10

11

12

13

14

15

Scattering Properties and Lidar Characteristics of Asian Dust Particles Based on Realistic

Shape Models

To be submitted to ACP
Anthony La Luna'?, Zhibo Zhang!**, Jianyu Zheng??, Qiangian Song', Hongbin Yu?, Jiachen
Ding*, Ping Yang*, Masanori Saito’

1. Physics Department, University of Maryland Baltimore County (UMBC), Baltimore,
MD, USA

2. Goddard Earth Sciences Technology and Research (GESTAR) I, UMBC, Baltimore,
MD, USA

3. NASA Goddard Space Flight Center Greenbelt, MD USA

4. Texas A&M University, College Station, TX, USA

5. University of Wyoming, Laramie, WY, USA

Correspondence to: Zhibo Zhang zzbatmos@umbc.edu



16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Abstract
The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and
backscattering depolarization ratio (8), were studied using a discrete dipole approximation
(DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine
detail using the focused ion-beam (FIB) tomography technique. An index based on the symmetry
of the scattering matrix was developed to assess the convergence of random orientation
computation using DDA. Both the S and & exhibit an asymptotic trend with dust particle size:
the S initially decreases while the & increases with size, before both approach their asymptotic
values. The lidar properties were found to have statistically insignificant dependence on effective
sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce
the dust's single-scattering albedo and 8. Utilizing the robust asymptotic trend behavior, two
parameterization schemes were developed: one to estimate the § of a single dust particle given
its size, and the other to estimate the § of dust particles with a lognormal particle size distribution
given the effective radius. The parameterization scheme was compared with results based on the
TAMUdust2020 database, showing hexahedrals to reasonably represent realistic geometries

with similar physical properties.
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1. Introduction
Dust aerosols are an important component of the Earth System, interacting with Earth’s energy,
water, and carbon cycles. Directly, dust aerosols scatter and absorb both shortwave and longwave
radiation, influencing the planet's energy balance (Tegen et al., 1996; Miller and Tegen, 1998;
Myhre et al., 2013; Song et al., 2018, 2022). By scattering incoming solar radiation, dust aerosols
contribute to cooling the atmosphere and surface regionally, impacting temperatures and
affecting atmospheric circulation patterns (Evan et al., 2006; Lau and Kim, 2007; Zhang et al.,

2022).

The transport of dust aerosols also has far-reaching implications. The long-range transport of
Asian dust is frequently observed on the United States’ west coast with considerable impacts on
the air quality and climate (Yu et al., 2012; Creamean et al., 2014; Wu et al., 2015). It is also
observed impacting Taiwan through similar transport mechanisms (Lin et al., 2007). In fact,
mineral dust from the Taklimakan desert has been found to be transported a full rotation around
the globe (Uno et al., 2009). Moreover, the deposition of dust aerosol during the long-range
transport brings essential nutrients such as iron and phosphorus from terrestrial sources to marine
ecosystems, being part of biogeochemical cycles across vast distances (Baker et al., 2003; Yu et
al., 2015b; Westberry et al., 2023). Asian dust deposition in the East China Sea stimulates
phytoplankton growth and primary productivity, influencing marine food webs and carbon

cycling (Kong, S. S.-K. et al., 2022).

Lidar is an important tool for remote sensing measurements of airborne dust particles. As

demonstrated in many previous studies (Omar et al., 2009; Burton et al., 2012), it allows us to
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distinguish dust aerosols from clouds and other types of aerosols, track their long-range transport
and study their evolution as they interact with the environment such as clouds, atmospheric
gases, and other aerosols. Among others, elastic backscattering lidars are one of the most widely
used types of lidar. For example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO), is a NASA-French satellite mission that implements a two-
wavelength elastic lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) at 532
nm and 1064 nm wavelengths (Winker et al., 2009). Ground-based lidar networks such as the
NASA Micro-Pulse Lidar Network (MPLNET) use single wavelength measurements for
extinction, backscattering, and depolarization profiles (Welton et al., 2001). The EarthCARE
mission utilizes ATmospheric LIDar (ATLID), a 355 nm wavelength laser and high-spectral
resolution receiver, allowing it to directly measure both lidar ratio and extinction coefficient
(Illingworth et al., 2015; Donovan et al., 2024). Ground based lidars operating at 532 nm and
1064 nm throughout Eastern Asia are also useful for monitoring dust transport and air quality,
running as part of Asian Development Bank (ADB) and Global Environment Facility (GEF)

(Sugimoto et al., 2008).

2.  Theoretical Background
Lidar ratio (S) and depolarization ratio (8) are two most important parameters for lidar-based
remote sensing of aerosols and clouds. For a single dust particle, the S, referred to as the
extinction-to-backscatter coefficient, is defined as (Platt, 1979; Ansmann et al., 1992; Mattis et

al., 2002; Liu et al., 2002)
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4n (1)

S=o/b= wP;; (65 =)’

where o is the extinction coefficient and w and P;; are the single-scattering albedo and phase
function of the dust particle, respectively. For the purposes of this paper, P;; is normalized to 1
when integrating across all scattering directions. B = P11(0; = m)Cy., is the backscattering

coefficient at the exact backscattering direction. When considering a multitude of particles,
B= [ P11(r, 85 = D Cco(ry)n(r,)dInr, ©)

Where 7, is the volume-equivalent sphere radius and n(7,) = dN/dInn, defines a normalized

particle size distribution (n(r;,)).

For Raman lidar and high spectral resolution lidar systems, the lidar ratio can be derived directly
from the observed extinction and backscatter without assumptions about the composition (Miiller
et al., 2007). However, for elastic backscattering lidars, the lidar ratio cannot be directly
measured. As a result, assumptions need to be made about the composition of the atmosphere.
Therefore, the lidar ratio is fundamentally important for elastic lidars like CALIOP and
MPLNET to convert the direct attenuated backscatter observations to an extinction profile
(Young et al., 2018) and derived quantities such as dust aerosol optical depth (Yu et al., 2015a;

Song et al., 2021).

Depolarization ratio § is the ratio of the perpendicular or cross-polarized component to the
parallel component of polarized backscattering signal. For backscattering lidar the

depolarization ratio is defined as
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where P;; is the ij-th element of the particle’s scattering matrix (Kong, S. et al., 2022). § is often
used for aerosol type (Kim et al., 2018) and cloud phase classifications (Hu et al., 2009). First,
if lidar backscattering is dominated by single scattering, & is close to zero for spherical particles
like sulfate aerosols and water droplets. In contrast, & is notably greater for nonspherical particles
like dust aerosols and ice crystals. Moreover, the considerable § differences between spherical
fine particles and nonspherical coarse dust particles also enables the separation of dust extinction

from the total extinction profile retrieved by CALIOP (Yu et al., 2015; Song et al., 2021).

Because of the fundamental importance of S and § for lidar based dust remote sensing, previous
studies have made substantial effort to understand the connection between dust particle
properties, e.g., shape and size, and their lidar characteristics, in particular the S and & (e.g.,
Dubovik et al., 2006; Gasteiger et al., 2011; Liu J. et al., 2015; Kahnert et al., 2020; Saito et al.,
2021; Saito and Yang, 2021; Kong, S. et al., 2022). The common methodology used in these
studies is to use light scattering models, such as the T-matrix (Mishchenko et al., 1996; Bi and
Yang, 2014b) and Discrete Dipole Approximation (DDA) model (Draine and Flatau, 1994, 2013;
Yurkin and Hoekstra, 2007, 2011), to compute the scattering properties including S and & of dust
aerosols and then study the potential dependence on particle properties. Although these studies
have greatly improved our understanding and paved the foundation for the current aerosol
retrieval algorithms, they share a common limitation as they all used hypothetical dust particle
shape models, such as spheroid (Dubovik et al., 2006), irregular polyhedron (Saito et al., 2021),

Gaussian random sphere (Muinonen et al., 1996; Liu J. et al., 2015; Kahnert et al., 2020), tri-
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axial spheroids (Meng et al., 2010; Huang et al., 2023), and super-spheroid (Kong, S. et al., 2022)
to simulate dust particle shapes that are weakly or not constrained by observations. The reason
for this is probably two-fold. Most microscopic observations of dust particles in the literature are
two-dimensional (2D) images based on scanning or transmission electron microscopes (SEM or
TEM), while three-dimensional (3-D) observations are extremely rare. In addition, the
implementation of complex shapes in scattering models is also a challenging task. For example,
until recently the widely used T-matrix code based on the extended boundary condition method
(Mishchenko et al., 1996) is primarily applicable only to rotationally symmetric particles such
as spheroid. It is worth noting that the T-matrix method implementation based on the invariant
imbedding T-matrix method is applicable to arbitrary shapes (Bi and Yang, 2014a). Aware of
the limitation of hypothetical dust particle shape, these studies often use dust scattering
properties from laboratory measurements as benchmark to select an optimal set of hypothetical
shapes that can generate similar scattering properties, e.g., lidar characteristics, as measurements
(Saito et al., 2021; Kong, S. et al., 2022). Nevertheless, the use of hypothetical instead of realistic
dust shape inevitably leads to some important questions. Is the match of the dust scattering
properties a result of a good shape model or a fortunate coincidence? If an optimal shape model
is selected based on one set of dust scattering observations (e.g., § at 532 nm), can this model
automatically simulate other scattering properties (e.g., § at other wavelengths)? Obviously, one
way to address the above questions is to use realistic shape models in the computation of dust
scattering properties. A few studies have made attempts in this direction. For example, Lindqvist
et al. (2014) developed a so-called stereogrammetric surface retrieval method to construct 3-D
dust shapes from 2D SEM dust images and Kemppinen et al. (2015 b) used a surface roughening

model to add detail to the model. Ishimoto et al. (2010) and Kemppinen et al. (2015 a) used a
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Voronoi tessellation-based algorithm to mimic dust internal structure. Jarvinen et al. (2016)
compared the lidar backscattering properties based on the constructed 3-D dust shapes with
laboratory measurements and found reasonable agreements. An important finding from this
study is that § of realistic dust particles at 532 nm first increase with particle size but seems to

approach an asymptotic constant value of ~ 0.30 for coarse dust particles.

The main objective of this study is to better understand the lidar backscattering properties of dust
particles with realistic shapes. The dust shape models used here are based on the focused ion-
beam (FIB) tomography technique, aided by the energy dispersive X-ray spectroscopy (EDX)
and SEM imagining, developed by Conny et al. (2014) and Conny and Ortiz-Montalvo (2017),
which as far as we know is the most direct and faithful measurement of the shape and
morphology of single dust particles. In addition to shape measurement, the EDX is used to
measure the mineral composition of dust particles, which in turn enables the estimation of the
complex refractive index (CRI) of dust particles. Based on the measured dust particle shape and
estimated CRI, Conny et al. (2019, 2020) simulated and studied the scattering properties such as
single scattering albedo and phase functions of the dust samples using the DDASCAT model

(Draine and Flatau, 1994, 2013).

In this study, we focus on the lidar backscattering properties of realistic dust samples obtained
from FIB tomography measurements (Conny et al., 2019). For simplicity, we will refer to these
dust samples as "FIB dust samples." We are particularly interested in the following questions:
How do the S and 6§ of realistic dust samples vary with particle size, shape, mineral composition,

and lidar spectral channel? The remaining portion of the paper is organized as follows: First, in
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Section 2, we introduce the dust samples used in this study, along with their origins and
properties. We also explain the Amsterdam Discrete Dipole Approximation (ADDA) model and
introduce a convergence index to determine the number of orientations necessary for calculating
the optical properties under the random orientation condition. In Section 3, we examine how the
lidar backscattering properties of the dust samples depend on dust properties, including size,
shape, and mineral composition. In Section 4, we present two dust § parameterization schemes:
one to estimate the & of a single dust particle based on its size, and the other to estimate the § of
dust particles with a lognormal particle size distribution based on the effective radius. Finally, in

Section 5, we summarize the main findings and conclusions of this study.

3. Data and model
3.1.  FIB Dust Samples
The fourteen dust particles measured by FIB were obtained from the Mauna Loa Observatory
(19° 32" 10"N, 155° 34’ 34"W) on the island of Hawaii between March 15 and April 26, 2011.
Six of these particles were collected during the daytime. Following Conny et al. (2019), these
particles will be referred to as the "D" sample (e.g., "3D" indicates that the sample was collected
during the daytime of day 3). The other eight particles were collected at night and are referred to
as "N" samples. The properties of these particles, including their shape, size, and composition,
as well as the measurement techniques, have been extensively documented in (Conny et al.,
2019, 2020). Conny et al., (2019) analyzed the back trajectories from the Mauna Loa
Observatory during this time interval, suggesting that their samples likely originated as Asian
dust. Out of curiosity, we collocated the CALIOP observations with the back trajectories from

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al.,
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2015; Rolph et al., 2017) from 25th of March 2011, 0000 UTC to 18th of March 2011, 0000
UTC, starting from the Mauna Loa Observatory. The lidar depolarization ratio observations and
aerosol classification (Figure 1c and e) results show large amounts of dust along the later portion
of the projected path 23rd of March 2011. The back trajectories and CALIOP observations
confirm that the FIB dust samples are likely long-range transported Asian dust particles, more
specifically from the Gobi Desert, consistent with Conny et al. (2019). This may be an important
distinction as Asian dust exhibits some differences in optical properties when compared to other
regions such as the Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly in regardsregard
to the mineral composition discussion in Section 3.2 and 4.3. However, to our knowledge, there
is no evidence to suggest that morphology of dust particles is strongly tied to regional origin.
Therefore, while these dust particles are suspected to be of Gobi origin, we believe these dust

samples to be useful for characterization of atmospheric dust more generally.
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Figure 1. (a) NOAA HYSPLIT Backward Trajectory paths from 25th of March, 2011 0000 UTC
to 18th of March, 2011 0000 UTC starting from Mauna Loa Observatory shown in solid lines.

North-South running dashed lines show CALIPSO tracks intersecting with the modeled dust

12
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paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting
with modeled dust paths from NOAA HYSPLIT Backward Trajectory for the 19th and 23rd of
March, 2011 (b-e, respectively). Through & and aerosol subtype classification, a dust plume was

found to be present. In subplots b and ¢, yellow (labeled 2) corresponds with desert dust.

3.2. Dust particle shape and refractive index
As emphasized above, the primary advantage of using FIB dust samples for this study is that the
shape and composition of these samples are directly measured. To determine the dust shape, the
FIB uses a gallium ion beam, milling through each particle in 15 nm to 20 nm increments. This
process results in a stack of 100 to 200 cross-sectional images with dimensions of 1024 by 884
pixels for each particle. These cross-sectional images are then combined to reconstruct highly
detailed 3-D dust shapes, composed of three-dimensional pixels or voxels as illustrated by an

example in Figure 2.

The collection of dust samples spans a range of sizes. In this study, we quantify this for irregular
geometries using the volume equivalent sphere radius (7;,). Using this metric, our library covers
a range from 0.46 um to 0.93 um in 7,. The particle geometries are also assigned two aspect
ratios, where orientation is determined through principal component analysis of the voxel
coordinates. This analysis aligns the longest axis along the z-direction and the greatest variation
from this axis with the x- and y-directions, aligning with an intuitive understanding of defining
aspect ratios in three dimensions. The aspect ratios of these particles vary from 0.629 and 0.398
(particle 2N Ca-S) to more symmetrical particles with aspect ratios of 0.582 and 0.575 (particle

4N1 CaMg).

13



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Figure 2. Orthographic projection of a sample dust particle from the FIB reconstructed

database, 3D Ca-Rich.

In addition to the FIB-based dust shape reconstruction, Conny et al. (2019) also performed the
element composition and mineral phase analysis for the FIB dust samples using the SEM and
energy-dispersive X-ray spectroscopy (EDX). They found that the dust samples can be loosely
classified into three categories based on the element compositions, the mainly Calcium
Magnesium based (Ca-Mg), the Calcium rich (Ca-rich) ones and lastly those primarily composed
of Calcium Sulfide (Ca-S). In this study we follow this naming convention of Conny et al., 2019.
To determine the refractive index of the dust samples, Conny et al. (2019) first estimated the
volume fractions of possible mineral phases in the particles based on the composition analysis
results. Then, the complex refractive index of each particle was determined through the average
Maxwell-Garnett dielectric function based on the estimated volume fraction of each mineral
phase. It should be noted that the iron-phase composition in the particle was assumed to be either
siderite, hematite, or magnetite which have different complex refractive indices. Moreover, two
sets of complex refractive index were used for each iron-phase mineral to account for the

variability induced by optical anisotropy. The combination of mineral differences and refractive

14
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index variability lead to several sets of final refractive index after the Maxwell-Garnett average.
Take the 3D Ca-Rich particle in Figure 2 for example. Table 1 provides the complex refractive
indices at 589 nm from Conny et al. (2019) for a single particle. Interested readers are referred

to their study for more information.

Table 1. The possible complex refractive index at 589 nm of the 3D Ca-Rich particle in Figure

2 from Conny et al. (2019).

Iron-phase Minimum Minimum Maximum Maximum
mineral Refractive Index | Refractive Index | Refractive Index | Refractive Index
Real Imaginary Real Imaginary
Magnetite 1.532 2.14E-02 1.660 2.36E-02
Hematite 1.544 2.32E-03 1.681 2.28E-03
Siderite 1.508 1.34E-05 1.648 1.34E-05

In this study, we are interested in the dust scattering properties at three commonly encountered
lidar wavelengths, namely, 355 nm, 532 nm, and 1064 nm. For simplicity, we assume the same
refractive index from Conny et al. (2019) for all three wavelengths, which is probably reasonable
only for the 532 nm. On the other hand, because we assume the refractive index to be invariant
with wavelength, the wavelength variation essentially corresponds to the variation of dust
particle size parameter x = 2mr /A, allowing us to focus on the impact of dust particle size on
the lidar scattering properties. The impacts of the spectral variation of refractive index will be

investigated in future studies.
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3.3. ADDA model and convergence index of random orientation.
In this study, we utilize the ADDA model version 1.4.0 to compute the single scattering
properties, including the extinction cross section C,,;, single scattering albedo w, and scattering
matrix P, of each FIB dust particle. The scattering properties of dust particles depend on not only
their size, shape, and refractive index, but also their orientations with respect to the incident light
and the wavelength of incident light. In this study we assume that dust particles are randomly
oriented. The theoretical basis and numerical implementation of the ADDA model have been
well documented (Yurkin and Hoekstra, 2007, 2011). It has been used in numerous previous
studies to compute the scattering properties of aerosol and cloud particles (Yang et al, 2013;
Gasteiger, 2011; Collier et al, 2016). The process to generate the inputs from the FIB shape
measurements for the discrete dipole approximation (DDA) model has been described in detail
in Conny et al. (2019). We use the same inputs and configurations in this study. The only
difference is that we use the ADDA model while Conny et al. (2019) used a different DDA
model, DDSCAT, by Draine and Flatau (1994). The reason we cannot directly use the DDA
simulation results from Conny et al. (2019) is twofold. Firstly, their computations are conducted
for an incident light at the 589 nm wavelength, whereas we are interested in lidar wavelengths
of 355 nm, 532 nm, and 1064 nm. Secondly, as will be explained later, we will need a greater
number of orientations to simulate random orientation for P and lidar backscattering properties
(Konoshonkin et al., 2020) than may be sufficient for the o, and w to converge. In the remainder
of this section, we will introduce a practical method to determine if a sufficient number of
orientations have been used in the ADDA simulations to ensure convergence in the results for

random orientation computations.
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For a particle with an irregular shape and arbitrary orientation, the scattering matrix P that

relates the incident and scattering Stokes parameters is a 4x4 matrix with 16 elements

P11(8s) P12(85) P13(05) P14(6s)
Py1(85) Pa(B5) Py3(B5) Pay()
P31(85) P32(05) P33(0s) P3u(05)] 4)
Py1(B5) Pya(B5) Py3(B5)  Pys(By)

where 8; is the scattering angle. If the particle is randomly oriented, for any orientation its
reciprocal orientation is equally likely. Because of the reciprocal symmetry, the scattering matrix
for a randomly oriented particle with irregular shape reduces to (van de Hulst 1957; Mishchenko

et al., 2002; Mishchenko and Yurkin, 2017)

P11(0s)  P12(85)  P13(85)  P14(6y)
P12(85)  Pya(Bs)  P3(B5)  Pau(6y)

—P13(05) —P3(85) P33(05)  P3s(05)| (5)
P14(0s)  P2s(B5) —P34(05) Pas(6)

P =

The symmetry property of the P matrix for randomly oriented particles in Eq. (5) provides a basis
to assess the convergence of random orientation simulations in ADDA. For example, utilizing
the fact that P,; = P;, for a randomly oriented particle we can define a convergence index (CI)

for random orientation as

Cl = T Perk8y—PrrbOY [T 2 (PLa(8,) — P11 (8,)) deos (8).
(©)

17



303
304
305
306
307
308

309

310
311
312
313
314
315
316
317
318
319
on
321
322

323

As such, CI approaches zero when the random orientation computation converges. It should be
noted that CI can also be defined based on other symmetric elements of the scattering matrix
such as P,; = P;,, P3; = —P;5 . For practical applications, we usually assume that particles are
randomly oriented with an equal number of mirror particles. Under such a condition, or if the
particle in question has mirror symmetry itself, the scattering matrix has only 6 independent

elements in the form (van de Hulst 1957; Mishchenko and Yurkin, 2017; Yang et al., 2023):

P11(85) P12(85) 0 0
p = |P12(85) P2(8) 0 0
0 0 P33(05)  P34(85)f (7)
0 0 —P34(85)  Pys(8s)
and a CI based on P;; = P,; or P;, = —P,3 must be used.

In the context of ADDA, the orientation of a particle with respect to the incidence is defined by
using three Euler angles a, B, and y. To specify a certain orientation, the particle is rotated first
a on the z-axis, then 8 on the y-axis, and finally y across the new z-axis through the zyz convention
(Yurkin and Hoekstra, 2020). Then, to produce the scattering properties for a randomly oriented
particle, ADDA averages across a large number of orientations. ADDA can do this internally
through specified number of evenly spaced intervals across a, 8, and y. For a and §, ADDA
calculates the scattering properties for the new orientation while for y, or the self-rotation angle,
it equivalently rotates the scattering plane to improve computational time. It calculates
orientations in intervals of 2™ + 1 for each of a, B, and y resulting in £23* +133(2" + 1)2 total
orientations. To assess if the random orientation convergence has been achieved, one can
examine the behavior of CI as well as other scattering properties of interest, as a function of the

number of orientations. An example using the 3D Ca-Rich dust particle is shown in Figure 3 for

18



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

n =1,2,..,6. As expected, all properties converge to asymptotic values as n increases from n =
1 (i.e., 27 orientations) to n = 6 (i.e., 274,625 orientations). On the other hand, it is important to
note that the scalar properties such as extinction efficiency and asymmetry factor (Figure 3a),
and S and & (Figure 3b) have converged when n = 4, while the CI based on certain scattering
matrix elements (Figure 3¢) only converged after n = 5. Based on this result, we employ n = 5
for the computations in this study. The results in Figure 3 clearly show that although one can
assess the convergence of random orientation computation by observing the asymptotic behavior
of scalar properties, the C/ based on scattering matrix elements is a more robust index supported

by fundamental physics.
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Figure 3. (a) Change in extinction efficiency and asymmetry factor with increasing number of
orientations for a representation of a randomly oriented dust particle 3D Ca-Rich. (b) S and

linear depolarization ratio as function of the number of orientations for dust particle 3D Ca-
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Rich. (c) Convergence Index for each of dust particle 3D Ca-Rich’s Mueller index pairs at 532

nm. Note figures start at n = 2.

Thus, the error in computations of optical properties through ADDA is strongly tied to the
number of orientations used. We find in section 3 constraining refractive index through
mineralogy and size through proper characterization of particle size distribution are the largest
potential sources of error in these calculations, as ADDA’s integration error has been set to less
than 10~ and the geometries used are highly detailed, with individual dipole sizes on the order
of 10° nm®. This makes the numerical error negligible compared to the error in chosen
parameters, convergence level, and sample size through the limited set of geometries. The CI is

a tool to minimize computational error while considering computational cost.

With the help of the newly developed C7, we computed the scattering properties of the FIB dust
samples for three commonly encountered lidar wavelengths 355 nm, 532 nm, and 1064 nm. For
each wavelength, more than 60 ADDA simulations are carried out corresponding to different
particles, as well as different refractive indices for each particle as explained above (see section
2.2). Figure 4 shows the scattering matrix elements P;4 and P,, /P, for the FIB dust samples for
the three lidar wavelengths for their minimum refractive index for each mineral typing. Given
the realistic morphology of the FIB dust samples and extensive computational methods of
determining these optical properties, the FIB dust samples can serve as a benchmark for future
studies on simulated mineral dust scattering properties. As one can see in Figure 4 a-c, the values
of P;;1n the forward scattering directions increase systematically from 1064 nm to 532 nm, and

355 nm, which can be explained by the increase of size parameter as wavelength decreases. In
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Figure 4 d-f, P,, (1) /P; (1) shows considerable decreases from 1064 nm to 532 nm, down ~13%
on average. In contrast, the changes are relatively small from 532 nm to 355 nm. These features
will help us understand the spectral dependence of S and & shown and discussed in the next

section.
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Figure 4. P;; and P,, /P, for each particle geometry. Results for (a, d) 355 nm, (b, ¢) 532 nm,
(c, f) 1064 nm of each iron-containing mineral phase’s minimum refractive index. Highlighted

in black is particle 3D Ca-Rich.
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4.  Sensitivities of lidar ratio and depolarization ratio to particle properties
4.1.  Sensitivity to dust particle size
In lidar-based aerosol remote sensing, the S - § diagram is often used to classify aerosols into
different types (Burton et al., 2012; Illingworth et al., 2015). The S - § diagram for the FIB dust
samples is shown in Figure 5. Notably, S is negatively correlated with § when the results for all
three wavelengths are combined (correlation coefficient of 0.83). Specifically, the § at 1064 nm
is smaller than the corresponding values at 532 nm and 355 nm, while the opposite is true for the
S. The results for 532 nm and 355 nm largely overlap with each other. Recall that the same CRI
is used for all three wavelengths, so these spectral differences are caused by the size parameter
difference, i.e., the relative size of the particle with respect to the lidar wavelength. To further
illustrate this point, we plotted the S and & separately as a function of the dust particle size
parameter, shown in Figure 6. Note that the size of the irregular particle can be defined in

different ways; here, we adopt the volume-equivalent size.
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Figure 5. S - § graph of FIB dust particles at each of 355 nm, 532 nm, and 1064 nm

wavelengths for the refractive index of each mineral type found present in the particle.

Figure 6 reveals an interesting asymptotic behavior of lidar properties with respect to size, where
S (Figure 6a) and § (Figure 6b) first decreases and increases, respectively, with size parameters
and then seemingly approach their asymptotic values. We use a locally weighted scatterplot
smoothing regression (or LOWESS) to fit the trend in lidar optical properties with size
parameters. We find that both S and 6 plateau around size parameter x = 8 and then approach to

their asymptotic values, S = 35 srand 6§ = 0.41 . These asymptotic values differ from the global

averages of CALIPSO shown in Figure 6 due to the differences between single scatterers and
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volumetric measurements produced by a lidar instrument in the atmosphere. Also note that the

asymptotic values correspond to the upper limits while the CALIPSO results are the global mean

values used by their operational product team. Notably, these results span a limited size

distribution due to the sizes present in the dust particles analyzed and the computational expense
to produce simulations of larger particles. However, the asymptotic behavior of lidar properties
has also been reported in several previous studies. For example, the S and 6 based on the so-
called super-spheroid dust model in Kong, S. et al. (2022) showed a similar asymptotic behavior
for the size parameter range between 2 and 20 (see their Figure 3), and so is the laboratory

measured dust § in Jarvinen et al. (2016) (see their Figure 9).
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Figure 6. Relationship between dust particle size parameter and (a) S and (b) 6. The red line is
a LOWESS fit of the data for S and a Sigmoid function for 8. The black lines correspond to (a)
S = 44 sr, the S used for CALIPSO’s aerosol classification of dust (Kim et al., 2018) and (b)
8 = 0.277, the median observed § at 532 nm of the Atlantic dust transport region using CALIOP

(Liu Z. et al., 2015).

Since S is a function of both P;, (1) and the w, we investigate their relative roles in determining
the size dependence of S. Figure 7a shows that the values of S lie closely around the 1/P;; (1)
line, with the r-square value around 0.97 for a simple regression of S = 12.9/P; (). In contrast,
single-scattering albedo w plays a lesser role in S among the particles tested due to greater
similarities in values (Figure 7b). However, the outliers in Figure 7a correspond to points with
much lesser w in Figure 7b, particularly the FIB sample 3D Ca-rich (see Figure 2) using the
magnetite refractive index, which has an imaginary refractive index of 0.021 to 0.024, an outlier
with a magnitude ten times greater than the other mineral types present (See Table 1). In Figure

7¢ and d, we plot the variation of P;;(m) and w respectively as a function of size parameter.
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425  Although the variability of P;, (1) is quite large, especially in the size parameter range between
426  5and 10, it generally increases with size parameter. In contrast, the w in Figure 7b shows a slight
427  decrease with size. These results indicate that P, (1r) plays a more dominant role than the w in

428  determining the size dependence of S in these dust samples.
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Figure 7. S as a function of a) P;; and b) w. ¢) P;; and d) w as a function of dust size

parameter. The color of each dot corresponds to the imaginary refractive index.

Following the same thought for the above S analysis, we analyze the role of P;; () and P,, (1)
in determining the asymptotic behavior of § in Figure 6b. It is seen in Figure 8a and b that both
P;;(m) and P,,(m) increase with dust size. Interestingly, their ratio P,,(m)/P;,(m) first
decreases with size and then seems to approach an asymptotic value of 0.4 when dust particles
are large. So, the result suggests that the asymptotic trend of 6 with respect to dust size is a result

of the asymptotic behavior of P,, (1) /P, (1).
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Figure 8. a) P;; (1), b) P,,(m) and c) P,,(m)/P;; (1) as a function of the dust particle size

parameter.

4.2.  Sensitivity to dust shape and sphericity
Several studies have shown that constraining particle morphology is important for quantifying
the & of dust particles (Dubovik et al., 2006; Saito et al., 2021; Liu J. et al., 2015; Kahnert et al.,
2020; Kong, S. et al., 2022). As explained in the introduction, most of these studies are based on
simple hypothetical shape models such as ellipsoid and irregular hexahedrons. In this section,
we investigate the dependence of § on dust sphericity based on the FIB dust samples. As
explained in section 2.2, in the baseline simulations each dust sample has different sizes and CRI

that corresponds to laboratory measured dust mineralogy. As a result, the differences in §
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between different sample particles in the baseline simulations are caused by not only shape but
also size and CRI differences. To eliminate the influence of size and CRI and focus on the effect
of sphericity, we carried out an additional set of ADDA computations for the 532 nm wavelength,
where we used the same CRI of n = 1.5 + 0.0051 and the same volume-equivalent radius of 0.5
um for all the FIB particles but kept the original shape of each particle. The use of the common
size and CRI allows us to investigate the dependence of & on the sphericity index defined as

follows (Wadell, 1935; Saito and Yang, 2022):

_ 1T1/3(6V)2/3
= —AS S

®)
Where W is the sphericity, V is the volume of the particle, and Ay is the surface area. By
definition, a sphere is W=1, and a perfectly spherical particle has a § of 0. However, due to the
irregularity of the FIB dust sample geometries, their ¥, more specifically the surface area, is
heavily impacted by the level of granularity in voxel size, similar to the well-known coastline
paradox (Steinhaus, 1954). Therefore, we employ the effective sphericity as the average
projected area of a particle is not susceptible to the same issues of increasing value with precision

(Vouk, 1948; Saito and Yang, 2022):

1T1/3(6V)2/3

Y =
eff 440

©)

Where W 1s the effective sphericity and A is the average projected area across all projection

proj
directions. This gives us a wide range of effective sphericity between 0.49-0.89. As shown in

Figure 9, we find no clear relationship between effective sphericity and § or S (null hypothesis
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rejected with p > 0.05 for both S and 6). This may be a result of a limited set of geometries of

the FIB dust samples. It could also be due to the limitation of the effective sphericity index in

Eq. (9) failing to capture the subtle dependence of & on dust particle shape. Note that other

previous studies have also found weak dependence of & in particle sphericity (e.g., Kong, S. et

al., 2022). Further studies are warranted to better understand the relationship between the 6 and

morphology of dust particles. But overall, our results seem to suggest that the impact of particle

sphericity on 6 and S is less important than particle size.
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4.3.  Sensitivity to dust mineralogy

Each particle from Conny et al.’s study (2019) was determined to have different amounts of iron
in its composition through their EDX spectroscopy tests. Using this data, they determined the
refractive index of each particle with the Maxwell-Garnett dielectric function described in
section 2.3. The tests resulted in the percentage of elements by mass and volume, but did not
reveal the mineral phase within the dust. To account for this, the study uses various possible iron
containing mineral phases for each particle to determine the refractive index, as these phases
have the greatest variability in possible refractive index for these particles. They also account for
birefringence through a minimum and maximum value for refractive index. Each particle was

given a hematite phase, while some had magnetite, ankerite, and/or siderite present. Interested

readers are directed to Conny et al. 2019 for further details.
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Figure 10. Variation of a) w, b) S, and c) 6 for each particle with its magnetite phase and
corresponding hematite phase.

Each of these mineral phases has a different CRI, with magnetite being the most absorbing of
the iron-containing phases present (see Table 1). This results in considerable variations (up to

32%) in single scattering albedo (Figure 10a), particularly for the 3D Ca-Rich particle, which
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has the highest iron content by mass, ranging from 11.4 % to 7.90 % depending on the mineral
phase used. In contrast, the next most iron-dense particle (4N1 Ca-Mg) contains only 4.35 % to
1.56 %. Accompanying the reduction in single scattering albedo, the S becomes systematically
larger (Figure 10b), and the & becomes smaller (Figure 10c) when hematite is replaced by
magnetite. These results underscore the critical role of dust mineralogy in influencing the SSA
of dust particles, as highlighted in previous studies (Li et al., 2021; Song et al., 2022, 2024).
However, the effects of mineralogy on lidar-derived & and S are comparatively smaller than the
impacts from dust particle size. An important caveat to keep in mind when interpreting these
results is that the same dust CRI has been used for all three wavelengths, as mentioned earlier.
Dust absorption typically increases with decreasing wavelength in the visible to ultraviolet
spectral region, which is not accounted for in our computations. Therefore, the impacts of
mineralogy on lidar properties at the 355 nm wavelength, where dust can have strong absorption,
may be underestimated. We will leave this for future studies because the spectral dependence of

dust CRI is still highly uncertain due to the lack of reliable observations.

5. Parameterization schemes for dust §
The results in Section 3 indicate that particle size plays a dominant role in determining the dust
& of FIB dust particles. As shown in Section 3.1, the dust § exhibits an asymptotic trend with
increasing size (see Figure 6b), a pattern also noted in several previous studies (Kong, S. et al.,
2022; Jarvinen et al., 2016; Kemppinen et al., 2015 a, b). The robustness of this asymptotic trend
inspired us to develop two parameterization schemes for & as a function of dust size, which will

be introduced in this section. This will allow us to extend the utility of the dust particle data to a
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larger range of sizes, as the individual particles have a limited range of size parameters. One
scheme is designed for single particles, while the other is intended for ensembles of particles
with a particle size distribution. We hope that these parameterization schemes can be used to
efficiently estimate the § of dust particles without resorting to time-consuming scattering

simulations.

The parameterization for single particles is straightforward. To model the asymptotic trend of

individual particle § with dust particle size, we employed a sigmoid function as follows:

S(x) — [ 0.41 (10)

1+e—a(x+b) = 1+e—1.09(x—3.7) .

The sigmoid function has three parameters: 8, is the asymptotic value of § when the size
parameter is large. The other two parameters a and b control the shape of the sigmoid function.
After a nonlinear curve fitting, we find 8,, = 0.41, a = 1.09andb = — 3.7 (R? = 0.72).
This simple parameterization can be used to estimate the & of a single dust particle given its

size and the wavelength of interest.

Next, we will use Eq. (10) to construct a parameterization scheme for the volumetric
depolarization ratio, (8) of a dust plume following the widely used lognormal particle size
distribution (n(r,)) giving us a value for § for the ensemble of particles. To this end, we need to
first make an approximation. For a given dust particle size distribution n(r,) = dN/dInr,, the

rigorous definition of the volumetric & is given by

(6) — 1—(P; (1)) /(P11 (1))
1+(P2(m)) /(P11 (D))’

(an
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where (P;,) and (P,,) are the bulk scattering matrix elements after the averaging over n(r,).

For example,

J-_oooo P11 (1) Csca(rp)n(ry)dinm,
<P11> = = >

J-_oooo Csca(rp)n(ry)dinm,

(12)
where Cs,, is the scattering cross section of dust particle with the size of r,,. We found that it is
difficult to use Eq. (11) to estimate (&), because neither (P;;) nor (P,,) can be ecasily
parameterized with size parameter. To avoid this difficulty, we propose the following

approximate way to estimate the (&) as

) ~ S, 8(r)Coca(ry)n(ry) dinr,
T 7 Coalrn(ry) din,

)

(13)

which allows us to use the simple parameterization in Eq. (10). The accuracy of this
approximation will be evaluated momentarily. Here, we convert from size parameter to volume
median radius through x,,;, = 21r,,/ as § will vary with wavelength. Next, we need to specify
the C.,(1;,) of single particles. Unfortunately, the size parameter span of the FIB dust samples
is too small to cover the whole dust n(r,). To solve this problem, we use the TAUMdust2020
database to estimate Cy., (73,). TAMUdust2020 is a comprehensive database by Saito et al. (2021)
that covers the scattering properties of 20 irregular hexahedral shape models over the entire
practical range of particle sizes, wavelengths, and CRI of mineral dust particles. Based on the
regional dust models recommended by Saito et al. (2021), an ensemble-weighted degree of
sphericity of 0.7 is selected to represent the dust particles. For the dust CRI, we use the data from
Song et al. (2022) to interpolate the TAMUdust2020 to obtain the Cg.,(1;,). In Song et al. (2022),
three sets of dust CRI corresponding to the low, mean, and high concentration of hematite (D1

Biagio et al., 2019) were used to compute the dust scattering properties and their direct radiative
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effects. Here we adopt the CRI corresponding to the mean concentration of hematite. Note that
the CRI from Song et al. (2022) is spectrally dependent with increasing absorption with
decreasing wavelength (see their Figure 2), which means that the 355 nm has the strongest
absorption among the three lidar wavelengths considered here. Finally, for the dust n(r,), we

use the lognormal distribution

aNn No ex [_ (rv/rvg)
dn(r)  Va(og) P |7 (op)? 1

n(rv) =

(14)

where Ny is a constant and 7,4 is the volume median radius. We use a fixed standard deviation
of 6, = 0.529, the same standard deviation of the fine mode dust from AERONET’s n(r,) in

Cape Verde from Dubovik et al. (2002) shown in Figure 12, when creating the parameterization

in Figure 11.

Using the combination of the &§(x) parameterization in Eq. (10), the Cg.,(1,) from the
TAMUdust2020 database and the lognormal n(r,) in Eq. (14), we computed the volumetric dust
depolarization ratio (8) based on the proposed approximation in Eq. (13). The result for the 532
nm () as a function of the effective size parameter is shown in Figure 11a. It is not surprising to
see that the volumetric dust depolarization ratio (S(xvg))resembles the 8(x) for the single
particles in terms of its size dependence. Further simplification is possible through a fitting of
the newly bulk averaged depolarization ratio. We find the depolarization of the FIB realistic

particles are well approximated by the following hyperbolic tangent equation:
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(8(xvg)) ~ 0.41tanh (0.14x,, + 0.09), (15)

with an r-squared value of 0.79 as shown in Figure 11a. While this function is fitted for a
wavelength of 532 nm in particular, we found that the results for the 355 nm and 1064 nm
wavelengths are almost identical. This is probably because we used the same &(x)
parameterization for all three wavelengths, and only different C,., due to the use of spectrally
dependent CRI in Song et al. (2022). It turns out that the Cs., plays a minimal role in the § value
making Eq. (15) a reasonable approximation for all three lidar wavelengths given an effective
particle size parameter, x,,4. This is supported by the comparison results shown in Figure 11b.
The solid lines correspond to the volumetric (8) for the three wavelengths predicted based on the
parameterization Eq. (15). The dotted line corresponds to the (8) of irregular hexahedral
computed based on the TAMUdust2020 database using the Song et al. (2022) dust CRL It is
important to note that the computation for irregular hexahedral is based on the rigorous definition
of § in Eq. (11) without any approximation. Evidently, the two sets of (8) agree reasonably well
in terms of both spectral and size parameter dependencies. Interestingly, a decreasing trend was
observed for the 355 nm § based on the irregular hexahedral when 7, is larger than about 2 pm
to 3 um, which is not seen in either our parameterization or hexahedral results for other
wavelengths. As mentioned above, in the computation for the irregular hexahedral we used the
spectrally dependent CRI that has a higher absorption at 355 nm. Recall the result in Figure 10c
that indicates & to decrease with dust absorption. This decreasing with size trend of § for large
Tg 1s a result of stronger absorption at 355 nm, as it is reflected in a decrease in SSA for those

particles (Saito and Yang, 2021).
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Figure 11: (a) Parameterization of realistic § for effective size parameter using a hyperbolic
tangent function. (b) Depolarization Ratio predicted for a monomodal size distribution with
varying volume-equivalent median radius. The & for realistic geometries was derived through

equation 15, while hexahedral shapes used P;; and P22 parameters.

The utility of the simple parameterization scheme in Eq. (15) is further demonstrated in terms
of simulating the spectral dependence of § as shown in the following case. Here, we use the
climatological dust n(r,) retrieved by the AERONET at Cape Verde as reported in Dubovik et
al., (2002) (Figure 12a) to compute three sets of volumetric dust (8) for the three lidar
wavelengths using the following three methods:

1. In the first method (black solid lines in Figure 12b), dust scattering properties are based
on the irregular hexahedral model from the TAMUdust2020 database. The dust CRI is
spectrally dependent from the Song et al. (2022). The (8) is computed based on the
rigorous definition in Eq. (11) with (P;,) and (P,,) averaged over n(r,).

2. In the second method (blue dashed lines in Figure 12b), same as the first method except

that the (8) is computed based on the approximation method in Eq. (13).
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3. In the third method (red dotted lines in Figure 12b), the (8) for each wavelength is

simply predicted using the parameterization in Eq. (15) by converting the x4 to 7;,4.

As such, the comparisons between the three methods enable us to assess the uncertainty

associated with each step of approximation. For example, the comparison between method 1 and

2 can help us understand the uncertainty associated with the (8) computation using the

approximation method in Eq. (13). The comparison of method 3 to the other two methods helps

us understand the overall accuracy of our simple parameterization.

In order to use the full n(r;,) with method 3, a weighting by backscatter coefficient is utilized

such that (Mamouri and Ansmann, 2014)

(8) =

 BSr(1+8)+B,5.(1+5y)

(16)

Br(148)+B,(1+8¢) °

where § is calculated from the TAMUdust2020 database.
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Figure 12. (a) Dust particle size distribution for Cape Verde using AERONET, adapted from
Dubovik et al. (2002). (b) Depolarization Ratio of fine and coarse mode for hexahedral dust

and FIB reconstruction using approximation methods 1, 2, and 3 as described in the text.

The resulting comparison in Figure 12 shows all three methods simulate a substantially smaller
8 for the fine mode than the coarse mode. Additionally, the fine mode & based on all three
methods exhibits a decreasing trend with wavelength which is a result of the fast-increasing trend
of & with dust particle size parameter for fine mode dust particles (See Figure 6). The differences
in the fine mode § between the three methods are mostly smaller than 0.05, with the method 3
result based on the simple parameterization scheme slightly larger than the other two methods.
Finally, for the coarse mode dust §, the results based on the simple parameterization (method 3)
are close to spectrally neutral and smaller than methods 1 and 2 for 355 and 532 nm, while the

use of TAMUdust2020 decreases § at 1064 nm.

Interestingly, the full-size distribution 8s based on methods 1 and 2 exhibit an inverse “v” shape,
with the maximum at the 532nm and decreasing toward both 355 nm and 1064 nm. Such an

2

inverse “v” shape spectral signature of dust § has also been observed recently by (Haarig et al.,
2022) over Leipzig, Germany, in February and March 2021 during a transported Sahara dust
event (see their Figure 5). As aforementioned, our § parameterization scheme using method 3
and the parameterization of the FIB dust samples does not take into account the spectral
dependence of dust CRI and the corresponding change of absorption. In methods 1 and 2, we

use the CRI from Song et al. (2022) which has a stronger absorption at 355 nm, which leads to

a decrease of 8 from 532 nm to 355 nm. Therefore, our results indicate that the inverse “v” shape
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spectral signature of dust & is a result of competing effects of dust size and absorption. The
decrease of § from 532 nm to 1064 nm is the result of dust size while the decrease from 532 nm

to 355 nm is a result of dust absorption.

Despite the limitation of spectrally independent CRI, the overall accuracy of our
parameterization scheme is satisfying, partly due to the error cancellation between the
overestimation of the fine mode 6§ and underestimation of coarse mode 6. For example, after
summation of fine and coarse modes, the & of the whole n(r;,) for the 532nm wavelength is () =
0.335 based on method 1, while method 3 based on our simple parameterization is (8) ~

0.334.

Comparing the dust § of the full n(r;,) to that of fine mode § and coarse mode § also gives us
interesting results. Both fine and coarse modes individually decrease with wavelength despite
the inverse “v” shape spectral signature of the full n(7,). This characteristic is quite nicely

explained by an interpretation of Eq. (16). Across each wavelength, Br < B¢ so (O) is greater
than a simple average of both fine and coarse modes. But B, increases with wavelength.
Therefore, despite 65 and 8. decreasing spectrally, 8. has a greater weighting in the equation. In

other words, more of the backscattered signal is due to larger particles as wavelength increases,
which are the particles exhibiting greater depolarization. Competing factors of § and & further
reinforces the absorption and size impact on 8. Thus, the comparisons shown in Figure 12 are

promising.
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The utility of this parameterization likely comes from the inverse problem. Given the reliance
on TAMUdust2020 for B, reconstructing the § from a n(r,) still requires use of simplified
theoretical geometries for some amount of the calculation. However, given a retrieved
backscattering coefficient, 8, and n(7,), using Eq. (15) and (16) creates a succinct method of

retrieving f k and B, separating fine and coarse fraction of dust according to Mamouri and

Ansmann (2014).

Specifically in coarse mode analysis, there are some limitations of our study. The sigmoid
parameterization leads to a very flat parameterization of § for particles greater than 1 um in
volume equivalent radius seen in both Figure 11b and 12b which may be further refined with
larger particles, currently unavailable due to computational cost. It is also important to note our
study uses a wavelength-independent refractive index based on 589 nm, causing this work to
miss some spectral dependency that may cause the coarse mode differences in each wavelength
when using the globally averaged refractive index (see Figure 11b). The competing effects of
size and mineral composition of dust particles have been observed in studies of spectral

dependence of § (Haarig et al., 2022), which we will investigate in future studies.

6. Conclusions and summary
In this study, we utilized the ADDA model to compute the scattering properties of FIB dust
samples and derived the S and § at three widely used lidar wavelengths: 355 nm, 532 nm, and
1064 nm. The advantage of this study compared to previous work is the use of realistic dust

shapes reconstructed through the FIB tomography technique. The characterization of single
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scattering properties of these realistic samples through rigorous computational techniques should
serve well as benchmark data for the dust scattering community. We investigated the dependence
of dust S and & on dust particle size, shape, and mineral composition. The results lead to the
following conclusions:
e Both the S and & exhibit an asymptotic trend with dust particle size: the S initially
decreases while the § increases with size, before both approach their asymptotic values.
e The lidar properties were found to have only a weak dependence on effective sphericity.
e The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the
dust's single scattering albedo and §, while increasing S.
In addition to these scientific findings, the convergence index introduced in Section 3.3 and the
8 parameterization schemes described in Section 5 may be useful for future research on light
scattering by nonspherical particles and lidar-based remote sensing. The convergence index can
be used to assess the convergence of random orientation computation using the DDA method.
The § parameterization scheme in Eq. (15) can be used to estimate the § of dust with a lognormal
size distribution n(7,), which can help us understand the variation of dust size based on §

observations and the separation of fine and coarse mode dust (Mamouri and Ansmann, 2014).

Certain limitations of this study need also to be addressed, particularly regarding the
parameterization scheme of Section 5. This model’s parameterization leads to a flattened coarse-
mode in an attempt to extrapolate upon the limited size range available due to computational
limits of DDA. Therefore, it may not have fully captured the optical properties for use with
particularly large size parameters. Additionally, the wavelength-independent complex refractive

index based on 589 nm measurements was applied to all three lidar wavelengths, simplifying the
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spectral differences in lidar properties, particularly at 355 nm where absorption from iron-phase
minerals is more significant. Future studies on the coarse mode and spectral variation of dust
lidar properties will improve the parameterization and applicability of the parameterization

scheme and ability to utilize the FIB dust samples for atmospheric observations.

Data Availability. The scattering properties generated for the lidar properties of the FIB dust
samples presented in this work are made available under https://doi
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interested in the original shape models are directed to Conny et al., 2019, for data availability.
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