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The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and
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backscattering depolarization ratio (§), were studied using a discrete dipole approximation

(DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine
detail using the focused ion-beam (FIB) tomography technique. An index based on the symmetry

of the scattering matrix was developed to assess the convergence for the random orientation

conditionusing DDA. Both the S and § exhibit an asymptotic trend with dust particle size: the S

initially decreases while the § increases with size, before both approach their asymptotic values.

The lidar properties were found to have statistically insignificant dependence on effective
sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce

the dust's single-scattering albedo and §. Utilizing the robust asymptotic trend behavior, two
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1. Introduction “
Dust aerosols are an important component of the Earth System, interacting with Earth’s energy,
water, and carbon cycles. Directly, dust acrosols scatter and absorb both shortwave and longwave
radiation, influencing the planet's energy balance (Tegen et al., 1996; Miller and Tegen, 1998;
Myhre et al., 2013; Song et al., 2018, 2022). By scattering incoming solar radiation, dust aerosols

contribute to cooling the atmosphere and surface regionally, impacting temperatures and

affecting atmospheric circulation patterns (Evan et al., 2006; Lau and Kim, 2007;

2022).,

Zhang et al.,

The transport of dust aerosols also has far-reaching implications. The long-range transport of

Asian dust is frequently observed on the United States’ west coast with considerable impacts on
the air quality and climate (Yu et al., 2012; Creamean et al., 2014; Wu et al., 2015). It is also

observed impacting Taiwan through similar transport mechanisms (Lin et al., 2007). In fact

mineral dust from the Taklimakan desert has been found to be transported a full rotation around

the globe (Uno et al., 2009). Moreover, the deposition of dust aerosol during the long-range

transport brings essential nutrients such as iron and phosphorus from terrestrial sources to marine

ecosystems, being part of biogeochemical cycles across vast distances (Baker et al., 2003; Yu et

al., 2015b; Westberry et al., 2023). Asian dust deposition in the East China Sea stimulates
phytoplankton growth and primary productivity, influencing marine food webs and carbon

cycling (Kong, S. S.-K. et al., 2022).

Lidar is an important tool for remote sensing measurements of airborne dust particles. As

demonstrated in many previous studies (Omar et al., 2009; Burton et al., 2012), it allows us to
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Deleted: ). For example, Asian dust transportation to the
Tibetan Plateau causes direct radiation effects which result in
enhancement to the monsoon season (Lau et al., 2006). In
addition, the absorption of longwave radiation, particularly
thermal infrared radiation, by dust particles leads to surface
warming effect by 0.54 W m on a global average (Song et
al., 2022). Indirectly, dust aerosols serve as nuclei for cloud
condensation and ice nucleation, altering cloud
microphysical properties and precipitation patterns (Atkinson
et al., 2013; Field et al., 2006; Kanji et al., 2017). These
indirect effects can further influence regional and global
climate dynamics by modifying cloud albedo and
distribution (Johnson et al., 2004; Huang et al., 2006;
Helmert et al., 2007; Amiri-Farahani et al., 2019).
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distinguish dust aerosols from clouds and other types of aerosols, track their long-range transport
and study their evolution as they interact with the environment such as clouds, atmospheric

gases, and other aerosols. Among others, elastic backscattering lidars are one of the most widely

used types of lidar. For example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO), is a NASA-French satellite mission that implements a two-
wavelength elastic lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) at 532
nm and 1064 nm wavelengths (Winker et al., 2009). Ground-based lidar networks such as the
NASA Micro-Pulse Lidar Network (MPLNET) use single wavelength measurements for
extinction, backscattering, and depolarization profiles (Welton et al., 2001). The EarthCARE

mission utilizes ATmospheric LIDar (ATLID), a 355 nm wavelength laser and high-spectral

resolution receiver, allowing it to directly measure both lidar ratio and extinction coefficient

Illingworth et al., 2015; Donovan et al., 2024). Ground based lidars operating at 532 nm and

1064 nm throughout Eastern Asia are also useful for monitoring dust transport and air quality

running as part of Asian Development Bank (ADB) and Global Environment Facility (GEF)

(Sugimoto et al., 2008).

2. Theoretical Background

Lidar ratio (S) and depolarization ratio (§) are two most important parameters for lidar-based

remote sensing of aerosols and clouds. For a single dust particle, the S, referred to as the

extinction-to-backscatter coefficient, is defined as (Platt, 1979; Ansmann et al., 1992; Mattis et

al., 2002; Liu et al., 2002)
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Where 7;, is the volume-equivalent sphere radius and n(n,) = dN/dInr, defines a normalized

particle size distribution (n(7,)).

For Raman lidar and high spectral resolution lidar systems, the lidar ratio can be derived directly
from the observed extinction and backscatter without assumptions about the composition (Miiller
et al., 2007). However, for elastic backscattering lidars, the lidar ratio cannot be directly

measured. As a result, assumptions need to be made about the composition of the atmosphere.
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like dust aerosols and ice crystals. Moreover, the considerable § differences between spherical

fine particles and nonspherical coarse dust particles also enables the separation of dust extinction

from the total extinction profile retrieved by CALIOP (Yu et al., 2015; Song et al., 2021).

Because of the fundamental importance of S and § for lidar based dust remote sensing, previous

studies have made substantial effort to understand the connection between dust particle
Dubovik et al., 2006; Gasteiger et al., 2011; Liu J. et al., 2015; Kahnert et al., 2020; Saito et al.,
2021; Saito and Yang, 2021; Kong, S. et al., 2022). The common methodology used in these
studies is to use light scattering models, such as the T-matrix (Mishchenko et al., 1996; Bi and
Yang, 2014b) and Discrete Dipole Approximation (DDA) model (Draine and Flatau, 1994, 2013;
aerosols and then study the potential dependence on particle properties. Although these studies
have greatly improved our understanding and paved the foundation for the current aerosol
retrieval algorithms, they share a common limitation as they all used hypothetical dust particle
shape models, such as spheroid (Dubovik et al., 2006), irregular polyhedron (Saito et al., 2021),

Gaussian random sphere (Muinonen et al., 1996; Liu J. et al., 2015; Kahnert et al., 2020), tri-
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axial spheroids (Meng et al., 2010; Huang et al., 2023), and super-spheroid (Kong, S. et al., 2022)
to simulate dust particle shapes that are weakly or not constrained by observations. The reason
for this is probably two-fold. Most microscopic observations of dust particles in the literature are
two-dimensional (2D) images based on scanning or transmission electron microscopes (SEM or
TEM), while three-dimensional (3-D) observations are extremely rare. In addition, the
implementation of complex shapes in scattering models is also a challenging task. For example,
until recently the widely used T-matrix code based on the extended boundary condition method
(Mishchenko et al., 1996) is primarily applicable only to rotationally symmetric particles such
as spheroid. It is worth noting that the T-matrix method implementation based on the invariant
imbedding T-matrix method is applicable to arbitrary shapes (Bi and Yang, 2014a). Aware of
the limitation of hypothetical dust particle shape, these studies often use dust scattering
properties from laboratory measurements as benchmark to select an optimal set of hypothetical

shapes that can generate similar scattering properties, e.g., lidar characteristics, as measurements
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Voronoi tessellation-based algorithm to mimic dust internal structure. Jarvinen et al. (2016)

compared the lidar backscattering properties based on the constructed 3-D dust shapes with
laboratory measurements and found reasonable agreements. An important finding from this

study is that § of realistic dust particles at 532 nm first jncrease with particle size but seems to

approach an asymptotic constant value of ~ 0.30 for coarse dust particles.

The main objective of this study is to better understand the lidar backscattering properties of dust
particles with realistic shapes. The dust shape models used here are based on the focused ion-
beam (FIB) tomography technique, aided by the energy dispersive X-ray spectroscopy (EDX)
and SEM imagining, developed by Conny et al. (2014) and Conny and Ortiz-Montalvo (2017),
which as far as we know is the most direct and faithful measurement of the shape and
morphology of single dust particles. In addition to shape measurement, the EDX is used to
measure the mineral composition of dust particles, which in turn enables the estimation of the
complex refractive index (CRI) of dust particles. Based on the measured dust particle shape and
estimated CRI, Conny et al. (2019, 2020) simulated and studied the scattering properties such as
single scattering albedo and phase functions of the dust samples using the DDASCAT model

(Draine and Flatau, 1994, 2013).

In this study, we focus on the lidar backscattering properties of realistic dust samples obtained
from FIB tomography measurements (Conny et al., 2019). For simplicity, we will refer to these
dust samples as "FIB dust samples." We are particularly interested in the following questions:

How do the S and § of realistic dust samples vary with particle size, shape, mineral composition,

and lidar spectral channel? The remaining portion of the paper is organized as follows: First, in
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Section 2, we introduce the dust samples used in this study, along with their origins and
properties. We also explain the Amsterdam Discrete Dipole Approximation (ADDA) model and
introduce a convergence index to determine the number of orientations necessary for calculating
the optical properties under the random orientation condition. In Section 3, we examine how the
lidar backscattering properties of the dust samples depend on dust properties, including size,

shape, and mineral composition. In Section 4, we present two dust § parameterization schemes:

one to estimate the § of a single dust particle based on its size, and the other to estimate the § of

dust particles with a lognormal particle size distribution based on the effective radius. Finally, in

Section 5, we summarize the main findings and conclusions of this study.

3. Data and model «

3.1. FIB Dust Samples -

The thirteen dust particles measured by FIB were obtained from the Mauna Loa Observatory

(19° 32" 10"N, 155° 34’ 34""W) on the island of Hawaii between March 15 and April 26, 2011.
Six of these particles were collected during the daytime. Following Conny et al. (2019), these
particles will be referred to as the "D" sample (e.g., "3D" indicates that the sample was collected
during the daytime of day 3). The other eight particles were collected at night and are referred to
as "N" samples. The properties of these particles, including their shape, size, and composition,
as well as the measurement techniques, have been extensively documented in (Conny et al.,
2019, 2020). Conny et al., (2019) analyzed the back trajectories from the Mauna Loa
Observatory during this time interval, suggesting that their samples likely originated as Asian
dust. Out of curiosity, we collocated the CALIOP observations with the back trajectories from

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al.,
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2015; Rolph et al., 2017) from March 25, 2011, 0000 UTC to March 18, 2011, 0000 UTC,
starting from the Mauna Loa Observatory. The lidar depolarization ratio observations and

aerosol classification (Figure lc and e) results show large amounts of dust along the later portion

that the FIB dust samples are likely long-range transported Asian dust particles, jnore specifically

from the Gobi Desert, consistent with Conny et al. (2019). This may be an important distinction

as Asian dust exhibits some differences in optical properties when compared to other regions

such as the Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly in regards to the mineral

composition discussion in Section 3.2 and 4.3. However, to our knowledge, there is no evidence

to suggest that morphology of dust particles is strongly tied to regional origin. Therefore, while

these dust particles are suspected to be of Gobi origin, we believe these dust samples to be useful

for characterization of atmospheric dust more generally.
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Figure 1. (a) NOAA HYSPLIT Backward Trajectory paths from March 25th, 2011 0000 UTC
to March 18th, 2011 0000 UTC starting from Mauna Loa Observatory shown in solid lines.
North-South running dashed lines show CALIPSO tracks intersecting with the modeled dust
paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting

with modeled dust paths from NOAA HYSPLIT Backward Trajectory for March 19th,and 23rd,
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2011 (b-e, respectively). Through § and aerosol subtype classification, a dust plume was found

to be present. In subplots b and c, yellow (labeled 2) corresponds with desert dust.

3.2.  Dust particle shape and refractive index -

As emphasized above, the primary advantage of using FIB dust samples for this study is that the
shape and composition of these samples are directly measured. To determine the dust shape, the
FIB uses a gallium ion beam, milling through each particle in 15 nm to 20 nm increments. This
process results in a stack of 100 to 200 cross-sectional images with dimensions of 1024 by 884
pixels for each particle. These cross-sectional images are then combined to reconstruct highly
detailed 3-D dust shapes, composed of three-dimensional pixels or voxels as illustrated by an

example in Figure 2.

The collection of dust samples spans a range of sizes. In this study, we quantify this for irregular

geometries using the volume equivalent sphere radius, (7;,). Using this metric, our library covers
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(particle 2N Ca-S) to more symmetrical particles with aspect ratios of 0.582 and 0.575 (particle

4N1 CaMg).

Figure 2. Orthographic projection of a sample dust particle from the FIB reconstructed

database, 3D| Ca-Rich.

In addition to the FIB-based dust shape reconstruction, Conny et al. (2019) also performed the
element composition and mineral phase analysis for the FIB dust samples using the SEM and
energy-dispersive X-ray spectroscopy (EDX). They found that the dust samples can be loosely
classified into three categories based on the element compositions, the mainly Calcium

Magnesium based (Ca-Mg), the Calcium rich (Ca-rich) ones and lastly those primarily composed

To determine the refractive index of the dust samples, Conny et al. (2019) first estimated the

volume fractions of possible mineral phases in the particles based on the composition analysis
results. Then, the complex refractive index of each particle was determined through the average

Maxwell-Garnett dielectric function based on the estimated volume fraction of each mineral
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phase. It should be noted that the iron-phase composition in the particle was assumed to be either

siderite, hematite, or magnetite which have different complex refractive indices. Moreover, two

sets of complex refractive index were used for each iron-phase mineral to account for the
variability induced by optical anisotropy. The combination of mineral differences and refractive
index variability lead to several sets of final refractive index after the Maxwell-Garnett average.

Take the 3D Ca-Rich particle in Figure 2 for example. Table 1 provides the complex refractive
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Table 1. The possible complex refractive index at 589 nm of the 3D Ca-Rich particle in Figure

2 from Conny et al. (2019).

Iron-phase Minimum Minimum Maximum Maximum -
mineral Refractive Index | Refractive Index | Refractive Index | Refractive Index
Real Imaginary Real Imaginary
Magnetite 1.532 2.14E-02 1.660 2.36E-02
Hematite 1.544 2.32E-03 1.681 2.28E-03
Siderite 1.508 1.34E-05 1.648 1.34E-05

In this study, we are interested in the dust scattering properties at three commonly encountered
lidar wavelengths, namely, 355 nm, 532 nm, and 1064 nm. For simplicity, we assume the same
refractive index from Conny et al. (2019) for all three wavelengths, which is probably reasonable
only for the 532 nm. On the other hand, because we assume the refractive index to be invariant

with wavelength, the wavelength variation essentially corresponds to the variation of dust
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particle size parameter x = 271 /A, allowing us to focus on the impact of dust particle size on
the lidar scattering properties. The impacts of the spectral variation of refractive index will be

investigated in future studies.
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3.3. ADDA model and convergence index of random orientation. -
In this study, we utilize the ADDA model version 1.4.0 to compute the single scattering

properties, including the extinction cross section (., single scattering albedo w, and scattering

jmatrix P, of each FIB dust particle. The scattering properties of dust particles depend on not only

their size, shape, and refractive index, but also their orientations with respect to the incident light,

and the wavelength of incident light. In this study we assume that dust particles are randomly

oriented. The theoretical basis and numerical implementation of the ADDA model have been
well documented (Yurkin and Hoekstra, 2007, 2011). It has been used in numerous previous
studies to compute the scattering properties of aerosol and cloud particles (Yang et al, 2013;
Gasteiger, 2011; Collier et al, 2016). The process to generate the inputs from the FIB shape
measurements for the discrete dipole approximation (DDA) model has been described in detail
in Conny et al. (2019). We use the same inputs and configurations in this study. The only
difference is that we use the ADDA model while Conny et al. (2019) used a different DDA
model, DDSCAT, by Draine and Flatau (1994). The reason we cannot directly use the DDA
simulation results from Conny et al. (2019) is twofold. Firstly, their computations are conducted
for an incident light at the 589 nm wavelength, whereas we are interested in lidar wavelengths
of 355 nm, 532 nm, and 1064 nm. Secondly, as will be explained later, we will need a greater

number of orientations to simulate random orientation for P and lidar backscattering properties
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(Konoshonkin et al., 2020) than may be sufficient for the g, and w to converge. In the remainder

of this section, we will introduce a practical method to determine if a sufficient number of
orientations have been used in the ADDA simulations to ensure convergence in the results for

random orientation computations.

relates the incident and scattering Stokes parameters is a 4x4 matrix with 16 elements

P= o

[P11(05) P12(85) P13(85) P1a(0s) P21(0s) P22(05) P23(0s) P24(85) P31(8s) P32(0s) [(4)

2

where 0 is the scattering angle. If the particle is randomly oriented, for any orientation its

reciprocal orientation is equally likely. Because of the reciprocal symmetry, the scattering matrix
for randomly oriented particle with irregular shape reduces to (van de Hulst 1957; Mishchenko

et al., 2002; Mishchenko and Yurkin, 2017)

P= -

[P11(0s) P12(05) P13(8s) P1a(05) P12(8s) P22(05) P23 (8s) P2a(0s) —P13(6s5) —  (5)

P23(85) P33(05) P3a(6s) P14(0s) P24(6s) — P34(05) P4a(5) |-

The symmetry property of the P matrix for randomly oriented particles in Eq. (5) provides a

basis to assess the convergence of random orientation simulations in ADDA. For example,

utilizing the fact that Py, = Py, for a randomly oriented particle we can define a convergence
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(6)
As such, CI approaches zero when the random orientation computation converges. It should be

noted that CI can also be defined based on other symmetric elements of the scattering matrix

such as P,; = P;,, P;; = —P;3 . For practical applications, we usually assume that particles are
randomly oriented with an equal number of mirror particles. Under such a condition, or if the

particle in question has mirror symmetry itself, the scattering matrix has only 6 independent

elements in the form (van de Hulst 1957; Mishchenko and Yurkin, 2017; Yang et al., 2023):

P=

[P11(0s) P12(85) 00 P12 (85) P22(85) 00 00 P33(85) P34(8s) 00 —P34(05) Paa(Os) (7)

and a CI based on P;, = P,; or P3, = —P,; must be used.

In the context of ADDA, the orientation of a particle with respect to the incidence is defined by

using three Euler angles &, 3, and y. To specify a certain orientation, the particle is rotated first

& on the z-axis, then B on the y-axis, and finally y across the new z-axis through the zyz

convention (Yurkin and Hoekstra, 2020). Then, to produce the scattering properties for a

randomly oriented particle, ADDA averages across a large number of orientations. ADDA can

do this internally through specified number of evenly spaced intervals across &, 8, and y. Fora -

and 8, ADDA calculates the scattering properties for the new orientation while for y, or the self-

rotation angle, it equivalently rotates the scattering plane to improve computational time. It
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Figure 5. S - § graph of FIB dust particles at each of 355 nm, 532 nm, and 1064 nm

wavelengths for the refractive index of each mineral type found present in the particle.

Figure 6 reveals an interesting asymptotic behavior of lidar properties with respect to size, where

S (Figure 6a) and § (Figure 6b) first decreases and increases, respectively, with size parameters

and then seemingly approach their asymptotic values. We use a locally weighted scatterplot
smoothing regression (or LOWESS) to fit the trend in lidar optical properties with size

parameters. We find that both § and ¢ plateau around size parameter x =

8 and then

approach to their asymptotic values, S =35sr and § = 0.41 . Notably. these

results span a limited size distribution due to the sizes present in the dust particles analyzed and
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the computational expense to produce simulations of larger particles. However, the asymptotic

behavior of lidar properties has also been reported in several previous studies. For example, the

S and ¢ based on the so-called super-spheroid dust model in Kong, S. et al. (2022) showed a

similar asymptotic behavior for the size parameter range between 2 and 20 (see their Figure 3),
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Since S is a function of both P;,(m) and the w, we investigate their relative roles in determining

the size dependence of S. Figure 7a shows that the values of S lie closely around the 1/P, ()

line, with the r-square value around 0.97 for a simple regression of S = 12.9/P;1). In contrast,
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single-scattering albedo w plays a lesser role in S among the particles tested due to greater

similarities in values (Figure 7b). However, the outliers in Figure 7a correspond to points with

much lesser w in Figure 7b, particularly the FIB sample 3D Ca-rich (see Figure 2) using the

magnetite refractive index, which has an imaginary refractive index of 0.021 to 0.024, an outlier
with a magnitude ten times greater than the other mineral types present (See Table 1). In Figure

7c and d, we plot the variation of Py, m) and w respectively as a function of size parameter.

Although the variability of P,() is quite large, especially in the size parameter range between

5 and 10, it generally increases with size parameter. In contrast, the w in Figure 7b shows a slight
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612  Several studies have shown that constraining particle morphology is important for quantifying

F1 3 thed of dust particles (Dubovik et al., 2006; Saito et al., 2021; Liu J. et al., 2015; Kahnert et al., (Deleted: 5 )

614  2020; Kong, S. et al., 2022). As explained in the introduction, most of these studies are based on

25



635

36

37

38

639

640

641

642

43

44

645

646

647

648

649

650

651

652

653

simple hypothetical shape models such as ellipsoid and irregular hexahedrons. In this section,

we investigate the dependence of § on dust sphericity based on the FIB dust samples. As

explained insection 2.2, in the baseline simulations each dust sample has different sizes and CRI

that corresponds to laboratory measured dust mineralogy. As a result, the differences in §
between different sample particles in the baseline simulations are caused by not only shape but
also size and CRI differences. To eliminate the influence of size and CRI and focus on the effect
of sphericity, we carried out an additional set of ADDA computations for the 532 nm wavelength,
where we used the same CRI of n = 1.5 + 0.005i and the same volume-equivalent radius of 0.5

um for all the FIB particles but kept the original shape of each particle. The use of the common
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size and CRI allows us to investigate the dependence of § on the sphericity index defined as

follows (Wadell, 1935; Saito and Yang, 2022):
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Where W,;, is the effective sphericity and A,,,; is the average projected area across all
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projection directions. This gives us a wide range of effective sphericity between 0.49-0.89. As

hypothesis rejected with p > 0.05 for both S and §). This may be a result of a limited set of

geometries of the FIB dust samples. It could also be due to the limitation of the effective

sphericity index in Eq. (9) failing to capture the subtle dependence of § on dust particle shape.
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Note that other previous studies have also found weak dependence of § in particle sphericity

(e.g.,_Saito and Yang, 2021:; Kong, S. et al., 2022). Further studies are warranted to better

understand the relationship between the § and morphology of dust particles. But overall, our

results seem to suggest that the impact of particle sphericity on § and S is less important than

particle size.
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694  Each particle from Conny et al.’s study (2019) was determined to have different amounts of iron
695 in its composition through their EDX spectroscopy tests. Using this data, they determined the
696  refractive index of each particle with the Maxwell-Garnett dielectric function described in
697  section 2.3. The tests resulted in the percentage of elements by mass and volume, but did not
698  reveal the mineral phase within the dust. To account for this, the study uses various possible iron
699  containing mineral phases for each particle to determine the refractive index, as these phases
700  have the greatest variability in possible refractive index for these particles. They also account for
701  Dbirefringence through a minimum and maximum value for refractive index. Each particle was
702  given a hematite phase, while some had magnetite, ankerite, and/or siderite present. Interested

703  readers are directed to Conny et al. 2019 for further details.
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Each of these mineral phases has a different CRI, with magnetite being the most absorbing of
the iron-containing phases present (see Table 1). This results in considerable variations (up to

32%) in single scattering albedo (Figure 10a), particularly for the 3D Ca-Rich particle, which
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magnetite. These results underscore the critical role of dust mineralogy in influencing the SSA

of dust particles, as highlighted in previous studies (Li et al., 2021; Song et al., 2022, 2024).

However, the effects of mineralogy on lidar-derived § and S are comparatively smaller than the (Deleted: 8

impacts from dust particle size. An important caveat to keep in mind when interpreting these

results is that the same dust CRI has been used for all three wavelengths, as mentioned earlier.
Dust absorption typically increases with decreasing wavelength in the visible to ultraviolet
spectral region, which is not accounted for in our computations. Therefore, the impacts of
mineralogy on lidar properties at the 355 nm wavelength, where dust can have strong absorption,
may be underestimated. We will leave this for future studies because the spectral dependence of

dust CRI is still highly uncertain due to the lack of reliable observations.

5.  Parameterization schemes for dust e

The results in Section 3 indicate that particle size plays a dominant role in determining the dust

5 of FIB dust particles. As shown in Section 3.1, the dust § exhibits an asymptotic trend with

increasing size (see Figure 6b), a pattern also noted in several previous studies (Kong, S. et al.,
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2022; Jarvinen et al., 2016; Kemppinen et al., 2015 a, b). The robustness of this asymptotic trend

inspired us to develop two parameterization schemes for § as a function of dust size, which will

be introduced in this section. This will allow us to extend the utility of the dust particle data to a

larger range of sizes, as the individual particles have a limited range of size parameters. One

scheme is designed for single particles, while the other is intended for ensembles of particles
with a particle size distribution. We hope that these parameterization schemes can be used to

efficiently estimate the § of dust particles without resorting to time-consuming scattering

simulations.

The parameterization for single particles is straightforward. To model the asymptotic trend of

individual particle § with dust particle size, we employed a sigmoid function as follows:

Seo 0.41 (10) .

va(x) Tlreath) T 14 109a—37y

The sigmoid function has three parameters: §,, is the asymptotic value of § when the size

parameter is large. The other two parameters q, and b, control the shape of the sigmoid

function. After a nonlinear curve fitting, we find 8., = 0.41, a, = 1.09 and b= — 3.7 (R? =

0.72). This simple parameterization can be used to estimate the § of a single dust particle

Y.

(Deleted:

~( Formatted: Header

(Deleted: [

(Deleted: S

(Deleted: 8

(Deleted: 8

(Formatted Table

s '[Deleted: S

1+e-a(x+b)

(Deleted: s

e {Deleted:

Where x = mr;, /A is the particle size parameter.

‘(Formatted: Font: 11 pt

(Deleted: [

(Deleted:

‘ (Deleted:

given its size and the wavelength of interest.

Next, we will use Eq. (10) to construct a parameterization scheme for the volumetric
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depolarization ratio, 45) of a dust plume following the widely used lognormal particle size

distribution (n(7;,)) giving us a value for § for the ensemble of particles. To this end, we need to

first make an approximation. For a given dust particle size distribution n(r,) = dN/dinr,, the

rigorous definition of the volumetric § is given by
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where Cg.q is the scattering cross section of dust particle with the size of r;,. We found that it is

difficult to use Eq. (11) to estimate (&), because neither {(P;1) nor (P,,) can be easily

parameterized with size parameter. To avoid this difficulty, we propose the following

approximate way to estimate the (&) as

(8) ~ fjooo 8 v)Csca(ro)n(ry) dinr,

. (fom Coca(T)n(ry) dlnr,

which allows us to use the simple parameterization in Eq. (10). The accuracy of this

approximation will be evaluated momentarily. Here, we convert from size parameter to volume

median radius through x,; = 277,/ as § will vary with wavelength. Next, we need to specify
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database to estimate Cg¢q (77,).,JAMUdust2020 is a comprehensive database by Saito et al. (2021)
that covers the scattering properties of 20 irregular hexahedral shape models over the entire
practical range of particle sizes, wavelengths, and CRI of mineral dust particles. Based on the
regional dust models recommended by Saito et al. (2021), an ensemble-weighted degree of

sphericity of 0.7 is selected to represent the dust particles. For the dust CRI, we use the data from
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Song et al. (2022) to interpolate the TAMUdust2020 to obtain the Csq (7). In Song et al. (2022),
three sets of dust CRI corresponding to the low, mean, and high concentration of hematite (Di
Biagio et al., 2019) were used to compute the dust scattering properties and their direct radiative
effects. Here we adopt the CRI corresponding to the mean concentration of hematite. Note that
the CRI from Song et al. (2022) is spectrally dependent with increasing absorption with
decreasing wavelength (see their Figure 2), which means that the 355 nm has the strongest
absorption among the three lidar wavelengths considered here. Finally, for the dust n(r,), we

use the lognormal distribution

n(r,) = aw Mo ox [—(r"/r”:q)ll

_ 0
din (ry) \/ﬁ(ag) (rrgf ]

(14

where Nj is a constant and 7, is the volume median radius. We use a fixed standard deviation
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of 0, = 0.529, the same standard deviation of the fine mode dust from AERONET’s n(r,) in

Cape Verde from Dubovik et al. (2002) shown in Figure 12, when creating the parameterization

in Figure 11.

Using the combination of the §(x) parameterization in Eq. (10), the Cs.,(7,) from the
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TAMUdust2020 database and the lognormal n(r,) in Eq. (14), we computed the volumetric dust

depolarization ratio (&) based on the proposed approximation in Eq. (13). The result for the 532

nm (§) as a function of the effective size parameter is shown in Figure 11a. It is not surprising to

see that the volumetric dust depolarization ratio (§(x,,)) resembles the §(x) for the single

particles in terms of its size dependence. Further simplification is possible through a fitting of
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the newly bulk averaged depolarization ratio. We find the depolarization of the FIB realistic

particles are well approximated by the following hyperbolic tangent equation:

{8(xyq)) = 0.41tanh (0.14x,, + 0.09Y, (15) -

with an r-squared value of 0.79 as shown in Figure 11a. While this function is fitted for a
wavelength of 532 nm in particular, we found that the results for the 355 nm and 1064 nm
wavelengths are almost identical. This is probably because we used the same J(x)
parameterization for all three wavelengths, and only different Cy., due to the use of spectrally

dependent CRI in Song et al. (2022). It turns out that the Cs., plays a minimal role in the § value
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making Eq. (15) a reasonable approximation for all three lidar wavelengths given an effective
particle size parameter, x,4. This is supported by the comparison results shown in Figure 11b.

The solid lines correspond to the volumetric () for the three wavelengths predicted based on the

parameterization Eq. (15). The dotted line corresponds to the (5) of irregular hexahedral

computed based on the TAMUdust2020 database using the Song et al. (2022) dust CRI. It is
important to note that the computation for irregular hexahedral is based on the rigorous definition

of g in Eq. (11) without any approximation. Evidently, the two sets of (§) agree reasonably well

in terms of both spectral and size parameter dependencies. Interestingly, a decreasing trend was

observed for the 355 nm ¢ based on the irregular hexahedral when 7,4 is larger than about 2 pum
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to 3 um, which is not seen in either our parameterization or hexahedral results for other
wavelengths. As mentioned above, in the computation for the irregular hexahedral we used the
spectrally dependent CRI that has a higher absorption at 355 nm. Recall the result in Figure 10c

that indicates § to decrease with dust absorption. [This decreasing with size trend of § for large

Tyg 18 a result of stronger absorption at 355 nm, as it is reflected in a decrease in SSA for those

particles, (Saito and Yang, 2021).
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tangent function. (b) Depolarization Ratio predicted for a monomodal size distribution with

gquation 15, while hexahedral shapes used P;; and P»; parameters.

The utility of the simple parameterization scheme in Eq. (15) is further demonstrated in terms

of simulating the spectral dependence of § as shown in the following case. Here, we use the

climatological dust n(r,) retrieved by the AERONET at Cape Verde as reported in Dubovik et

al., (2002) (Figure 12a) to compute three sets of volumetric dust () for the three lidar

wavelengths using the following three methods:
1. In the first method (black solid lines in Figure 12b), dust scattering properties are based «
on the irregular hexahedral model from the TAMUdust2020 database. The dust CRI is

spectrally dependent from the Song et al. (2022). The {4, is computed based on the

rigorous definition in Eq. (11) with {P14) and {P,,) averaged over n(r,).
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In the second method (blue dashed lines in Figure 12b), same as the first method except

that the (&) is computed based on the approximation method in Eq. (13).

In the third method (red dotted lines in Figure 12b), the {§) for each wavelength is

simply predicted using the parameterization in Eq. (15) by converting the x,,4 to 7;,4.

As such, the comparisons between the three methods enable us to assess the uncertainty

associated with each step of approximation. For example, the comparison between method 1 and

2 can help us understand the uncertainty associated with the (&) computation using the

approximation method in Eq. (13). The comparison of method 3 to the other two methods helps

us understand the overall accuracy of our simple parameterization.

In order to use the full n(7,) with method 3, a weighting by backscatter coefficient is utilized

such that (Mamouri and Ansmann, 2014)
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Figure 12. (a) Dust particle size distribution for Cape Verde using AERONET, adapted from

Dubovik et al. (2002). (b) Depolarization Ratio of fine and coarse mode for hexahedral dust

and FIB reconstruction using approximation methods 1, 2, and 3 as described jn the text.
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# for the fine mode than the coarse mode. Additionally, the fine mode § based on all three

methods exhibits a decreasing trend with wavelength which is a result of the fast-increasing trend

of § with dust particle size parameter for fine mode dust particles (See Figure 6). The differences

in the fine mode § between the three methods are mostly smaller than 0.05, with the method 3

result based on the simple parameterization scheme slightly larger than the other two methods.

Finally, for the coarse mode dust g, the results based on the simple parameterization (method 3)

are close to spectrally neutral and smaller than methods 1 and 2 for 355 and 532 nm, while the
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Interestingly, the full-size distribution §s based on methods 1 and 2 exhibit an inverse “v” shape,

with the maximum at the 532nm and decreasing toward both 355 nm and 1064 nm. Such an
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inverse “v” shape spectral signature of dust § has also been observed recently by (Haarig et al.,

2022) over Leipzig, Germany, in February and March 2021 during a transported Sahara dust

event (see their Figure 5). As aforementioned, our § parameterization scheme using method 3
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and the parameterization of the FIB dust samples does not take into account the spectral

dependence of dust CRI and the corresponding change of absorption. In methods 1 and 2, we

use the CRI from Song et al. (2022) which has a stronger absorption at 355 nm, which leads to

a decrease of § from 532 nm to 355 nm. Therefore, our results indicate that the inverse “v” shape
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spectral signature of dust § is a result of competing effects of dust size and absorption. The

decrease of § from 532 nm to 1064 nm is the result of dust size while the decrease from 532 nm

to 355 nm is a result of dust absorption.

Despite the limitation of spectrally independent CRI, the overall accuracy of our
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the inverse “v” shape spectral signature of the full n(r,). This characteristic is quite nicely

explained by an interpretation of Eq. (16). Across each wavelength, < Be so (6) is greater
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than a simple average of both fine and coarse modes. But p_ increases with wavelength.

Therefore, despite 6, and &, decreasing spectrally, &, has a greater weighting in the equation. In -

other words, more of the backscattered signal is due to larger particles as wavelength increases,

which are the particles exhibiting greater depolarization. Competing factors of 8 and § further

reinforces the absorption and size impact on 5. Thus, the comparisons shown in Figure 12 are .
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promising.

The utility of this parameterization likely comes from the inverse problem. Given the reliance

on TAMUdust2020 for B, reconstructing the § from a n(r,) still requires use of simplified
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theoretical geometries for some amount of the calculation. However, given a retrieved

backscattering coefficient, §, and n(r,), using Eq. (15) and (16) creates a succinct method of
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retrieving B I and f3, separating fine and coarse fraction of dust according to Mamouri and

Ansmann (2014).

Specifically in coarse mode analysis, there are some limitations of our study. The sigmoid

parameterization leads to a very flat parameterization of § for particles greater than 1 um in

volume equivalent radius seen in both Figure 11b and 12b which may be further refined with
larger particles, currently unavailable due to computational cost. It is also important to note our
study uses a wavelength-independent refractive index based on 589 nm, causing this work to
miss some spectral dependency that may cause the coarse mode differences in each wavelength
when using the globally averaged refractive index (see Figure 11b). The competing effects of

size and mineral composition of dust particles have been observed in studies of spectral

- (Formatted: Font: 11 pt

(Formatted: Font: 11 pt

A

(Deleted: 8

(Formatted: Font: Cambria Math

(AN

(Deleted: has

dependence of § (Haarig et al., 2022), which we will investigate in future studies.

6. Conclusions and summary -

In this study, we utilized the ADDA model to compute the scattering properties of FIB dust

samples and derived the S and § at three widely used lidar wavelengths: 355 nm, 532 nm, and

1064 nm. The advantage of this study compared to previous work is the use of realistic dust
shapes reconstructed through the FIB tomography technique. The characterization of single
scattering properties of these realistic samples through rigorous computational techniques should

serve well as benchmark data for the dust scattering community. We investigated the dependence
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of dust S and § on dust particle size, shape, and mineral composition. The results lead to the

following conclusions:

e Both the S and § exhibit an asymptotic trend with dust particle size: the S initially< .

decreases while the § increases with size, before both approach their asymptotic values.

e The lidar properties were found to have only a weak dependence on effective sphericity.
e The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the

dust's single scattering albedo and §, while increasing S.
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In addition to these scientific findings, the convergence index introduced in Section 3.3 and the
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J parameterization schemes described in Section 5 may be useful for future research on light

scattering by nonspherical particles and lidar-based remote sensing. The convergence index can

be used to assess the convergence of random orientation computation using the DDA method.

The § parameterization scheme in Eq. (15) can be used to estimate the § of dust with a lognormal

size distribution n(r,), which can help us understand the variation of dust size based on §_

observations and the separation of fine and coarse mode dust (Mamouri and Ansmann, 2014).

Certain limitations of this study need also to be addressed, particularly regarding the
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parameterization scheme of Section 5. This model’s parameterization leads to a flattened coarse-

mode in an attempt to extrapolate upon the limited size range available due to computational

limits of DDA. Therefore, it may not have fully captured the optical properties for use with

particularly large size parameters. Additionally, the wavelength-independent complex refractive

index based on 589 nm measurements was applied to all three lidar wavelengths, simplifying the

spectral differences in lidar properties, particularly at 355 nm where absorption from iron-phase

minerals is more significant. Future studies on the coarse mode and spectral variation of dust

39

(Deleted: S

(Deleted: 4

( Deleted: CI

AN N N

(Deleted: 8

(Deleted: 8

(Deleted: 8

(Deleted: model

N N AN AN

Page Break

Disclaimer|

q

Certain commercial equipment, instruments, or materials,
commercial or non-commercial, are identified in this paper
in order to specify the experimental procedure adequately.
Such identification does not imply recommendation or
endorsement of any product or service by NIST, nor does it
imply that the materials or equipment identified are
necessarily the best available for the purpose. The opinions,
recommendations, findings, and conclusions in this
publication do not necessarily reflect the views or policies of
NIST or the United States Government.

Page Break
q
q




P95

096

097

098

099

100

n01

102

n03

104

105

106

no7

108

109

10

n11

12

13

14

15

16

17

lidar properties will improve the parameterization and applicability of the parameterization

scheme and ability to utilize the FIB dust samples for atmospheric observations.
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