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Abstract  18 

The lidar backscattering properties of Asian dust particles, namely the lidar ratio (𝑆) and 19 

backscattering depolarization ratio (𝛿), were studied using a discrete dipole approximation 20 

(DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine 21 

detail using the focused ion-beam (FIB) tomography technique. An index based on the symmetry 22 

of the scattering matrix was developed to assess the convergence for the random orientation 23 

conditionusing DDA. Both the 𝑆 and 𝛿 exhibit an asymptotic trend with dust particle size: the 𝑆 24 

initially decreases while the 𝛿 increases with size, before both approach their asymptotic values. 25 

The lidar properties were found to have statistically insignificant dependence on effective 26 

sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce 27 

the dust's single-scattering albedo and 𝛿. Utilizing the robust asymptotic trend behavior, two 28 

parameterization schemes were developed: one to estimate the 𝛿 of a single dust particle given 29 

its size, and the other to estimate the 𝛿 of polydisperse dust particles with a lognormal particle 30 

size distribution given the effective radius. The parameterization scheme was compared with 31 

results based on the TAMUdust2020 database, showing that hexahedralsreasonably represent 32 

realistic particle geometries for light-scattering computations.  33 

 34 
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1. Introduction 47 

Dust aerosols are an important component of the Earth System, interacting with Earth’s energy, 48 

water, and carbon cycles. Directly, dust aerosols scatter and absorb both shortwave and longwave 49 

radiation, influencing the planet's energy balance (Tegen et al., 1996; Miller and Tegen, 1998; 50 

Myhre et al., 2013; Song et al., 2018, 2022). By scattering incoming solar radiation, dust aerosols 51 

contribute to cooling the atmosphere and surface regionally, impacting temperatures and 52 

affecting atmospheric circulation patterns (Evan et al., 2006; Lau and Kim, 2007; Zhang et al., 53 

2022).  54 

 55 

The transport of dust aerosols also has far-reaching implications. The long-range transport of 56 

Asian dust is frequently observed on the United States’ west coast with considerable impacts on 57 

the air quality and climate (Yu et al., 2012; Creamean et al., 2014; Wu et al., 2015). It is also 58 

observed impacting Taiwan through similar transport mechanisms (Lin et al., 2007). In fact, 59 

mineral dust from the Taklimakan desert has been found to be transported a full rotation around 60 

the globe (Uno et al., 2009). Moreover, the deposition of dust aerosol during the long-range 61 

transport brings essential nutrients such as iron and phosphorus from terrestrial sources to marine 62 

ecosystems, being part of biogeochemical cycles across vast distances (Baker et al., 2003; Yu et 63 

al., 2015b; Westberry et al., 2023). Asian dust deposition in the East China Sea stimulates 64 

phytoplankton growth and primary productivity, influencing marine food webs and carbon 65 

cycling (Kong, S. S.-K. et al., 2022). 66 

 67 

Lidar is an important tool for remote sensing measurements of airborne dust particles. As 68 

demonstrated in many previous studies (Omar et al., 2009; Burton et al., 2012), it allows us to 69 
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distinguish dust aerosols from clouds and other types of aerosols, track their long-range transport 86 

and study their evolution as they interact with the environment such as clouds, atmospheric 87 

gases, and other aerosols. Among others, elastic backscattering lidars are one of the most widely 88 

used types of lidar. For example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 89 

Observations (CALIPSO), is a NASA-French satellite mission that implements a two-90 

wavelength elastic lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) at 532 91 

nm and 1064 nm wavelengths (Winker et al., 2009). Ground-based lidar networks such as the 92 

NASA Micro-Pulse Lidar Network (MPLNET) use single wavelength measurements for 93 

extinction, backscattering, and depolarization profiles (Welton et al., 2001). The EarthCARE 94 

mission utilizes ATmospheric LIDar (ATLID), a 355 nm wavelength laser and high-spectral 95 

resolution receiver, allowing it to directly measure both lidar ratio and extinction coefficient 96 

(Illingworth et al., 2015; Donovan et al., 2024). Ground based lidars operating at 532 nm and 97 

1064 nm throughout Eastern Asia are also useful for monitoring dust transport and air quality, 98 

running as part of Asian Development Bank (ADB) and Global Environment Facility (GEF) 99 

(Sugimoto et al., 2008). 100 

 101 

2. Theoretical Background 102 

Lidar ratio (𝑆) and depolarization ratio (𝛿) are two most important parameters for lidar-based 103 

remote sensing of aerosols and clouds. For a single dust particle, the 𝑆, referred to as the 104 

extinction-to-backscatter coefficient, is defined as (Platt, 1979; Ansmann et al., 1992; Mattis et 105 

al., 2002; Liu et al., 2002) 106 

 107 
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𝑆 = 𝜎/𝛽 =
4𝜋

𝜔𝑃!!(𝜃" = 𝜋)
,	 (1) 

where 𝜎 is the extinction coefficient and 𝜔 and 𝑃!! are the single-scattering albedo and phase 110 

function of the dust particle, respectively. For the purposes of this paper, 𝑃!! is normalized to 1 111 

when integrating across all scattering directions. 𝛽 = 𝑃11(𝜃𝑠 = 𝜋)𝐶𝑠𝑐𝑎 is the backscattering 112 

coefficient at the exact backscattering direction. When considering a multitude of particles,  113 

𝛽 = ∫
∞
−∞ 𝑃11(𝑟𝑣, 𝜃𝑠 = 𝜋)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 , (2) 

Where 𝑟* is the volume-equivalent sphere radius and 𝑛(𝑟*) = 𝑑𝑁/𝑑𝑙𝑛𝑟* defines a normalized 114 

particle size distribution (𝑛(𝑟*)). 115 

 116 

 For Raman lidar and high spectral resolution lidar systems, the lidar ratio can be derived directly 117 

from the observed extinction and backscatter without assumptions about the composition (Müller 118 

et al., 2007). However, for elastic backscattering lidars, the lidar ratio cannot be directly 119 

measured. As a result, assumptions need to be made about the composition of the atmosphere. 120 

Therefore, the lidar ratio is fundamentally important for elastic lidars like CALIOP and 121 

MPLNET to convert the direct attenuated backscatter observations to an extinction profile 122 

(Young et al., 2018) and derived quantities such as dust aerosol optical depth (Yu et al., 2015a; 123 

Song et al., 2021).  124 

 125 

Depolarization ratio 𝛿 is the ratio of the perpendicular or cross-polarized component to the 126 

parallel component of polarized backscattering signal. For backscattering lidar the 127 

depolarization ratio is defined as  128 

 129 
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𝛿  =  
1 − 𝑃22(𝜃𝑠 = 𝜋)𝑃11(𝜃𝑠 = 𝜋)

1 + 𝑃22(𝜃𝑠 = 𝜋)𝑃11(𝜃𝑠 = 𝜋)

 , 
(3) 

where 𝑃-. is the ij-th element of the particle’s scattering matrix (Kong, S. et al., 2022). 𝛿 is often 142 

used for aerosol type (Kim et al., 2018) and cloud phase classifications (Hu et al., 2009). First, 143 

if lidar backscattering is dominated by single scattering, 𝛿 is close to zero for spherical particles 144 

like sulfate aerosols and water droplets. In contrast, 𝛿 is notably greater for nonspherical particles 145 

like dust aerosols and ice crystals. Moreover, the considerable 𝛿 differences between spherical 146 

fine particles and nonspherical coarse dust particles also enables the separation of dust extinction 147 

from the total extinction profile retrieved by CALIOP (Yu et al., 2015; Song et al., 2021).  148 

 149 

Because of the fundamental importance of 𝑆 and 𝛿 for lidar based dust remote sensing, previous 150 

studies have made substantial effort to understand the connection between dust particle 151 

properties, e.g., shape and size, and their lidar characteristics, in particular the 𝑆 and 𝛿 (e.g., 152 

Dubovik et al., 2006; Gasteiger et al., 2011; Liu J. et al., 2015; Kahnert et al., 2020; Saito et al., 153 

2021; Saito and Yang, 2021; Kong, S. et al., 2022). The common methodology used in these 154 

studies is to use light scattering models, such as the T-matrix (Mishchenko et al., 1996; Bi and 155 

Yang, 2014b) and Discrete Dipole Approximation (DDA) model (Draine and Flatau, 1994, 2013; 156 

Yurkin and Hoekstra, 2007, 2011), to compute the scattering properties including 𝑆 and 𝛿 of dust 157 

aerosols and then study the potential dependence on particle properties. Although these studies 158 

have greatly improved our understanding and paved the foundation for the current aerosol 159 

retrieval algorithms, they share a common limitation as they all used hypothetical dust particle 160 

shape models, such as spheroid (Dubovik et al., 2006), irregular polyhedron (Saito et al., 2021), 161 

Gaussian random sphere (Muinonen et al., 1996; Liu J. et al., 2015; Kahnert et al., 2020), tri-162 
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axial spheroids (Meng et al., 2010; Huang et al., 2023), and super-spheroid (Kong, S. et al., 2022) 176 

to simulate dust particle shapes that are weakly or not constrained by observations. The reason 177 

for this is probably two-fold. Most microscopic observations of dust particles in the literature are 178 

two-dimensional (2D) images based on scanning or transmission electron microscopes (SEM or 179 

TEM), while three-dimensional (3-D) observations are extremely rare. In addition, the 180 

implementation of complex shapes in scattering models is also a challenging task. For example, 181 

until recently the widely used T-matrix code based on the extended boundary condition method 182 

(Mishchenko et al., 1996) is primarily applicable only to rotationally symmetric particles such 183 

as spheroid. It is worth noting that the T-matrix method implementation based on the invariant 184 

imbedding T-matrix method is applicable to arbitrary shapes (Bi and Yang, 2014a). Aware of 185 

the limitation of hypothetical dust particle shape, these studies often use dust scattering 186 

properties from laboratory measurements as benchmark to select an optimal set of hypothetical 187 

shapes that can generate similar scattering properties, e.g., lidar characteristics, as measurements 188 

(Saito et al., 2021; Kong, S. et al., 2022). Nevertheless, the use of hypothetical instead of realistic 189 

dust shape inevitably leads to some important questions. Is the match of the dust scattering 190 

properties a result of a good shape model or a fortunate coincidence? If an optimal shape model 191 

is selected based on one set of dust scattering observations (e.g., 𝛿 at 532 nm), can this model 192 

automatically simulate other scattering properties (e.g., 𝛿 at other wavelengths)? Obviously, one 193 

way to address the above questions is to use realistic shape models in the computation of dust 194 

scattering properties. A few studies have made attempts in this direction. For example, Lindqvist 195 

et al. (2014) developed a so-called stereogrammetric surface retrieval method to construct 3-D 196 

dust shapes from 2D SEM dust images and Kemppinen et al. (2015 b) used a surface roughening 197 

model to add detail to the model. Ishimoto et al. (2010) and Kemppinen et al. (2015 a) used a 198 

Deleted: are able to199 

Deleted: δ200 

Deleted: δ201 
Deleted: along202 
Deleted: .203 
Commented [8]: Just so you are aware, Ishimoto et al. 
(2010) tested the voronoi model for dust optics 
simulations earlier than Kemppinen. 
 
Ishimoto, H., Zaizen, Y., Uchiyama, A., Masuda, K., & 
Mano, Y. (2010). Shape modeling of mineral dust 
particles for light-scattering calculations using the 
spatial Poisson–Voronoi tessellation. Journal of 
Quantitative Spectroscopy and Radiative Transfer, 
111(16), 2434-2443. 

Commented [9R8]: Thank you for this reference, I had 
not seen this paper previously 



 

8 

Formatted: Header

Voronoi tessellation-based algorithm to mimic dust internal structure. Järvinen et al. (2016) 204 

compared the lidar backscattering properties based on the constructed 3-D dust shapes with 205 

laboratory measurements and found reasonable agreements. An important finding from this 206 

study is that 𝛿 of realistic dust particles at 532 nm first increase with particle size but seems to 207 

approach an asymptotic constant value of ~ 0.30 for coarse dust particles.  208 

 209 

The main objective of this study is to better understand the lidar backscattering properties of dust 210 

particles with realistic shapes. The dust shape models used here are based on the focused ion-211 

beam (FIB) tomography technique, aided by the energy dispersive X-ray spectroscopy (EDX) 212 

and SEM imagining, developed by Conny et al. (2014) and Conny and Ortiz-Montalvo (2017), 213 

which as far as we know is the most direct and faithful measurement of the shape and 214 

morphology of single dust particles. In addition to shape measurement, the EDX is used to 215 

measure the mineral composition of dust particles, which in turn enables the estimation of the 216 

complex refractive index (CRI) of dust particles. Based on the measured dust particle shape and 217 

estimated CRI, Conny et al. (2019, 2020) simulated and studied the scattering properties such as 218 

single scattering albedo and phase functions of the dust samples using the DDASCAT model 219 

(Draine and Flatau, 1994, 2013). 220 

 221 

In this study, we focus on the lidar backscattering properties of realistic dust samples obtained 222 

from FIB tomography measurements (Conny et al., 2019). For simplicity, we will refer to these 223 

dust samples as "FIB dust samples." We are particularly interested in the following questions: 224 

How do the 𝑆 and 𝛿 of realistic dust samples vary with particle size, shape, mineral composition, 225 

and lidar spectral channel? The remaining portion of the paper is organized as follows: First, in 226 
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Section 2, we introduce the dust samples used in this study, along with their origins and 230 

properties. We also explain the Amsterdam Discrete Dipole Approximation (ADDA) model and 231 

introduce a convergence index to determine the number of orientations necessary for calculating 232 

the optical properties under the random orientation condition. In Section 3, we examine how the 233 

lidar backscattering properties of the dust samples depend on dust properties, including size, 234 

shape, and mineral composition. In Section 4, we present two dust 𝛿 parameterization schemes: 235 

one to estimate the 𝛿 of a single dust particle based on its size, and the other to estimate the 𝛿 of 236 

dust particles with a lognormal particle size distribution based on the effective radius. Finally, in 237 

Section 5, we summarize the main findings and conclusions of this study.  238 

 239 

3. Data and model 240 

3.1. FIB Dust Samples 241 

The thirteen dust particles measured by FIB were obtained from the Mauna Loa Observatory 242 

(19° 32′ 10′′N, 155° 34′ 34′′W) on the island of Hawaii between March 15 and April 26, 2011. 243 

Six of these particles were collected during the daytime. Following Conny et al. (2019), these 244 

particles will be referred to as the "D" sample (e.g., "3D" indicates that the sample was collected 245 

during the daytime of day 3). The other eight particles were collected at night and are referred to 246 

as "N" samples. The properties of these particles, including their shape, size, and composition, 247 

as well as the measurement techniques, have been extensively documented in (Conny et al., 248 

2019, 2020). Conny et al., (2019) analyzed the back trajectories from the Mauna Loa 249 

Observatory during this time interval, suggesting that their samples likely originated as Asian 250 

dust. Out of curiosity, we collocated the CALIOP observations with the back trajectories from 251 

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 252 
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2015; Rolph et al., 2017) from March 25, 2011, 0000 UTC to March 18, 2011, 0000 UTC, 257 

starting from the Mauna Loa Observatory. The lidar depolarization ratio observations and 258 

aerosol classification (Figure 1c and e) results show large amounts of dust along the later portion 259 

of the projected path March 23rd, 2011. The back trajectories and CALIOP observations confirm 260 

that the FIB dust samples are likely long-range transported Asian dust particles, more specifically 261 

from the Gobi Desert, consistent with Conny et al. (2019). This may be an important distinction 262 

as Asian dust exhibits some differences in optical properties when compared to other regions 263 

such as the Sahara (Hofer et al., 2020; Floutsi et al., 2023), particularly in regards to the mineral 264 

composition discussion in Section 3.2 and 4.3. However, to our knowledge, there is no evidence 265 

to suggest that morphology of dust particles is strongly tied to regional origin. Therefore, while 266 

these dust particles are suspected to be of Gobi origin, we believe these dust samples to be useful 267 

for characterization of atmospheric dust more generally. 268 
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 275 

Figure 1. (a) NOAA HYSPLIT Backward Trajectory paths from March 25th, 2011 0000 UTC 276 

to March 18th, 2011 0000 UTC starting from Mauna Loa Observatory shown in solid lines. 277 

North-South running dashed lines show CALIPSO tracks intersecting with the modeled dust 278 

paths. Depolarization ratio and aerosol subtype classification for CALIPSO tracks intersecting 279 

with modeled dust paths from NOAA HYSPLIT Backward Trajectory for March 19th and 23rd, 280 

2011 (b-e, respectively). Through 𝛿 and aerosol subtype classification, a dust plume was found 281 

to be present. In subplots b and c, yellow (labeled 2) corresponds with desert dust. 282 

 283 

3.2. Dust particle shape and refractive index 284 

As emphasized above, the primary advantage of using FIB dust samples for this study is that the 285 

shape and composition of these samples are directly measured. To determine the dust shape, the 286 

FIB uses a gallium ion beam, milling through each particle in 15 nm to 20 nm increments. This 287 

process results in a stack of 100 to 200 cross-sectional images with dimensions of 1024 by 884 288 

pixels for each particle. These cross-sectional images are then combined to reconstruct highly 289 

detailed 3-D dust shapes, composed of three-dimensional pixels or voxels as illustrated by an 290 

example in Figure 2.  291 

 292 

The collection of dust samples spans a range of sizes. In this study, we quantify this for irregular 293 

geometries using the volume equivalent sphere radius (𝑟*). Using this metric, our library covers 294 

a range from 0.46 μm to 0.93 μm in 𝑟*. The particle geometries are also assigned two aspect 295 

ratios, where orientation is determined through principal component analysis of the voxel 296 

coordinates. This analysis aligns the longest axis along the z-direction and the greatest variation 297 
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from this axis with the x- and y-directions, aligning with an intuitive understanding of defining 304 

aspect ratios in three dimensions. The aspect ratios of these particles vary from 0.629 and 0.398 305 

(particle 2N Ca-S) to more symmetrical particles with aspect ratios of 0.582 and 0.575 (particle 306 

4N1 CaMg).  307 

 308 

 309 

Figure 2. Orthographic projection of a sample dust particle from the FIB reconstructed 310 

database, 3D Ca-Rich. 311 

 312 

In addition to the FIB-based dust shape reconstruction, Conny et al. (2019) also performed the 313 

element composition and mineral phase analysis for the FIB dust samples using the SEM and 314 

energy-dispersive X-ray spectroscopy (EDX). They found that the dust samples can be loosely 315 

classified into three categories based on the element compositions, the mainly Calcium 316 

Magnesium based (Ca-Mg), the Calcium rich (Ca-rich) ones and lastly those primarily composed 317 

of Calcium Sulfide (Ca-S). In this study we follow this naming convention of Conny et al., 2019. 318 

To determine the refractive index of the dust samples, Conny et al. (2019) first estimated the 319 

volume fractions of possible mineral phases in the particles based on the composition analysis 320 

results. Then, the complex refractive index of each particle was determined through the average 321 

Maxwell‐Garnett dielectric function based on the estimated volume fraction of each mineral 322 
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phase. It should be noted that the iron-phase composition in the particle was assumed to be either 328 

siderite, hematite, or magnetite which have different complex refractive indices. Moreover, two 329 

sets of complex refractive index were used for each iron-phase mineral to account for the 330 

variability induced by optical anisotropy. The combination of mineral differences and refractive 331 

index variability lead to several sets of final refractive index after the Maxwell‐Garnett average. 332 

Take the 3D Ca-Rich particle in Figure 2 for example. Table 1 provides the complex refractive 333 

indices at 589 nm from Conny et al. (2019) for a single particle. Interested readers are referred 334 

to their study for more information. 335 

  336 

Table 1. The possible complex refractive index at 589 nm of the 3D Ca-Rich particle in Figure 337 

2 from Conny et al. (2019). 338 

Iron-phase 

mineral 

Minimum 

Refractive Index 

Real 

Minimum 

Refractive Index 

Imaginary 

Maximum 

Refractive Index 

Real 

Maximum  

Refractive Index  

Imaginary 

Magnetite 1.532 2.14E-02 1.660 2.36E-02 

Hematite 1.544 2.32E-03 1.681 2.28E-03 

Siderite 1.508 1.34E-05 1.648 1.34E-05 

 339 

In this study, we are interested in the dust scattering properties at three commonly encountered 340 

lidar wavelengths, namely, 355 nm, 532 nm, and 1064 nm. For simplicity, we assume the same 341 

refractive index from Conny et al. (2019) for all three wavelengths, which is probably reasonable 342 

only for the 532 nm. On the other hand, because we assume the refractive index to be invariant 343 

with wavelength, the wavelength variation essentially corresponds to the variation of dust 344 
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particle size parameter 𝑥 = 2𝜋𝑟/𝜆, allowing us to focus on the impact of dust particle size on 350 

the lidar scattering properties. The impacts of the spectral variation of refractive index will be 351 

investigated in future studies.  352 

 353 

 354 

3.3. ADDA model and convergence index of random orientation. 355 

In this study, we utilize the ADDA model version 1.4.0 to compute the single scattering 356 

properties, including the extinction cross section 𝐶/01, single scattering albedo 𝜔, and scattering 357 

matrix 𝑃, of each FIB dust particle. The scattering properties of dust particles depend on not only 358 

their size, shape, and refractive index, but also their orientations with respect to the incident light 359 

and the wavelength of incident light. In this study we assume that dust particles are randomly 360 

oriented. The theoretical basis and numerical implementation of the ADDA model have been 361 

well documented (Yurkin and Hoekstra, 2007, 2011). It has been used in numerous previous 362 

studies to compute the scattering properties of aerosol and cloud particles (Yang et al, 2013; 363 

Gasteiger, 2011; Collier et al, 2016). The process to generate the inputs from the FIB shape 364 

measurements for the discrete dipole approximation (DDA) model has been described in detail 365 

in Conny et al. (2019). We use the same inputs and configurations in this study. The only 366 

difference is that we use the ADDA model while Conny et al. (2019) used a different DDA 367 

model, DDSCAT, by Draine and Flatau (1994). The reason we cannot directly use the DDA 368 

simulation results from Conny et al. (2019) is twofold. Firstly, their computations are conducted 369 

for an incident light at the 589 nm wavelength, whereas we are interested in lidar wavelengths 370 

of 355 nm, 532 nm, and 1064 nm. Secondly, as will be explained later, we will need a greater 371 

number of orientations to simulate random orientation for 𝑃 and lidar backscattering properties 372 
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(Konoshonkin et al., 2020) than may be sufficient for the 𝜎/ and 𝜔 to converge. In the remainder 380 

of this section, we will introduce a practical method to determine if a sufficient number of 381 

orientations have been used in the ADDA simulations to ensure convergence in the results for 382 

random orientation computations. 383 

 384 

For a particle with an irregular shape and arbitrary orientation, the scattering matrix 𝑃 that 385 

relates the incident and scattering Stokes parameters is a 4x4 matrix with 16 elements 386 

 387 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃13(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃21(𝜃𝑠)	𝑃22(𝜃𝑠)	𝑃23(𝜃𝑠)	𝑃24(𝜃𝑠)	𝑃31(𝜃𝑠)	𝑃32(𝜃𝑠)	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	𝑃41(𝜃𝑠)	𝑃42(𝜃𝑠)	𝑃43(𝜃𝑠)	𝑃44(𝜃𝑠)	]

, 

 

(4) 

where 𝜃" is the scattering angle. If the particle is randomly oriented, for any orientation its 388 

reciprocal orientation is equally likely. Because of the reciprocal symmetry, the scattering matrix 389 

for randomly oriented particle with irregular shape reduces to (van de Hulst 1957; Mishchenko 390 

et al., 2002; Mishchenko and Yurkin, 2017) 391 

 392 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃13(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃12(𝜃𝑠)	𝑃22(𝜃𝑠)	𝑃23(𝜃𝑠)	𝑃24(𝜃𝑠)	−𝑃13(𝜃𝑠) 	−

𝑃23(𝜃𝑠)	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	𝑃14(𝜃𝑠)	𝑃24(𝜃𝑠) 	− 𝑃34(𝜃𝑠)	𝑃44(𝜃𝑠)	]. 

 

(5) 

The symmetry property of the 𝑃 matrix for randomly oriented particles in Eq. (5) provides a 393 

basis to assess the convergence of random orientation simulations in ADDA. For example, 394 

utilizing the fact that 𝑃5! = 𝑃!5 for a randomly oriented particle we can define a convergence 395 

index (CI) for random orientation as 396 
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 407 

𝐶𝐼 = ∫
6
7 <𝑃!5(𝜃") − 𝑃5!(𝜃")=

8𝑑𝑐𝑜𝑠 (𝜃") .  

(6) 

As such, CI approaches zero when the random orientation computation converges. It should be 408 

noted that CI can also be defined based on other symmetric elements of the scattering matrix 409 

such as 𝑃8! = 𝑃!8, 𝑃9! = −𝑃!9 . For practical applications, we usually assume that particles are 410 

randomly oriented with an equal number of mirror particles. Under such a condition, or if the 411 

particle in question has mirror symmetry itself, the scattering matrix has only 6 independent 412 

elements in the form (van de Hulst 1957; Mishchenko and Yurkin, 2017; Yang et al., 2023): 413 

 414 

𝑃	 =

	[𝑃11(𝜃𝑠)	𝑃12(𝜃𝑠)	0	0	𝑃12(𝜃𝑠)	𝑃22(𝜃𝑠)	0	0	0	0	𝑃33(𝜃𝑠)	 𝑃34(𝜃𝑠)	0	0	−𝑃34(𝜃𝑠)	𝑃44(𝜃𝑠)	]

, 

 

(7) 

and a CI based on 𝑃!8 = 𝑃8! or 𝑃95 = −𝑃59 must be used. 415 

 416 

In the context of ADDA, the orientation of a particle with respect to the incidence is defined by 417 

using three Euler angles 𝛼, 𝛽, and 𝛾. To specify a certain orientation, the particle is rotated first 418 

𝛼 on the z-axis, then 𝛽 on the y-axis, and finally 𝛾 across the new z-axis through the zyz 419 

convention (Yurkin and Hoekstra, 2020). Then, to produce the scattering properties for a 420 

randomly oriented particle, ADDA averages across a large number of orientations. ADDA can 421 

do this internally through specified number of evenly spaced intervals across 𝛼, 𝛽, and 𝛾. For 𝛼 422 

and 𝛽, ADDA calculates the scattering properties for the new orientation while for 𝛾, or the self-423 

rotation angle, it equivalently rotates the scattering plane to improve computational time. It 424 
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calculates orientations in intervals of 2: + 1 for each of 𝛼, 𝛽, and 𝛾 resulting in {(2}: + 1)9 total 436 

orientations. To assess if the random orientation convergence has been achieved, one can 437 

examine the behavior of CI as well as other scattering properties of interest, as a function of the 438 

number of orientations. An example using the 3D Ca-Rich dust particle is shown in Figure 3 for 439 

𝑛 = 1,2, … ,6. As expected, all properties converge to asymptotic values as 𝑛 increases from 𝑛 =440 

1 (i.e., 27 orientations) to 𝑛 = 6 (i.e., 274,625 orientations). On the other hand, it is important to 441 

note that the scalar properties such as extinction efficiency and asymmetry factor (Figure 3a), 442 

and 𝑆 and 𝛿 (Figure 3b) have converged when 𝑛 = 4, while the CI based on certain scattering 443 

matrix elements (Figure 3c) only converged after 𝑛 = 5. Based on this result, we employ 𝑛 = 5 444 

for the computations in this study. The results in Figure 3 clearly show that although one can 445 

assess the convergence of random orientation computation by observing the asymptotic behavior 446 

of scalar properties, the CI based on scattering matrix elements is a more robust index supported 447 

by fundamental physics. 448 

 449 

 450 

Figure 3. (a) Change in extinction efficiency and asymmetry factor with increasing number of 451 

orientations for a representation of a randomly oriented dust particle 3D Ca-Rich. (b) 𝑆  and 452 

linear depolarization ratio as function of the number of orientations for dust particle 3D Ca-453 
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Rich. (c) Convergence Index for each of dust particle 3D Ca-Rich’s Mueller index pairs at 532 466 

nm. Note figures start at 𝑛 = 2. 467 

 468 

Thus, the error in computations of optical properties through ADDA is strongly tied to the 469 

number of orientations used. We find in section 3 constraining refractive index through 470 

mineralogy and size through proper characterization of particle size distribution are the largest 471 

potential sources of error in these calculations, as ADDA’s integration error has been set to less 472 

than 10-5 and the geometries used are highly detailed, with individual dipole sizes on the order 473 

of 103 nm3. This makes the numerical error negligible compared to the error in chosen 474 

parameters, convergence level, and sample size through the limited set of geometries. The CI is 475 

a tool to minimize computational error while considering computational cost. 476 

 477 

With the help of the newly developed CI, we computed the scattering properties of the FIB dust 478 

samples for three commonly encountered lidar wavelengths 355 nm, 532 nm, and 1064 nm. For 479 

each wavelength, more than 60 ADDA simulations are carried out corresponding to different 480 

particles, as well as different refractive indices for each particle as explained above (see section 481 

2.2). Figure 4 shows the scattering matrix elements 𝑃!! and 𝑃88/𝑃!! for the FIB dust samples for 482 

the three lidar wavelengths for their minimum refractive index for each mineral typing. Given 483 

the realistic morphology of the FIB dust samples and extensive computational methods of 484 

determining these optical properties, the FIB dust samples can serve as a benchmark for future 485 

studies on simulated mineral dust scattering properties. As one can see in Figure 4 a-c, the values 486 

of 𝑃!!in the forward scattering directions increase systematically from 1064 nm to 532 nm, and 487 

355 nm, which can be explained by the increase of size parameter as wavelength decreases. In 488 
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Figure 4 d-f, 𝑃88(𝜋)/𝑃!!(𝜋) shows considerable decreases from 1064 nm to 532 nm, down 496 

~13% on average. In contrast, the changes are relatively small from 532 nm to 355 nm. These 497 

features will help us understand the spectral dependence of 𝑆 and 𝛿 shown and discussed in the 498 

next section.  499 

 500 

 501 

Figure 4. 𝑃!!  and 𝑃88/𝑃!! for each particle geometry. Results for (a, d) 355 nm, (b, e) 532 nm, 502 

(c, f) 1064 nm of each iron-containing mineral phase’s minimum refractive index. Highlighted 503 

in black is particle 3D Ca-Rich. 504 

 505 
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4. Sensitivities of lidar ratio and depolarization ratio to particle properties 510 

4.1. Sensitivity to dust particle size 511 

In lidar-based aerosol remote sensing, the 𝑆 - 𝛿 diagram is often used to classify aerosols into 512 

different types (Burton et al., 2012; Illingworth et al., 2015). The 𝑆 - 𝛿 diagram for the FIB dust 513 

samples is shown in Figure 5. Notably, 𝑆 is negatively correlated with 𝛿 when the results for all 514 

three wavelengths are combined (correlation coefficient of 0.83). Specifically, the 𝛿 at 1064 nm 515 

is smaller than the corresponding values at 532 nm and 355 nm, while the opposite is true for the 516 

𝑆. The results for 532 nm and 355 nm largely overlap with each other. Recall that the same CRI 517 

is used for all three wavelengths, so these spectral differences are caused by the size parameter 518 

difference, i.e., the relative size of the particle with respect to the lidar wavelength. To further 519 

illustrate this point, we plotted the 𝑆 and 𝛿 separately as a function of the dust particle size 520 

parameter, shown in Figure 6. Note that the size of the irregular particle can be defined in 521 

different ways; here, we adopt the volume-equivalent size.  522 

 523 
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  530 

Figure 5. 𝑆 - 𝛿 graph of FIB dust particles at each of 355 nm, 532 nm, and 1064 nm 531 

wavelengths for the refractive index of each mineral type found present in the particle. 532 

 533 

Figure 6 reveals an interesting asymptotic behavior of lidar properties with respect to size, where 534 

𝑆 (Figure 6a) and 𝛿 (Figure 6b) first decreases and increases, respectively, with size parameters 535 

and then seemingly approach their asymptotic values. We use a locally weighted scatterplot 536 

smoothing regression (or LOWESS) to fit the trend in lidar optical properties with size 537 

parameters. We find that both 𝑆 and 𝛿 plateau around size parameter x ≈ 8 and then 538 

approach to their asymptotic values, 𝑆 = 35 𝑠𝑟 and 𝛿 = 0.41 . Notably, these 539 

results span a limited size distribution due to the sizes present in the dust particles analyzed and 540 

Deleted: 541 

Formatted: Font: Cambria Math

Formatted: Font: Times New Roman

Deleted: δ542 

Formatted: Font: Cambria Math

Deleted: δ543 

Formatted: Font: Cambria Math

Deleted: δ544 

Formatted: Font: (Default) Gungsuh

Deleted: 35𝑠𝑟/*545 
Deleted: δ546 
Deleted: 	. The547 



 

23 

Formatted: Header

the computational expense to produce simulations of larger particles. However, the asymptotic 548 

behavior of lidar properties has also been reported in several previous studies. For example, the 549 

𝑆 and 𝛿 based on the so-called super-spheroid dust model in Kong, S. et al. (2022) showed a 550 

similar asymptotic behavior for the size parameter range between 2 and 20 (see their Figure 3), 551 

and so is the laboratory measured dust 𝛿 in Järvinen et al. (2016) (see their Figure 9). 552 

 553 

 554 

Figure 6. Relationship between dust particle size parameter and (a) 𝑆 and (b) 𝛿. The red line is 555 

a LOWESS fit of the data for 𝑆 and a Sigmoid function for 𝛿. The black lines correspond to (a) 556 

𝑆 = 44 𝑠𝑟, the 𝑆 used for CALIPSO’s aerosol classification of dust (Kim et al., 2018) and (b) 557 

𝛿 = 0.277, the median observed 𝛿 at 532 nm of the Atlantic dust transport region using CALIOP 558 

(Liu Z. et al., 2015). 559 

 560 

Since 𝑆 is a function of both 𝑃!!(𝜋) and the 𝜔, we investigate their relative roles in determining 561 

the size dependence of 𝑆. Figure 7a shows that the values of 𝑆 lie closely around the 1/𝑃!!(𝜋) 562 

line, with the r-square value around 0.97 for a simple regression of 𝑆 = 12.9/𝑃!!(𝜋). In contrast, 563 
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single-scattering albedo 𝜔 plays a lesser role in 𝑆 among the particles tested due to greater 576 

similarities in values (Figure 7b). However, the outliers in Figure 7a correspond to points with 577 

much lesser 𝜔 in Figure 7b, particularly the FIB sample 3D Ca-rich (see Figure 2) using the 578 

magnetite refractive index, which has an imaginary refractive index of 0.021 to 0.024, an outlier 579 

with a magnitude ten times greater than the other mineral types present (See Table 1). In Figure 580 

7c and d, we plot the variation of 𝑃!!(𝜋) and 𝜔 respectively as a function of size parameter. 581 

Although the variability of 𝑃!!(𝜋) is quite large, especially in the size parameter range between 582 

5 and 10, it generally increases with size parameter. In contrast, the 𝜔 in Figure 7b shows a slight 583 

decrease with size. These results indicate that 𝑃!!(𝜋) plays a more dominant role than the 𝜔 in 584 

determining the size dependence of 𝑆 in these dust samples.  585 

 586 
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Figure 7. 𝑆 as a function of a) 𝑃!! and b) 𝜔. c) 𝑃!! and d) 𝜔 as a function of dust size 596 

parameter. The color of each dot corresponds to the imaginary refractive index. 597 

 598 

Following the same thought for the above 𝑆 analysis, we analyze the role of 𝑃!!(𝜋) and 𝑃88(𝜋) 599 

in determining the asymptotic behavior of 𝛿 in Figure 6b. It is seen in Figure 8a and b that both 600 

𝑃!!(𝜋) and 𝑃88(𝜋) increase with dust size. Interestingly, their ratio 𝑃88(𝜋)/𝑃!!(𝜋) first 601 

decreases with size and then seems to approach an asymptotic value of 0.4 when dust particles 602 

are large. So, the result suggests that the asymptotic trend of 𝛿 with respect to dust size is a result 603 

of the asymptotic behavior of 𝑃88(𝜋)/𝑃!!(𝜋).  604 

 605 

 606 

Figure 8. a) 𝑃!!(𝜋),  b) 𝑃88(𝜋) and c) 𝑃88(𝜋)/𝑃!!(𝜋) as a function of the dust particle size 607 

parameter. 608 

 609 

 610 

4.2. Sensitivity to dust shape and sphericity  611 

Several studies have shown that constraining particle morphology is important for quantifying 612 

the 𝛿 of dust particles (Dubovik et al., 2006; Saito et al., 2021; Liu J. et al., 2015; Kahnert et al., 613 

2020; Kong, S. et al., 2022). As explained in the introduction, most of these studies are based on 614 
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simple hypothetical shape models such as ellipsoid and irregular hexahedrons. In this section, 635 

we investigate the dependence of 𝛿 on dust sphericity based on the FIB dust samples. As 636 

explained in section 2.2, in the baseline simulations each dust sample has different sizes and CRI 637 

that corresponds to laboratory measured dust mineralogy. As a result, the differences in 𝛿 638 

between different sample particles in the baseline simulations are caused by not only shape but 639 

also size and CRI differences. To eliminate the influence of size and CRI and focus on the effect 640 

of sphericity, we carried out an additional set of ADDA computations for the 532 nm wavelength, 641 

where we used the same CRI of n = 1.5 + 0.005i and the same volume-equivalent radius of 0.5 642 

𝜇m for all the FIB particles but kept the original shape of each particle. The use of the common 643 

size and CRI allows us to investigate the dependence of 𝛿 on the sphericity index defined as 644 

follows (Wadell, 1935; Saito and Yang, 2022): 645 

 646 

𝛹 = 𝜋1/3(6𝑉)2/3

𝐴𝑠
,  

(8) 

Where 𝛹 is the sphericity, 𝑉 is the volume of the particle, and 𝐴" is the surface area. By 647 

definition, a sphere is 𝛹=1, and a perfectly spherical particle has a 𝛿 of 0. However, due to the 648 

irregularity of the FIB dust sample geometries, their 𝛹, more specifically the surface area, is 649 

heavily impacted by the level of granularity in voxel size, similar to the well-known coastline 650 

paradox (Steinhaus, 1954). Therefore, we employ the effective sphericity as the average 651 

projected area of a particle is not susceptible to the same issues of increasing value with precision 652 

(Vouk, 1948; Saito and Yang, 2022): 653 

𝛹/?? =
6+/,(AB)-/,
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(9) 

 665 

Where 𝛹/?? is the effective sphericity and 𝐴EFG. is the average projected area across all 666 

projection directions. This gives us a wide range of effective sphericity between 0.49-0.89. As 667 

shown in Figure 9, we find no clear relationship between effective sphericity and 𝛿 or 𝑆 (null 668 

hypothesis rejected with p > 0.05 for both 𝑆 and 𝛿). This may be a result of a limited set of 669 

geometries of the FIB dust samples. It could also be due to the limitation of the effective 670 

sphericity index in Eq. (9) failing to capture the subtle dependence of 𝛿 on dust particle shape. 671 

Note that other previous studies have also found weak dependence of 𝛿 in particle sphericity 672 

(e.g., Saito and Yang, 2021; Kong, S. et al., 2022). Further studies are warranted to better 673 

understand the relationship between the 𝛿 and morphology of dust particles. But overall, our 674 

results seem to suggest that the impact of particle sphericity on 𝛿 and 𝑆 is less important than 675 

particle size.  676 

 677 

Figure 9. (a) Effective sphericity dependence of 𝛿. (b) Lidar ratio variance with effective 678 

sphericity. A common volume is used by constraining the volume equivalent sphere radius to 679 
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0.5 𝜇m for each particle as well as a refractive index of 𝑛  =  1.5  +  . 005𝑖. A wavelength of 689 

532 nm was used. 690 

 691 

 692 

4.3. Sensitivity to dust mineralogy 693 

Each particle from Conny et al.’s study (2019) was determined to have different amounts of iron 694 

in its composition through their EDX spectroscopy tests. Using this data, they determined the 695 

refractive index of each particle with the Maxwell‐Garnett dielectric function described in 696 

section 2.3. The tests resulted in the percentage of elements by mass and volume, but did not 697 

reveal the mineral phase within the dust. To account for this, the study uses various possible iron 698 

containing mineral phases for each particle to determine the refractive index, as these phases 699 

have the greatest variability in possible refractive index for these particles. They also account for 700 

birefringence through a minimum and maximum value for refractive index. Each particle was 701 

given a hematite phase, while some had magnetite, ankerite, and/or siderite present. Interested 702 

readers are directed to Conny et al. 2019 for further details.  703 

 704 

Figure 10. Variation of a) 𝜔, b) 𝑆, and c) 𝛿 for each particle with its magnetite phase and 705 

corresponding hematite phase.  706 
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Each of these mineral phases has a different CRI, with magnetite being the most absorbing of 712 

the iron-containing phases present (see Table 1). This results in considerable variations (up to 713 

32%) in single scattering albedo (Figure 10a), particularly for the 3D Ca-Rich particle, which 714 

has the highest iron content by mass, ranging from 11.4 % to 7.90 % depending on the mineral 715 

phase used. In contrast, the next most iron-dense particle (4N1 Ca‐Mg) contains only 4.35 % to 716 

1.56 %. Accompanying the reduction in single scattering albedo, the 𝑆 becomes systematically 717 

larger (Figure 10b), and the 𝛿 becomes smaller (Figure 10c) when hematite is replaced by 718 

magnetite. These results underscore the critical role of dust mineralogy in influencing the SSA 719 

of dust particles, as highlighted in previous studies (Li et al., 2021; Song et al., 2022, 2024). 720 

However, the effects of mineralogy on lidar-derived 𝛿 and 𝑆 are comparatively smaller than the 721 

impacts from dust particle size. An important caveat to keep in mind when interpreting these 722 

results is that the same dust CRI has been used for all three wavelengths, as mentioned earlier. 723 

Dust absorption typically increases with decreasing wavelength in the visible to ultraviolet 724 

spectral region, which is not accounted for in our computations. Therefore, the impacts of 725 

mineralogy on lidar properties at the 355 nm wavelength, where dust can have strong absorption, 726 

may be underestimated. We will leave this for future studies because the spectral dependence of 727 

dust CRI is still highly uncertain due to the lack of reliable observations.  728 

 729 

 730 

5. Parameterization schemes for dust 𝛿  731 

The results in Section 3 indicate that particle size plays a dominant role in determining the dust 732 

𝛿 of FIB dust particles. As shown in Section 3.1, the dust 𝛿 exhibits an asymptotic trend with 733 

increasing size (see Figure 6b), a pattern also noted in several previous studies (Kong, S. et al., 734 
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2022; Järvinen et al., 2016; Kemppinen et al., 2015 a, b). The robustness of this asymptotic trend 744 

inspired us to develop two parameterization schemes for 𝛿 as a function of dust size, which will 745 

be introduced in this section. This will allow us to extend the utility of the dust particle data to a 746 

larger range of sizes, as the individual particles have a limited range of size parameters. One 747 

scheme is designed for single particles, while the other is intended for ensembles of particles 748 

with a particle size distribution. We hope that these parameterization schemes can be used to 749 

efficiently estimate the 𝛿 of dust particles without resorting to time-consuming scattering 750 

simulations.  751 

 752 

The parameterization for single particles is straightforward. To model the asymptotic trend of 753 

individual particle 𝛿 with dust particle size, we employed a sigmoid function as follows: 754 

𝛿(𝑥) =
𝛿∞

1+𝑒−𝑎(𝑥+𝑏) =
0.41

1+𝑒−1.09(𝑥−3.7). 
(10) 

The sigmoid function has three parameters: 𝛿# is the asymptotic value of 𝛿 when the size 755 

parameter is large. The other two parameters 𝑎  and 𝑏 control the shape of the sigmoid 756 

function. After a nonlinear curve fitting, we find 𝛿#  = 0.41,  𝑎  = 1.09 and 𝑏 =   − 3.7 (𝑅8  =757 

 0.72). This simple parameterization can be used to estimate the 𝛿 of a single dust particle 758 

given its size and the wavelength of interest.  759 

 760 

Next, we will use Eq. (10) to construct a parameterization scheme for the volumetric 761 

depolarization ratio, ⟨𝛿⟩ of a dust plume following the widely used lognormal particle size 762 

distribution (𝑛(𝑟*)) giving us a value for 𝛿 for the ensemble of particles. To this end, we need to 763 

first make an approximation. For a given dust particle size distribution 𝑛(𝑟*) = 𝑑𝑁/𝑑𝑙𝑛𝑟*, the 764 

rigorous definition of the volumetric 𝛿 is given by 765 
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⟨𝛿⟩ = 1−⟨𝑃22(𝜋)⟩/⟨𝑃11(𝜋)⟩
1+⟨𝑃22(𝜋)⟩/⟨𝑃11(𝜋)⟩

,  

(11) 

where  ⟨𝑃!!⟩ and ⟨𝑃22⟩ are the bulk scattering matrix elements after the averaging over 𝑛(𝑟*). 787 

For example,  788 

⟨𝑃11⟩ = ∫
∞
−∞ 𝑃11(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 

∫
∞
−∞ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣)𝑑𝑙𝑛 𝑟𝑣 

,  

(12) 

where 𝐶"ST  is the scattering cross section of dust particle with the size of 𝑟*. We found that it is 789 

difficult to use Eq. (11) to estimate ⟨𝛿⟩, because neither ⟨𝑃11⟩ nor ⟨𝑃22⟩ can be easily 790 

parameterized with size parameter. To avoid this difficulty, we propose the following 791 

approximate way to estimate the ⟨𝛿⟩ as 792 

⟨𝛿⟩ ≈ ∫
∞
−∞ 𝛿(𝑟𝑣)𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣) 𝑑𝑙𝑛 𝑟𝑣 

∫
∞
−∞ 𝐶𝑠𝑐𝑎(𝑟𝑣)𝑛(𝑟𝑣) 𝑑𝑙𝑛 𝑟𝑣 

,	
 

(13) 

which allows us to use the simple parameterization in Eq. (10). The accuracy of this 793 

approximation will be evaluated momentarily. Here, we convert from size parameter to volume 794 

median radius through 𝑥*U = 2𝜋𝑟*U/ as 𝛿 will vary with wavelength. Next, we need to specify 795 

the 𝐶"ST(𝑟*) of single particles. Unfortunately, the size parameter span of the FIB dust samples 796 

is too small to cover the whole dust 𝑛(𝑟*). To solve this problem, we use the TAUMdust2020 797 

database to estimate 𝐶"ST(𝑟*). TAMUdust2020 is a comprehensive database by Saito et al. (2021) 798 

that covers the scattering properties of 20 irregular hexahedral shape models over the entire 799 

practical range of particle sizes, wavelengths, and CRI of mineral dust particles. Based on the 800 

regional dust models recommended by Saito et al. (2021), an ensemble-weighted degree of 801 

sphericity of 0.7 is selected to represent the dust particles. For the dust CRI, we use the data from 802 
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Song et al. (2022) to interpolate the TAMUdust2020 to obtain the 𝐶"ST(𝑟*). In Song et al. (2022), 816 

three sets of dust CRI corresponding to the low, mean, and high concentration of hematite (Di 817 

Biagio et al., 2019) were used to compute the dust scattering properties and their direct radiative 818 

effects. Here we adopt the CRI corresponding to the mean concentration of hematite. Note that 819 

the CRI from Song et al. (2022) is spectrally dependent with increasing absorption with 820 

decreasing wavelength (see their Figure 2), which means that the 355 nm has the strongest 821 

absorption among the three lidar wavelengths considered here. Finally, for the dust 𝑛(𝑟*), we 822 

use the lognormal distribution 823 

 824 

𝑛(𝑟*) =
VW

VX: (F>) 
= W?

√86Z[@\
𝑒𝑥𝑝  V−

ZF>/F>@\ 

Z𝜎@\
- W  , 

 

(14) 

 825 

 where 𝑁7 is a constant and 𝑟*U is the volume median radius. We use a fixed standard deviation 826 

of 𝜎U = 0.529, the same standard deviation of the fine mode dust from AERONET’s 𝑛(𝑟*) in 827 

Cape Verde from Dubovik et al. (2002) shown in Figure 12, when creating the parameterization 828 

in Figure 11.  829 

 830 

Using the combination of the 𝛿(𝑥) parameterization in Eq. (10), the 𝐶"ST(𝑟*) from the 831 

TAMUdust2020 database and the lognormal 𝑛(𝑟*) in Eq. (14), we computed the volumetric dust 832 

depolarization ratio ⟨𝛿⟩ based on the proposed approximation in Eq. (13). The result for the 532 833 

nm ⟨𝛿⟩ as a function of the effective size parameter is shown in Figure 11a. It is not surprising to 834 

see that the volumetric dust depolarization ratio ⟨𝛿:𝑥𝑣𝑔;⟩ resembles the 𝛿(𝑥) for the single 835 

particles in terms of its size dependence. Further simplification is possible through a fitting of 836 
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the newly bulk averaged depolarization ratio. We find the depolarization of the FIB realistic 847 

particles are well approximated by the following hyperbolic tangent equation: 848 

⟨𝛿:𝑥𝑣𝑔;⟩ ≈ 0.41𝑡𝑎𝑛ℎ :0.14𝑥𝑣𝑔 + 0.09; , (15) 

with an r-squared value of 0.79 as shown in Figure 11a. While this function is fitted for a 849 

wavelength of 532 nm in particular, we found that the results for the 355 nm and 1064 nm 850 

wavelengths are almost identical. This is probably because we used the same 𝛿(𝑥) 851 

parameterization for all three wavelengths, and only different 𝐶"ST due to the use of spectrally 852 

dependent CRI in Song et al. (2022). It turns out that the 𝐶"ST plays a minimal role in the 𝛿 value 853 

making Eq. (15) a reasonable approximation for all three lidar wavelengths given an effective 854 

particle size parameter, 𝑥*U. This is supported by the comparison results shown in Figure 11b. 855 

The solid lines correspond to the volumetric ⟨𝛿⟩ for the three wavelengths predicted based on the 856 

parameterization Eq. (15). The dotted line corresponds to the ⟨𝛿⟩ of irregular hexahedral 857 

computed based on the TAMUdust2020 database using the Song et al. (2022) dust CRI. It is 858 

important to note that the computation for irregular hexahedral is based on the rigorous definition 859 

of 𝛿 in Eq. (11) without any approximation. Evidently, the two sets of ⟨𝛿⟩ agree reasonably well 860 

in terms of both spectral and size parameter dependencies. Interestingly, a decreasing trend was 861 

observed for the 355 nm 𝛿 based on the irregular hexahedral when 𝑟*U is larger than about 2 µm 862 

to 3 µm, which is not seen in either our parameterization or hexahedral results for other 863 

wavelengths. As mentioned above, in the computation for the irregular hexahedral we used the 864 

spectrally dependent CRI that has a higher absorption at 355 nm. Recall the result in Figure 10c 865 

that indicates 𝛿 to decrease with dust absorption. This decreasing with size trend of 𝛿 for large 866 

𝑟*U is a result of stronger absorption at 355 nm, as it is reflected in a decrease in SSA for those 867 

particles (Saito and Yang, 2021).  868 
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 881 

 882 

Figure 11: (a) Parameterization of realistic 𝛿 for effective size parameter using a hyperbolic 883 

tangent function. (b) Depolarization Ratio predicted for a monomodal size distribution with 884 

varying volume-equivalent median radius. The 𝛿 for realistic geometries was derived through 885 

equation 15, while hexahedral shapes used P11 and P22 parameters. 886 

 887 

The utility of the simple parameterization scheme in Eq. (15) is further demonstrated in terms 888 

of simulating the spectral dependence of 𝛿 as shown in the following case. Here, we use the 889 

climatological dust 𝑛(𝑟*) retrieved by the AERONET at Cape Verde as reported in Dubovik et 890 

al., (2002) (Figure 12a) to compute three sets of volumetric dust ⟨𝛿⟩ for the three lidar 891 

wavelengths using the following three methods: 892 

1. In the first method (black solid lines in Figure 12b), dust scattering properties are based 893 

on the irregular hexahedral model from the TAMUdust2020 database. The dust CRI is 894 

spectrally dependent from the Song et al. (2022). The ⟨𝛿⟩ is computed based on the 895 

rigorous definition in Eq. (11) with ⟨𝑃11⟩ and ⟨𝑃22⟩ averaged over 𝑛(𝑟*).  896 
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2. In the second method (blue dashed lines in Figure 12b), same as the first method except 906 

that the ⟨𝛿⟩ is computed based on the approximation method in Eq. (13).  907 

3. In the third method (red dotted lines in Figure 12b), the ⟨𝛿⟩ for each wavelength is 908 

simply predicted using the parameterization in Eq. (15) by converting the 𝑥*U to 𝑟*U. 909 

As such, the comparisons between the three methods enable us to assess the uncertainty 910 

associated with each step of approximation. For example, the comparison between method 1 and 911 

2 can help us understand the uncertainty associated with the ⟨𝛿⟩ computation using the 912 

approximation method in Eq. (13). The comparison of method 3 to the other two methods helps 913 

us understand the overall accuracy of our simple parameterization.  914 

 915 

In order to use the full 𝑛(𝑟*) with method 3, a weighting by backscatter coefficient is utilized 916 

such that (Mamouri and Ansmann, 2014) 917 

⟨𝛿⟩ =
𝛽𝑓𝛿𝑓(1+𝛿𝑐)+𝛽𝑐𝛿𝑐)1+𝛿𝑓*
𝛽𝑓(1+𝛿𝑐)+𝛽𝑐)1+𝛿𝑓*

, (16) 

 918 

where 𝛽 is calculated from the TAMUdust2020 database.  919 

 920 

 921 
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Figure 12. (a) Dust particle size distribution for Cape Verde using AERONET, adapted from 926 

Dubovik et al. (2002). (b) Depolarization Ratio of fine and coarse mode for hexahedral dust 927 

and FIB reconstruction using approximation methods 1, 2, and 3 as described in the text. 928 

 929 

The resulting comparison in Figure 12 shows all three methods simulate a substantially smaller 930 

𝛿 for the fine mode than the coarse mode. Additionally, the fine mode 𝛿 based on all three 931 

methods exhibits a decreasing trend with wavelength which is a result of the fast-increasing trend 932 

of 𝛿 with dust particle size parameter for fine mode dust particles (See Figure 6). The differences 933 

in the fine mode 𝛿 between the three methods are mostly smaller than 0.05, with the method 3 934 

result based on the simple parameterization scheme slightly larger than the other two methods. 935 

Finally, for the coarse mode dust 𝛿, the results based on the simple parameterization (method 3) 936 

are close to spectrally neutral and smaller than methods 1 and 2 for 355 and 532 nm, while the 937 

use of TAMUdust2020 decreases 𝛿 at 1064 nm. 938 

 939 

Interestingly, the full-size distribution 𝛿s based on methods 1 and 2 exhibit an inverse “v” shape, 940 

with the maximum at the 532nm and decreasing toward both 355 nm and 1064 nm. Such an 941 

inverse “v” shape spectral signature of dust 𝛿 has also been observed recently by (Haarig et al., 942 

2022) over Leipzig, Germany, in February and March 2021 during a transported Sahara dust 943 

event (see their Figure 5). As aforementioned, our 𝛿 parameterization scheme using method 3 944 

and the parameterization of the FIB dust samples does not take into account the spectral 945 

dependence of dust CRI and the corresponding change of absorption. In methods 1 and 2, we 946 

use the CRI from Song et al. (2022) which has a stronger absorption at 355 nm, which leads to 947 

a decrease of 𝛿 from 532 nm to 355 nm. Therefore, our results indicate that the inverse “v” shape 948 
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spectral signature of dust 𝛿 is a result of competing effects of dust size and absorption. The 969 

decrease of 𝛿 from 532 nm to 1064 nm is the result of dust size while the decrease from 532 nm 970 

to 355 nm is a result of dust absorption.  971 

 972 

Despite the limitation of spectrally independent CRI, the overall accuracy of our 973 

parameterization scheme is satisfying, partly due to the error cancellation between the 974 

overestimation of the fine mode 𝛿 and underestimation of coarse mode 𝛿. For example, after 975 

summation of fine and coarse modes, the 𝛿 of the whole 𝑛(𝑟*) for the 532nm wavelength is ⟨𝛿⟩ ≈976 

 0.335 based on method 1, while method 3 based on our simple parameterization is  ⟨𝛿⟩ ≈  0.334.  977 

 978 

Comparing the dust 𝛿 of the full 𝑛(𝑟*) to that of fine mode 𝛿 and coarse mode 𝛿 also gives us 979 

interesting results. Both fine and coarse modes individually decrease with wavelength despite 980 

the inverse “v” shape spectral signature of the full 𝑛(𝑟*). This characteristic is quite nicely 981 

explained by an interpretation of Eq. (16). Across each wavelength, 𝛽? < 𝛽S so ⟨𝛿⟩ is greater 982 

than a simple average of both fine and coarse modes. But 𝛽S increases with wavelength. 983 

Therefore, despite 𝛿? and 𝛿S decreasing spectrally, 𝛿S has a greater weighting in the equation. In 984 

other words, more of the backscattered signal is due to larger particles as wavelength increases, 985 

which are the particles exhibiting greater depolarization. Competing factors of 𝛽 and 𝛿 further 986 

reinforces the absorption and size impact on 𝛿. Thus, the comparisons shown in Figure 12 are 987 

promising. 988 

 989 

The utility of this parameterization likely comes from the inverse problem. Given the reliance 990 

on TAMUdust2020 for 𝛽, reconstructing the 𝛿 from a 𝑛(𝑟*) still requires use of simplified 991 
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theoretical geometries for some amount of the calculation. However, given a retrieved 1014 

backscattering coefficient, 𝛿, and 𝑛(𝑟*), using Eq. (15) and (16) creates a succinct method of 1015 

retrieving 𝛽? and 𝛽S, separating fine and coarse fraction of dust according to Mamouri and 1016 

Ansmann (2014). 1017 

 1018 

Specifically in coarse mode analysis, there are some limitations of our study. The sigmoid 1019 

parameterization leads to a very flat parameterization of 𝛿 for particles greater than 1 𝜇m in 1020 

volume equivalent radius seen in both Figure 11b and 12b which may be further refined with 1021 

larger particles, currently unavailable due to computational cost. It is also important to note our 1022 

study uses a wavelength-independent refractive index based on 589 nm, causing this work to 1023 

miss some spectral dependency that may cause the coarse mode differences in each wavelength 1024 

when using the globally averaged refractive index (see Figure 11b). The competing effects of 1025 

size and mineral composition of dust particles have been observed in studies of spectral 1026 

dependence of 𝛿 (Haarig et al., 2022), which we will investigate in future studies.  1027 

 1028 

 1029 

6. Conclusions and summary  1030 

In this study, we utilized the ADDA model to compute the scattering properties of FIB dust 1031 

samples and derived the 𝑆 and 𝛿 at three widely used lidar wavelengths: 355 nm, 532 nm, and 1032 

1064 nm. The advantage of this study compared to previous work is the use of realistic dust 1033 

shapes reconstructed through the FIB tomography technique. The characterization of single 1034 

scattering properties of these realistic samples through rigorous computational techniques should 1035 

serve well as benchmark data for the dust scattering community. We investigated the dependence 1036 
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of dust 𝑆 and 𝛿 on dust particle size, shape, and mineral composition. The results lead to the 1043 

following conclusions: 1044 

● Both the 𝑆 and 𝛿 exhibit an asymptotic trend with dust particle size: the 𝑆 initially 1045 

decreases while the 𝛿 increases with size, before both approach their asymptotic values. 1046 

● The lidar properties were found to have only a weak dependence on effective sphericity. 1047 

● The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the 1048 

dust's single scattering albedo and 𝛿, while increasing 𝑆. 1049 

In addition to these scientific findings, the convergence index introduced in Section 3.3 and the 1050 

𝛿 parameterization schemes described in Section 5 may be useful for future research on light 1051 

scattering by nonspherical particles and lidar-based remote sensing. The convergence index can 1052 

be used to assess the convergence of random orientation computation using the DDA method. 1053 

The 𝛿 parameterization scheme in Eq. (15) can be used to estimate the 𝛿 of dust with a lognormal 1054 

size distribution 𝑛(𝑟*), which can help us understand the variation of dust size based on 𝛿 1055 

observations and the separation of fine and coarse mode dust (Mamouri and Ansmann, 2014).  1056 

 1057 

Certain limitations of this study need also to be addressed, particularly regarding the 1058 

parameterization scheme of Section 5. This model’s parameterization leads to a flattened coarse-1059 

mode in an attempt to extrapolate upon the limited size range available due to computational 1060 

limits of DDA. Therefore, it may not have fully captured the optical properties for use with 1061 

particularly large size parameters. Additionally, the wavelength-independent complex refractive 1062 

index based on 589 nm measurements was applied to all three lidar wavelengths, simplifying the 1063 

spectral differences in lidar properties, particularly at 355 nm where absorption from iron-phase 1064 

minerals is more significant. Future studies on the coarse mode and spectral variation of dust 1065 
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lidar properties will improve the parameterization and applicability of the parameterization 1095 

scheme and ability to utilize the FIB dust samples for atmospheric observations. 1096 
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