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Abstract. Bias correction is a crucial step in using Earth system model outputs for assessments, as it adjusts systematic errors
by comparing the model to observations. However, standard methods—ranging from mean-based linear scaling to distribution-
based quantile mapping typically treat bias correction as a single-scale process, overlooking the fact that biases can manifest
differently across daily, seasonal, and annual timescales. In this study, we propose a novel, timescale-aware bias-correction
approach built on Empirical Mode Decomposition. By decomposing the meteorological signal into multiple oscillatory com-
ponents and aggregating them to represent distinct timescales, we apply targeted corrections to each component, thereby
preserving both short- and long-term structure in the data. Experimental illustrations show that the timescale-aware EMDBC
framework matches the performance of conventional quantile-delta mapping (QDM) at the native daily scale and achieves
progressively larger bias reductions at bi-weekly, seasonal, and annual scales. As a result, the proposed approach offers a more

robust path to accurate and reliable Earth system projections, strengthening their utility for resilience and adaptation planning.

1 Introduction

Accurate projections of future weather dynamics at regional and local scales are crucial not only for understanding extremes
but also for guiding decision-making in sectors such as water resource management, agriculture, renewable energy, and public
health. Over the decades, the horizontal spatial resolution of large-scale models, including global climate models (GCMs),
has significantly improved, with grid cells for CMIP6 (Coupled Model Intercomparison Project Phase 6) models typically
ranging from 50 to 100 km (Masson-Delmotte et al., 2021; Roberts et al., 2019). However, most resilience and preparedness
efforts demand meteorological inputs at spatial and temporal scales much finer than the resolution of the latest GCMs (Kota-
marthi et al., 2021). Consequently, current state-of-the-art GCMs still fall short in providing the fine-scale resolution required
for detailed assessments in many sectors. Common approaches to addressing the scale gap between information from GCMs
and the needs for actionable regional and local-scale information include statistical (Fan et al., 2013; Pierce et al., 2014) and

dynamical downscaling (Prein et al., 2015; Wang and Kotamarthi, 2014, 2015; Akinsanola et al., 2024) approaches. Unlike
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statistical downscaling which relies on drawing empirical relationships between large-scale Earth system models and local
observations to infer fine-scale meteorological information, dynamical downscaling can simulate a range of physical processes
and their interactions within the Earth system, producing a comprehensive set of dynamically consistent high-resolution at-
mospheric variables. The standard practice of dynamical downscaling involves the continuous operation of a regional climate
model (RCM), using outputs from GCMs as initial and lateral boundary conditions. Various region-level modeling and as-
sessment initiatives have adopted this approach, including the North American Regional Climate Change Assessment Program
(Mearns et al., 2012), the North American component of the Coordinated Regional Downscaling Experiment (NA-CORDEX)
(Mearns et al., 2017), targeted evaluations for Tasmania (Corney et al., 2013), the central United States (Bukovsky and Karoly,
2011), the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble over Europe (Jacob et al.,
2014), and the Coordinated Regional Downscaling Experiment over Africa (CORDEX-Africa) initiative (Nikulin et al., 2012),
demonstrating the enhanced capability to capture fine-scale features and provide more realistic, detailed projections at regional
and local scales. Despite these improvements, RCMs continue to face challenges with biases arising from both their forcing
data and inherent systematic errors, such as those related to model resolution (Christensen et al., 2008), simplified physical
parameterizations (Misra, 2007; Bukovsky and Karoly, 2011; Jacob et al., 2014), and incomplete understanding of the Earth
system (Christensen et al., 2008), all of which degrade the downscaled simulations.

To address these biases and improve the reliability of future projections, various bias correction (BC) methods have been
developed and employed in many studies. One of the simplest approaches is the mean-based linear scaling BC method (Tumsa,
2021). It involves calculating the difference between the mean of the historical output of the model and the mean of the observed
data. The difference is then added to the future projections, scaling the model data based on the mean difference between model
and observations calculated in the historical record. However, this method assumes that the relationship between model and
observed data is linear with time and over the entire distribution of the variable. However, this may not capture more complex
biases, especially for extreme events or in cases where the distribution of the data differs significantly between the model and
observations or between the present and future projections. Furthermore, it only adjusts the mean and does not address other
statistical moments, such as variability or skewness, potentially limiting its effectiveness in accurately representing the full
range of weather conditions. Building on the mean-variance trend correction approach introduced by Xu and Yang (2015), Xu
et al. (2021) proposed a novel bias correction method that adjusts both the linear mean and nonlinear variance trends in model-
simulated series. The most commonly used bias-correction method, quantile mapping (QM), addresses several limitations of
the mean-based linear scaling BC method by providing a more flexible and detailed approach to correcting biases in Earth
system model outputs. The QM method preserves the full distribution of the data by mapping the entire cumulative distribution
function (CDF) of the model data to that of the observed data. This ensures that the corrected model data reflect not just
the mean, but also the variability, extremes, and other statistical characteristics of the observed data. In the QM method, a
transfer function is created by matching model-simulated and observed quantiles at their common temporal resolution (daily
in this study) during a reference period; this function is then applied to future model simulations. The method is typically
evaluated by comparing bias-corrected values with observations to assess performance. Previous studies have shown that QM

effectively removes biases, improving model accuracy for both mean values (Wood, 2002; Wood et al., 2004; Boé et al., 2007,
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Piani et al., 2009) and extreme events (Piani et al., 2010; Ashfaq et al., 2010; Teutschbein and Seibert, 2012; Gudmundsson,
2012). However, since QM assumes that the CDF for a variable remains unchanged in future periods, it may distort signals
and corrupt future trends, as the CDF is expected to shift in future projections. An alternative bias-correction method, Quantile
Delta Mapping (QDM) (Cannon et al., 2015; Tong et al., 2021), improves upon QM by not only matching the CDF of modeled
and observed data, but also accounting for shifts in these distributions over time, especially under future scenarios. Yet, it still
assumes stationarity in the quantile-based difference (delta) over time and typically does not consider the timescale-dependent
nature of biases. A more detailed discussion of QM and QDM is provided in Section 2.2. Several ML-based bias-correction
schemes have been proposed as well(e.g., Sarhadi et al. (2016); Miftahurrohmah et al. (2024); Das et al. (2022); Feng et al.
(2024)); however, comprehensive intercomparisons such as Dhawan et al. (2024) show that their daily-scale performance is
broadly comparable to that of quantile-based approaches like QDM and that none addresses biases occurring across multiple
distinct timescales.

Indeed, biases can manifest differently at daily, monthly, seasonal, and annual scales (Haerter et al., 2011), and a correction
that is effective at one timescale may fail at another and introduce inconsistencies. Although quantile-based methods like
QDM can capture shifts in the overall distribution, they typically treat the data as a single timescale, thereby limiting their
ability to capture biases that manifest differently across daily, monthly, seasonal, or annual timescales. Furthermore, even
when acknowledging that biases may vary with timescale, isolating and representing these distinct fluctuations in the raw data
is a non-trivial task. To address these gaps, we propose an Empirical Mode Decomposition-based Bias Correction (EMDBC)
framework, leveraging the adaptive nature of Empirical Mode Decomposition (EMD) (Huang et al., 1998) and its ensemble
variant Ensemble-EMD (EEMD) (Wu and Huang, 2009) to isolate distinct oscillatory modes at multiple timescales. By bias-
correcting each extracted component (e.g., via QDM or quantile regressions) and then recombining them, EMDBC maintains
key physical relationships and effectively addresses both high-frequency and low-frequency biases that conventional methods
may overlook.

The remainder of this manuscript is organized as follows. Section 2 describes the experimental setup, reviews conventional
BC approaches, and introduces the proposed EMDBC framework. Section 3 evaluates EMDBC’s performance in a validation
context and applies it to bias-correct large-scale regional Earth system model outputs. Finally, Section 4 summarizes the

findings, discusses limitations, and suggests avenues for future research.

2 Methods

2.1 Data

This study utilizes both observed and modeled temperature datasets over the continental United States to bias-correct regional-

scale Earth system model projections. The datasets are described as follows:

— WRF-CCSM (Wang and Kotamarthi, 2015): Building off of previous studies (Wang and Kotamarthi, 2014, 2015),

this study uses modeled 3-hourly temperature data at a 12-km spatial resolution for three time periods—historical
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(1995-2004), mid-century (2045-2054), and late-century (2085-2094). These projections, called WRF-CCSM, are gen-
erated by dynamically downscaling the Community Climate System Model version 4 (CCSM4) using the Weather Re-
search and Forecasting (WRF) model version 3.3.1 (Skamarock et al., 2008). For future periods (mid- and late-century),
we use the Representative Concentration Pathway 8.5 (RCP 8.5) scenario, which corresponds to a high greenhouse gas
concentration trajectory, reaching approximately 8.5 W/m? of radiative forcing by 2100 (Riahi et al., 2011). The model
uses the Grell-Devenyi convective parametrization (Grell and Dévényi, 2002), the Yonsei University planetary boundary
layer scheme (Noh et al., 2003), the Noah land surface model (Chen and Dudhia, 2001), the longwave and shortwave
radiative schemes of the Rapid Radiation Transfer Model for GCM (Iacono et al., 2008), and the Morrison microphysics
scheme (Morrison et al., 2009). Spectral nudging (Miguez-Macho et al., 2004) is applied at 6-hour intervals to large-scale
features, including air temperature, geopotential height, and wind, for levels above 850 hPa and wavelengths around 1200
km, using a nudging coefficient of 3 x 107°s~1. Additionally, a 1-year spin-up period is implemented to allow the model
to reach equilibrium before each of the three simulations. Details on the model design and configurations are provided

in Wang and Kotamarthi (2014, 2015).

— Livneh (Livneh et al., 2013): Observed daily temperature data at a 1/16-degree spatial resolution for the historical
period (1995-2004). Livneh temperature data is generated from daily temperature observations at National Centers
for Environmental Information Cooperative Observer (COOP) stations across the United States using the synergraphic

mapping system (SYMAP) algorithm.

We therefore apply bias correction after the 12 km dynamical-downscaling step, allowing the adjustment to address both
the large-scale biases inherited from the driving GCM and the additional systematic errors introduced by the regional model
itself. To bias-correct future regional model projections, we used the historical observational data (Livneh) over the period
(1995-2004). The WRF-CCSM simulation spanning the same time period (historical; 1995-2004) is used to learn the bias
correction model (explained in Sections 2.2 and 2.4). Daily mean temperature data are calculated from the 3-hour outputs of
WRF-CCSM to match the temporal resolution of the observed Livneh data. Similarly, the 1/16 degree Linveh data is remapped
onto the 12-km simulation mesh used by WRF-CCSM using the bilinear interpolation operator provided in the Climate Data
Operator software version 2.5.2 (Schulzweida, 2023) to match the spatial scales.

We estimate a transfer function that aligns the empirical distribution of the WRF-CCSM daily series with the corresponding
Livneh observations for 1995-2004, and then apply this function to correct the future WRF-CCSM projections. By correcting
the learned biases, the model generates bias-corrected future predictions that scale more closely with observational data, thereby
reducing systematic and known biases in the model output.

To assess the performance and generalizability of the proposed EMDBC method, we conducted a validation study using
historical data from 1995 to 2004. This period was split into two parts: the first half (1995-1999) was used to develop and
train our bias correction models, while the second half (2000-2004) was reserved for validation. The Livneh daily observed
temperature series served as the reference dataset, and the EMDBC approach was applied to correct the daily temperature

projections from CCSM. For a comprehensive spatial evaluation, we randomly selected seven areas, each measuring 25x25
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Figure 1. Map of case study regions selected for evaluating the bias correction methods. Boundaries are overlaid on the average 1995-2004

mean temperature field from WRF-CCSM, illustrating the diverse range of temperature regimes captured by the case study areas.

grid cells (300 km x 300 km), from major subregions defined in the Fifth National Climate Assessment (USGCRP, 2023)
across the continental United States, shown in Figure 1, ensuring a diverse set of conditions. The seven areas are geographically

defined in Appendix A.
2.2 Quantile Mapping-Based Bias Adjustment

Quantile mapping (QM) is one of the most widely adopted bias correction (BC) techniques, designed to align the statistical
distribution of model outputs with observations (see Chen et al. (2013) for a comprehensive review). By adjusting model
outputs to match observed quantiles, QM can effectively reduce systematic biases related to both the central tendency and
variability. Two prominent variants of this framework are briefly described below: Basic Quantile Mapping (QM) and Quantile
Delta Mapping (QDM).

— Basic Quantile Mapping (QM): This approach directly corrects model outputs by aligning their quantile functions to
that of the observed data (Tong et al., 2021; Kim et al., 2016). Let T, the observed data, and T;”St the historical model

simulation. For a future model output 7;/*, the bias-corrected value T/ “-5¢ is given by:
Tgut,BC _ Fo_l(Fj;LLiSt(TJUt))v (1)

where st is the empirical CDF of the model outputs in the historical period Té”“, and F), is the empirical CDF of

the observed data T;,. To bias-correct the future WRF-CCSM projections, we use the 1995-2004 Livneh observations
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as the calibration reference. Although QM ensures perfect distributional alignment for the historical period, it implicitly
assumes that the observed CDF remains valid under future conditions—an assumption that can distort projected trends

when the future outputs differs significantly from the historical weather regime.

— Quantile Delta Mapping (QDM): QDM extends QM by accounting for shifts between the historical and future model
distributions (Tong et al., 2021; Maraun, 2016). Specifically, QDM maps future values TZ{C “t to their probabilities in
both the future model CDF Fhfjézel and historical model CDF F'is!  then determines the corresponding quantiles in

the observed CDF F,,. Finally, the difference (delta) between the historical and future mappings is added to the original

future values. Mathematically, it can be written as:
ut,be — u u u ist—1 u u
T = B (EP) [T e (R )] ®

This formulation permits future distributional changes to be incorporated into the bias correction. Various modifications,
such as equidistant or equiratio quantile mapping (Li et al., 2010; Wang and Chen, 2014), have been shown to be math-
ematically equivalent to QDM (Cannon et al., 2015). In many applications involving large ranges (e.g., precipitation),
the additive delta in Eq. (2) is replaced with a multiplicative factor. Nonparametric empirical CDFs are commonly used
for flexibility, although parametric and semiparametric distributions can also be employed (Gudmundsson et al. (2012),

Rajulapati and Papalexiou (2023)).

As highlighted in the introduction, QDM improves upon QM by allowing for distributional shifts from historical and future
time periods. Nonetheless, most quantile-based methods effectively treat the entire time series on a single timescale, leaving
biases at monthly, seasonal, or longer frequencies insufficiently addressed. This omission can result in residual errors that
accumulate over extended periods, undermining confidence in long-term projections—a critical factor for both robust resilience
assessments and strategic decision-making. These issues underscore the need for an approach that not only preserves the
distributional changes in future projections but also captures timescale-dependent biases. In the next sections, we introduce the
proposed EMDBC framework, which disentangles time-series of atmospheric variables produced by Earth system models into
their intrinsic oscillatory modes. By applying tailored bias corrections to each timescale-specific component and subsequently
recombining them, EMDBC aims to overcome the core limitations of QM and QDM, thereby offering a more robust and

detailed method for bias correction in future projections.
2.3 Empirical Mode Decomposition and Ensemble EMD

Empirical Mode Decomposition (EMD) (Huang et al., 1998) is a data-driven method to adaptively decompose a time series ()
into a finite set of oscillatory components, called intrinsic mode functions (IMFs), plus a residual monotonic trend. Formally,

EMD expresses a time series as:

o) =3 erlt) + (). G
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where ¢;(t) are the IMFs—each capturing variations over distinct timescales—and 7(¢) is the residual. Although EMD has
found utility in diverse application domains, it can suffer from mode mixing, where oscillations of different frequencies end up
blended in a single IMF.

To address this issue, Ensemble Empirical Mode Decomposition (EEMD) (Wu and Huang, 2009) was introduced. EEMD
has been successfully incorporated in several recent studies, for example, Alizadeh et al. (2019); Kim et al. (2018); Liu et al.
(2019); Hawinkel et al. (2015). It adds multiple realizations of low-amplitude random noise, ¢;(t), to the original signal x(t)
to form an ensemble of signals: x;(t) = x(t) + ¢;(t). EMD is then applied to each noise-added realization, and the resulting

IMFs are averaged:
| XN

M (1) = N PCRIO) )
j=1

where ¢; ;(t) denotes the i-th IMF from the j-th noise realization, and NN is the ensemble size. By smoothing over numerous
noise realizations, EEMD mitigates mode mixing, yielding a more robust and interpretable decomposition. This reliability is
especially valuable for timescale-specific bias correction. We use the EEMD function available in the Python package PyEMD

(Laszuk, 2017) to decompose temperature signals into IMFs.
2.4 EMD-Based Bias Correction

Building on EEMD, we introduce an Empirical Mode Decomposition—-based Bias Correction (EMDBC) framework for rec-
tifying model biases across multiple timescales. As sketched in Figure 2, EMDBC proceeds in three steps: (i) timescale
decomposition—the daily Livneh and CCSM series (Row 1) are split via EEMD into four bands (Rows 2—4); (ii) timescale-
specific correction—the residual and bi-weekly bands are adjusted with QDM, while the seasonal and annual bands use
ensemble quantile regression (Row 5); and (iii) reconstruction—the corrected bands are recombined to yield the final series

for evaluation (Row 6). We describe each of these steps in detail in the following subsections.
2.4.1 Step 1: Timescale Decomposition

We begin by applying EEMD to decompose each time series into IMFs and a residual:

hist fut
mP mTp
fut

TO
m .
. hist hist T fut
T, = § S?o + ?,.To7 T;)llbt _ § : Sjp + Ty 7 T;ut _ E Sjp + P (5)
j=1 j=1 j=1

Here, T}, represents the observed series, T;i“ the historical model series, and Tzf“t the future model series. For any given series
s, the total number of extracted IMFs is m?®. Although EEMD generally reduces mode mixing, it may not fully ensure that
each IMF corresponds to a unique frequency band. To address this, after each EEMD pass, we evaluate the peak frequency of
every IMF, impose spacing constraints to minimize overlap, and iterate the decomposition with adjusted parameters until those
constraints are satisfied. For the sake of clarity in presenting the timescale-wise bias correction, we have placed the detailed

tuning procedure in Appendix B.
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Figure 2. Timescale-wise bias correction framework using EMDBC. Three inputs are required: temperature timeseries from observation,
modeled historical, and modeled future datasets. Here, to demonstrate EMDBC, timeseries data are extracted from Livneh (7,), WRF-
CCSM historical (Tzﬁmt), and WRF-CCSM mid-century (T,f “y at an arbitrary location. The input temperature series are decomposed into
IMFs using EEMD. IMFs are then classified into predefined timescales: biweekly, seasonal, and annual. Bias correction is applied using

QDM for biweekly timescale and residuals, and quantile regression for seasonal or annual timescales. Finally, the corrected timescales are

summed to reconstruct the bias corrected temperature series.
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We then group these IMFs into broader frequency bands to reflect different timescales. For instance, the observed series 7T},

is aggregated as follows:

[rimTe] [ram™e] mTo
T, T, T,
To,biwcckly = § Sj °, To,scasonal = § sj ° To,annual = E Sj % (6)
=1 j=lrmTo]+1 j=lramTo]+1
T,
To = To,biwcck]y + To,scasonal + To,annual +r (7)

where 0 < 73 < 72 <1 are thresholds (often determined via bandpass or spectral methods) that separate biweekly, seasonal,
and annual timescales. The biweekly band aggregates all IMFs with periods shorter than 14 days—thereby encapsulating the
entire sub-daily to bi-weekly spectrum—while longer bands are formed by summing progressively lower-frequency IMFs.
In this study, we perform bandpass filtering of the original signal, isolating the frequencies associated with each timescale
using the butter function available in scipy (Virtanen et al., 2020). We then compute correlations between each IMF and each
bandpass-filtered version of the signal, selecting 7; and 75 such that the IMFs most closely matching each frequency range
are grouped together. For each IMF s;‘-r" we compute its Pearson correlation with the band-pass-filtered series representing the

three target frequency ranges, denoted B (bi-weekly), B> (seasonal), and B3 (annual). Let
Tik= corr(s?", Bx), ke{1,2,3}.

Each IMF is assigned to the band for which the correlation is maximal, arg max;y, r; 5. Let m™e be the total number of IMFs
for T,,. We define the cut-points

max{ j : argmaxy 7, = 1} max{ j : argmaxy 7, < 2}

T1 ) )

m7To m7To

so [7ymTe | and | TomTe | are the last indices assigned to the bi-weekly and seasonal groups, respectively. The same correlation-
based scheme is applied to the IMFs of T;,“S‘ and Tgm to construct their corresponding time-scale bands. This step, illustrated
in the “Timescale Analysis” portion of Figure 2, organizes the IMFs into distinct frequency bands, laying the groundwork for

applying the most suitable bias-correction strategy to each timescale in the subsequent steps.
2.4.2 Step 2: Timescale-Specific Bias Correction

Although each extracted frequency band represents the same underlying variable (e.g., temperature), the nature of the biases can
vary greatly depending on whether we are dealing with short-term fluctuations (e.g., biweekly scales) or longer-term patterns
(e.g., seasonal or annual). To address these differences, we apply distinct bias-correction strategies tailored to each frequency
band, reflecting the idea that short-term extremes and variance require different treatments from slower, more systematic drifts

or trends.
Biweekly Component and Residual Trend:

At the biweekly scale, signals often exhibit substantial variability and frequent extremes, yet show little in the way of stable

temporal patterns that persist across years. Because a more complex regression approach is unlikely to provide significant



benefits at this resolution, we use the QDM to correct these components. Likewise, the residual term—reflecting the underlying
long-term trend—can also change considerably between observed and future periods. To capture these shifts and extremes
effectively, we again use QDM, which directly infers quantiles from historical data while allowing for changes in the future

distribution. Formally,

fut,BC hist fut
230 Tp,biweekly QDM( o,biweekly » Tp,biweekly’ Tp,biweekly)’ ®)

Tfut,BC o QDM( y rr'T:)"St T;ut) . (9)

By aligning near-term fluctuations with observed quantiles, QDM preserves short-lived events and local variability without

requiring additional predictors.
Seasonal and Annual Components:

235 With daily-resolution data, longer timescales like seasons or years appear more structured, while shorter timescales show less
pattern. Hence, for longer timescales, relying solely on QDM, an empirically driven method, may overlook structured variation

better captured by predictor-based modeling. Consequently, we adopt a strategy that incorporates:
1. day: the day of the year, reflecting intra-annual variations,

2. Thist ' the model-simulated values aggregated at either the seasonal or annual scale, accounting for magnitude-dependent

p,long*
240 biases.
hist hist hlst fut
Let Tp long { p,seasonal’ p7annua1 p long { seasonal7 p,annual} To,long € {To,scasonal, To,annual}a where each

variable is a sum (or aggregation) of the IMFs corresponding to its relevant timescale. We define the historical bias as:

: hist
blashist - Tp long — To,long,

and fit an ensemble of quantile regressions spanning a set of quantiles {q1,g2,...,q¢} (e.g., ¢ =0.05,0.06,...,0.99). For each

245 quantile g, we train:

) —(ax)

hist _
ka (day? Tp,long blashlst ’

capturing the bias at that particular quantile. The quantile regression analysis is performed using the QuantileRegressor
model from scikit-learn—a Python library for machine learning (Pedregosa et al., 2011). When applied to future data,

the same function yields

—(qx)
250 biasy, = fy, (day, T2 prlong)-

We then correct the historical and future series accordingly:

—(ax) —(qx)

hist,BC,(gx) __ rphist fut,BC,(qr) _ rfut
Tp,long =T, p,long blashlst7 Tp,long Tp long blasfut .

10
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Averaging the corrections across all ¢ quantiles produces the final bias-corrected data:

4 4

phist,BC _ 1 hist.BC,(ax)  pfut,BC _ 1 pfut.BC,(ax)

p,long T Y p,long ’ p,long T Y p,long .
k=1 k=1

By leveraging multiple predictors and quantiles, this approach better encapsulates the full distribution—from lower tails to
upper extremes—while also accounting for both seasonal cycles and magnitude-dependent biases. The result is a more nu-
anced and robust adjustment of long-term trends than would be possible using a single-quantile or purely empirical technique.

timescales.
2.4.3 Step 3: Reconstructing the Corrected Series

After bias-correcting each frequency band, we recombine them to form the final historical and future time series:

hist,BC __ ~phist,BC hist,BC hist,BC T,,BC

T;D - Tp,biweekly + p,seasonal + p,annual + e ’ (10)
fut,BC __ ~-fut,BC fut,BC fut,BC T,,BC

TP - Tp,biwcckly + Tp,scasonal + Tp,annual + e . (11)

Thist,BC and Thist,BC

hist,BC fut,BC :
Here, T and T’ denote the QDM-corrected short-term components, while T/, (> | pannual

p,biweekly p,biweekly (along

with their future counterparts) correspond to the multi-quantile regression corrections at longer timescales. The residual term

rTrBC ig likewise corrected with QDM to address any leftover low-frequency bias.

By integrating EEMD for timescale decomposition, QDM for high-frequency biases, and multi-quantile regression for seasonal
to annual scales, the EMDBC framework provides a flexible and robust bias-correction method. It preserves both short-term
fluctuations and long-term patterns, better handles extremes, and offers a more holistic view of uncertainty — addressing some

of the most pressing gaps in conventional bias-correction approaches.

3 Results

This section describes the results from the validation study on seven case study areas and over the full domain. In both vali-
dation and full domain results, we apply a spatial smoothing procedure to the bias corrected daily temperature fields for both
methods (QDM and EMDBC), while also censoring any values that exceed the original model’s range to ensure numerical
consistency and prevent unrealistic outliers. Since temperature typically exhibits strong spatial coherence, correcting each grid
cell independently can introduce small-scale inconsistencies or artifacts. By averaging each cell’s value with those of its im-
mediate neighbors in a small 2D window (a 3 X 3 window in our experiments), we enhance local spatial continuity while
preserving the broader-scale features necessary for downstream impact analyses. All visualization plots were generated using

the matplotlib Python library (Hunter, 2007).
3.1 Validation results

Here, we include a comprehensive evaluation of traditional bias correction methods alongside our proposed approach. By

applying the bias correction models to both the historical training scenario and the historical validation scenario, we can
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Figure 3. Comparison of Absolute Biases and Wasserstein Distances Across Sub-Regions in the original daily timescale. (a): Boxplots
of the absolute temperature (in K) bias for the original (CCSM) and bias-corrected (EMDBC and QDM) simulations across sub-regions on
the validation dataset. (b): Boxplots of the corresponding Wasserstein distances between the observed and modeled temperature distributions

across sub-regions on the validation dataset.

effectively assess each models ability to address biases and generalize across temporal scales where observed data does not
exist (i.e., the future mid- and late century scenarios).

We implement QDM and the proposed EMDBC to bias-correct the validation dataset introduced in Section 2.1. Figure
3 top panel shows the spatial distribution of the average absolute bias across these subregions and highlights the consistent
performance gains achieved by EMDBC on held-out validation data. In addition, we examined the distributional similarity of

the observed series and the model-projected series (both before and after bias correction) using the Wasserstein distance (WD).

WD is defined as a distance between two probability measures P and @) on a metric space (X, ]| - ||) by
1/p
W,(P,Q) = inf x —y||Pdy(x, , 12
(@)= (ot [ sl o) 1)
XXX
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Figure 4. The timescale wise average absolute bias per subregion on the validation dataset. Included timescapes are (a) biweekly, (b) monthly,

(c) seasonal, and (d) annual.

where I'( P, Q) denotes the set of all couplings with marginals P and Q); throughout this study we use the common choice p = 1
(Panaretos and Zemel, 2019). Figure 3 down panel illustrates the WD across all subregions, demonstrating that the EMDBC
correction preserves a distributional similarity to the observed series comparable to the QDM approach.

Next, we assessed the performance of EMDBC at four distinct timescales—biweekly, monthly, seasonal, and half-annual—by
comparing it to both QDM and the original CCSM output. To focus on each timescale, we used a Fast Fourier Transformation
(FFT) based bandpass filtering method. First, the daily temperature series was transformed into the frequency domain. Then,
all frequencies outside the target range were set to zero before an inverse transform was applied to reconstruct the filtered
signal. This approach allowed us to isolate and compare how effectively each bias correction method captures variability at dif-
ferent temporal scales. Figure 4 shows the spatial distribution of the absolute bias across subregions for each filtered timescale.
While EMDBC and QDM perform comparably at shorter timescales (biweekly), EMDBC demonstrates a progressively closer

alignment with the observed series at longer timescales (monthly, seasonal, half-annual). Accurate bias correction at coarser
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temporal resolutions is especially important for large-scale resilience assessments and long-term planning, where cumulative
effects and extended trends play a crucial role. This includes common uses cases of RCM and GCM, such as global, national,
or regional impact studies (USGCRP, 2023); policy planning for risk assessment (Ranasinghe et al., 2021); energy infrastruc-
ture trends for long-term heating or cooling demands (Tan et al., 2023); drought security (Gamelin et al., 2022); agriculture
planning (Jin et al., 2017); and understanding ecosystem biodiversity shifts (Liu et al., 2025). In other words, EMDBC shows
promising ability to reduce temperature trend distortion caused by systematic biases due to model uncertainties and better cap-
ture temperature trend dynamics. This improved ability to preserve these longer-term patterns makes it a more reliable choice
than QDM for applications that depend on consistent performance across multiple timescales. These results demonstrate that
EMDBC successfully preserves bias-corrected signals over a broad range of temporal frequencies. By confirming EMDBC’s
effectiveness in an out-of-sample setting in this validation experiment, we gain confidence that it retains crucial physical rela-
tionships within the model more effectively than the traditional QDM, particularly at longer timescales. In the next section, we

will evaluate its performance on the full GCM domain.
3.2 Over full domain

We apply EMDBC and QDM to the expanded model domain—covering all relevant time periods—to illustrate each method’s
impact on temperature bias correction. As an initial illustration, Figure 5 presents a single sampled location, decomposed in
multiple timescales via the EMD-based approach described in Section 2.4. While QDM and EMDBC both perform well at the
daily (training) scale, EMDBC more accurately preserves the longer-term fluctuations (e.g., seasonal and annual) seen in the
observed Livneh data.

Turning next to broader spatial analyses, Figure 6 focuses on various sub-regions across continental United States (CONUS).
In each sub-region, the top panel compares the absolute temperature bias between the model projected and the observed
series before and after correction with EMDBC and QDM, whereas the bottom panel shows the distribution of the average
temperature. This figure demonstrates that EMDBC consistently reduces biases while maintaining an overall temperature
distribution comparable to QDM.

To verify whether these distributional consistencies hold across individual seasons, we next analyze Figure 7, which illus-
trates the spatial distribution of seasonal-average temperature for the Livneh observations, the raw WRF-CCSM outputs, and
their bias-corrected counterparts. At this aggregated seasonal level, both EMDBC and QDM move the model’s temperature
distribution closer to the observed data while retaining the overall projected warming trends through the mid- and late-century
timeframes. This consistency further suggests that EMDBC not only reduces bias magnitude but also closely matches observed
seasonal temperature patterns.

Finally, Figures 9 and 8 show the average predicted daily bias ((d)—(f)) and the corresponding spatial maps (((g)—(1)); e.g.,
annual or multi-year averages) for the raw and bias-corrected WRF-CCSM outputs. For reference, average Livneh observation
data is also plotted, along with the average WRF-CCSM historical bias before and after correction (((a)—(c))). Here, “predicted
bias” refers to the difference between the modeled temperature and its bias-corrected counterpart. EMDBC generally applies a

stronger correction than QDM, resulting in slightly cooler daily temperature fields and a more uniform reduction of bias across
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Figure 5. Bias-correction comparison across multiple time-scales at a representative grid cell. Column 1 shows the full 1995-2004 record,
while Column 2 zooms into 1999-2001 for clarity. Solid lines correspond to the observed Livneh series (blue) and the raw CCSM projection
(green); dashed lines show the bias-corrected outputs from EMDBC (red) and QDM (purple). Each row presents the original daily series and
its bi-weekly, seasonal, and annual components, obtained by aggregating intrinsic mode functions as described in Section 2.4. The numbers
at right report the mean-squared error (MSE, °K?) between each series and Livneh. While QDM matches EMDBC at the native daily
scale, EMDBC yields consistently lower MSE at the bi-weekly, seasonal, and annual bands, indicating superior preservation of large-scale
temperature variability.
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ture for each sub-region.

335 the domain. Although we cannot fully validate future-period corrections in the absence of observations, EMDBC’s stronger
alignment with historical data and its lower bias in validation sub-regions suggest it is well-equipped to handle changing

conditions while preserving both short- and long-term temperature variability.

4 Conclusion

This study proposes a new timescale-aware bias-correction methodology, EMDBC, and applies it to 12 km WRF-CCSM
340 daily temperature simulations, covering historical (1995 — 2004), mid-century (2045 — 2054), and late-century (2085 — 2094)
periods across the contiguous United States. Furthermore, the EMDBC approach is validated by splitting historical model and
observed data into training and validation sets and evaluating the validation set for bias reduction. In order to demonstrate
the benefits of EMDBC, we compare the distributional similarities and absolute bias at varying timescales of the observed,
model-projected, and bias corrected series. The results of this study highlight the importance of addressing biases across

345 multiple timescales when correcting regional Earth system model outputs. Conventional approaches, such as mean-based linear
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Figure 7. The mean daily temperature by season ((a) winter, (b) spring, (¢) summer, (d) fall) across Livneh (1995-2004) and WRF-CCSM

historical (1995-2004), mid-century (2045-2054), and late-century (2085-2094) timeframes before and after bias correction. Results for

QDM and EMDBC are included. Violin plots displaying all timeframes on a common axis illustrate how both QDM and EMDBC preserve

the shape of the observed spatial temperature distribution, while also showing the distribution’s shift across centuries as projected by the

WRF-CCSM model.
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Figure 8. Temperature and temperature bias comparisons over
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CCSM historical average daily absolute bias. Middle: (d) Magni-
tude of QDM correction in historical, (¢) mid-century (2045-2054),
and (f) late-century (2085-2004) timeframes. Right: (g) QDM-
corrected temperatures for WRF-CCSM historical, (h) mid-century,

and (i) late-century periods.
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Figure 9. Temperature and temperature bias comparisons over
CONUS before and after applying EMDBC. Left: (a) Ob-
served temperature (Livneh, 1995-2004), (b) WRF-CCSM histor-
ical (1995-2004) average daily absolute bias, and (c) EMDBC-
corrected WRF-CCSM historical average daily absolute bias. Mid-
dle: (d) Magnitude of EMDBC correction in historical, (e) mid-
century (2045-2054), and (f) late-century (2085-2004) timeframes.
Right: (g) EMDBC-corrected temperatures for WRF-CCSM his-

torical, (h) mid-century, and (i) late-century periods.

scaling or quantile mapping, often focus on single distributions without adequately capturing longer-term fluctuations (e.g.,
monthly or seasonal). This limitation can lead to distorted trends and weakened physical consistency among atmospheric
variables, thereby reducing confidence in model projections used for impact assessments and decision-making. In contrast, our
EMDBC framework leverages Empirical Mode Decomposition (EMD) to isolate and correct distinct timescale wise oscillatory
decomposition of a given signal, thereby preserving both short-term and long-term variability. Validation experiments show
that EMDBC aligns better with observations at coarser temporal resolutions compared to conventional approaches, ensuring
more accurate trends and enhanced physical consistency. These improvements are particularly relevant for applications where
long-term signals—such as drought monitoring and risk assessment—play a critical role.

Nonetheless, several limitations remain. While the EMD decomposition offers theoretical guarantees for extracting intrinsic
modes, segmenting them into discrete timescales still depends on user-defined thresholds, introducing a degree of subjectiv-
ity. A more rigorous, automated framework for determining these boundaries would further bolster EMDBC’s robustness.
Additionally, although ensemble EMD (EEMD) helps mitigate mode mixing, more advanced signal-processing or machine

learning techniques could optimize the decomposition process. Another promising avenue for future work is the exploration of
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multivariate EMD approaches, which would facilitate a more comprehensive bias correction by preserving inter-variable de-
pendencies among variable fields. Despite these open questions, our results demonstrate that a timescale-aware bias-correction

strategy significantly enhances model projection reliability and paves the way for continued innovation in this area.

Code and data availability

All Python scripts for the Empirical Mode Decomposition-based Bias Correction, the full-domain WRF-CCSM dataset used in
this manuscript, and the validation areas mapping WRF-CCSM indices to 25x25 case study regions are available in a Zenodo
repository at https://doi.org/10.5281/zenodo.15244202 (Ganguli et al. (2025). Livneh daily CONUS observational data (Livneh
et al. (2013)), provided by NOAA Physical Sciences Laboratory (NOAA-PSL) in Boulder, Colorado, USA, are available at
https://psl.noaa.gov/data/gridded/data.livneh.html (NOAA-PSL (2013)). For Livneh, daily mean temperatures are computed as
the average of the daily minimum and maximum values. Finally, the Empirical Mode Decomposition-based Bias Correction
code is also available in the EMDBC GitHub repository at https://github.com/jeremyfifty9/emdbc (Ganguli and Feinstein
(2025)).

Appendix A: Case Study Regions Used in Validation

Region Ymin  Ymax Tmin Tmax UL Corner UR Corner LR Corner LL Corner
Midwest 163 187 384 408  40.6233°N, 40.1100°N, 42.7208°N, 43.2588°N,
93.2427°W 89.8016°W 89.0243°W 92.6135°W
Northeast 190 214 482 506  40.6657°N, 39.6782°N, 42.1325°N, 43.1648°N,
78.3030°W 75.0555°W 73.6529°W 77.0141°W
Northern 189 213 292 316  44.4211°N, 44.3514°N, 47.0303°N, 47.1034°N,
106.7944°W 103.0425°W 102.8481°W 106.7843°W
Northwest 187 211 204 228  43.3865°N, 43.7721°N, 46.4336°N, 46.0293°N,
120.3843°W 116.7218°W 117.1932°W 121.0272°W
Southeast 95 119 394 418  33.0354°N, 32.5457°N, 35.1159°N, 35.6294°N,
93.4738°W 90.4126°W 89.7489°W 92.9269°W
Southern 110 134 330 354 35.4968°N, 35.2683°N, 37.9028°N, 38.1425°N,
101.6792°W 98.4510°W 98.0920°W 101.4546°W
Southwest 123 147 229 253 36.7126°N, 36.9397°N, 39.5947°N, 39.3564°N,
115.5168°W 112.2155°W 112.4409°W 115.8829°W

Table A1l. Bounding-box definitions for each case-study region. Columns ¥min, Ymax, Lmin,» ad Tmax list the 0-based Python array indices
that isolate the region within the WRF domain supplied with the dataset linked in the data availability statement; the remaining columns give
the decimal-degree latitudes and longitudes of the four bounding-box corners: upper left (UL), upper right (UR), lower right (LR), and lower
left (LL).
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Appendix B: Optimal Tuning of IMF's for EMDBC

The performance of the proposed EMDBC framework depends on the quality and separation of the IMFs generated during
the decomposition process. A common challenge in EMD methods is mode-mixing, where oscillatory modes of different fre-
quencies are entangled within a single IMF, reducing interpretability and effectiveness (Tang et al., 2012). While the Ensemble
EMD (EEMD) approach (Wu and Huang, 2009) mitigates mode-mixing by introducing random noise, it does not fully elimi-
nate the issue. Several alternative strategies have been proposed to ensure distinct frequency bands for IMFs (Tang et al., 2012;
Fosso and Molinas, 2018), but none has proven universally robust.

To address the instability of IMFs and ensure their meaningful separation across timescales, we impose constraints on their
maximum amplitude frequencies ( fnax) calculated using the Fast Fourier Transform (FFT) (Rockmore, 2000). This process is
iterative: IMFs are generated, evaluated against the constraints, and refined until all conditions are satisfied. The constraints are

defined as follows:

— Ensuring Distinct Timescales: Each IMF must represent a unique timescale, maintaining a strictly decreasing frequency

trend:

Af(j) — r(@) _ £(G+1) >0, VY9,

max max max
where f,sqjal denotes the maximum amplitude frequency of the j-th IMF.
— Preventing Overlap: To avoid redundancy, the relative change in frequency between consecutive IMFs must exceed a
minimum threshold:
Afrgljazg > Omin-
(4)

max

— Maintaining Regularity: The progression of frequencies across IMFs should be smooth, avoiding abrupt changes. This
is enforced by ensuring:
A fiin

G < Omax
max
The thresholds 0, and dpax act as hyperparameters, which can be tuned through cross-validation. In our experiments, setting
Omin = 0.2 and dpax = 0.8 yielded satisfactory results. The algorithm iteratively checks these constraints after each generation
of IMFs. If all conditions are satisfied, the process terminates; otherwise, new IMFs are generated, and the constraints are
re-evaluated. The following algorithm outlines the major steps in this iterative optimization process:
By iteratively applying these constraints, we ensure that the IMFs represent distinct timescales, avoid redundancy, and main-
tain smooth frequency progression. This optimization significantly enhances the stability of the decomposition and improves

the effectiveness of EMDBC in handling challenging cases of mode-mixing or overlapping frequency bands.
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Algorithm B1 Iterative Optimization of IMFs for EMDBC

1: Input: Time series x(t), thresholds dmin, Omax
2: Output: Optimized set of IMFs, {s;}7.,
3: Initialize: Generate initial IMFs using EEMD: {s;}7>,
Compute maximum amplitude frequencies f,g,é,)( using FFT
while any constraint is violated do

Check distinct timescales: A f,&il > 0,Vj

(5)
Check overlap: % > Gmin

max
8:  Check regularity: Af{‘;‘?" < Omax

max

9:  if any condition is violated then

10: Regenerate IMFs using updated parameters
11: Recompute f,S,ZD)(

122 endif

13: end while

14: return Optimized {s;}7,

400 Appendix C: Description of the Acronyms

Table C1: Acronyms and Symbols used in this study

Acronym / Symbol Full Form

Brief Description (incl. equations)

CMIP6 Coupled Model Intercomparison Project
Phase 6

GCM Global Climate Model

RCM Regional Climate Model

BC Bias Correction

QM Quantile Mapping

CDF Cumulative Distribution Function

QDM Quantile Delta Mapping

Multi-model ensemble of coordinated global cli-
mate simulations.

Dynamical model representing physical pro-
cesses of the climate system on a global grid.
Higher-resolution model nested within a GCM
to resolve regional detail.

Statistical adjustment applied to model output to
align it with observations.

Bias-correction technique that remaps model
quantiles to observed quantiles.

Fx(x) =Pr[X < z] for a random variable X.
Bias-correction method that preserves the mod-

eled change signal while correcting quantiles.
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Table C1 (continued)

Acronym /Symbol  Full Form Brief Description (incl. equations)
EMD Empirical Mode Decomposition Data-adaptive decomposition that yields oscilla-
tory components called IMFs.
EEMD Ensemble Empirical Mode Decomposition = Noise-assisted EMD variant that improves mode
separation.
WRF-CCSM Weather  Research  and  Forecast- Dynamical downscaling chain coupling WRF
ing—Community Climate System Model with CCSM boundary fields.
IMF Intrinsic Mode Function Oscillatory component extracted by EMD, each
with well-behaved local extrema.
EMDBC EMD-based Bias Correction Bias-correction framework that operates on
time-scale-specific IMFs before reconstruction.
W, (WD) Wasserstein Distance W,(P,Q) = (ve IiI(I;Q) / [l —
XXX
yllP dfy(a;,y)) 1/p; where T'(P,Q) denotes
the set of all couplings with marginals P and @,
commonly p = 1.
MSE Mean Squared Error MSE(y, ) = % Xn:(yZ — §;)%; average squared
deviation betweezn: Il)redictions and observations.
FFT Fast Fourier Transform Algorithm that computes the discrete Fourier

transform in O(nlogn) operations.
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