is to use realistic shape models in the computation of dust 138 

scattering properties. A few studies have made attempts in this direction. For example, Lindqvist 139 

et al. (2014) developed a so-called stereogrammetric surface retrieval method to construct 3-D 140 

dust shapes from 2D SEM dust images and Kemppinen et al. (2015 b) used a surface roughening 141 

model to add detail to the model. Ishimoto et al. (2010) and Kemppinen et al. (2015 a) used a 142 
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Voronoi tessellation-based algorithm to mimic dust internal structure. Järvinen et al. (2016) 143 

compared the lidar backscattering properties based on the constructed 3-D dust shapes with 144 

laboratory measurements and found reasonable agreements. An important finding from this 145 

study is that δ of realistic dust particles at 532 nm first increase with particle size but seems to 146 

approach an asymptotic constant value of ~ 0.30 for coarse dust particles.  147 

 148 

The main objective of this study is to better understand the lidar backscattering properties of dust 149 

particles with realistic shapes. The dust shape models used here are based on the focused ion-150 

beam (FIB) tomography technique, aided by the energy dispersive X-ray spectroscopy (EDX) 151 

and SEM imagining, developed by Conny et al. (2014) and Conny and Ortiz-Montalvo (2017), 152 

which as far as we know is the most direct and faithful measurement of the shape and 153 

morphology of single dust particles. In addition to shape measurement, the EDX is used to 154 

measure the mineral composition of dust particles, which in turn enables the estimation of the 155 

complex refractive index (CRI) of dust particles. Based on the measured dust particle shape and 156 

estimated CRI, Conny et al. (2019, 2020) simulated and studied the scattering properties such as 157 

single scattering albedo and phase functions of the dust samples using the DDASCAT model 158 

(Draine and Flatau, 1994, 2013). 159 

 160 

In this study, we focus on the lidar backscattering properties of realistic dust samples obtained 161 

from FIB tomography measurements (Conny et al., 2019). For simplicity, we will refer to these 162 

dust samples as "FIB dust samples." We are particularly interested in the following questions: 163 

How do the S and δ of realistic dust samples vary with particle size, shape, mineral composition, 164 

and lidar spectral channel? The remaining portion of the paper is organized as follows: First, in 165 
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Section 2, we introduce the dust samples used in this study, along with their origins and 166 

properties. We also explain the Amsterdam Discrete Dipole Approximation (ADDA) model and 167 

introduce a convergence index to determine the number of orientations necessary for calculating 168 

the optical properties under the random orientation condition. In Section 3, we examine how the 169 

lidar backscattering properties of the dust samples depend on dust properties, including size, 170 

shape, and mineral composition. In Section 4, we present two dust δ parameterization schemes: 171 

one to estimate the δ of a single dust particle based on its size, and the other to estimate the δ of 172 

dust particles with a lognormal particle size distribution based on the effective radius. Finally, in 173 

Section 5, we summarize the main findings and conclusions of this study.  174 

 175 

3. Data and model 176 

3.1. FIB Dust Samples 177 

The fourteen dust particles measured by FIB were obtained from the Mauna Loa Observatory 178 

(19° 32′ 10′′N, 155° 34′ 34′′W) on the island of Hawaii between March 15 and April 26, 2011. 179 

Six of these particles were collected during the daytime. Following Conny et al. (2019), these 180 

particles will be referred to as the "D" sample (e.g., "3D" indicates that the sample was collected 181 

during the daytime of day 3). The other eight particles were collected at night and are referred to 182 

as "N" samples. The properties of these particles, including their shape, size, and composition, 183 

as well as the measurement techniques, have been extensively documented in (Conny et al., 184 

2019, 2020). Conny et al., (2019) analyzed the back trajectories from the Mauna Loa 185 

Observatory during this time interval, suggesting that their samples likely originated as Asian 186 

dust. Out of curiosity, we collocated the CALIOP observations with the back trajectories from 187 

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 188 
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2015; Rolph et al., 2017) from 25th of March 2011, 0000 UTC to 18th of March 2011, 0000 189 

UTC, starting from the Mauna Loa Observatory. The lidar depolarization ratio observations and 190 

aerosol classification (Figure 1c and e) results show large amounts of dust along the later portion 191 

of the projected path 23rd of March 2011. The back trajectories and CALIOP observations 192 

confirm that the FIB dust samples are likely long-range transported Asian dust particles, more 193 

specifically from the Gobi Desert, consistent with Conny et al. (2019). This may be an important 194 

distinction as Asian dust exhibits some differences in optical properties when compared to other 195 

regions such as the Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly in regardsregard 196 

to the mineral composition discussion in Section 3.2 and 4.3. However, to our knowledge, there 197 

is no evidence to suggest that morphology of dust particles is strongly tied to regional origin. 198 

Therefore, while these dust particles are suspected to be of Gobi origin, we believe these dust 199 

samples to be useful for characterization of atmospheric dust more generally. 200 
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 202 

 203 

Figure 1. (a) NOAA HYSPLIT Backward Trajectory paths from 25th of March, 2011 0000 UTC 204 

to 18th of March, 2011 0000 UTC starting from Mauna Loa Observatory shown in solid lines. 205 

North-South running dashed lines show CALIPSO tracks intersecting with the modeled dust 206 
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paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting 207 

with modeled dust paths from NOAA HYSPLIT Backward Trajectory for the 19th and 23rd of 208 

March, 2011 (b-e, respectively). Through δ and aerosol subtype classification, a dust plume was 209 

found to be present. In subplots b and c, yellow (labeled 2) corresponds with desert dust. 210 

 211 

3.2. Dust particle shape and refractive index 212 

As emphasized above, the primary advantage of using FIB dust samples for this study is that the 213 

shape and composition of these samples are directly measured. To determine the dust shape, the 214 

FIB uses a gallium ion beam, milling through each particle in 15 nm to 20 nm increments. This 215 

process results in a stack of 100 to 200 cross-sectional images with dimensions of 1024 by 884 216 

pixels for each particle. These cross-sectional images are then combined to reconstruct highly 217 

detailed 3-D dust shapes, composed of three-dimensional pixels or voxels as illustrated by an 218 

example in Figure 2.  219 

 220 

The collection of dust samples spans a range of sizes. In this study, we quantify this for irregular 221 

geometries using the volume equivalent sphere radius (𝑟𝑣). Using this metric, our library covers 222 

a range from 0.46 μm to 0.93 μm in 𝑟𝑣. The particle geometries are also assigned two aspect 223 

ratios, where orientation is determined through principal component analysis of the voxel 224 

coordinates. This analysis aligns the longest axis along the z-direction and the greatest variation 225 

from this axis with the x- and y-directions, aligning with an intuitive understanding of defining 226 

aspect ratios in three dimensions. The aspect ratios of these particles vary from 0.629 and 0.398 227 

(particle 2N Ca-S) to more symmetrical particles with aspect ratios of 0.582 and 0.575 (particle 228 

4N1 CaMg).  229 
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 230 

 231 

Figure 2. Orthographic projection of a sample dust particle from the FIB reconstructed 232 

database, 3D Ca-Rich. 233 

 234 

In addition to the FIB-based dust shape reconstruction, Conny et al. (2019) also performed the 235 

element composition and mineral phase analysis for the FIB dust samples using the SEM and 236 

energy-dispersive X-ray spectroscopy (EDX). They found that the dust samples can be loosely 237 

classified into three categories based on the element compositions, the mainly Calcium 238 

Magnesium based (Ca-Mg), the Calcium rich (Ca-rich) ones and lastly those primarily composed 239 

of Calcium Sulfide (Ca-S). In this study we follow this naming convention of Conny et al., 2019. 240 

To determine the refractive index of the dust samples, Conny et al. (2019) first estimated the 241 

volume fractions of possible mineral phases in the particles based on the composition analysis 242 

results. Then, the complex refractive index of each particle was determined through the average 243 

Maxwell‐Garnett dielectric function based on the estimated volume fraction of each mineral 244 

phase. It should be noted that the iron-phase composition in the particle was assumed to be either 245 

siderite, hematite, or magnetite which have different complex refractive indices. Moreover, two 246 

sets of complex refractive index were used for each iron-phase mineral to account for the 247 

variability induced by optical anisotropy. The combination of mineral differences and refractive 248 
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index variability lead to several sets of final refractive index after the Maxwell‐Garnett average. 249 

Take the 3D Ca-Rich particle in Figure 2 for example. Table 1 provides the complex refractive 250 

indices at 589 nm from Conny et al. (2019) for a single particle. Interested readers are referred 251 

to their study for more information. 252 

  253 

Table 1. The possible complex refractive index at 589 nm of the 3D Ca-Rich particle in Figure 254 

2 from Conny et al. (2019). 255 

Iron-phase 

mineral 

Minimum 

Refractive Index 

Real 

Minimum 

Refractive Index 

Imaginary 

Maximum 

Refractive Index 

Real 

Maximum  

Refractive Index  

Imaginary 

Magnetite 1.532 2.14E-02 1.660 2.36E-02 

Hematite 1.544 2.32E-03 1.681 2.28E-03 

Siderite 1.508 1.34E-05 1.648 1.34E-05 

 256 

In this study, we are interested in the dust scattering properties at three commonly encountered 257 

lidar wavelengths, namely, 355 nm, 532 nm, and 1064 nm. For simplicity, we assume the same 258 

refractive index from Conny et al. (2019) for all three wavelengths, which is probably reasonable 259 

only for the 532 nm. On the other hand, because we assume the refractive index to be invariant 260 

with wavelength, the wavelength variation essentially corresponds to the variation of dust 261 

particle size parameter x = 2π𝑟/λ, allowing us to focus on the impact of dust particle size on 262 

the lidar scattering properties. The impacts of the spectral variation of refractive index will be 263 

investigated in future studies.  264 

 265 
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 266 

3.3. ADDA model and convergence index of random orientation. 267 

In this study, we utilize the ADDA model version 1.4.0 to compute the single scattering 268 

properties, including the extinction cross section 𝐶𝑒𝑥𝑡, single scattering albedo ω, and scattering 269 

matrix 𝑷, of each FIB dust particle. The scattering properties of dust particles depend on not only 270 

their size, shape, and refractive index, but also their orientations with respect to the incident light 271 

and the wavelength of incident light. In this study we assume that dust particles are randomly 272 

oriented. The theoretical basis and numerical implementation of the ADDA model have been 273 

well documented (Yurkin and Hoekstra, 2007, 2011). It has been used in numerous previous 274 

studies to compute the scattering properties of aerosol and cloud particles (Yang et al, 2013; 275 

Gasteiger, 2011; Collier et al, 2016). The process to generate the inputs from the FIB shape 276 

measurements for the discrete dipole approximation (DDA) model has been described in detail 277 

in Conny et al. (2019). We use the same inputs and configurations in this study. The only 278 

difference is that we use the ADDA model while Conny et al. (2019) used a different DDA 279 

model, DDSCAT, by Draine and Flatau (1994). The reason we cannot directly use the DDA 280 

simulation results from Conny et al. (2019) is twofold. Firstly, their computations are conducted 281 

for an incident light at the 589 nm wavelength, whereas we are interested in lidar wavelengths 282 

of 355 nm, 532 nm, and 1064 nm. Secondly, as will be explained later, we will need a greater 283 

number of orientations to simulate random orientation for P and lidar backscattering properties 284 

(Konoshonkin et al., 2020) than may be sufficient for the σ𝑒 and ω to converge. In the remainder 285 

of this section, we will introduce a practical method to determine if a sufficient number of 286 

orientations have been used in the ADDA simulations to ensure convergence in the results for 287 

random orientation computations. 288 



 

17 

 289 

For a particle with an irregular shape and arbitrary orientation, the scattering matrix 𝐏 that 290 

relates the incident and scattering Stokes parameters is a 4x4 matrix with 16 elements 291 

 292 

𝐏 =  

[
 
 
 
𝑃11(θ𝑠) 𝑃12(θ𝑠) 𝑃13(θ𝑠) 𝑃14(θ𝑠)

𝑃21(θ𝑠) 𝑃22(θ𝑠) 𝑃23(θ𝑠) 𝑃24(θ𝑠)

𝑃31(θ𝑠) 𝑃32(θ𝑠) 𝑃33(θ𝑠)  𝑃34(θ𝑠)

𝑃41(θ𝑠) 𝑃42(θ𝑠) 𝑃43(θ𝑠) 𝑃44(θ𝑠)]
 
 
 

, 

 

(4) 

where θ𝑠 is the scattering angle. If the particle is randomly oriented, for any orientation its 293 

reciprocal orientation is equally likely. Because of the reciprocal symmetry, the scattering matrix 294 

for a randomly oriented particle with irregular shape reduces to (van de Hulst 1957; Mishchenko 295 

et al., 2002; Mishchenko and Yurkin, 2017) 296 

 297 

𝐏 =  

[
 
 
 

𝑃11(θ𝑠) 𝑃12(θ𝑠) 𝑃13(θ𝑠) 𝑃14(θ𝑠)

𝑃12(θ𝑠) 𝑃22(θ𝑠) 𝑃23(θ𝑠) 𝑃24(θ𝑠)

−𝑃13(θ𝑠) −𝑃23(θ𝑠) 𝑃33(θ𝑠)  𝑃34(θ𝑠)

𝑃14(θ𝑠) 𝑃24(θ𝑠) −𝑃34(θ𝑠) 𝑃44(θ𝑠)]
 
 
 

. 

 

(5) 

The symmetry property of the P matrix for randomly oriented particles in Eq. (5) provides a basis 298 

to assess the convergence of random orientation simulations in ADDA. For example, utilizing 299 

the fact that 𝑃41 = 𝑃14 for a randomly oriented particle we can define a convergence index (CI) 300 

for random orientation as 301 

 302 

CI = ∫ (𝑃14(θ𝑠) − 𝑃41(θ𝑠))
2π

0
∫

1

2
(𝑃14(θ𝑠) − 𝑃41(θ𝑠))

2π

0
dcos (θ𝑠) . 

 

(6) 
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As such, CI approaches zero when the random orientation computation converges. It should be 303 

noted that CI can also be defined based on other symmetric elements of the scattering matrix 304 

such as 𝑃21 = 𝑃12, 𝑃31 = −𝑃13 . For practical applications, we usually assume that particles are 305 

randomly oriented with an equal number of mirror particles. Under such a condition, or if the 306 

particle in question has mirror symmetry itself, the scattering matrix has only 6 independent 307 

elements in the form (van de Hulst 1957; Mishchenko and Yurkin, 2017; Yang et al., 2023): 308 

 309 

𝐏 =  

[
 
 
 
𝑃11(θ𝑠) 𝑃12(θ𝑠) 0 0
𝑃12(θ𝑠) 𝑃22(θ𝑠) 0 0

0 0 𝑃33(θ𝑠)  𝑃34(θ𝑠)

0 0 −𝑃34(θ𝑠) 𝑃44(θ𝑠)]
 
 
 

, 

 

(7) 

and a CI based on P12 = P21 or P34 = −P43 must be used. 310 

 311 

In the context of ADDA, the orientation of a particle with respect to the incidence is defined by 312 

using three Euler angles α, β, and γ. To specify a certain orientation, the particle is rotated first 313 

α on the z-axis, then β on the y-axis, and finally γ across the new z-axis through the zyz convention 314 

(Yurkin and Hoekstra, 2020). Then, to produce the scattering properties for a randomly oriented 315 

particle, ADDA averages across a large number of orientations. ADDA can do this internally 316 

through specified number of evenly spaced intervals across α, β, and γ. For α and β, ADDA 317 

calculates the scattering properties for the new orientation while for γ, or the self-rotation angle, 318 

it equivalently rotates the scattering plane to improve computational time. It calculates 319 

orientations in intervals of 2𝑛 + 1 for each of α, β, and γ resulting in {(2}𝑛 + 1)3(2𝑛 + 1)3 total 320 

orientations. To assess if the random orientation convergence has been achieved, one can 321 

examine the behavior of CI as well as other scattering properties of interest, as a function of the 322 

number of orientations. An example using the 3D Ca-Rich dust particle is shown in Figure 3 for 323 
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n = 1,2, … ,6. As expected, all properties converge to asymptotic values as n increases from n =324 

1 (i.e., 27 orientations) to n = 6 (i.e., 274,625 orientations). On the other hand, it is important to 325 

note that the scalar properties such as extinction efficiency and asymmetry factor (Figure 3a), 326 

and S and δ (Figure 3b) have converged when n = 4, while the CI based on certain scattering 327 

matrix elements (Figure 3c) only converged after n = 5. Based on this result, we employ n = 5 328 

for the computations in this study. The results in Figure 3 clearly show that although one can 329 

assess the convergence of random orientation computation by observing the asymptotic behavior 330 

of scalar properties, the CI based on scattering matrix elements is a more robust index supported 331 

by fundamental physics. 332 

 333 

 334 

 335 

Figure 3. (a) Change in extinction efficiency and asymmetry factor with increasing number of 336 

orientations for a representation of a randomly oriented dust particle 3D Ca-Rich. (b) S  and 337 

linear depolarization ratio as function of the number of orientations for dust particle 3D Ca-338 
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Rich. (c) Convergence Index for each of dust particle 3D Ca-Rich’s Mueller index pairs at 532 339 

nm. Note figures start at n = 2. 340 

 341 

Thus, the error in computations of optical properties through ADDA is strongly tied to the 342 

number of orientations used. We find in section 3 constraining refractive index through 343 

mineralogy and size through proper characterization of particle size distribution are the largest 344 

potential sources of error in these calculations, as ADDA’s integration error has been set to less 345 

than 10-5 and the geometries used are highly detailed, with individual dipole sizes on the order 346 

of 103 nm3. This makes the numerical error negligible compared to the error in chosen 347 

parameters, convergence level, and sample size through the limited set of geometries. The CI is 348 

a tool to minimize computational error while considering computational cost. 349 

 350 

With the help of the newly developed CI, we computed the scattering properties of the FIB dust 351 

samples for three commonly encountered lidar wavelengths 355 nm, 532 nm, and 1064 nm. For 352 

each wavelength, more than 60 ADDA simulations are carried out corresponding to different 353 

particles, as well as different refractive indices for each particle as explained above (see section 354 

2.2). Figure 4 shows the scattering matrix elements 𝑃11 and 𝑃22/𝑃11 for the FIB dust samples for 355 

the three lidar wavelengths for their minimum refractive index for each mineral typing. Given 356 

the realistic morphology of the FIB dust samples and extensive computational methods of 357 

determining these optical properties, the FIB dust samples can serve as a benchmark for future 358 

studies on simulated mineral dust scattering properties. As one can see in Figure 4 a-c, the values 359 

of 𝑃11in the forward scattering directions increase systematically from 1064 nm to 532 nm, and 360 

355 nm, which can be explained by the increase of size parameter as wavelength decreases. In 361 
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Figure 4 d-f, 𝑃22(π)/𝑃11(π) shows considerable decreases from 1064 nm to 532 nm, down ~13% 362 

on average. In contrast, the changes are relatively small from 532 nm to 355 nm. These features 363 

will help us understand the spectral dependence of S and δ shown and discussed in the next 364 

section.  365 

 366 

 367 

Figure 4. 𝑃11  and 𝑃22/𝑃11 for each particle geometry. Results for (a, d) 355 nm, (b, e) 532 nm, 368 

(c, f) 1064 nm of each iron-containing mineral phase’s minimum refractive index. Highlighted 369 

in black is particle 3D Ca-Rich. 370 

 371 

 372 
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4. Sensitivities of lidar ratio and depolarization ratio to particle properties 373 

4.1. Sensitivity to dust particle size 374 

In lidar-based aerosol remote sensing, the S - δ diagram is often used to classify aerosols into 375 

different types (Burton et al., 2012; Illingworth et al., 2015). The S - δ diagram for the FIB dust 376 

samples is shown in Figure 5. Notably, S is negatively correlated with δ when the results for all 377 

three wavelengths are combined (correlation coefficient of 0.83). Specifically, the δ at 1064 nm 378 

is smaller than the corresponding values at 532 nm and 355 nm, while the opposite is true for the 379 

S. The results for 532 nm and 355 nm largely overlap with each other. Recall that the same CRI 380 

is used for all three wavelengths, so these spectral differences are caused by the size parameter 381 

difference, i.e., the relative size of the particle with respect to the lidar wavelength. To further 382 

illustrate this point, we plotted the S and δ separately as a function of the dust particle size 383 

parameter, shown in Figure 6. Note that the size of the irregular particle can be defined in 384 

different ways; here, we adopt the volume-equivalent size.  385 

 386 
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  387 

Figure 5. S - δ graph of FIB dust particles at each of 355 nm, 532 nm, and 1064 nm 388 

wavelengths for the refractive index of each mineral type found present in the particle. 389 

 390 

Figure 6 reveals an interesting asymptotic behavior of lidar properties with respect to size, where 391 

S (Figure 6a) and δ (Figure 6b) first decreases and increases, respectively, with size parameters 392 

and then seemingly approach their asymptotic values. We use a locally weighted scatterplot 393 

smoothing regression (or LOWESS) to fit the trend in lidar optical properties with size 394 

parameters. We find that both S and δ plateau around size parameter x ≈ 8 and then approach to 395 

their asymptotic values, S = 35 sr and δ = 0.41 . These asymptotic values differ from the global 396 

averages of CALIPSO shown in Figure 6 due to the differences between single scatterers and 397 
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volumetric measurements produced by a lidar instrument in the atmosphere. Also note that the 398 

asymptotic values correspond to the upper limits while the CALIPSO results are the global mean 399 

values used by their operational product team. Notably, these results span a limited size 400 

distribution due to the sizes present in the dust particles analyzed and the computational expense 401 

to produce simulations of larger particles. However, the asymptotic behavior of lidar properties 402 

has also been reported in several previous studies. For example, the S and δ based on the so-403 

called super-spheroid dust model in Kong, S. et al. (2022) showed a similar asymptotic behavior 404 

for the size parameter range between 2 and 20 (see their Figure 3), and so is the laboratory 405 

measured dust δ in Järvinen et al. (2016) (see their Figure 9). 406 

 407 

 408 
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 409 

Figure 6. Relationship between dust particle size parameter and (a) S and (b) δ. The red line is 410 

a LOWESS fit of the data for S and a Sigmoid function for δ. The black lines correspond to (a) 411 

S = 44 sr, the S used for CALIPSO’s aerosol classification of dust (Kim et al., 2018) and (b) 412 

δ = 0.277, the median observed δ at 532 nm of the Atlantic dust transport region using CALIOP 413 

(Liu Z. et al., 2015). 414 

 415 

Since S is a function of both 𝑃11(π) and the ω, we investigate their relative roles in determining 416 

the size dependence of S. Figure 7a shows that the values of S lie closely around the 1/𝑃11(π) 417 

line, with the r-square value around 0.97 for a simple regression of S = 12.9/𝑃11(π). In contrast, 418 

single-scattering albedo ω plays a lesser role in S among the particles tested due to greater 419 

similarities in values (Figure 7b). However, the outliers in Figure 7a correspond to points with 420 

much lesser ω in Figure 7b, particularly the FIB sample 3D Ca-rich (see Figure 2) using the 421 

magnetite refractive index, which has an imaginary refractive index of 0.021 to 0.024, an outlier 422 

with a magnitude ten times greater than the other mineral types present (See Table 1). In Figure 423 

7c and d, we plot the variation of 𝑃11(π) and ω respectively as a function of size parameter. 424 
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Although the variability of 𝑃11(π) is quite large, especially in the size parameter range between 425 

5 and 10, it generally increases with size parameter. In contrast, the ω in Figure 7b shows a slight 426 

decrease with size. These results indicate that 𝑃11(π) plays a more dominant role than the ω in 427 

determining the size dependence of S in these dust samples.  428 

 429 
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 430 

Figure 7. S as a function of a) 𝑃11 and b) ω. c) 𝑃11 and d) ω as a function of dust size 431 

parameter. The color of each dot corresponds to the imaginary refractive index. 432 

 433 

Following the same thought for the above S analysis, we analyze the role of 𝑃11(π) and 𝑃22(π) 434 

in determining the asymptotic behavior of δ in Figure 6b. It is seen in Figure 8a and b that both 435 

𝑃11(π) and 𝑃22(π) increase with dust size. Interestingly, their ratio 𝑃22(π)/𝑃11(π) first 436 

decreases with size and then seems to approach an asymptotic value of 0.4 when dust particles 437 

are large. So, the result suggests that the asymptotic trend of δ with respect to dust size is a result 438 

of the asymptotic behavior of 𝑃22(π)/𝑃11(π).  439 

 440 
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 441 

 442 

Figure 8. a) 𝑃11(π),  b) 𝑃22(π) and c) 𝑃22(π)/𝑃11(π) as a function of the dust particle size 443 

parameter. 444 

 445 

 446 

4.2. Sensitivity to dust shape and sphericity  447 

Several studies have shown that constraining particle morphology is important for quantifying 448 

the δ of dust particles (Dubovik et al., 2006; Saito et al., 2021; Liu J. et al., 2015; Kahnert et al., 449 

2020; Kong, S. et al., 2022). As explained in the introduction, most of these studies are based on 450 

simple hypothetical shape models such as ellipsoid and irregular hexahedrons. In this section, 451 

we investigate the dependence of δ on dust sphericity based on the FIB dust samples. As 452 

explained in section 2.2, in the baseline simulations each dust sample has different sizes and CRI 453 

that corresponds to laboratory measured dust mineralogy. As a result, the differences in δ 454 
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between different sample particles in the baseline simulations are caused by not only shape but 455 

also size and CRI differences. To eliminate the influence of size and CRI and focus on the effect 456 

of sphericity, we carried out an additional set of ADDA computations for the 532 nm wavelength, 457 

where we used the same CRI of n = 1.5 + 0.005i and the same volume-equivalent radius of 0.5 458 

𝜇m for all the FIB particles but kept the original shape of each particle. The use of the common 459 

size and CRI allows us to investigate the dependence of δ on the sphericity index defined as 460 

follows (Wadell, 1935; Saito and Yang, 2022): 461 

 462 

Ψ =
π1/3(6𝑉)2/3

𝐴𝑠
,  

(8) 

Where Ψ is the sphericity, V is the volume of the particle, and 𝐴𝑠 is the surface area. By 463 

definition, a sphere is Ψ=1, and a perfectly spherical particle has a δ of 0. However, due to the 464 

irregularity of the FIB dust sample geometries, their Ψ, more specifically the surface area, is 465 

heavily impacted by the level of granularity in voxel size, similar to the well-known coastline 466 

paradox (Steinhaus, 1954). Therefore, we employ the effective sphericity as the average 467 

projected area of a particle is not susceptible to the same issues of increasing value with precision 468 

(Vouk, 1948; Saito and Yang, 2022): 469 

Ψeff =
π1/3(6𝑉)2/3

4𝐴𝑝𝑟𝑜𝑗
, 

 

(9) 

 470 

Where Ψeff is the effective sphericity and 𝐴𝑝𝑟𝑜𝑗 is the average projected area across all projection 471 

directions. This gives us a wide range of effective sphericity between 0.49-0.89. As shown in 472 

Figure 9, we find no clear relationship between effective sphericity and δ or S (null hypothesis 473 
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rejected with p > 0.05 for both S and δ). This may be a result of a limited set of geometries of 474 

the FIB dust samples. It could also be due to the limitation of the effective sphericity index in 475 

Eq. (9) failing to capture the subtle dependence of δ on dust particle shape. Note that other 476 

previous studies have also found weak dependence of δ in particle sphericity (e.g., Kong, S. et 477 

al., 2022). Further studies are warranted to better understand the relationship between the δ and 478 

morphology of dust particles. But overall, our results seem to suggest that the impact of particle 479 

sphericity on δ and S is less important than particle size.  480 

 481 

 482 

Figure 9. (a) Effective sphericity dependence of δ. (b) Lidar ratio variance with effective 483 

sphericity. A common volume is used by constraining the volume equivalent sphere radius to 484 

0.5 𝜇m for each particle as well as a refractive index of n  =  1.5  +  . 005i. A wavelength of 485 

532 nm was used. 486 
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 487 

 488 

4.3. Sensitivity to dust mineralogy 489 

Each particle from Conny et al.’s study (2019) was determined to have different amounts of iron 490 

in its composition through their EDX spectroscopy tests. Using this data, they determined the 491 

refractive index of each particle with the Maxwell‐Garnett dielectric function described in 492 

section 2.3. The tests resulted in the percentage of elements by mass and volume, but did not 493 

reveal the mineral phase within the dust. To account for this, the study uses various possible iron 494 

containing mineral phases for each particle to determine the refractive index, as these phases 495 

have the greatest variability in possible refractive index for these particles. They also account for 496 

birefringence through a minimum and maximum value for refractive index. Each particle was 497 

given a hematite phase, while some had magnetite, ankerite, and/or siderite present. Interested 498 

readers are directed to Conny et al. 2019 for further details.  499 

 500 

Figure 10. Variation of a) ω, b) S, and c) δ for each particle with its magnetite phase and 501 

corresponding hematite phase.  502 

Each of these mineral phases has a different CRI, with magnetite being the most absorbing of 503 

the iron-containing phases present (see Table 1). This results in considerable variations (up to 504 

32%) in single scattering albedo (Figure 10a), particularly for the 3D Ca-Rich particle, which 505 
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has the highest iron content by mass, ranging from 11.4 % to 7.90 % depending on the mineral 506 

phase used. In contrast, the next most iron-dense particle (4N1 Ca‐Mg) contains only 4.35 % to 507 

1.56 %. Accompanying the reduction in single scattering albedo, the S becomes systematically 508 

larger (Figure 10b), and the δ becomes smaller (Figure 10c) when hematite is replaced by 509 

magnetite. These results underscore the critical role of dust mineralogy in influencing the SSA 510 

of dust particles, as highlighted in previous studies (Li et al., 2021; Song et al., 2022, 2024). 511 

However, the effects of mineralogy on lidar-derived δ and S are comparatively smaller than the 512 

impacts from dust particle size. An important caveat to keep in mind when interpreting these 513 

results is that the same dust CRI has been used for all three wavelengths, as mentioned earlier. 514 

Dust absorption typically increases with decreasing wavelength in the visible to ultraviolet 515 

spectral region, which is not accounted for in our computations. Therefore, the impacts of 516 

mineralogy on lidar properties at the 355 nm wavelength, where dust can have strong absorption, 517 

may be underestimated. We will leave this for future studies because the spectral dependence of 518 

dust CRI is still highly uncertain due to the lack of reliable observations.  519 

 520 

 521 

5. Parameterization schemes for dust δ  522 

The results in Section 3 indicate that particle size plays a dominant role in determining the dust 523 

δ of FIB dust particles. As shown in Section 3.1, the dust δ exhibits an asymptotic trend with 524 

increasing size (see Figure 6b), a pattern also noted in several previous studies (Kong, S. et al., 525 

2022; Järvinen et al., 2016; Kemppinen et al., 2015 a, b). The robustness of this asymptotic trend 526 

inspired us to develop two parameterization schemes for δ as a function of dust size, which will 527 

be introduced in this section. This will allow us to extend the utility of the dust particle data to a 528 
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larger range of sizes, as the individual particles have a limited range of size parameters. One 529 

scheme is designed for single particles, while the other is intended for ensembles of particles 530 

with a particle size distribution. We hope that these parameterization schemes can be used to 531 

efficiently estimate the δ of dust particles without resorting to time-consuming scattering 532 

simulations.  533 

 534 

The parameterization for single particles is straightforward. To model the asymptotic trend of 535 

individual particle δ with dust particle size, we employed a sigmoid function as follows: 536 

δ(𝑥) =
δ∞

1+𝑒−𝑎(𝑥+𝑏) =
0.41

1+𝑒−1.09(𝑥−3.7). 
(10) 

The sigmoid function has three parameters: δ∞ is the asymptotic value of δ when the size 537 

parameter is large. The other two parameters a  and b control the shape of the sigmoid function. 538 

After a nonlinear curve fitting, we find δ∞  = 0.41,  a  = 1.09 and b =   − 3.7 (𝑅2  =  0.72). 539 

This simple parameterization can be used to estimate the δ of a single dust particle given its 540 

size and the wavelength of interest.  541 

 542 

Next, we will use Eq. (10) to construct a parameterization scheme for the volumetric 543 

depolarization ratio, ⟨δ⟩ of a dust plume following the widely used lognormal particle size 544 

distribution (n(𝑟𝑣)) giving us a value for δ for the ensemble of particles. To this end, we need to 545 

first make an approximation. For a given dust particle size distribution n(𝑟𝑣) = dN/dln𝑟𝑣, the 546 

rigorous definition of the volumetric δ is given by 547 

⟨δ⟩ =
1−⟨𝑃22(π)⟩/⟨𝑃11(π)⟩

1+⟨𝑃22(π)⟩/⟨𝑃11(π)⟩
,  

(11) 
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where  ⟨𝑃11⟩ and ⟨𝑃22⟩ are the bulk scattering matrix elements after the averaging over n(𝑟𝑣). 548 

For example,  549 

⟨𝑃11⟩ =
∫ 𝑃11(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑ln

∞
−∞

 𝑟𝑣 

∫ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑ln
∞
−∞  𝑟𝑣 

, 
 

(12) 

where 𝐶𝑠𝑐𝑎 is the scattering cross section of dust particle with the size of 𝑟𝑣. We found that it is 550 

difficult to use Eq. (11) to estimate ⟨δ⟩, because neither ⟨𝑃11⟩ nor ⟨𝑃22⟩ can be easily 551 

parameterized with size parameter. To avoid this difficulty, we propose the following 552 

approximate way to estimate the ⟨δ⟩ as 553 

⟨δ⟩ ≈
∫ δ(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)

∞

−∞
 𝑑ln 𝑟𝑣 

∫ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)
∞

−∞
 𝑑ln 𝑟𝑣 

, 
 

(13) 

which allows us to use the simple parameterization in Eq. (10). The accuracy of this 554 

approximation will be evaluated momentarily. Here, we convert from size parameter to volume 555 

median radius through 𝑥𝑣𝑔 = 2π𝑟𝑣𝑔/ as δ will vary with wavelength. Next, we need to specify 556 

the 𝐶𝑠𝑐𝑎(𝑟𝑣) of single particles. Unfortunately, the size parameter span of the FIB dust samples 557 

is too small to cover the whole dust n(𝑟𝑣). To solve this problem, we use the TAUMdust2020 558 

database to estimate 𝐶𝑠𝑐𝑎(𝑟𝑣). TAMUdust2020 is a comprehensive database by Saito et al. (2021) 559 

that covers the scattering properties of 20 irregular hexahedral shape models over the entire 560 

practical range of particle sizes, wavelengths, and CRI of mineral dust particles. Based on the 561 

regional dust models recommended by Saito et al. (2021), an ensemble-weighted degree of 562 

sphericity of 0.7 is selected to represent the dust particles. For the dust CRI, we use the data from 563 

Song et al. (2022) to interpolate the TAMUdust2020 to obtain the 𝐶𝑠𝑐𝑎(𝑟𝑣). In Song et al. (2022), 564 

three sets of dust CRI corresponding to the low, mean, and high concentration of hematite (Di 565 

Biagio et al., 2019) were used to compute the dust scattering properties and their direct radiative 566 
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effects. Here we adopt the CRI corresponding to the mean concentration of hematite. Note that 567 

the CRI from Song et al. (2022) is spectrally dependent with increasing absorption with 568 

decreasing wavelength (see their Figure 2), which means that the 355 nm has the strongest 569 

absorption among the three lidar wavelengths considered here. Finally, for the dust n(𝑟𝑣), we 570 

use the lognormal distribution 571 

 572 

n(𝑟𝑣) =
𝑑𝑁

𝑑ln (𝑟𝑣) 
=

𝑁0

√2π(σ𝑔)
exp  [−

(𝑟𝑣/𝑟𝑣𝑔) 

(σ𝑔)
2 ]  , 

 

(14) 

 573 

 where 𝑁0 is a constant and 𝑟𝑣𝑔 is the volume median radius. We use a fixed standard deviation 574 

of σ𝑔 = 0.529, the same standard deviation of the fine mode dust from AERONET’s n(𝑟𝑣) in 575 

Cape Verde from Dubovik et al. (2002) shown in Figure 12, when creating the parameterization 576 

in Figure 11.  577 

 578 

Using the combination of the δ(𝑥) parameterization in Eq. (10), the 𝐶𝑠𝑐𝑎(𝑟𝑣) from the 579 

TAMUdust2020 database and the lognormal n(𝑟𝑣) in Eq. (14), we computed the volumetric dust 580 

depolarization ratio ⟨δ⟩ based on the proposed approximation in Eq. (13). The result for the 532 581 

nm ⟨δ⟩ as a function of the effective size parameter is shown in Figure 11a. It is not surprising to 582 

see that the volumetric dust depolarization ratio ⟨δ(𝑥𝑣𝑔)⟩ resembles the δ(𝑥) for the single 583 

particles in terms of its size dependence. Further simplification is possible through a fitting of 584 

the newly bulk averaged depolarization ratio. We find the depolarization of the FIB realistic 585 

particles are well approximated by the following hyperbolic tangent equation: 586 
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⟨δ(𝑥𝑣𝑔)⟩ ≈ 0.41tanh (0.14𝑥𝑣𝑔 + 0.09) , (15) 

with an r-squared value of 0.79 as shown in Figure 11a. While this function is fitted for a 587 

wavelength of 532 nm in particular, we found that the results for the 355 nm and 1064 nm 588 

wavelengths are almost identical. This is probably because we used the same δ(𝑥) 589 

parameterization for all three wavelengths, and only different 𝐶𝑠𝑐𝑎 due to the use of spectrally 590 

dependent CRI in Song et al. (2022). It turns out that the 𝐶𝑠𝑐𝑎 plays a minimal role in the δ value 591 

making Eq. (15) a reasonable approximation for all three lidar wavelengths given an effective 592 

particle size parameter, 𝑥𝑣𝑔. This is supported by the comparison results shown in Figure 11b. 593 

The solid lines correspond to the volumetric ⟨δ⟩ for the three wavelengths predicted based on the 594 

parameterization Eq. (15). The dotted line corresponds to the ⟨δ⟩ of irregular hexahedral 595 

computed based on the TAMUdust2020 database using the Song et al. (2022) dust CRI. It is 596 

important to note that the computation for irregular hexahedral is based on the rigorous definition 597 

of δ in Eq. (11) without any approximation. Evidently, the two sets of ⟨δ⟩ agree reasonably well 598 

in terms of both spectral and size parameter dependencies. Interestingly, a decreasing trend was 599 

observed for the 355 nm δ based on the irregular hexahedral when 𝑟𝑣𝑔 is larger than about 2 µm 600 

to 3 µm, which is not seen in either our parameterization or hexahedral results for other 601 

wavelengths. As mentioned above, in the computation for the irregular hexahedral we used the 602 

spectrally dependent CRI that has a higher absorption at 355 nm. Recall the result in Figure 10c 603 

that indicates δ to decrease with dust absorption. This decreasing with size trend of δ for large 604 

𝑟𝑣𝑔 is a result of stronger absorption at 355 nm, as it is reflected in a decrease in SSA for those 605 

particles (Saito and Yang, 2021).  606 

 607 
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 608 

Figure 11: (a) Parameterization of realistic δ for effective size parameter using a hyperbolic 609 

tangent function. (b) Depolarization Ratio predicted for a monomodal size distribution with 610 

varying volume-equivalent median radius. The δ for realistic geometries was derived through 611 

equation 15, while hexahedral shapes used P11 and P22 parameters. 612 

 613 

The utility of the simple parameterization scheme in Eq. (15) is further demonstrated in terms 614 

of simulating the spectral dependence of δ as shown in the following case. Here, we use the 615 

climatological dust n(𝑟𝑣) retrieved by the AERONET at Cape Verde as reported in Dubovik et 616 

al., (2002) (Figure 12a) to compute three sets of volumetric dust ⟨δ⟩ for the three lidar 617 

wavelengths using the following three methods: 618 

1. In the first method (black solid lines in Figure 12b), dust scattering properties are based 619 

on the irregular hexahedral model from the TAMUdust2020 database. The dust CRI is 620 

spectrally dependent from the Song et al. (2022). The ⟨δ⟩ is computed based on the 621 

rigorous definition in Eq. (11) with ⟨𝑃11⟩ and ⟨𝑃22⟩ averaged over n(𝑟𝑣).  622 

2. In the second method (blue dashed lines in Figure 12b), same as the first method except 623 

that the ⟨δ⟩ is computed based on the approximation method in Eq. (13).  624 



 

38 

3. In the third method (red dotted lines in Figure 12b), the ⟨δ⟩ for each wavelength is 625 

simply predicted using the parameterization in Eq. (15) by converting the 𝑥𝑣𝑔 to 𝑟𝑣𝑔. 626 

As such, the comparisons between the three methods enable us to assess the uncertainty 627 

associated with each step of approximation. For example, the comparison between method 1 and 628 

2 can help us understand the uncertainty associated with the ⟨δ⟩ computation using the 629 

approximation method in Eq. (13). The comparison of method 3 to the other two methods helps 630 

us understand the overall accuracy of our simple parameterization.  631 

 632 

In order to use the full n(𝑟𝑣) with method 3, a weighting by backscatter coefficient is utilized 633 

such that (Mamouri and Ansmann, 2014) 634 

⟨δ⟩ =
β𝑓δ𝑓(1+δ𝑐)+β𝑐δ𝑐(1+δ𝑓)

β𝑓(1+δ𝑐)+β𝑐(1+δ𝑓)
, 

(16) 

 635 

where β is calculated from the TAMUdust2020 database.  636 

 637 

 638 
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Figure 12. (a) Dust particle size distribution for Cape Verde using AERONET, adapted from 639 

Dubovik et al. (2002). (b) Depolarization Ratio of fine and coarse mode for hexahedral dust 640 

and FIB reconstruction using approximation methods 1, 2, and 3 as described in the text. 641 

 642 

The resulting comparison in Figure 12 shows all three methods simulate a substantially smaller 643 

δ for the fine mode than the coarse mode. Additionally, the fine mode δ based on all three 644 

methods exhibits a decreasing trend with wavelength which is a result of the fast-increasing trend 645 

of δ with dust particle size parameter for fine mode dust particles (See Figure 6). The differences 646 

in the fine mode δ between the three methods are mostly smaller than 0.05, with the method 3 647 

result based on the simple parameterization scheme slightly larger than the other two methods. 648 

Finally, for the coarse mode dust δ, the results based on the simple parameterization (method 3) 649 

are close to spectrally neutral and smaller than methods 1 and 2 for 355 and 532 nm, while the 650 

use of TAMUdust2020 decreases δ at 1064 nm. 651 

 652 

Interestingly, the full-size distribution δs based on methods 1 and 2 exhibit an inverse “v” shape, 653 

with the maximum at the 532nm and decreasing toward both 355 nm and 1064 nm. Such an 654 

inverse “v” shape spectral signature of dust δ has also been observed recently by (Haarig et al., 655 

2022) over Leipzig, Germany, in February and March 2021 during a transported Sahara dust 656 

event (see their Figure 5). As aforementioned, our δ parameterization scheme using method 3 657 

and the parameterization of the FIB dust samples does not take into account the spectral 658 

dependence of dust CRI and the corresponding change of absorption. In methods 1 and 2, we 659 

use the CRI from Song et al. (2022) which has a stronger absorption at 355 nm, which leads to 660 

a decrease of δ from 532 nm to 355 nm. Therefore, our results indicate that the inverse “v” shape 661 
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spectral signature of dust δ is a result of competing effects of dust size and absorption. The 662 

decrease of δ from 532 nm to 1064 nm is the result of dust size while the decrease from 532 nm 663 

to 355 nm is a result of dust absorption.  664 

 665 

Despite the limitation of spectrally independent CRI, the overall accuracy of our 666 

parameterization scheme is satisfying, partly due to the error cancellation between the 667 

overestimation of the fine mode δ and underestimation of coarse mode δ. For example, after 668 

summation of fine and coarse modes, the δ of the whole n(𝑟𝑣) for the 532nm wavelength is ⟨δ⟩ ≈669 

 0.335 based on method 1, while method 3 based on our simple parameterization is  ⟨δ⟩ ≈670 

 0.334.  671 

 672 

Comparing the dust δ of the full n(𝑟𝑣) to that of fine mode δ and coarse mode δ also gives us 673 

interesting results. Both fine and coarse modes individually decrease with wavelength despite 674 

the inverse “v” shape spectral signature of the full n(𝑟𝑣). This characteristic is quite nicely 675 

explained by an interpretation of Eq. (16). Across each wavelength, β𝑓 < β𝑐 so ⟨δ⟩ is greater 676 

than a simple average of both fine and coarse modes. But β𝑐 increases with wavelength. 677 

Therefore, despite δ𝑓 and δ𝑐 decreasing spectrally, δ𝑐 has a greater weighting in the equation. In 678 

other words, more of the backscattered signal is due to larger particles as wavelength increases, 679 

which are the particles exhibiting greater depolarization. Competing factors of β and δ further 680 

reinforces the absorption and size impact on δ. Thus, the comparisons shown in Figure 12 are 681 

promising. 682 

 683 
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The utility of this parameterization likely comes from the inverse problem. Given the reliance 684 

on TAMUdust2020 for β, reconstructing the δ from a n(𝑟𝑣) still requires use of simplified 685 

theoretical geometries for some amount of the calculation. However, given a retrieved 686 

backscattering coefficient, δ, and n(𝑟𝑣), using Eq. (15) and (16) creates a succinct method of 687 

retrieving β𝑓 and β𝑐, separating fine and coarse fraction of dust according to Mamouri and 688 

Ansmann (2014). 689 

 690 

Specifically in coarse mode analysis, there are some limitations of our study. The sigmoid 691 

parameterization leads to a very flat parameterization of δ for particles greater than 1 𝜇m in 692 

volume equivalent radius seen in both Figure 11b and 12b which may be further refined with 693 

larger particles, currently unavailable due to computational cost. It is also important to note our 694 

study uses a wavelength-independent refractive index based on 589 nm, causing this work to 695 

miss some spectral dependency that may cause the coarse mode differences in each wavelength 696 

when using the globally averaged refractive index (see Figure 11b). The competing effects of 697 

size and mineral composition of dust particles have been observed in studies of spectral 698 

dependence of δ (Haarig et al., 2022), which we will investigate in future studies.  699 

 700 

 701 

6. Conclusions and summary  702 

In this study, we utilized the ADDA model to compute the scattering properties of FIB dust 703 

samples and derived the S and δ at three widely used lidar wavelengths: 355 nm, 532 nm, and 704 

1064 nm. The advantage of this study compared to previous work is the use of realistic dust 705 

shapes reconstructed through the FIB tomography technique. The characterization of single 706 
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scattering properties of these realistic samples through rigorous computational techniques should 707 

serve well as benchmark data for the dust scattering community. We investigated the dependence 708 

of dust S and δ on dust particle size, shape, and mineral composition. The results lead to the 709 

following conclusions: 710 

● Both the S and δ exhibit an asymptotic trend with dust particle size: the S initially 711 

decreases while the δ increases with size, before both approach their asymptotic values. 712 

● The lidar properties were found to have only a weak dependence on effective sphericity. 713 

● The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the 714 

dust's single scattering albedo and δ, while increasing S. 715 

In addition to these scientific findings, the convergence index introduced in Section 3.3 and the 716 

δ parameterization schemes described in Section 5 may be useful for future research on light 717 

scattering by nonspherical particles and lidar-based remote sensing. The convergence index can 718 

be used to assess the convergence of random orientation computation using the DDA method. 719 

The δ parameterization scheme in Eq. (15) can be used to estimate the δ of dust with a lognormal 720 

size distribution n(𝑟𝑣), which can help us understand the variation of dust size based on δ 721 

observations and the separation of fine and coarse mode dust (Mamouri and Ansmann, 2014).  722 

 723 

Certain limitations of this study need also to be addressed, particularly regarding the 724 

parameterization scheme of Section 5. This model’s parameterization leads to a flattened coarse-725 

mode in an attempt to extrapolate upon the limited size range available due to computational 726 

limits of DDA. Therefore, it may not have fully captured the optical properties for use with 727 

particularly large size parameters. Additionally, the wavelength-independent complex refractive 728 

index based on 589 nm measurements was applied to all three lidar wavelengths, simplifying the 729 



 

43 

spectral differences in lidar properties, particularly at 355 nm where absorption from iron-phase 730 

minerals is more significant. Future studies on the coarse mode and spectral variation of dust 731 

lidar properties will improve the parameterization and applicability of the parameterization 732 

scheme and ability to utilize the FIB dust samples for atmospheric observations. 733 
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