
Author’s Response to the Referees
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Title: Bias Correcting Regional Scale Earth System Model Projections: Novel Approach using

Empirical Mode Decomposition

We thank both the reviewers for their careful and constructive feedback. Point-by-point replies

were originally uploaded as separate attachments (https://egusphere.copernicus.org/#AC4 and

https://egusphere.copernicus.org/#AC5) in our earlier interactive comments. For completeness,

we now merge those two rebuttal letters into a single, consolidated author-response file as requested.

Reviewer remarks are set in bold; our responses follow each remark. When necessary, we use italics

to indicate direct quotes from the manuscript, blue to mark text revised in response to comments

from Referee 1, and green for text revised in response to comments from Referee 2.
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Response to Reviewer 1

Thank you very much for your thorough and constructive review. We greatly appreciate the time

and effort you invested in evaluating our work. Below we address each of your comments in turn.

Reviewer remarks are set in bold; our responses follow each remark. When necessary, we use

italics to demarcate quotes directly from the manuscript and blue marks revised text. We have also

prepared a revised manuscript that addresses all of your comments and would be happy to provide

it if needed.

This paper proposes a complex new way to do bias correction as a function of time scale. They

claim that this technique is useful for impact analysis and improves on older simpler methods. But

the paper does not provide any examples of this. It would greatly benefit from a couple examples

where the new technique provides significantly improved understanding of the effects of climate

change on a particular impact.

1. Why does the paper use such old simulations to demonstrate the technique?

Response: While we acknowledge that this dataset was developed approximately a decade

ago, it remains one of the high-resolution regional climate datasets available for North America

and comparable to others (e.g., CORDEX; https://na-cordex.org/). It continues to be widely

used by stakeholders and researchers, as demonstrated by its integration into publicly available

platforms such as climRR (e.g., https://climrr.anl.gov/).

Importantly, our goal in this study was to develop and demonstrate a new methodology for bias

correction, rather than to evaluate future projections or explore new regional climate scenarios.

The dataset we used provides a robust and validated testbed for this methodological develop-

ment. In this context, the age of the dataset does not compromise the utility or rigor of our

demonstration.

That said, we fully recognize the importance of applying the method to more recent high-

resolution simulations. Our team is currently developing a new 4 km convection-permitting

regional climate dataset, and we intend to apply the proposed method to that product in future

work. These simulations are undergoing evaluations for physical consistency, performance and

other model evaluation criteria before we attempt any bias correction (Akinsanola et al., 2024).

2. The paper seems to ignore the diurnal cycle. If you are going to bias correct

based on time scales, this needs to be included. The daily maximum and minimum

temperatures are very important for many impacts. Just using daily means is not

sufficient for temperature.

Response: We appreciate the reviewer’s insightful comment regarding the importance of the

diurnal cycle. In this study, we focused on bias correction of daily mean temperature as a first

step, largely due to limitations in the availability of spatially and temporally high-resolution ob-

servational datasets that cover the entire CONUS domain (e.g., Livneh, PRISM). These datasets
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do not include sub-daily or hourly observations, which limits the feasibility of bias correction

at finer temporal scales. Since our model domain spans the entire CONUS, it is important to

use observational data that provides full spatial coverage, and currently, such datasets are only

available at daily resolution.

With respect to daily maximum and minimum temperatures, we agree that applying bias cor-

rection to these variables is important for generating a more comprehensive and impact-relevant

dataset. In this study, our primary objective was to demonstrate the methodological advantages

of incorporating time-step-specific bias correction. For clarity and focus, we limited our main

experiments to daily mean temperature. Nonetheless, our approach is directly applicable to the

daily minimum and maximum temperature fields and users can extend the method to those

variables without modifications beyond training separate models.

3. And why is bi-weekly the shortest timescale? Many impacts depend on daily or

subdaily timescales. Some extremes, which are very important, occur on these short

time scales, including heatwaves and floods.

Response: We appreciate this observation. Our framework employs empirical-mode decom-

position (EMD) to split each temperature series into intrinsic mode functions (IMFs) of progres-

sively lower frequency (see Fig. 1). We then form physically interpretable bands by summing

subsets of these IMFs.

• The ”bi-weekly band” aggregates IMFs with periods starting from a few days up to 14

days. However, as the observation data is only available at the daily level, a direct hourly

(or finer) bias-correction step cannot be performed under the current data constraints.

• The ”seasonal band” aggregates IMFs with periods between 14 days and 90 days, and so

on for longer scales.

We chose the 14-day cutoff because it cleanly separates high-frequency “weather” variability

from subseasonal fluctuations while leaving enough IMFs in each band for different timescale

representations. The method itself is flexible: if higher-resolution observations become avail-

able, additional finer bands (e.g., hourly) can be introduced with the first few IMFs without

altering the core algorithm. We have added the following clarification to the revised manuscript

(Section 2.4.1, lines 180: The bi-weekly band aggregates all IMFs with periods shorter than 14

days—thereby encapsulating the entire sub-daily to bi-weekly spectrum—while longer bands are

formed by summing progressively lower-frequency IMFs.):

4. Figure 1 has several problems. It is colored, but there is no information about what

the colors mean. The caption that a colorbar is not needed is absolutely wrong.

What is the variable and how was it calculated? Also, there are no x- and y-axes.

And the edges of the boxes are not discernible. There needs to be a table with each

region and its location with the lat and lon of each edge.
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Figure 1: Empirical Mode Decomposition (EMD) of a representative daily temperature time series
from Livneh observations (1995–2004). The top panel shows the original temperature signal. The
following eight panels display the Intrinsic Mode Functions (IMFs), representing oscillatory compo-
nents with progressively lower frequencies. The bottom panel shows the residual trend, capturing
the long-term monotonic variation.
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Figure 2: Map of case study regions selected for evaluating the bias correction methods. Boundaries
are overlaid on the average 1995-2004 mean temperature field from WRF-CCSM, illustrating the
diverse range of temperature regimes captured by the case study areas.

Response: We thank the reviewer for noting the problems in Figure 1. The figure has been

updated by adding a color bar, labeling both axes, and overlaying grid lines to aid interpretation.

Boundary vertices of each case study region were corrected to reflect the exact polygons used in

the analysis, making each region visually distinct. The caption has been rewritten accordingly.

The updated figure and caption is shown in Figure 11.

To ensure reproducibility, the appendix now includes a table that lists, for each case study region,

the latitude/longitude coordinates of the bounding-box vertices together with their absolute

array indices. The added table is shown in Table 1. The following text was added to the

manuscript body to reflect this change: Lines 114: The seven areas are geographically defined in

Appendix A.

5. The paper has very many acronyms, and learning all of them makes the paper hard

to read. And some of them are not defined at all. If the terms are not used multiple

times, don’t use acronyms and just write them out. And it would help to include

an appendix with a list of the acronyms and their definitions.

Response: Thank you for the suggestion. In the revised manuscript, we have included the

following comprehensive table (Table 4 in the appendix that explains both the domain-specific

acronyms as well as the mathematical notations and abbreviations used throughout the paper.
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Region ymin ymax xmin xmax UL Corner UR Corner LR Corner LL Corner
Midwest 163 187 384 408 40.6233◦N,

93.2427◦W
40.1100◦N,
89.8016◦W

42.7208◦N,
89.0243◦W

43.2588◦N,
92.6135◦W

Northeast 190 214 482 506 40.6657◦N,
78.3030◦W

39.6782◦N,
75.0555◦W

42.1325◦N,
73.6529◦W

43.1648◦N,
77.0141◦W

Northern 189 213 292 316 44.4211◦N,
106.7944◦W

44.3514◦N,
103.0425◦W

47.0303◦N,
102.8481◦W

47.1034◦N,
106.7843◦W

Northwest 187 211 204 228 43.3865◦N,
120.3843◦W

43.7721◦N,
116.7218◦W

46.4336◦N,
117.1932◦W

46.0293◦N,
121.0272◦W

Southeast 95 119 394 418 33.0354◦N,
93.4738◦W

32.5457◦N,
90.4126◦W

35.1159◦N,
89.7489◦W

35.6294◦N,
92.9269◦W

Southern 110 134 330 354 35.4968◦N,
101.6792◦W

35.2683◦N,
98.4510◦W

37.9028◦N,
98.0920◦W

38.1425◦N,
101.4546◦W

Southwest 123 147 229 253 36.7126◦N,
115.5168◦W

36.9397◦N,
112.2155◦W

39.5947◦N,
112.4409◦W

39.3564◦N,
115.8829◦W

Table 1: Bounding-box definitions for each case-study region. Columns ymin, ymax, xmin, and xmax

list the 0-based Python array indices that isolate the region within the WRF domain supplied with
the dataset linked in the data availability statement; the remaining columns give the decimal-degree
latitudes and longitudes of the four bounding-box corners: upper left (UL), upper right (UR), lower
right (LR), and lower left (LL).

Table 2: Acronyms and Symbols used in this study

Acronym /

Symbol

Full Form Brief Description (incl. equations)

CMIP6 Coupled Model Intercomparison

Project Phase 6

Multi-model ensemble of coordinated

global climate simulations.

GCM Global Climate Model Dynamical model representing physical

processes of the climate system on a

global grid.

RCM Regional Climate Model Higher-resolution model nested within a

GCM to resolve regional detail.

BC Bias Correction Statistical adjustment applied to model

output to align it with observations.

QM Quantile Mapping Bias-correction technique that remaps

model quantiles to observed quantiles.

CDF Cumulative Distribution Function FX(x) = Pr[X ≤ x] for a random vari-

able X.

QDM Quantile Delta Mapping Bias-correction method that preserves

the modeled change signal while correct-

ing quantiles.

EMD Empirical Mode Decomposition Data-adaptive decomposition that yields

oscillatory components called IMFs.

Continued on next page
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Table 2 (continued)

Acronym /

Symbol

Full Form Brief Description (incl. equations)

EEMD Ensemble Empirical Mode Decom-

position

Noise-assisted EMD variant that im-

proves mode separation.

WRF–CCSM Weather Research and Forecast-

ing–Community Climate System

Model

Dynamical downscaling chain coupling

WRF with CCSM boundary fields.

IMF Intrinsic Mode Function Oscillatory component extracted by

EMD, each with well-behaved local ex-

trema.

EMDBC EMD-based Bias Correction Bias-correction framework that operates

on time-scale-specific IMFs before recon-

struction.

Wp (WD) Wasserstein Distance Wp(P,Q) =
(

inf
γ∈Γ(P,Q)

∫
X×X

∥x −

y∥p dγ(x, y)
)1/p

; where Γ(P,Q) denotes

the set of all couplings with marginals P

and Q, commonly p = 1.

MSE Mean Squared Error MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2; average

squared deviation between predictions

and observations.

FFT Fast Fourier Transform Algorithm that computes the discrete

Fourier transform in O(n log n) opera-

tions.

6. What about spatial scale? Usually bias correction is paired with downscaling. Are

they independent? Does it matter in what order they are done?

Response: The bias correction in our analysis has been applied after the regional downscaling

step. We acknowledge that the order could influence the results, and in this case, the dynamical

downscaling was performed first, followed by bias correction to adjust the downscaled output. We

have conducted numerical experiments with bias corrected input fields (Wang and Kotamarthi,

2015). This process didn’t always reduce the bias, particularly in near surface values. As a

result, we have made the decision of conducting our downscaling simulations with inputs that

are not bias corrected. In general, bias correction is often integrated into statistical downscaling,

in the case of dynamical downscaling, it is commonly applied after the simulation. This approach

directly addresses biases in the final model output at its resolved scale when using dynamical

7



downscaling. We acknowledge that there is no one method that is vastly superior to the other

but this is the process we adopted.

Dynamical downscaling involves running a high-resolution regional model driven by a coarser

GCM. While this method adds fine-scale physical processes and resolves local properties (e.g.,

terrain, land type, etc.), the RCM itself can introduce own systematic biases through its param-

eterized physics (e.g., microphysics, PBL, convective parameterizations). These RCM-specific

biases are not necessarily present in the driving GCM and cannot be fully rectified by simply

bias correcting the GCM input.

Given this, applying bias correction after downscaling directly targets biases inherited from the

driving GCM as well as those inherent to the 12 km RCM output. This is crucial because these

RCM-specific biases are distinct from the driving GCM’s biases and significantly impact the

regional-scale climate information relevant for many applications.

We will clarify these distinctions and the rationale for our sequencing within the revised manuscript

to enhance its clarity and provide further context on our methodological choices.

7. Figure 2 has too many panels with tiny font that is illegible. I can’t read the

subpanels in the first row. The text in the last row is too tiny. And what is this

time series? Please explain where the data for the observations and model came

from.

Response: We thank the reviewer for noting the problems in Figure 2. The figure has been

updated for improved readability by (1) increasing font sizes and (2) separating the ”IMF”

inset plot from row 1 into its own row. Additionally, the caption was updated to clarify the

time series and data source. We would like to note that Figure 2 serves as a schematic of the

EMDBC workflow, so specifics about the underlying data are not essential for illustrating the

method. However, we agree that adding some additional details about where the data for the

observation and model come from improves the clarity of the figure. We have added additional

details in the caption to address this. The updated figure and caption is shown in Figure 11.

8. Line 203 says, “At longer timescales (seasonal or annual), biases often manifest

in more systematic patterns that persist across multiple years.” but the authors

provide no evidence for this. Why do you think the climate system would behave

this way? Please provide references.

Response: Thank you for flagging this point. In our experiments we consistently find that

short-term IMFs (< 14 days, i.e., the bi-weekly band) oscillate rapidly around zero, whereas

seasonal and annual IMFs drift smoothly and keep the same sign for months to years—clear

evidence of a persistent, systematic bias. To understand the temporal dependency across differ-

ent timescale representations of our daily data, we calculated autocorrelation at different lags

from 1-365. This analysis shows that the biweekly bias consistently exhibits low autocorrelation,

confirming its weak temporal dependence and justifying a non-parametric treatment, whereas
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Figure 3: Timescale-wise bias correction framework using EMDBC. Three inputs are required:
temperature timeseries from observation, modeled historical, and modeled future datasets. Here,
to demonstrate EMDBC, timeseries data are extracted from Livneh (To), WRF-CCSM historical

(T hist
p ), and WRF-CCSM mid-century (T fut

p ) at an arbitrary location. The input temperature
series are decomposed into IMFs using EEMD. IMFs are then classified into predefined timescales:
biweekly, seasonal, and annual. Bias correction is applied using QDM for biweekly timescale and
residuals, and quantile regression for seasonal or annual timescales. Finally, the corrected timescales
are summed to reconstruct the bias corrected temperature series.

9



for longer timescales (seasonal and annual), the autocorrelation metrics are much higher. Figure

20 shows this behaviour at a representative grid cell.

This observed behavior, where longer-term IMFs exhibit greater persistence and systematicity,

while shorter-term IMFs are less autocorrelated and more stochastic, is consistent with estab-

lished understanding of climate model uncertainties and errors. For example, Hawkins and

Sutton (2009, 2012) demonstrate that while internal climate variability dominates uncertainties

in near-term projections (reflecting a more stochastic and less predictable component), model

uncertainty becomes increasingly dominant over longer timescales, indicative of persistent, sys-

tematic differences in model representations.

Internal variability (e.g., weather, chaotic atmospheric fluctuations) operates on short timescale

and tends to average out over longer periods, reducing its relative contribution to bias. As

lead time increases the random fluctuations from internal dynamics become less dominant. In

contrast, what becomes prominent is the underlying, systematic bias that arises directly from

the model’s fixed structural shortcomings in representing physical processes at longer timescales.

These are the persistent errors built into the model’s physics and parameterizations. Because

the source of these biases remains persistent, their effect accumulates and persists over longer

periods. The autocorrelation of these biases is high because the reason for the bias doesn’t

change from one season or year to the next. This fundamental difference in bias characteristics

at varying timescales directly informs and justifies our multi-timescale bias correction approach.

We have added this explanation at line 203 of the revised manuscript: With daily-resolution

data, longer timescales like seasons or years appear more structured, while shorter timescales

show less pattern.

9. The paper uses “validation” in many places where it should be “evaluation.” Please

correct these. Validation means that you already know the results are valid.

Response: In our manuscript we use “validation” in its standard machine-learning sense, not

as a synonym for “evaluation of something already proven correct.” Specifically:

• Training vs. validation splits – We divided the historical record into two non-overlapping

windows: 1995 – 1999 for model development (training) and 2000 – 2004 for validation.

The latter window is completely unseen during the fitting, so the performance metrics

computed there estimate the generalization error of the model.

• Evaluation – Metrics calculated on the training window (or when we do not know the

observed series, e.g., the mid and late century projections) are referred to as evaluations,

because the data were used in optimization and the results primarily reflect in-sample fit.

Thus, wherever the manuscript discusses out-of-sample performance on the 2000 – 2004 window,

we intentionally use “validation.” We have double-checked the text to ensure the term “evalu-

ation” is reserved for in-sample diagnostics, while “validation” appears only for results on the

held-out split.

10. Figures 3 and 4 are missing units. And what is Wasserstein?

10



Figure 4: Bias decomposition by time scale for a representative grid cell. The first plot, labeled
“Original,” shows the daily bias (Livneh – CCSM). Empirical Mode Decomposition (EMD) is
used to group intrinsic mode functions (IMFs) into three aggregated bands: biweekly, seasonal,
and annual. Autocorrelation values at different lags are shown in the second column to quantify
temporal dependence for multiple timescales extracted from daily samples. Notably, the biweekly
bias exhibits much lower autocorrelation, indicating weaker time-dependency compared to the
seasonal and annual bands.
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Response: Thank you for noticing these omissions. We have updated Figures 3 and 4 to

include the appropriate units on all axes and color bars.

Regarding “Wasserstein,” we are referring to the first-order Wasserstein distance (also called

the Earth-Mover’s Distance), a metric that quantifies the minimal “cost” of transforming one

probability distribution into another. It is well suited for comparing full distributions rather

than individual moments and is therefore a natural choice for our quantile-based bias-correction

evaluation. A more detailed description can be found at Panaretos and Zemel (2019). The

following brief definition and formula have been added to the Appendix, and the term is now

introduced at first mention in the main text:

WD is defined as a distance between two probability measures P and Q on a metric space (X , ∥·∥)
by

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
X×X

∥x− y∥p dγ(x, y)
)1/p

, (1)

where Γ(P,Q) denotes the set of all couplings with marginals P and Q; throughout this study we

use the common choice p = 1 (Panaretos and Zemel, 2019).

11. The first three panels in Fig. 5 just show lots of colored lines, and it is impossible to

compare them. The last row only has 4 lines, but the colors are similar and again it

is hard to figure out which line is which. And what is MSE and what are its units?

Why are the last three panels centered on 0? Are these anomalies? With respect

to what?

Response:

(a) Improved visual clarity: We have reorganised Figure 22 into two side-by-side columns. Col-

umn 1 retains the full 1995–2004 record for context, while Column 2 zooms into 1999–2001

so individual trajectories can be inspected easily. Livneh and CCSM are plotted with solid

lines, and the two bias-corrected series—EMDBC and QDM—are plotted with dashed lines,

making each data product visually distinct.

(b) Mean-squared error (MSE): Because individual curves remain hard to separate in the full-

record view, we quantify performance with the mean-squared error between each series and

Livneh. The caption now supplies the definition and units:

MSE(x, y) =
1

N

N∑
t=1

[
x(t)− y(t)

]2
,

where x is the bias-corrected (or raw) model series, y is Livneh, and N is the number of

days; While QDM matches EMDBC at the native daily scale, EMDBC achieves lower MSE

at seasonal and annual scales—evidence that it better preserves large-scale temperature

behaviour.

(c) Why the lower-row curves are centred on zero: The bottom three panels display the bi-

weekly, seasonal, and annual reconstructions obtained by summing the corresponding in-
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Figure 5: Bias-correction comparison across multiple time-scales at a representative grid cell. Col-
umn 1 shows the full 1995–2004 record, while Column 2 zooms into 1999–2001 for clarity. Solid lines
correspond to the observed Livneh series (blue) and the raw CCSM projection (green); dashed lines
show the bias-corrected outputs from EMDBC (red) and QDM (purple). Each row presents the
original daily series and its bi-weekly, seasonal, and annual components, obtained by aggregating
intrinsic mode functions as described in Section 2.4. The numbers at right report the mean-squared
error (MSE, ◦K2) between each series and Livneh. While QDM matches EMDBC at the native
daily scale, EMDBC yields consistently lower MSE at the bi-weekly, seasonal, and annual bands,
indicating superior preservation of large-scale temperature variability.
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trinsic mode functions (IMFs). Each IMF is zero-mean by construction, so their aggregates

are also zero-mean; the curves are therefore centred on 0 and do not represent anomalies

relative to an external baseline.

12. For the example in Fig. 5, the largest differences in the annual temperature are

just for three years. Why, and how does this skew the average scores?

Response: For this sample location, the largest deviations at the annual scale occur in three

years. However, they still raise the mean-squared error (MSE) across every time scale—exactly

the kind of behaviour a time-scale-aware bias-correction scheme should fix. EMDBC lowers the

error in each of those high-bias years and keeps errors small in the remaining years, thereby

reducing the overall MSE. By contrast, QDM leaves larger residual errors at the annual scale,

so its average MSE remains higher.

More broadly, a successful bias-correction should reduce error consistently across all time scales.

EMDBC is designed for that purpose:

• It maintains the observed structure in the bi-weekly, seasonal, and annual bands (Figure

22, lower rows).

• Consequently, it also achieves a lower MSE than QDM at the original daily scale (Figure

22, top row).

Thus the few extreme-error years do not “skew” the evaluation; instead, they provide a stringent

test, underscoring EMDBC’s ability to correct large, infrequent biases without sacrificing day-

to-day fidelity.

13. Why are some plots semi-annual and others annual?

Response: Thank you for pointing this out. We agree that presenting some plots at a semi-

annual scale while others are shown annually could introduce representational inconsistency. Our

original intention was to demonstrate that the proposed timescale-aware bias correction method

is effective across different temporal scales. However, for consistency and clarity, we have revised

the manuscript to replace the semi-annual plot with an annual version. The updated figure is

shown below as Figure 6.

14. In Fig. 6 in the last row, I can’t tell any differences in the distributions. Are the

differences really significant?

Response: The purpose of the bottom row in Fig. 6 is to demonstrate that both methods

preserve the overall distribution of temperatures. Because QDM is designed to map model

quantiles directly onto observed quantiles, its post-correction curve almost perfectly overlays the

Livneh distribution—hence the lines look identical. EMDBC achieves the same distributional

match while simultaneously lowering the mean bias (top row).
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Figure 6: The timescale wise average absolute bias per subregion on the validation dataset.

15



Figure 7: The mean daily temperature by season (winter, spring, summer, fall) across Livneh (1995-
2004) and WRF-CCSM historical (1995-2004), mid-century (2045-2054), and late-century (2085-
2094) timeframes before and after bias correction. Results for QDM and EMDBC are included.

15. Figs. 7-9: There is not enough information to understand what is plotted? What

are the exact time periods? What are the sources of the data?

Response: We acknowledge that the captions for Figures 7–9 did not explicitly repeat the

time windows and data sources, which may impede readers who consult the figures before the

Methods section. We have therefore revised each caption to include: (1) the exact observational

and model data sets and (2) the temporal periods used.

No changes were made to the plots themselves; the added detail simply mirrors the information

already provided in Section 2.1 (“Data”). We believe this clarification makes the figures fully

self-contained. The updated figure captions are shown in Figures 16, 17, and 18, with revisions

shown in blue.

16. Also, any response has to address the 30 comments in the attached annotated
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Figure 8: Temperature and temperature bias
comparisons over CONUS before and after
applying QDM. Left: Observed temperature
(Livneh, 1995-2004), WRF-CCSM historical
(1995-2004) average daily absolute bias, and
QDM-corrected WRF-CCSM historical aver-
age daily absolute bias. Middle: Magni-
tude of QDM correction in historical, mid-
century (2045-2054), and late-century (2085-
2004) timeframes. Right: QDM-corrected
temperatures for WRF-CCSM historical, mid-
century, and late-century periods.

Figure 9: Temperature and temperature bias
comparisons over CONUS before and after ap-
plying EMDBC. Left: Observed temperature
(Livneh, 1995-2004), WRF-CCSM historical
(1995-2004) average daily absolute bias, and
EMDBC-corrected WRF-CCSM historical av-
erage daily absolute bias. Middle: Magni-
tude of EMDBC correction in historical, mid-
century (2045-2054), and late-century (2085-
2004) timeframes. Right: EMDBC-corrected
temperatures for WRF-CCSM historical, mid-
century, and late-century periods.
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Figure 10: Isotropic spatial autocorrelation of daily surface temperature from the CCSM model at a
representative time point. For each distance r, we select all pairs of grid points exactly r cells apart,
align their anomaly values into two vectors, and compute a single Pearson correlation between those
vectors. The strong correlation at short distances and its gradual decay with increasing separation
illustrate the spatial coherence characteristic of temperature fields.

manuscript

Response:

(a) Comment on: ” Since temperature typically exhibits strong spatial coherence”>> On what

time and space scale? Show data to prove this.

The statement “Since temperature typically exhibits strong spatial coherence” is grounded

in well-established physical understanding: surface temperature is influenced by spatially

continuous factors such as elevation, vegetation, soil moisture, and land use, all of which

shape the local surface energy balance. As a result, neighboring regions tend to exhibit

similar temperatures, leading to spatially coherent temperature fields. This understanding

is also supported by recent literature; for example, Kunz and Laepple (2024) describe a

“large-amplitude short-distance component” in the spatial correlation function of temper-

ature fields, indicating strong local spatial correlation.

As an empirical validation that the CCSM model realistically captures this expected spatial

behavior, we have added a spatial autocorrelation analysis using a representative snapshot

of the model’s surface temperature field. Specifically, we compute the isotropic spatial

autocorrelation, which measures how correlated the temperature is between locations sep-

arated by a given distance, averaged over all directions and presented in Figure 21. The

line shows how correlated two grid cells are at increasing radius: for every possible pair of

cells, we calculated their temperature correlation, grouped the pairs by distance, averaged
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those correlations, and plotted the result. Because the correlation stays well above 0.8 for

up to 40 grid cells away (12*40=480 km), it justifies our use of local smoothing.

(b) All the other typos are corrected in the revised manuscript.

Table 3: Reviewer highlights and responses

Highlighted text Reviewer comment Our response

Systems System Typo corrected.

systems system Typo corrected.

(EMD) Don’t define acronyms

you don’t then use

Eliminated the acronym from the abstract.

systems system Typo corrected.

Abstract What about spatial

scale? Usually bias

correction is paired

with downscaling. Are

they independent?

Does it matter in what

order they are done?

Discussed in our response to 6.

CMIP6 define Defined on line 15 and acronym defined in appendix

acronym table.

(NA-CORDEX) (NA-CORDEX) Although the acronym is used only at its first

mention, we retain it because most domain scientists

know this dataset exclusively by that shorthand.

QM The QM Typo corrected.

reflects reflect Typo corrected.

validated evaluated Corrected

EEMD define Defined on line 69 and acronym defined in appendix

acronym table.

systems system Typo corrected.

moodeled moodeled Typo corrected.

s1 s-1 We thank the reviewer for pointing out this typo.

Though our manuscript source code had the proper

notation, it was not being rendered properly in the

PDF document. The text was corrected:

Line 91: ... using a nudging coefficient of

3× 10−5s−1

leverage ??? We acknowledge the awkward word choice. We

replaced ”leverage” with ”used.”

Continued on next page

19



Table 3 – continued from previous page

Highlighted text Reviewer comment Our response

Daily mean

temperature

What about the diurnal

cycle? Why are you

ignoring it? Certainly

daily max and min T

are important variables

for impact analysis.

Discussed in our response to 2.

is are [“data” is plural] Typo corrected.

projected onto What does this mean?

How are the different

grids combined?

We acknowledge the inadequate explanation

regarding how the Livneh dataset was remapped

onto the WRF-CCSM grid. We revised the text

appropriately (our revisions in blue):

Lines 102-103: Similarly, the 1/16 degree Linveh

data is remapped onto the 12-km simulation mesh

used by WRF-CCSM using the bilinear interpolation

operator provided in the Climate Data Operator

software version 2.5.2 (Schulzweida, 2023) to match

the spatial scales.

25x25 What does this mean?

What are the units?

25x25 refers to computation cells used in the WRF

model simulation. We have clarified this in the

manuscript:

(Lines 112-113): For a comprehensive spatial

evaluation, we randomly selected seven areas, each

measuring 25×25 grid cells (300 km × 300 km),

from major subregions across the continental United

States, shown in Figure 1, ensuring a diverse set of

conditions.

Map Need axes showing lat

and lon, especially for

the regions.

Discussed in our response to 4.

(no colorbar

needed

Absolutely wrong.

What are the colors?

And for what specific

period?

Discussed in our response to 4.

CDF What is this? It needs

to be defined

Defined on line 46 and acronym defined in appendix

acronym table.

validation validation Discussed in our response to 9.

same as above evaluation Discussed in our response to 9.

Continued on next page
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Table 3 – continued from previous page

Highlighted text Reviewer comment Our response

strong spatial

coherence

On what time and

space scales? Show the

data to prove this.

Discussed in our response to 16(a).

absolute

temperature bias

Over what time

period? And what time

scale? And what are

the units?

Updated the Figure 3 caption with the relevant

timescale as .. the original daily timescale and the

unit as in K

Wasserstein

distance

What is this? And

what are the units?

Updated Lines 260-263 with the definition and add

in the appendix acronym table

doesn’t does not Corrected

2.1.Figure 2.1. Figure Corrected

Wasserstein

distance

What is this? Updated Lines 260-263 with the definition and add

in the appendix acronym table

FFT ??? Defined on line 266 and acronym defined in

appendix acronym table.

We trust that our revisions and clarifications satisfactorily address your concerns and significantly

improve the manuscript. Thank you again for helping us strengthen this work.
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Response to Reviewer 2

Thank you very much for your thorough and constructive review. We greatly appreciate the time

and effort you invested in evaluating our work. Below we address each of your comments in turn.

Reviewer remarks are set in bold; our responses follow each remark. When necessary, we use italics

to indicate direct quotes from the manuscript, blue to mark text revised in response to comments

from previous reviewers, and green for text revised in response to comments from Referee 2. We

have also prepared a revised manuscript that addresses all of your comments and would be happy

to provide upon request.

The authors have combined various existing bias correcting methods of the literature to account

for timescale-aware bias corrections. They compared a model to a set of observations on a historical

period and propagated the bias correction to mid- and long-term predictions. For some timescales,

this bias correction method improves upon existing methods, on one specific region studied here

and for an atmospheric model. The paper reads well and has many figures illustrating the results.

However, the text and the figures should be improved to clarify the method, the results and

their performance. Thank you.

Here are some general comments:

1. Please clarify the novelty of the method: combining several methods (name them)

into one framework?

Response: Methodological novelty - timescale-aware bias correction: Our key

innovation is to make bias correction explicitly timescale-aware by separating a model signal

into physically meaningful bands and correcting each band individually before reconstruction.

This idea has only been hinted at in previous work (e.g., Haerter et al. (2011)) and, to our

knowledge, has not been operationalized within a complete framework. The approach is

agnostic to the downstream correction tool: any standard univariate scheme can be slotted

in, and a multivariate extension is straightforward via multivariate EMD-type decompositions,

which would preserve inter-variable dependencies in the bias-corrected outputs. This method

is a significant advance because it accounts for bias in phenomena that operate at different

time-scales (mesoscale, synoptic, seasonal, etc.). Doing so preserves the added value of the

dynamical downscaling at the scales where it is accurate, while still correcting errors that

originate from the driving model or from imperfect physics at other scales.

Application novelty - continental-scale evaluation across multiple timescales We

test the framework on WRF-CCSM temperature fields over North America and show that

it delivers larger bias reductions and closer agreement to the observed temperature distri-

bution than both raw model output and a state-of-the-art Quantile Delta Mapping (QDM)

benchmark. These gains—quantified by lower mean-squared error and smaller Wasserstein

distance—are consistent across multiple timescales (biweekly, monthly, seasonal, and half-

annual), demonstrating the practical value of addressing biases at their native timescales.
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2. To improve the performance study it would be helpful to broaden the evaluation:

why is a regional dataset enough (USA)? what about using a larger spatial ex-

tent (global instead of USA)? Can the method be compared to other methods

(mentioned in the Introduction) to illustrate its performance? If only one model

is used in the end, add name of the model in the title.

Response: Regional Focus (CONUS): We agree that a broader spatial evaluation

is an important direction for future work. We focus here on the challenge of correcting

bias in a dynamically downscaled Earth system model projections without losing the value

added by dynamical downscaling. Thus in this study, we used a high-resolution observational

dataset (i.e., Livneh: 1/16 degree spatial resolution) that only covers the CONUS domain

and a high resolution dynamically downscaled model output. This dataset provides daily

meteorological fields at 1-km resolution, which is critical for assessing the performance of our

EMDBC method across multiple timescales. While a global-scale evaluation is valuable, it

would require consistent, high-quality observational datasets at comparable resolution, which

are not readily available globally. Therefore, our current focus on the CONUS region allows

us to rigorously validate the method using reliable and spatially detailed observations.

Comparison to Other Methods: While we acknowledge the importance of comparing to

other bias correction methods, this study aims to introduce and validate a novel, timescale-

aware approach. Due to space limitations and the scope of this work, we chose to focus on

demonstrating EMDBC’s performance against high-resolution observations.

That said, to provide context and justification, we have compared EMDBC against one es-

tablished method, QDM, and found that our approach performs comparably or better in

representing temperature across timescales. Additionally, the observational comparisons al-

ready provide compelling evidence of the method’s effectiveness. Nevertheless, we view direct

inter-method comparison as an important area for future investigation and will consider this

in subsequent studies.

Model Name in Title: We appreciate the reviewer’s feedback about including the model

name (WRF-CCSM) in the manuscript title, since only one model is used. As the primary

purpose of this paper is to present the novel EMDBC method and not to present results from

WRF-CCSM, we have decided to leave the title as-is.

3. When explaining the methods, one or several schematics would help − > with

method is used for which time scale, how is the data used for the evaluation,

etc. . .

Response: We agree that a visual workflow is essential.

To that end, Figure 2 (12) has been redesigned as a six-row schematic that tracks the data

from raw input to final evaluation:
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Row 1 – Inputs Displays the observed Livneh series alongside the raw CCSM simulations

for each grid cell.

Row 2 – EMD decomposition Shows the empirical-mode decomposition of each series

into intrinsic mode functions (IMFs).

Row 3 – IMF–frequency correlation A heat-map links individual IMFs to their domi-

nant frequencies, indicating which ones capture sub-daily, bi-weekly, seasonal, or annual

variability.

Row 4 – Timescale construction IMFs with similar periods are aggregated to build four

working bands: bi-weekly, seasonal, annual, and a residual high-frequency component.

Row 5 – Component-wise bias correction

• Bi-weekly band and residual — corrected with Quantile-Delta Mapping (QDM).

• Seasonal and annual bands — corrected with an ensemble quantile-regression

method suited to slowly varying biases.

Row 6 – Reconstruction and evaluation The four corrected bands are summed to form

the final EMDBC series.

This expanded schematic now makes explicit (i) which algorithm is applied to each timescale,

(ii) how the corrected components are recombined, for clearer methodological presentation.

We have also added a description of this figure at the beginning of Section 2.4:

Building on EEMD, we introduce an Empirical Mode Decomposition–based Bias

Correction (EMDBC) framework for rectifying model biases across multiple timescales.

As sketched in Figure 2, EMDBC proceeds in three steps: (i) timescale decom-

position—the daily Livneh and CCSM series (Row 1) are split via EEMD into four

bands (Rows 2–4); (ii) timescale-specific correction—the residual and bi-weekly

bands are adjusted with QDM, while the seasonal and annual bands use ensemble

quantile regression (Row 5); and (iii) reconstruction—the corrected bands are

recombined to yield the final series for evaluation (Row 6). We describe each of

these steps in detail in the subsections that follow.

4. The figures should be more understandable, some graphs are not readable, all

plots should be commented. Please add a letter to each sub-figure and refer to

the letter in the text.

Response: Thank you for highlighting opportunities to improve the clarity of our figures.

In response, we systematically reviewed each figure against the following criteria:

• Adding titled labels and lettering to all subplots where appropriate

• Enhancing diagrammatic figures to better guide readers

• Providing explanations for subplots within the captions

• Appropriately referencing subplots in the main text
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To that end, individual updates to each figure are documented below.

• Figure 1: We added a title, color bar, axis labels, and grid lines to improve inter-

pretability. Boundary vertices for each case study region were corrected to match the

exact polygons used in the analysis, ensuring clear visual distinction. The caption was

rewritten accordingly. The revised figure and caption are shown in Figure 11.

• Figure 2: We improved readability by increasing font sizes and separating the ”IMF”

inset plot into its own row. The caption was updated to clarify the time series and data

source. As Figure 2 serves as a schematic of the EMDBC workflow, we opted against

lettering every subplot, as this could distract readers. Instead, we labeled rows as Step

1, Step 2, and Step 3, consistent with the Methods section. Labels in the first column

were refined to better align with the in-text explanation, and the caption now explicitly

references each row. The updated figure and caption are shown in Figure 12.

• Figure 3-4,6: We individually lettered each subplot and mentioned them in the caption.

Also, used color-blind compatible colors. The updated figures and captions are shown

in Figures 13, 14, 15.

• Figure 7: We added a centered supertitle to reduce visual clutter, then individually

lettered each subplot title to reference in the figure caption. The figure caption was

revised to explicitly reference each subplot. The updated figure and caption are shown

in Figure 16.

• Figures 8 and 9: We individually lettered each subplot title to reference in the figure

caption and font sizes were increasd to improve readability. The figure caption was

revised to explicitly reference each subplot. The updated figures and captions are shown

in Figures 17 and 18

.

Here are some specific comments:

5. L5: “Meteorological signal”− > “Atmospheric variables” ? Which variables /

components of the earth system model? which time scales? Which area (USA)?

Response: Thank you for noting that our abstract does not explicitly mention the me-

teorological variable used in our experimental validation. We will revise the abstract to

clarify that our validation focuses on WRF-CCSM daily temperature data over historical

(1995–2004), mid-century (2045–2054), and late-century (2085–2094) periods. The revised

abstract text reads:

By decomposing meteorological variables into multiple oscillatory components and

aggregating them to represent distinct timescales, we apply targeted corrections to

each component, thereby preserving both short- and long-term structure in the data.
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Figure 11: Map of case study regions selected for evaluating the bias correction methods. Boundaries
are overlaid on the average 1995-2004 mean temperature field from WRF-CCSM, illustrating the
diverse range of temperature regimes captured by the case study areas.

Experimental validations on WRF-CCSM daily temperature data across histori-

cal (1995–2004), mid-century (2045–2054), and late-century (2085–2094) periods

demonstrate that this finer-grained method substantially improves upon existing

bias-correction techniques such as quantile mapping.

6. L7: “Experimental validations demonstrate that this finer-grained method sub-

stantially improves upon existing bias-correction techniques such as quantile map-

ping“: it was not demonstrated. “illustrates”? And add on which timescale it

improves.

Response: We will restructure the sentence for greater precision in the revised manuscript

:

Experimental illustrations show that the timescale-aware EMDBC framework matches

the performance of conventional quantile-delta mapping (QDM) at the native daily

scale and achieves progressively larger bias reductions at bi-weekly, seasonal, and

annual scales.

The underlying reason is that QDM performs quantile matching only at the original daily res-

olution, whereas EMDBC first decomposes each series into multiple timescales, then applies

the most appropriate correction in each band - QDM for the bi-weekly and residual com-

ponents, and ensemble quantile regression for the seasonal and annual components, where

time-dependent biases are stronger.
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Figure 12: Timescale-wise bias correction framework using EMDBC. Three inputs are required:
temperature timeseries from observation, modeled historical, and modeled future datasets. Here,
to demonstrate EMDBC, timeseries data are extracted from Livneh (To), WRF-CCSM historical

(T hist
p ), and WRF-CCSM mid-century (T fut

p ) at an arbitrary location. The input temperature
series are decomposed into IMFs using EEMD. IMFs are then classified into predefined timescales:
biweekly, seasonal, and annual. Bias correction is applied using QDM for biweekly timescale and
residuals, and quantile regression for seasonal or annual timescales. Finally, the corrected timescales
are summed to reconstruct the bias corrected temperature series.
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Figure 13: Comparison of Absolute Biases and Wasserstein Distances Across Sub-
Regions in the original daily timescale. (a): Boxplots of the absolute temperature (in K) bias
for the original (CCSM) and bias-corrected (EMDBC and QDM) simulations across sub-regions
on the validation dataset. (b): Boxplots of the corresponding Wasserstein distances between the
observed and modeled temperature distributions across sub-regions on the validation dataset.
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Figure 14: The timescale wise average absolute bias per subregion on the validation dataset. In-
cluded timescapes are (a) biweekly, (b) monthly, (c) seasonal, and (d) annual.
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Figure 15: Comparison of CCSM Temperature Biases and Temperature Distributions
Across Sub-Regions. (a) Boxplots of the absolute temperature bias before and after applying
EMDBC and QDM corrections. (b) Violin plots showing the distribution of the average tempera-
ture for each sub-region.
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Figure 16: The mean daily temperature by season ((a) winter, (b) spring, (c) summer, (d)
fall) across Livneh (1995-2004) and WRF-CCSM historical (1995-2004), mid-century (2045-2054),
and late-century (2085-2094) timeframes before and after bias correction. Results for QDM and
EMDBC are included. Violin plots displaying all timeframes on a common axis illustrate how both
QDM and EMDBC preserve the shape of the observed spatial temperature distribution, while also
showing the distribution’s shift across centuries as projected by the WRF-CCSM model.
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Figure 17: Temperature and temperature bias
comparisons over CONUS before and after ap-
plying QDM. Left: (a) Observed temperature
(Livneh, 1995-2004), (b) WRF-CCSM histori-
cal (1995-2004) average daily absolute bias, and
(c) QDM-corrected WRF-CCSM historical av-
erage daily absolute bias. Middle: (d) Magni-
tude of QDM correction in historical, (e) mid-
century (2045-2054), and (f) late-century (2085-
2004) timeframes. Right: (g) QDM-corrected
temperatures for WRF-CCSM historical, (h)
mid-century, and (i) late-century periods.

Figure 18: Temperature and temperature bias
comparisons over CONUS before and after ap-
plying EMDBC. Left: (a) Observed tempera-
ture (Livneh, 1995-2004), (b) WRF-CCSM his-
torical (1995-2004) average daily absolute bias,
and (c) EMDBC-corrected WRF-CCSM his-
torical average daily absolute bias. Middle:
(d) Magnitude of EMDBC correction in his-
torical, (e) mid-century (2045-2054), and (f)
late-century (2085-2004) timeframes. Right:
(g) EMDBC-corrected temperatures for WRF-
CCSM historical, (h) mid-century, and (i) late-
century periods.
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Because of this timescale-aware correction, EMDBC consistently reduces bias across all

sub-regions even at the original daily input scale (see absolute-bias maps in Figures

3 and 6). Moreover, Figure 4 demonstrates that the bias reduction magnifies as the aggrega-

tion scale increases from bi-weekly to seasonal and annual bands. These results collectively

substantiate the claimed improvement.

7. L8-10: add the limitations of the method (see conclusion).

Response: We agree that outlining the limitations of EMDBC is important and have

discussed them explicitly in the Conclusion (Section 5, lines 319-325). There we note, for

example, the method’s reliance on empirical-mode decomposition (EMD)—which can be com-

putationally demanding and is not yet supported by a full theoretical framework—and sug-

gest future work on alternative, lighter-weight timescale decompositions. To preserve the

abstract’s focus and brevity, however, we have not duplicated the full list of caveats in Lines

8–10 of the abstract. We believe this keeps the abstract concise while directing interested

readers to a dedicated limitations paragraph in the main text, as customary in the literature.

Introduction

8. L 21. “Unlike statistical downscaling”: first define statistical downscaling.

Response: Thank you for pointing out that we do not apprioriately introduce statistical

downscaling. Statistical downscaling typically uses empirical relationships between large-scale

climate model outputs and local observations to infer fine-scale climate information. We have

added this clarification:

Unlike statistical downscaling which relies on drawing empirical relationships be-

tween large-scale Earth system models and local observations to infer fine-scale me-

teorological information, dynamical downscaling can simulate a range of physical

processes and their interactions within the Earth system, producing a comprehen-

sive set of dynamically consistent high-resolution meteorological variables.

9. L 25. “Region-level modeling”: North America Mearns et al. 2012, North

American component of the Coordinated regional downscaling experiment NA-

CORDEY, Mearns et al, 2017 − > add other examples on other regions and other

authors?

Response: We agree that this section is improved by providing additional examples and

references. Citations have been added to the revised manuscript and the updated text is

provided below:

Various region-level modeling and assessment initiatives have adopted this approach,

including the North American Regional Climate Change Assessment Program (Mearns
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et al., 2012), the North American component of the Coordinated Regional Downscal-

ing Experiment (NA-CORDEX) (Mearns et al., 2017), targeted evaluations for Tas-

mania (Corney et al., 2013), the central United States (Bukovsky and Karoly, 2011),

the European Coordinated Regional Downscaling Experiment (EURO-CORDEX)

ensemble over Europe (Jacob et al., 2014), and the Coordinated Regional Down-

scaling Experiment over Africa (CORDEX-Africa) initiative (Nikulin et al., 2012),

demonstrating the enhanced capability to capture fine-scale features and provide

more realistic, detailed projections at regional and local scales.

10. L 29-31: “Despite these improvements. . . from forcing data and inherent sys-

tematic errors such as those . . . .”− > add references for the source of the RCMs

biases

Response: We agree that adding references to support the claim that bias is driven by

several factors improves this statement. Citations have been added to the revised manuscript

and the updated text is provided below:

Despite these improvements, RCMs continue to face challenges with biases arising

from both their forcing data and inherent systematic errors, such as those related

to model resolution (Christensen et al., 2008), simplified physical parameterizations

(Misra, 2007; Bukovsky and Karoly, 2011; Jacob et al., 2014), and incomplete un-

derstanding of the Earth system (Christensen et al., 2008), all of which degrade the

downscaled simulations.

11. L47. QM method: transfer function based on the quantile distribution, daily

values − > not necessarily daily?

Response: We agree that quantile mapping (QM) is not intrinsically limited to daily data;

it can be applied at any temporal resolution for which paired model–observation series exist.

In our study the finest common resolution is daily, because the Livneh reference data are

available only as daily aggregates. We will revise Line 47 to make this explicit:

In the QM method, a transfer function is created by matching model-simulated and

observed quantiles at their common temporal resolution (daily in this study) during

a reference period; this function is then applied to future model simulations.

12. L 51. QM improve model accuracy for both mean and extreme events “(Wood,

2002; Wood et al., 2004; Boé et al., 2007; Piani et al., 2009, 2010; Ashfaq et al.,

2010; Teutschbein and Seibert, 2012; Gudmundsson, 2012)” : split the references

between the type of application
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Response: Thank you for the suggestion. This clarification has been incorporated into

the revised manuscript:

Previous studies have shown that QM effectively removes biases, improving model

accuracy for both mean values (Wood, 2002; Wood et al., 2004; Boé et al., 2007;

Piani et al., 2009) and extreme events (Piani et al., 2010; Ashfaq et al., 2010;

Teutschbein and Seibert, 2012; Gudmundsson, 2012).

13. L61: “generally parallels that of quantile-based techniques and does not address

the core challenge of biases that occur across multiple distinct timescales” − >

“generally” suggests it is well known in the literature − > add other references.

What does Dhawan et al 2024 show?

Response: Our intent was to convey that, in many comparative studies, machine-learning

(ML) bias-correction schemes perform similarly to classical quantile-based methods when

both are applied at the same native timescale (daily in our case). We will revise Lines 60–61

to include additional supporting references and to clarify the role of Dhawan et al. (2024):

Several ML-based bias-correction schemes have been proposed (e.g., Sarhadi et al.

(2016); Miftahurrohmah et al. (2024); Das et al. (2022); Feng et al. (2024)); how-

ever, comprehensive intercomparisons such as Dhawan et al. (2024) show that

their daily-scale performance is broadly comparable to that of quantile-based ap-

proaches like QDM and that none addresses biases occurring across multiple distinct

timescales.

Clarification on Dhawan et al. (2024): Dhawan et al. (2024) conducted a large-sample

benchmark using ERA5 pseudo-observations, testing a range of statistical and ML bias-

correction algorithms. Their results indicate that—at the daily resolution—quantile-delta

mapping (QDM) achieves the highest overall skill for temperature, while ML methods offer no

systematic improvement. This finding underpins our choice of QDM as the state-of-the-art

baseline and motivates the need for the timescale-aware EMDBC framework.

14. L62. Biases different at daily monthly seasonal annual scales − > different in

what sense? not multi annual? Or decadal?

Response: In this context “different” refers to the fact that the form, magnitude, and

physical source of model bias change with the temporal scale considered. Short-period fluc-

tuations (hours to days) are governed by weather processes such as convection and frontal

passages, whereas seasonal to annual variability reflects changes in radiation balance, soil-

moisture feedbacks, or large-scale circulation. As noted by Haerter et al. (2011), lumping all

timescales into one aggregate correction mixes these distinct signals and can obscure how a

bias will propagate into future-scenario projections. They therefore advocated separating the
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record into individual bands and applying a cascade of bias corrections—an idea we implement

here via EMD.

Our analysis spans daily up to an “annual” band that, by construction, aggregates all low-

frequency IMFs whose dominant periods exceed one year. Consequently, any multi-annual

variability that is resolvable within the 1995–2004 Livneh record is already embedded in this

band. True decadal signals, however, cannot be isolated with only ten years of data; capturing

and correcting such lower-frequency biases would require a substantially longer observational

series and is therefore left as future work.

15. L67 “Empirical mode decomposition-based bias correction (EMDBC)”: leverag-

ing the adaptive nature of Empirical Mode Decomposition EMD and its ensemble

variant EEMD: explain on which timescale it is used and on which timescale QDM

is used

Response: EMDBC first applies EEMD to the full daily series, producing intrinsic mode

functions (IMFs) plus a residual. These IMFs are then aggregated into three bands. Each

band (and the residual) is bias-corrected with the method most appropriate to its frequency

content:

Timescale (IMF aggregation) Bias-correction method

Bi-weekly (hours–14 days) QDM

Seasonal (14 days–∼3 months) Ensemble quantile regression

Annual (> ∼3 months, incl. multi-annual) Ensemble quantile regression

Residual QDM

Thus, EEMD is used solely for the decomposition step, while QDM corrects the high-frequency

residual and bi-weekly bands, and ensemble quantile regression corrects the lower-frequency

seasonal and annual bands.

16. L 73: section 3: demonstrates EMDBC effectiveness-¿ “demonstrates” is too

strong here

Response: We will adopt a more neutral phrasing in the revised manuscript to reflect an

appropriate tone.

Methods:

17. L 80: why is this dataset used?

Response: We use the 1995–2004 WRF-CCSM regional simulation because it supplies

a publicly accessible, high-resolution (≈ 12 km) North-American temperature field that has

already been thoroughly vetted in the literature. The product is comparable in spatial detail
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and quality to NA-CORDEX and is hosted on the ClimRR platform, which ensures straight-

forward community access. This well-validated data set gives us a solid testbed for developing

and illustrating the EMDBC bias-correction method without introducing additional uncer-

tainty from a less-studied model archive.

18. L 78. observed and modeled temperature − > detail what is used for what?

Response: Livneh serves as the observational reference against which biases are quantified

and corrected, while WRF–CCSM provides the model fields to be bias-corrected. In the

manuscript, Section 2.1, Lines 80–96 describe each dataset, its spatial resolution, temporal

coverage, and specific role in our analysis.

19. L 80: WRF-CCSM: explain acronym. Only atmosphere or coupled ?

Response: In the manuscript, Line 82-84 describes the WRF-CCSM as follows:

These projections, called WRF-CCSM, are generated by dynamically downscal-

ing the Community Climate System Model version 4 (CCSM4) using the Weather

Research and Forecasting (WRF) model version 3.3.1 (Skamarock et al., 2008).

CCSM4 is a coupled global climate model incorporating an ocean component, whereas the

regional WRF simulations we use are atmosphere-only. WRF uses the boundary conditions

and prescribed sea-surface temperature fields supplied by CCSM4, and couples internally to

the Noah land-surface model. The physics schemes listeed in Lines 85-88 apply within this

WRF configuration and are provided below for reference:

The model uses the Grell-Devenyi convective parametrization (Grell and Dévényi,

2002), the Yonsei University planetary boundary layer scheme (Noh et al., 2003),

the Noah land surface model (Chen and Dudhia, 2001), the longwave and shortwave

radiative schemes of the Rapid Radiation Transfer Model for GCM (Iacono et al.,

2008), and the Morrison microphysics scheme (Morrison et al., 2009).

20. L 81 “moodeled“

Response: We have corrected the typo in the revised manuscript.

21. L 85. “RCP 8.5 scenario is used“: explain acronym + add reference

Response: Thank you for pointing out that we do not introduce this acronym appropri-

ately. Because many readers recognize the pathway as “RCP 8.5,” we retain the abbreviation

as well. We have revised the line to read:
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For future periods (mid- and late-century), we use the Representative Concentra-

tion Pathway 8.5 (RCP 8.5) scenario, which corresponds to a high greenhouse gas

concentration trajectory, reaching approximately 8.5 W/m² of radiative forcing by

2100 (Riahi et al., 2011).

22. L 90: “3× 10s1” − > why s1?

Response: We thank the reviewer for pointing out this typo. Though our manuscript

source code had the proper notation, it was not being rendered properly in the PDF document.

The text was corrected:

...using a nudging coefficient of 3× 10−5s−1

23. L 93: why is this dataset used?

Response: We discussed this above in comment 17.

24. L 97 “leverage observation data“-¿ in which way?

Response: By “leverage” we mean that the Livneh observations from 1995–2004 will serve

as the reference against which the WRF-CCSM model projections will be bias-corrected. We

have revised the text to use the word ”use” instead of ”leverage.”

25. L 98: typo: “is used to THE learn“

Response: We will correct the typo in the revised manuscript.

26. L99: daily mean temp data calculated from the 3h outputs of WRF CCSM to

match the temporal resolution of the observed Livneh data − > upscaling

Response: WRF–CCSM provides 3-hourly temperatures, whereas Livneh is available only

as daily aggregates. We therefore average the 3-hourly model values to obtain daily means,

ensuring both data sets share the same temporal resolution before bias correction. This step

is a temporal aggregation, which can be termed as upscaling to daily resolution.

27. L 102: Statistical framework is then applied to identify and learn the systematic

biases in the simulation data. − > what statistical framework? which simulation

data, WRF-CCSM or Livneh?
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Response: Here “statistical framework” refers to the bias-correction procedure itself: we

estimate a transfer function that matches the empirical distribution of the WRF–CCSM

simulated series to that of the Livneh observations over the historical period, and then apply

this learned function to adjust the future WRF–CCSM projections. To avoid ambiguity, we

have replaced the original sentence with:

We estimate a transfer function that aligns the empirical distribution of the WRF–CCSM

daily series with the corresponding Livneh observations for 1995–2004, and then ap-

ply this function to correct the future WRF–CCSM projections.

28. L 104 “the model generates bias-corrected future predictions that scale more

closely with observational data“− > which observations are available for future

predictions ? or maybe the authors refer to the next paragraph ? This paragraph

should probably be merged with the next paragraph for clarity. Not clear how

Livneh data is used: the data is spilt into 2 parts?

By correcting the learned biases, the model generates bias-corrected future predic-

tions that retain the projected distribution shift while better matching the observed

distributional shape, thereby reducing systematic and known biases in the model

output.

Response: Future observations are unavailable, so a bias-correction transfer function

learned from a historical calibration period can only be applied to future model projections;

its real-world performance at that time cannot be verified. To gauge how well each method

would behave in such a setting, we carry out a split-sample experiment: the Livneh–WRF-

CCSM record is divided into a calibration period (1995–1999) for estimating the transfer

function and a validation period (2000–2004) that serves as a pseudo-future for benchmarking

the corrected output.

We have kept the two paragraphs separate—one describing the standard bias-correction work-

flow, the other describing our split-sample validation—to preserve this distinction while clar-

ifying the text as shown above.

29. L 116: QM and QDM: add a Graphic illustrating the concepts of BQM and

QDM (many examples in the literature, e.g. HESS - Peer review - Precipitation

ensembles conforming to natural variations derived from a regional climate model

using a new bias correction scheme + https://doi.org/10.1007/s40641-016-0050-x

− > maybe also add these two references)

Response: We appreciate the reviewer’s suggestion. Because the core objective of the

manuscript is to introduce the Empirical Mode Decomposition-based Bias Correction (EMDBC)

framework, we aim to keep the figures focused on elements that are unique to EMDBC.

Quantile-based approaches such as BQM and QDM serve here only as interchangeable bias-

correction operators within EMDBC rather than as contributions in their own right. To
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balance clarity with concision, we have therefore: (i) ensured the explanatory text provides

a self-contained summary of BQM and QDM; and (ii) added the reviewer’s recommended

citations. This directs interested readers to authoritative information while allowing the

manuscript to remain focused on the EMDBC paradigm. Here is an excerpt of the revised

section:

• Basic Quantile Mapping (QM): This approach directly corrects model out-

puts by aligning their quantile functions to that of the observed data(Tong et al.,

2021; Kim et al., 2016) ...

• Quantile Delta Mapping (QDM): QDM extends QM by accounting for

shifts between the historical and future model distributions (Tong et al., 2021;

Maraun, 2016)...

30. L 120: F(T) and CDF: give the formula

Response: The cumulative distribution function (CDF) of a random variable X is defined

by

FX(x) = P
(
X ≤ x

)
, x ∈ R,

while its empirical counterpart based on n observations {Xi}ni=1 is

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}.

(The abbreviation “CDF” is also listed in the acronym table in Table 4, and will be added in

the appendix of the revised manuscript. )

Table 4: Acronyms and Symbols used in this study

Acronym /

Symbol

Full Form Brief Description (incl. equations)

CMIP6 Coupled Model Intercomparison

Project Phase 6

Multi-model ensemble of coordinated

global climate simulations.

GCM Global Climate Model Dynamical model representing physical

processes of the climate system on a

global grid.

RCM Regional Climate Model Higher-resolution model nested within a

GCM to resolve regional detail.

BC Bias Correction Statistical adjustment applied to model

output to align it with observations.

QM Quantile Mapping Bias-correction technique that remaps

model quantiles to observed quantiles.

Continued on next page
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Table 4 (continued)

Acronym /

Symbol

Full Form Brief Description (incl. equations)

CDF Cumulative Distribution Function FX(x) = Pr[X ≤ x] for a random vari-

able X.

QDM Quantile Delta Mapping Bias-correction method that preserves

the modeled change signal while correct-

ing quantiles.

EMD Empirical Mode Decomposition Data-adaptive decomposition that yields

oscillatory components called IMFs.

EEMD Ensemble Empirical Mode Decom-

position

Noise-assisted EMD variant that im-

proves mode separation.

WRF–CCSM Weather Research and Forecast-

ing–Community Climate System

Model

Dynamical downscaling chain coupling

WRF with CCSM boundary fields.

IMF Intrinsic Mode Function Oscillatory component extracted by

EMD, each with well-behaved local ex-

trema.

EMDBC EMD-based Bias Correction Bias-correction framework that operates

on time-scale-specific IMFs before recon-

struction.

Wp (WD) Wasserstein Distance Wp(P,Q) =
(

inf
γ∈Γ(P,Q)

∫
X×X

∥x −

y∥p dγ(x, y)
)1/p

; where Γ(P,Q) denotes

the set of all couplings with marginals P

and Q, commonly p = 1.

MSE Mean Squared Error MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2; average

squared deviation between predictions

and observations.

FFT Fast Fourier Transform Algorithm that computes the discrete

Fourier transform in O(n log n) opera-

tions.

31. L 122: which model outputs?

Response: Throughout the manuscript, “model output” refers specifically to theWRF–CCSM

regional climate simulation that we seek to bias-correct, while “observations” denote the

Livneh gridded temperature data. To make this explicit, we have revised Line 97 as follows:
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To bias-correct the future WRF–CCSM projections, we use the 1995–2004 Livneh

observations as the calibration reference.

32. L123 and 131: Eq 1 and Eq2: “p” refers to what?

Response: We use the subscripts “p” and “o” consistently to distinguish model projections

from observations:

To = observed (Livneh) temperature,

T hist
p = historical WRF–CCSM simulation,

T fut
p = future WRF–CCSM projection,

T fut, BC
p = bias-corrected future projection.

In the manuscript, Lines 119-120 define these notations.

33. L 135: “Nonparametric empirical CDFs are commonly used for flexibility, al-

though parametric and semiparametric distributions can also be employed” − >

which formula for parameter (Semi-) distributions? which adjustable parame-

ters?

Response: The specific form and adjustable parameters of a parametric or semiparametric

CDF for QM depend on the variable being bias-corrected and the aspect of its distribution

that is most important. For example, precipitation studies often fit a Gamma or mixed-

exponential distribution for the bulk of the data and an extreme-value tail (e.g., Generalized

Pareto) to capture rare events. Temperature, by contrast, is usually well handled by the

empirical CDF, which is why we employ the non-parametric QDM in this paper. We mention

parametric and semiparametric options only to alert readers who may wish to adapt EMDBC

to other variables; the full methodological details can be found in Gudmundsson et al. (2012)

and in additional sources such as Rajulapati and Papalexiou (2023), which we will cite in the

revised manuscript.

34. L 143: “meteorological time series“ is it meteorological modelling or climate

modelling ? is it “meteorological variables” in a “climate model”

Response: Thank you for pointing this out. To avoid ambiguity, we have replaced “mete-

orological time-series” with “time-series of meteorological variables produced by Earth system

models” in the revised manuscript.

35. L 146: “future projections“ − > is it fitted only to climate projections or also to

short term weather forecasts?
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Response: Thank you for this question. Our study is focused on future climate pro-

jections, particularly analyzing long-term signals from Earth system models. However, this

method is not limited to a specific scale (e.g., long-term projections). It is a general correction

workflow coupled with EMD that can also be applied to high-frequency data such as weather

forecasts.

That said, applying EMDBC to short-term forecasts may require different parameter choices

or bias correction methods depending on the temporal resolution, noise characteristics, and

overall objective. This could be an interesting direction for future work.

36. L 153: “Can suffer mode mixing” − > explain more how this occurs

Response: “Mode mixing” is an artifact of EMD where one IMF includes oscillations

from very different frequency ranges or a single physical mode is split across several IMFs.

This happens when the original signal contains intermittent or abrupt changes, which causes

the spline envelopes used in EMD to misassign local extrema. The issue is well known in

the EMD literature, and the ensemble EMD method proposed by Wu and Huang (2009)

offers a practical remedy. EEMD adds small independent white–noise realizations to the

signal, performs EMD on each noisy copy, and then averages the resulting IMFs. The added

noise encourages the envelopes to sample the time–frequency space more uniformly, while

the ensemble average removes the noise itself, which significantly reduces mode mixing. This

point is discussed in detail at Line 153 and in the opening paragraph of Appendix A, where

we also provide several supporting references:

The performance of the proposed EMDBC framework depends on the quality and

separation of the IMFs generated during the decomposition process. A common

challenge in EMD methods is mode-mixing, where oscillatory modes of different

frequencies are entangled within a single IMF, reducing interpretability and effec-

tiveness (Tang et al., 2012). While the Ensemble EMD (EEMD) approach (Wu and

Huang, 2009) mitigates mode-mixing by introducing random noise, it does not fully

eliminate the issue. Several alternative strategies have been proposed to ensure dis-

tinct frequency bands for IMFs (Tang et al., 2012; Fosso and Molinas, 2018), but

none has proven universally robust.

37. L 155. Add other references using EEMD in Climate sciences: e.g.

Investigating monthly precipitation variability using a multiscale approach based

on ensemble empirical mode decomposition — Paddy and Water Environment

Identification of relationships between climate indices and long-term precipitation

in South Korea using ensemble empirical mode decomposition - ScienceDirect,
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The multi-timescale temporal patterns and dynamics of land surface temperature

using Ensemble Empirical Mode Decomposition - ScienceDirect,

A time series processing tool to extract climate-driven interannual vegetation dy-

namics using Ensemble Empirical Mode Decomposition (EEMD) - ScienceDirect

Response: Thank you for suggesting these references. They demonstrate the practical

value and broad use of the EEMD approach. We will revise Line 155 to read:

EEMD has been successfully incorporated in several recent studies, for example,

Alizadeh et al. (2019); Kim et al. (2018); Liu et al. (2019); Hawinkel et al. (2015)

38. L160 Explain why the noise helps

Response: We discussed this above in comment 36.

39. L161. All the operation can be done with the Python package PyEMD?

Response: Yes. Once a time series is provided, the open-source PyEMD package can run

the full EEMD procedure and return the complete set of IMFs together with the monotonic

residual. Users may also adjust noise amplitude, ensemble size, and other EEMD parameters

within the package if needed.

40. L 171. “Total number of extracted IMFs ms” − > why “s”?

Response: The superscript s indicates that the total number of IMFs depends on the

specific time series being decomposed. We first define

ms = number of IMFs extracted from series s.

Accordingly, Eq. (6) uses notations like mTo to denote the number of IMFs obtained from

the observed temperature series To. This notation distinguishes IMF counts for different data

sets without introducing separate symbols for each one.

41. L 174. “To address this, we implement an additional hyperparameter-tuning

step that reinforces distinct frequency separation and minimizes overlap among

IMFs“− > give type of procedure used in a few words ?

Response: To enforce clear separation among IMFs, we add an iterative step: after each

EEMD run, we estimate the dominant frequency of every IMF, impose frequency-spacing

constraints to ensure minimal overlap, and rerun EEMD with adjusted settings until those

constraints are met. The precise criteria are documented in Appendix A. We will add the

following brief sentence in the revised manuscript to describe this procedure: —
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After each EEMD pass, we evaluate the peak frequency of every IMF, impose

spacing constraints to minimize overlap, and iterate the decomposition with adjusted

parameters until those constraints are satisfied (see Appendix A for details).

42. Eq 6: write the formula showing how it aggregates: To=. . .

Response: We agree that Eq. 6 should explicitly show how the IMFs are summed into

the three working time-scale bands and then recombined. In the revised manuscript, we will

update Eq. 6:

To,biweekly =

[τ1mTo ]∑
j=1

sTo
j , To,seasonal =

[τ2mTo ]∑
j=[τ1mTo ]+1

sTo
j , To,annual =

mTo∑
j=[τ2mTo ]+1

sTo
j , (2)

To = To,biweekly + To,seasonal + To,annual + rTo (3)

43. Eq 6: what is “tau 1 m T0“? “tau 2 m T0“?

Response: In Eq.∼(6), the expressions τ1m
To and τ2m

To denote the index cut-points that

partition the mTo intrinsic mode functions (IMFs) of the observed series To into three fre-

quency bands. Here 0 < τ1 < τ2 < 1, and the integer parts ⌊τ1mTo⌋ and ⌊τ2mTo⌋ mark the

boundaries between the bi-weekly, seasonal, and annual groups.

We obtain τ1 and τ2 through the following procedure (described in the paragraph immediately

after Eq. 6 in the manuscript):

(a) Band-pass filter the daily time series to isolate the bi-weekly, seasonal, and annual fre-

quency ranges.

(b) Compute the correlation of every IMF with each band-pass-filtered signal.

(c) Select τ1 and τ2 so that the IMFs most strongly correlated with each range are placed

in the corresponding group, minimizing overlap between bands.

This procedure yields distinct IMF groups for the bi-weekly, seasonal, and annual timescales,

which are then bias-corrected separately in the subsequent steps of EMDBC.

44. L 177 and L 181: give the values of the thresholds τ1 and τ2. How are they

estimated?

Response: The thresholds τ1 and τ2 are determined data-adaptively for each individual

time series, so no fixed numerical values apply. As detailed in our reply to Comment #43—and

in the paragraph immediately after Eq. 6—they are obtained by correlating every IMF with

band-pass-filtered versions of the series (bi-weekly, seasonal, annual) and then selecting the

cut-points that best separate these frequency ranges.

45. L 181: “selecting τ1 and τ2 such that the IMFs most closely matching each fre-

quency range are grouped together.“ − > give the formula to select the values
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Response: For each IMF sTo
j we compute its Pearson correlation with the band-pass-filtered

series representing the three target frequency ranges, denoted B1 (bi-weekly), B2 (seasonal),

and B3 (annual). Let

rj,k = corr
(
sTo
j , Bk

)
, k ∈ {1, 2, 3}.

Each IMF is assigned to the band for which the correlation is maximal, argmaxk rj,k. Let

mTo be the total number of IMFs for To. We define the cut-points

τ1 =
max{ j : argmaxk rj,k = 1}

mTo
, τ2 =

max{ j : argmaxk rj,k ≤ 2}
mTo

,

so ⌊τ1mTo⌋ and ⌊τ2mTo⌋ are the last indices assigned to the bi-weekly and seasonal groups,

respectively. This procedure groups the IMFs that are most strongly correlated with each

frequency band into three contiguous, non-overlapping sets. The same correlation-based

scheme is applied to the IMFs of T hist
p and T fut

p to construct their corresponding time-scale

bands.

46. L 179: maybe change the order in the sentence: “In this study, we use the butter

function available in scipy (Virtanen et al., 2020) to perform bandpass filtering of

the original signal, isolating the frequencies associated with each timescale” − >

“In this study, we perform bandpass filtering of the original signal, isolating the

frequencies associated with each timescale using the butter function available in

scipy (Virtanen et al., 2020).”

Response: Agreed. We have adopted the suggested phrasing and will revise the sentence

accordingly.

Appendix A

47. L 345: What is the relative change in frequency between consecutive IMFs?:

there is a gap or no gap between IMFs?

Response:

Response: Ideally consecutive IMFs should exhibit a clear frequency gap; otherwise mode

mixing can occur. We monitor this by computing the relative change in dominant frequency

∆f
(j)
max

f
(j)
max

=
f
(j−1)
max − f

(j)
max

f
(j)
max

,

where f
(j)
max is the peak frequency of the j-th IMF. We require this ratio to lie within a user-

defined band 0 < δmin < ∆f
(j)
max

f
(j)
max

< δmax for every pair of adjacent IMFs. If any pair falls

outside the band we rerun the EEMD step with adjusted noise amplitude and ensemble size

until all IMFs satisfy the criterion, thereby enforcing a gradual decrease in frequency.
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The thresholds δmin and δmax are hyper-parameters tuned by split-sample cross-validation:

we divide the historical period into two halves (as in our main validation setup), generate

IMFs on the training and validation split, and select the thresholds that yield both stable IMF

separation and good bias-correction skill on the second half. In our experiments δmin = 0.2

and δmax = 0.8 provided reliable results across all grid cells.

48. L 355: Show the case of 2 IMFs: values of f0, f1, f2

Response: As the number of generated IMFs is data-adaptive and depends on each input

time-series, here we present the related frequencies and relative changes for the Livneh ob-

served series and CCSM historical series for a representative grid cell (2817′28.79”N, 9953′53.69”W )

in the following table:

(a) Livneh IMF dominant frequencies

IMF # Dominant Freq ∆f/fprev

1 0.18685 —
2 0.07753 0.585
3 0.04904 0.367
4 0.02356 0.520
5 0.01096 0.535
6 0.00274 0.750
7 0.00137 0.500
8 0.00055 0.600

(b) CCSM IMF dominant frequencies

IMF # Dominant Freq ∆f/fprev

1 0.12356 —
2 0.09151 0.259
3 0.05863 0.359
4 0.01973 0.664
5 0.00603 0.694
6 0.00274 0.545
7 0.00164 0.400
8 0.00082 0.500
9 0.00027 0.667

Table 5: Dominant frequencies and relative changes for Livneh and CCSM IMFs.

49. L 355: Tuned through cross-validation? With which data?

Response: Discussed above in Comment 47.

50. L 356: yielded satisfactory results: which criteria is used?

Response: Discussed above in Comment 47.

51. In Algo 1: Recompute f(j)max − > how are the frequencies updated?

Response: If the frequency-spacing constraints are violated, the current set of IMFs is

discarded and the EEMD procedure is rerun; no incremental adjustment of individual modes

is made. After each new decomposition, we recompute every IMF’s dominant frequency f
(j)
max

from its amplitude spectrum obtained via the fast Fourier transform (FFT; Rockmore (2000)).

This regenerate–retest loop continues until all IMFs satisfy the prescribed spacing criteria.

52. A schematic of the algorithm would help.
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Figure 19: Iterative constriction of IMFs maintaining a gradual decrease in mode frequency for
EMDBC

Response: For clarity, we have included here the schematic Figure 19 of the iterative

approach for IMF generation and included it in this rebuttal. The manuscript already contains

Algorithm 1, which describes the same sequence of steps in pseudocode; adding the figure

alongside the algorithm would therefore be redundant. If the reviewer believes the schematic

conveys the procedure more effectively, we are happy to replace Algorithm 1 with the figure

in the revised manuscript.

53. Fig 1: how are regions selected? Add color bar or remove colors.

Response: We thank the reviewer for pointing out the issues in Figure 1. The suggested

figure revisions were made and documented in our response above to Comment 4.

To select regions, we randomly sample a 25-cell × 25-cell area from each of the 7 US regions

that the Fifth National Climate Assessment explores over the continental United States. This

sampling is performed iteratively until the entire sampled area falls within the continental

United States. We have added this explanation to the manuscript text:

For a comprehensive spatial evaluation, we randomly selected seven areas, each

measuring 25×25 grid cells (300 km × 300 km), from major subregions defined

in the Fifth National Climate Assessment (USGCRP, 2023)across the continental

United States, shown in Figure 1, ensuring a diverse set of conditions.

54. Fig 2: Difficult to understand which are the important information on the plots

Response: We appreciate the feedback. To improve the clarity and visual priority of

Figure 2, we have directly labeled the relevant rows as Step 1, Step 2, and Step 3, consistent

with the Methods section of our manuscript. We have also inserted ASCII arrows to convey
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the font-type hierarchy and better guide the reader across the figure. The updated figure is

included here as Figure 12. The in-text citation of this figure has likewise also been revised

and documented in our response to Comment 4.

55. Fig. 2: Why not compared directly the observation VS the corrected on the same

plots? and the input VS corrected output on the same plots? and the Timescales

VS Corrected Timescales on the same plot.

Response: We appreciate the reviewer’s suggestion. The role of Figure 2 is to provide

a graphical schematic of the EMDBC workflow. Because each original signal (observations,

historical simulations, future simulations) produces several derived series, the figure focuses

on showing how intrinsic mode functions are grouped by timescale, bias corrected, and re-

combined to form the final output. With this in mind, we agree with the reviewer about

the importance of graphical and quantitative comparisons (e.g., inputs versus outputs, obser-

vations versus outputs, timescale-to-timescale evaluations). As such, validated benchmarks

of the bias-corrected outputs that use these criteria are included in Section 3.1, “Validation

results.”

56. Fig 2: A schematic of the method would help understand the successive plots

Response: Thank you for the recommendation. We have addressed this comment in our

response to Comment 3.

57. L 186 “the nature of the biases can vary greatly depending on whether we are

dealing with short-term fluctuations (e.g., biweekly scales) or longer-term pat-

terns (e.g., seasonal or annual). “ − > indicate how it changes

Response: Our analysis shows a clear scale dependence in model bias. Short-term IMFs

(< 14 days, the bi-weekly band) fluctuate rapidly about zero, whereas the seasonal and an-

nual IMFs drift smoothly and retain the same sign for months to years, signalling a persistent

structural bias. To quantify this behaviour we computed autocorrelations at lags 1–365 days.

The bi-weekly bias displays consistently low autocorrelation—evidence of weak temporal de-

pendence that favours a non-parametric correction—while the seasonal and annual bands

show much higher values. Figure 20 illustrates these patterns for a representative grid cell.

This scale-dependent behaviour aligns with the broader literature. Internal variability dom-

inates near-term projections, producing stochastic, low-persistence errors, while structural

model shortcomings become the chief source of bias at seasonal to multi-annual horizons

(Hawkins and Sutton, 2009, 2012). Because these structural errors stem from fixed deficien-

cies in model physics, they persist from one season or year to the next and exhibit high

autocorrelation. Recognising this contrast between short- and long-term bias underpins our

decision to apply a distribution-based method (QDM) to the high-frequency band and a

regression-based method to the more systematic seasonal and annual bands.
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Figure 20: Bias decomposition by time scale for a representative grid cell. The first panel (“Origi-
nal”) shows the raw daily bias (Livneh – CCSM). Using EMD, intrinsic mode functions are grouped
into bi-weekly, seasonal and annual bands; the second column reports lagged autocorrelations for
each band. The bi-weekly component has markedly lower autocorrelation than the seasonal and
annual components, indicating weaker persistence.
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58. L 191” At the biweekly scale, signals often exhibit substantial variability and

frequent extremes, yet show little in the way of stable temporal patterns that

persist across years“ : reference ?

Response: Discussed above in Comment 57.

59. L 192- 193“Because a more complex regression approach is unlikely to provide

significant benefits at this resolution, we use the QDM to correct these compo-

nents“: reference?

Response: At the shorter timescales, the bias shows little temporal persistence (see Figure

20); covariates such as day-of-year therefore add almost no explanatory power. In this low-

dependence setting, regression terms collapse to the mean of the target variable, offering

no advantage over a purely distributional adjustment. Several comparison studies reach

the same conclusion for sub-monthly temperature: non-parametric quantile-based methods

already achieve the minimum error attainable at that resolution, while adding time-dependent

predictors yields negligible improvement (e.g., Gudmundsson et al., 2012; Cannon et al., 2015).

For this reason, we correct the high-frequency bands with QDM, which directly aligns the

empirical quantiles of the model with those of the observations and has proven robust in the

daily-scale temperature literature.

60. L 202: Were other methods tested to confirm the hypothesis that QDM is the

best here?

Response: Discussed above in Comment 58.

61. L 203 “At longer timescales (seasonal or annual), biases often manifest in more

systematic patterns that persist across multiple years.” − > reference?

Response: Discussed above in Comment 57.

62. L 237: Here a schematic showing the successive steps would be very helpful

Response: Thank you for the recommendation. We have addressed this comment in our

response to Comment 3.

63. L 237: Was the QDM tested also on these timescale to confirm the hypothesis

that the used method is better than the QDM on these timescales?

Response: Yes. We applied QDM to each timescale and found that, owing to the strong

temporal dependence in the seasonal and annual bands (see above Comments 57–59), the

regression-based approach outperforms QDM at those scales.

64. L 237: When is EEMD applied?

51



Response: EEMD is applied at the very start of the EMDBC workflow. It decomposes

each input temperature series into its IMFs before any bias-correction step is performed (Step

1, see Figure 12).

2.5 Visualization:

65. L 239: Give the numbers of the figures here − > is a sub section (2.5) needed

just for 1 sentence?

Response: Agreed. We will delete subsection 2.5 for clarity in the revised manuscript.

Results

66. - Fig3: in the caption: explain what values are represented in the box VS lines

VS dotes

Response: Figure 3 displays one boxplot per subregion showing the spatial distribution

of the absolute biases (Top) and Wasserstein distances (Bottom) for each subregion. For each

plot, the boxes span the interquartile range (25-75 percentiles) of the metric across all grid

cells in that region; the horizontal line inside each box marks the median; whiskers extend to

1.5 × IQR; and individual dots represent grid cell outliers beyond the whiskers. The upper

panel uses this format for absolute bias, and the lower panel does the same for the Wasserstein

distance.

67. - L 242: “we apply a spatial smoothing procedure to the bias corrected daily

temperature fields” can you justify why?

Response: Temperature fields are known to be highly spatially coherent because surface

temperature is controlled by smoothly varying factors—elevation, vegetation, soil moisture,

land use—that modulate the surface energy balance. Consequently, adjacent areas tend to

share similar temperatures. Recent work supports this physical picture: Kunz and Laep-

ple (2024) identify a “large-amplitude, short-distance component” in temperature spatial-

correlation functions, confirming strong local correlations.

As an empirical validation that the CCSM model realistically captures this expected spatial

behavior, we have added a spatial autocorrelation analysis using a representative snapshot of

the model’s surface temperature field. Specifically, we compute the isotropic spatial autocor-

relation, which measures how correlated the temperature is between locations separated by a

given distance, averaged over all directions and presented in Figure 21. The line shows how

correlated two grid cells are at increasing radius: for every possible pair of cells, we calculated

their temperature correlation, grouped the pairs by distance, averaged those correlations, and

plotted the result. Because the correlation stays well above 0.8 for up to 40 grid cells away

(12*40=480 km), it justifies our use of local smoothing.

68. - L 253: “Section 2.1.Figure 3“ need a space before “Figure”
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Figure 21: Isotropic spatial autocorrelation of daily surface temperature from the CCSM model at a
representative time point. For each distance r, we select all pairs of grid points exactly r cells apart,
align their anomaly values into two vectors, and compute a single Pearson correlation between those
vectors. The strong correlation at short distances and its gradual decay with increasing separation
illustrate the spatial coherence characteristic of temperature fields.

Response: We will correct it in the revised manuscript.

69. - L 257: give the definition (and/or a reference) for the WD

Response: The first-order Wasserstein distance (also called the Earth-Mover’s Distance)

is a metric that quantifies the minimal “cost” of transforming one probability distribution

into another. It is well suited for comparing full distributions by the distance between them

rather than individual moments and is therefore a natural choice for our quantile-based bias-

correction evaluation. A more detailed description can be found at Panaretos and Zemel

(2019). The following brief definition and formula will be added to the Appendix, and the

term will be introduced at first mention in the main text:

WD is defined as a distance between two probability measures P and Q on a metric

space (X , ∥ · ∥) by

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
X×X

∥x− y∥p dγ(x, y)
)1/p

, (4)

where Γ(P,Q) denotes the set of all couplings with marginals P and Q; throughout

this study we use the common choice p = 1 (Panaretos and Zemel, 2019).

70. - L.258: Fig 3 top: comment on why larger bias for some regions (S, N, Midwest)
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and larger uncertainties for SW, NW?

Response: The variations in bias magnitude and variability reflect the distinct geophysical

and climatological characteristics of each sub-region. Our focus is to show that, regardless of

those inherent differences, EMDBC reduces bias systematically across all regions.

71. - Fig 3 bottom: why similar WD for all region although biases are bigger for some

regions (top)? I would expect a larger WD for the regions with higher biases?

Response: The WD assesses the similarity of entire distributions, whereas the absolute-

bias metric in the top panel reflects average daily errors. A region can exhibit a noticeable

daily bias yet still have a model distribution whose overall shape closely matches the observa-

tions. For example, because QDM explicitly aligns model quantiles with observed quantiles,

it yields a small WD even if the resulting series retains some residual daily bias. EMDBC, in

turn, lowers the daily bias across all regions (top panel, Figure 3) while preserving the distri-

butional match (consistent lower WD compared to the original CCSM model projection).

72. - Fig 4 and L273: with Northern and Midwest regions have larger biases for the

GDM corrected datasets than for the not corrected datasets? − > should not be

used then here?

Response: Figure 4 shows bias for each EMD timescale separately, not the overall daily

bias. In the North and Midwest, the high-frequency (bi-weekly) timescale is particularly

noisy; after correction, its bias can appear slightly larger at that specific scale. The seasonal

and annual timescales in those regions, however, exhibit substantial bias reductions. When

these timescales and the residual are recombined, the net daily bias is lower, as demonstrated

in the top panel of Figure 3. Therefore, a small increase in one narrow timescale does not

contradict the overall improvement of the bias-corrected series.

73. - Figure 5: add letters for sub plots (also in other figures):

Response: Thank you for the suggestion. We have already restructured Figure 5 for

greater clarity (see our response to Comment 74 for Figure 22). Given the new side-by-side

layout and the descriptive caption, we believe subplot letters may no longer be necessary.

However, if the reviewer prefers, we will gladly add alphabetical labels to each row in the

revised manuscript.

74. - Figure 5: difficult to see something. In particular in the top 2 plots: we cannot

see the curves. “While QDM achieves performance comparable to EMDBC at

the daily (training) scale,” − > how is this observed?
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Figure 22: Bias-correction comparison across multiple time-scales at a representative grid cell.
Column 1 shows the full 1995–2004 record, while Column 2 zooms into 1999–2001 for clarity.
Solid lines correspond to the observed Livneh series (blue) and the raw CCSM projection (green);
dashed lines show the bias-corrected outputs from EMDBC (red) and QDM (purple). Each row
presents the original daily series and its bi-weekly, seasonal, and annual components, obtained by
aggregating intrinsic mode functions as described in Section 2.4. The numbers at right report the
mean-squared error (MSE, ◦K2) between each series and Livneh. While QDM matches EMDBC
at the native daily scale, EMDBC yields consistently lower MSE at the bi-weekly, seasonal, and
annual bands, indicating superior preservation of large-scale temperature variability.
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Response: To improve readability and make the daily-scale comparison explicit, we have

revised Figure 5 as follows:

(a) Clearer layout. The figure is now arranged in two side-by-side columns. Column 1

shows the full 1995–2004 record; Column 2 zooms into 1999–2001 so individual trajecto-

ries can be inspected. Livneh (blue) and raw CCSM (green) are plotted with solid lines,

whereas the bias-corrected series—EMDBC (red) and QDM (purple)—are plotted with

dashed lines. This colour/line-type combination allows each product to be distinguished

even in the full-record view.

(b) Quantitative metric. Because overlapping curves remain hard to separate visually

over ten years of daily data, we now report the mean-squared error (MSE) between each

series and Livneh at the right-hand side of every row:

MSE(x, y) =
1

N

N∑
t=1

[
x(t)− y(t)

]2
,

with units ◦K2. These values show that QDM and EMDBC have nearly identical MSE

at the native daily scale, confirming the statement in the text, while EMDBC yields

lower MSE at the bi-weekly, seasonal, and annual timescales.

(c) Caption updated. The caption now explains the new layout, colour scheme, and the

meaning of the MSE numbers.

75. - Figure 5: in the legend add the “Reference datasets” to the “Livneh” legend.

Change the Livneh curve to a dotted line.

Response: We recognise the need to make Livneh’s role as the reference/observed data

set explicit. In the revised Figure 5, we now mention “observed Livneh series” to make it

explicit. To maintain a clear distinction between solid (model projection or observational)

and dashed (bias-corrected) series, we have kept Livneh as a solid blue line, while the model

products remain dashed.

76. - Figure 5: the biweekly plot is not commented in the caption

Response: In the updated Figure 5 (now Fig.22) the caption explicitly describes the

biweekly timescale plot, so this omission has been corrected.

77. - Figure 6: explain what is plotted in the box plots (box, line, dotes) and in the

violin plots (tail cutted? what is the black box and the white line?)

Response: Figure 6 combines box–whisker plots (top row) with violin plots (right column)

to convey both bias statistics and full temperature distributions:

• Box–whisker panels (top row)
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– The box spans the inter-quartile range (25th–75th percentiles) of the absolute daily

bias across all grid cells in the sub-region.

– The horizontal line inside the box marks the median bias.

– Whiskers extend to 1.5 × IQR; points beyond the whiskers are plotted individually

as outliers.

• Violin panels (right column)

– The grey silhouette shows a kernel-density estimate of the region-averaged temper-

ature distribution. Tails are truncated at the observed minimum and maximum

values.

– The black rectangle inside the violin denotes the inter-quartile range.

– The white horizontal line indicates the median temperature.

78. - Figure 6: not color-blind compatible?)

Response: We agree. In the revised manuscript we will replace the current colour scheme

in Figure 6 with a colour-blind–friendly palette to ensure accessibility.

79. - L. 275 “These results demonstrate that EMDBC successfully preserves bias-

corrected signals over a broad range of temporal frequencies” − > but it is a

specific dataset, is it representative of other regions and other periods?

Response: We chose the 1995–2004 WRF–CCSM regional simulation because it is a

publicly accessible, high-resolution (≈ 12 km) North-American temperature data set that has

been thoroughly evaluated in earlier studies and is comparable in quality to NA-CORDEX.

It provides a reliable and well-documented testbed for demonstrating the EMDBC workflow

without the added uncertainty of a less-studied archive. Future work will extend the method

to other regions and periods to confirm its broader applicability.

80. - 3.2 “Over full domain” which domain here? temporal spatial? which domain

was used previously?

Response: Here “full domain” refers to the entire spatial domain used in this study,

namely the contiguous United States, rather than the seven 25 × 25 grid-cell sub-regions

used in the validation analysis. The temporal period is unchanged: historical (1995–2004),

mid-century (2045–2054), and late-century (2085–2094).

81. - Figure 7: what should “Mid-century” violin plots be compared too? it is

misleading to have them on the same plot at the historical data − > it should

not be compared to it? Maybe bring the violins that should be compared closer

to one another. E.g. 3 block: 1 historical bloc (Livneh + historical models)

− > then a gap − > 1 block with 3 mid-century violins-¿ gap − > 1 bog with 3

Late-century violins
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Response: We thank the reviewer for the suggestion. In Figure 7 all time-period violins

share a common axis so readers can see two things at once: (i) QDM and EMDBC preserve

the overall shape of the observed historical temperature distribution, and (ii) both methods

retain the projected mid-century and late-century shifts produced by WRF-CCSM. Plotting

the timeframes on separate blocks would make those joint comparisons less immediate. To

improve clarity we have revised the figure caption to include these points. The updated

caption is included in Figure 16

82. - L 285 “In each sub-region, the top panel compares the absolute temperature bias

between the model projected and the observed series before and after correction

with EMDBC and QDM, whereas the right panel shows the distribution of the

average temperature” − > “the top panel”. . . “whereas the right panel” ? is it

here “whereas the bottom panel”?

Response: Thanks for checking this. We will correct this in the revised manuscript.

83. - Fig 8: CONUS is not defined?

Response: Thank you for pointing this out. We now define continental United States

(CONUS) in the manuscript text before its use in Figure 8:

Turning next to broader spatial analyses, Figure 6 focuses on various sub-regions

across continental United States (CONUS). In each sub-region, ...

84. - L 295: Fig 9 and Fig8 − > Fig 8 and Fig 9

Response: Thank you for pointing this out, we have revised the text to read: ”Figures 8

and 9”

85. - Fig 8 and Fig9. give letters to the subplots

Response: Thank you for the recommendation. We have revised Figures 8 and 9 to

include lettered titles and documented these revisions in our response to Comment 4 above.

86. - L 295: please comment each of the subplots or remove if not used in the text.

Response: Thank you for pointing out that we do not explicitly reference each subplot in

the manuscript text. All nine plots in both Figures 8 and 9 are important. This paragraph

has been revised to directly mention each subplot by lettered subtitle:

Finally, Figures 8 and 9 show the average predicted daily bias ((d)−(f)) and the cor-

responding spatial maps (((g)−(i)); e.g., annual or multi-year averages) for the raw

and bias-corrected WRF-CCSM outputs. For reference, average Livneh observation
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data is also plotted, along with the average WRF-CCSM historical bias before and

after correction (((a)−(c))). Here, “predicted bias” refers to the difference between

the modeled temperature and its bias-corrected counterpart. EMDBC generally ap-

plies a stronger correction than QDM, resulting in slightly cooler daily temperature

fields and a more uniform reduction of bias across the domain. Although we cannot

fully validate future-period corrections in the absence of observations, EMDBC’s

stronger alignment with historical data and its lower bias in validation sub-regions

suggest it is well-equipped to handle changing conditions while preserving both short-

and long-term temperature variability.

87. - Fig 8 and 9: why northern America has large biases (left column)?

Response: Thank you for this question. We have not conducted a specific analysis of

the warm bias in northern North America. A posible contributor is the land–atmosphere

interactions related to snow handling. Investigating these processes would require additional

experiments outside the scope of the present methods paper, but we have noted this as an

avenue for future work.

Conclusion:

88. L303-304: add the spatial extent of the output on which it is applied, and the

resolution.

Response: Thanks for the suggestion. We will revise the first sentence of this section as:

This study proposes a new timescale-aware bias-correction methodology, EMDBC,

and applies it to 12 km WRF-CCSM daily temperature simulations, covering his-

torical (1995 − 2004), mid-century (2045 − 2054), and late-century (2085 − 2094)

periods across the contiguous United States.

89. L304: add “temporal” to “Temporal downscaled”

Response: Thank you for the suggestion. Dynamical downscaling with WRF is done

primarily to refine spatial resolution. To keep the terminology precise and consistent with

its common usage in the literature we decided to retain the phrase dynamical downscaling

without the qualifier “temporal.” We have, however, clarified the sentence for readability in

our response to Comment 88.

90. L305: add the years to the periods: “historical 19..-19.., mid-century 20..-20..

and late-century 20..-20..”

Response: Addressed in Comment 88.

91. L312: “meteorological variables“ − > atmospheric“ ?
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Response: Thank you for the suggestion. We think ”atmospheric variables” is the more

appropriate term and have updated the manuscript.

92. Code and reproducibility: The zenodo repository contains only 1 script for 1 fig-

ure that is not one of the figures of the paper. It would be nice to have the scripts

to compute plots of the paper. Could the repository be added to a public github

page ? The link given is not public: https://git.cels.anl.gov/jfeinstein/emdbc-

paper (Feinstein, 2025).

Response: Thank you for the suggestion. The repository is already available on our public

GitHub page, as noted in an earlier thread on the discussion portal. The revised Code and

Data Availability section now reads:

All Python scripts for the Empirical Mode Decomposition-based Bias Correction, the full-

domain WRF-CCSM dataset used in this manuscript, and the validation areas mapping

WRF-CCSM indices to 25×25 case study regions are available in a Zenodo repository at

https://doi.org/10.5281/zenodo.15244202 (Ganguli et al. (2025). Livneh daily CONUS obser-

vational data (Livneh et al. (2013)), provided by NOAA Physical Sciences Laboratory (NOAA-

PSL) in Boulder, Colorado, USA, are available at https://psl.noaa.gov/data/gridded/data.livneh.html

(NOAA-PSL (2013)). For Livneh, daily mean temperatures are computed as the average of the

daily minimum and maximum values. Finally, the Empirical Mode Decomposition-based Bias

Correction code is also available in the EMDBC GitHub repository at https://github.com/jeremyfifty9/emdbc

(Ganguli and Feinstein (2025)). Thank you.

We trust that our revisions and clarifications satisfactorily address your concerns and significantly

improve the manuscript. Thank you again for helping us strengthen this work.
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