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Abstract

Understanding aquatic ecosystem metabolism involves the study of two key processes: carbon fixation via primary production and
organic C mineralization as total ecosystem respiration (ER:). In streams and rivers, ERt: includes respiration in the water column
(ERwc) and in the sediments (ERseq). While literature surveys suggest that ERsq is often a dominant contributor to ERq, recent
studies indicate that the relative influence of sediment-associated processes versus water column processes can fluctuate along the
river continuum. Still, a comprehensive understanding of the factors contributing to these shifts within basins and across stream
orders is needed. Here we contribute to this need by measuring ERywc and aqueous chemistry across 47 sites in the Yakima River
basin, Washington, USA. We found that ERu. rates varied throughout the basin during baseflow conditions, ranging from —
7.3846-0:36 g O, m2d!, and encompassed the entire range of ERy rates from previous work. Additionally, by comparing to ER
estimates for rivers across the contiguous United States, we suggest that the contribution of ERy. rates to reach-scale ERy: rates
across the Yakima River basin are likely highly variable, but we did not test this directly. \We-did-not-ebserve-clear-increasesin
ERwcmoving-down-the-stream-network;and-instead\/\Ve observed that ERy. is locally controlled by temperature, dissolved organic
carbon, total dissolved nitrogen, and total suspended solids, which explained 40% of ERy. variability across the basin-

Our findings highlight the potential relevance of water column
processes in aquatic ecosystem metabolism across the entire stream network and that these influences are likely not predictable
simply via position in the stream network. Our results are generally congruent with previous work in terms of locally-influential
variables, suggesting that the observed variability and suite of associated environmental factors influencing ERw. are potentially

transferable across basins.
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1 Introduction

Metabolism in streams and rivers includes both gross primary production (GPP) and ecosystem respiration (ER) as fundamental
processes that shape energy dynamics and nutrient cycling in riverine systems (Bernhardt et al., 2018). GPP and ER: impact
biogeochemical cycling through the fixation and subsequent breakdown and processing of carbon (C) in aquatic ecosystems (Allan
etal., 2021; Genzoli & Hall, 2016; Hall, 2016; Hall & Hotchkiss, 2017; Reisinger et al., 2016). Riverine metabolism is modulated
by various environmental features, including physical and biogeochemical factors. Physical parameters include discharge, flow
regimes, flow extremes, light availability, and temperature (Bernhardt et al., 2022; Hensley et al., 2019; Jankowski & Schindler,
2019; Nakano et al., 2022). Biogeochemical influences include the availability, amount, and composition of C and other nutrients
(Bertuzzo et al., 2022; Garayburu-Caruso et al., 2020b; Mulholland et al., 2008; Reisinger et al., 2021). Additionally, watershed
characteristics such as stream size or drainage area, hydrologic connectivity, watershed geomorphology, and land use and land

cover further affect these metabolic processes (Bernot et al., 2010; Demars, 2019; Finlay, 2011; Jankowski & Schindler, 2019).

Reach scale ecosystem metabolism encompasses biogeochemical processes that occur in both the water column and in benthic and
hyporheic sediments (Hall & Hotchkiss, 2017). Historically, metabolism studies focused on headwater streams which are
characterized by relatively large contact areas between surface water and the benthic sediments (Alexander et al., 2007; Battin et
al., 2008; Findlay, 1995; Gomez-Velez et al., 2015; Mulholland et al., 2008; Peterson et al., 2001). Recent advances in computing
power and the increased availability of high-resolution sensor data (e.g., dissolved oxygen, temperature, and river depth) have
expanded the scope of metabolism studies beyond single small streams enabling researchers to investigate the relative contributions
of ERseq and water column respiration (ERwc) to ER: across diverse stream networks and orders. These efforts show that the
proportion of ER derived from ERseq Varies greatly across different sites, contributing from 3% to 95%- of ER: (Battin et
al., 2003; Fuss & Smock, 1996; Gagne-Maynard et al., 2017; Jones Jr, 1995; Kaplan & Newbold, 2000; Naegeli & Uehlinger,
1997). This observed variability in the fraction of ER: derived from ERsq indicates that ERw. may be important in certain places

and times.

Water column processes, including nutrient cycling, occur at considerable rates and become increasingly important as rivers grow

in size, marking a transition from benthic-dominated to water column-dominated processing (del Giorgio & Williams, 2005;

Gardner & Doyle, 2018; Reisinger et al., 2015, 2016) (Finlay, 2011; Segatto et al., 2021)
(Hall et al., 2016;

Mejia et al., 2019) (Wang et al., 2022)-

SN ,

even as rivers increase in size, the relative contribution of ERwc t0 ERw: remains variable, likely in response to changing
environmental conditions (Genzoli & Hall, 2016; Reisinger et al., 2021; Ward et al., 2018). This highlights a key knowledge gap
that while the role of the water column in reach-scale processes such as GPP and ER likely fluctuates along the river network,

this relationship remains poorly understood.

We contribute to addressing this knowledge gap by investigating the spatial variation of ERyc in the Yakima River basin,
Washington, USA. The Yakima River basin is representative of the Columbia River basin, one of the largest river basins in the
contiguous United States (CONUS), that spans the northwest region of CONUS. The Yakima River basin encompasses climatic
regimes, biomes, physical settings, and land use conditions commonly found throughout the Columbia River basin and the western

CONUS. Using the environmental diversity of the Yakima River basin, our goal was to generate knowledge of ERy. that could be
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transferable across the Columbia River basin and potentially beyond. We focus on ERwc during summer baseflow conditions and
specifically 1) compare ERwc from the Yakima River basin to published ERwc and ERq: from other systems; 2) test the hypothesis
that ERwc will inerease moving down the stream network; and 3) compare variables that explain variation in ERy to those
found as explanatory in previous studies. To address these objectives, we estimated ERwc and measured surface water chemistry at
47 sites across the Yakima River basin during the summer of 2021. Our estimates of ERwc span all previously reported rates and
while we did not observe elear-inereases—in ERwc moving down the stream network, the most important explanatory

variables did align with previous studies.

2 Methods
2.1 Methods Overview

Field sites in the Yakima River basin were selected to be representative of biophysical attributes of the larger Columbia River
basin. For this, we grouped all catchments in the Columbia River basin into six classes sharing similar landscape characteristics
using key biophysical attributes and selected sites in the Yakima River basin from each of the six classes. Final field locations
spanned six Strahler stream orders and a wide range of land cover types and physical settings. We used dark bottle incubations and
collected surface water chemistry samples to study the spatial variability of ERyc at a basin scale with respect to environmental
conditions during summer baseflow conditions in 2021. We also compared ERw. observed in the Yakima River basin against
literature ERwc and ERy: Values to understand how the Yakima River basin relates to streams and rivers across the world. We used
Least Absolute Shrinkage and Selection Operator (LASSO) regression to evaluate the relationship between ERyc and drainage
area, stream temperature, surface water chemistry, and organic matter putative biochemical transformations as a proxy for the
diversity of reactions occurring in upstream reaches to determine the primary factors influencing ERwc throughout the Yakima
River basin. All analyses were performed using R Statistical Software (v4.2.0)—). All data generated from the sampling study,

including data not evaluated in this manuscript, are publicly available.

2.2 Watershed characterization and site selection

The Yakima River basin is the fifth-largest basin in the Columbia River basin and is located entirely within the state of Washington,
USA. The basin is roughly 16,000 km? and spans forested mountainous regions in the west to arid valleys and plains in the east.
The basin has a diversity of land covers and land uses dominated by shrubland, forest, and agriculture. Annual precipitation ranges

from up to 350 cm in the west to 25 cm in the east (Vano et al., 2010).

To enable further testing of the transferability of study results to catchments throughout the Columbia River basin, we strategically
selected sampling sites in the Yakima River basin based on their biophysical (e.g. hydrology, topography, vegetation type)
characteristics. This was done by first grouping all National Hydrography Dataset Plus Version 2.1 (NHDPlusV2.1) catchments
(McKay et al., 2012) in the Columbia River basin (n = 181,531) into six classes sharing similar landscape characteristics using
cluster analysis. To capture the variability in biophysical settings found across the Columbia River basin, we selected 16 key
attributes as input variables to the cluster analysis, including climate, vegetation structure and function, topography, and wildfire
potential (Table S1). We then selected multiple sites within each of the six Columbia River basin classes. Existing, readily available
geospatial data came from multiple sources including NASA Moderate Resolution Imaging Spectroradiometer (eMODIS) Remote
Sensing Phenological (RSP) data (U. S. Geological Survey, 2019); NASA MODIS land cover type (Friedl & Sulla-Menashe,
2019); NASA MODIS normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (FPAR, %),
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and leaf area index (LAI, m2 m=2) (Myneni et al., 2015); NASA MODIS total evapotranspiration (ET, kg H,O m™2 d1) (Running
et al., 2017); NASA MODIS terrestrial net primary productivity (NPP, kg C m™2 y!) and terrestrial net ecosystem productivity
data (NEP, kg C m~2 y1) (Running & Zhao, 2019); PRISM precipitation data (PRISM Climate Group, Oregon State University,
2023); NHDPIlusV2.1 stream length and catchment boundaries (McKay et al., 2012); USGS National Elevation Dataset (NED) 1/3
Arc-Second Digital Elevation Model topography data (U.S Geological Survey, 2023); USFS Wildfire Hazard Potential (WHP)
data (Dillon, 2018); and Landscape Fire and Resource Management Planning Tools (LANDFIRE) existing vegetation percent
cover (%) and height (m) data (Dillon & Gilbertson-Day, 2020).

We used a k-means clustering algorithm using the kmeans function within the ‘stats’ package in base R to group NHDPlusV2.1
catchments with similar properties using the normalized, statistical moments (minimum, maximum, mean, and standard deviation
(SD)) for 70 geospatial variables within each NHDPlusV2.1 catchment (Table S1) as input. To calculate statistical moments for
each variable, we summarized geospatial data types at the NHDPlusV2.1 catchment level using two different methods: zonal
statistics for continuous raster data and tabulation for vector data. Zonal statistics calculate statistical moments by individual
catchment polygon. Tabulation calculates total length or area of a particular vector feature within each individual catchment
polygons. We evaluated 13 different sets of variable-statistical moment combinations for use in the cluster analysis and selected
variable set 8, which included the zonal mean and zonal standard deviation for 70 variables (n = 140) (Table S2). Once the data
for variable set 8 were summarized at the NHDPIusV2.1 catchment level, we calculated z-scores (z) for each geospatial variable.
Resultant z-scores for variable set 8 were fed into the k-means classifier, which iteratively adds each catchment to one of n clusters,
with n being set by the user (n = 15, this study), using Euclidean distance to minimize within-cluster distance and maximize
between-cluster distance. We ran multiple iterations of the cluster analysis using 2—-15 clusters using the mean and standard
deviation of all variables. To visualize the reduction in within-cluster variation between iterations 1-15, we generated elbow plots
by plotting the Within Cluster Sum of Squares (WCSS) value against the total number of catchments in a cluster and selected six
clusters as the suitable number of clusters that minimized map visual complexity enough to guide manual site selection while
maintaining a level of variation in key biophysical characteristics representative of the Columbia River basin. Clusters 1 and 3-6
were categorized according to tree height, precipitation, and elevation (Table 1 and Table S3). Cluster 2 was categorized as “Water
dominated” and was not used for selecting sites. Cluster analysis results were then used to guide the selection of 47 field sites
distributed across Strahler stream orders 2—7 (the highest order stream in the Yakima River basin) that spanned the basin and
captured the variation in biophysical characteristics represented by clusters 1 and 3-6 (Fig. S1). First order and other non-perennial
streams were not sampled due to the lack of flow during summer baseflow or baseflows were too low to support sampling. We
attempted to include logistical considerations in model-based site selection, but this task proved impractical and field-scouting
trips were needed to refine site selections. Day-of-sampling changes to the sampling plan were made on-the-fly when the Schneider
Springs Fire started on the Okanogan-Wenatchee National Forest. Fire activity and road closures restricted access to a large portion
of the Yakima River basin, primarily in the Tieton River and American River watersheds located in the midwestern portion of the

basin.
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Table -1. Cluster analysis results characterizing NHDPlusVV2.1 catchments across the Columbia River basin and Yakima River basin
with similar biophysical and hydrologic characteristics and the number and percentage of sites in each basin.

Cluster Name CRB YRB YRB Sites Percent
Drainage Drainage Per YRB Sites
Area Area Cluster Per Cluster
1 Tree dominated high elevation 23% 27% 9 19%
mesic
2 Water dominated 3% 2% 0 0%
3 Tree dominated high elevation 7% 2% 2 4%
hydric
4 Shrub-steppe middle elevation 25% 28% 10 21%
Xeric
5 Tree dominated middle elevation 17% 17% 13 28%
mesic
6 Tree dominated middle elevation 24% 23% 13 28%
Xeric

“CRB Drainage Area” is the percentage of the total drainage area of the Columbia River basin that was classified in each cluster. “YRB Drainage
Area” is the percentage of the total drainage area of the Yakima River basin that was classified in each cluster. “YRB Sites Per Cluster” is the
total number of field sites in the Yakima River basin (n = 47) located in each cluster. “Percent YRB Sites Per Cluster” is the percentage of the
total number of sampling sites in the Yakima River basin located in each cluster.

2.3 Water column respiration data collection

We measured ERwc (g O2 m3d™?) in triplicate for 2 h at each site between 30 August and 15 September 2021 using a modified
“semi-in situ” dark bottle incubation (Genzoli & Hall, 2016) (Fig. 1a). Calibrated DO) sensors (miniDOT
Logger; Precision Measurement Engineering, Inc.; Vista, CA, USA) recorded DO concentration (mg L-1) and temperature (°C) at
1 min intervals in 2-L dark bottles (Nalgene™ Rectangular Amber HDPE bottles; ThermoFisher Scientific; Waltham,
Massachusetts, USA) (Fulton et al., 2022). Bottle necks were slightly widened (1 to 2 mm) to accommodate the diameter of the

DO sensor.

At the start of each sampling day, DO sensors and all sampling equipment were placed in a cooler with blue ice packs to keep them
cool and minimize the time needed at each site for the sensors to equilibrate with the similarly cool river water temperatures. Upon
arrival at each site, bottles were rinsed three times with river water and then filled by wading as close to the thalweg as possible,
submerging the bottles below the river surface, and rolling them 360 degrees while held upright underwater to ensure no air bubbles
were present in the bottles (Fig. 1a). Bottles were secured upright in a cooler filled with river water, placed in the shade on the
streambank, and allowed to equilibrate for 20 min. Following the 20 min equilibration period, the bottles were emptied and re-
Tiled with fresh river water and a small, battery-powered mixing device (Underwater Motor, Item Number 7350; Playmobil;
Shanghai, China; rechargeable AA NiMH battery; Amazon; Seattle, Washington, USA) and the DO sensor was gently inserted
(sensor face-up) in the bottles to minimize trapping air bubbles in the bottles. The bottles were capped underwater and returned to
the water-filled cooler. The bottles were incubated for 2 h, and river water surrounding the bottles in the cooler was replenished

every 20 min to maintain in situ temperature.
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Figure -1. Modified semi-in situ dark bottle incubation method and example study sites. (a) Underwater photograph of DO sensor being
inserted into_an incubation bottle filled with river water and mixing device. Right panels emphasize the diversity of environmental settings
covered in this study. (b) North Fork Teanaway River (site S19E), Kittitas County, Washington, September 2021. Site S19E is classified as a
mesic, high elevation site dominated by tree canopy (Cluster 1; see Table 1, Table S3, Fig. S1). (c) Yakima River at Mabton (site T02), Yakima
County, Washington, September 2021. Site TO2 is classified as a mesic, middle elevation site dominated by tree canopy (Cluster 5; see Table 1,
Table S3, Fig. S1).

2.4 Surface water chemistry sample collection and analysis

Filtered surface water samples were collected at each site for dissolved inorganic C (DIC, mg L1); dissolved organic C (DOC, mg
LY); total dissolved N (TDN, mg L1); anions, including nitrate (NOs", mg L), chloride (CI-, mg L), and sulfate (S6450.%, mg
L1); and DOM chemistry using a 50-mL syringe and 0.22 um sterivex filter (MilliporeSigma™ Sterivex™ Sterile Pressure-Driven
Devices; MilliporeSigma™; Burlington, Massachusetts, USA) (Grieger et al., 2022). Samples were collected in triplicate from
50% of the water column depth. Prior to sample collection, filter assemblies were rinsed once by pushing 5 mL of river water
through the filter. DIC, DOC and TDN samples were filtered into 40 mL amber glass vials (Amber Clean Snap Vials; Thermo
Fisher Scientific; Waltham, Massachusetts, USA). DIC samples were collected by attaching a sterile 18 g needle (BD General Use
and PrecisionGlide Hypodermic Needles; Becton, Dickinson and Company; Franklin Lakes, NJ, USA) to the sterivex filter and
pushing three vial-volumes of river water (~150 mL) slowly through the syringe to prevent the introduction of air bubbles to the
sample, allowing the vials to overflow continuously. When the final 50 mL of river water was pushed through the syringe, the vials
were capped with a surface tension dome of water to ensure no headspace. Samples collected for ion analysis were filtered into a
15 mL conical tube (Olympus™ Plastics; Genesee Scientific; Morrisville, NC, USA). Samples collected for DOM chemistry were
filtered into pre-acidified (85 % phosphoric acid, HsPO.) 40 mL amber vials (Amber Clean Snap Vials; Thermo Fisher Scientific;
Waltham, Massachusetts, USA) (Grieger et al., 2022). One unfiltered grab sample for total suspended solids (TSS, mg L1) was
collected using a pre-washed 2-L amber bottle (Nalgene™ Rectangular Amber HDPE Bottles; ThermoFisher Scientific; Waltham,
Massachusetts, USA). TSS bottles were rinsed three times with river water prior to sample collection. All samples were stored on
ice in the field and then refrigerated at 4° C before shipping for analysis to the Pacific Northwest National Laboratory (PNNL)
Marine and Coastal Research Laboratory in Sequim, Washington (DOC and DIC) and PNNL Biological Sciences Facility
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Laboratory in Richland, Washington (TSS, ions, and DOM). TSS samples were analyzed within one week of collection, DOC and
TDN were measured within two weeks of collection, DIC was measured within one month of collection, and ion and DOM samples

were frozen (-20 °C) upon receiving until analysis.

DOC, TDN, and DIC were measured on a Shimadzu TOC-L Total Organic Carbon Analyzer. DOC was measured as non-purgeable
organic C (NPOC). Anion concentrations were determined quantitatively on a Dionex 1CS-2000 anion chromatograph with AS40
auto-samplerautosampler using one replicate. An isocratic method was used with 23 mM KOH eluent at 1 mL/minute at 30°C. The
analytical column was an lonPac AS18 (4 x 250 mm, Dionex catalog # 060549). The suppressor was a ADRS 600 set at 57 mA (4

mm, self regenerating, Dionex catalog # 088666). Concentrations below the limit of detection (LOD) of the instrument, or below

the standard curve, were flagged (Grieger et al., 2022)—Reph

For. For other samples below the lowest standard value (TDN: 0.1 mg L, NOs: 0.07 mg L), one half of the lowest standard
value was used (TDN: 0.05 mg L, NOs: 0.035 mg L) for statistical analysis. For samples below the limit of detection (TDN
LOD: 0.07 mg L!; NOs LOD: 0.07 mg L), but above the lowest standard, one half of the LOD value (TDN: 0.035 mg L; NOs-

:0.035 mg L) was used for analysis. Phosphate (PO,*) was measured, however, over two thirds of samples showed values below

detection, and thus the analyte was not used in subsequent analyses. Pairwise differences between NPOC, TDN, and DIC

measurements from all replicates were calculated. The sample that had the largest difference from the other samples was removed

if the coefficient of variation was greater than 30%. This coefficient of variation threshold for sample removal is based on

inspecting histograms of these data types, and determining the point at which sites likely contain anomalous outlier values.

Parameter mean values for each site were then calculated from the remaining replicates.

TSS samples were filtered in the laboratory through a pre-weighed and pre-combusted 4.7 cm, 0.7 um GF/F glass microfiber filter
(Whatman™ glass microfiber filters, Grade 934-AH®; MilliporeSigma; Burlington, Massachusetts, USA). After water filtration,
the filter and filtration apparatus were rinsed with 30 mL of ultrapure Milli-Q water (Milli-Q® 1Q Water Purification System;
MilliporeSigma; Burlington, Massachusetts, USA) to ensure that all residue was captured by the filter. The filter was placed in foil
and oven dried overnight at 45° C. TSS (mg L) was calculated as the difference between the weight (mg) of the filter before and
after filtration of the water sample divided by the volume of water filtered (L). For samples below the LOD, one half of the LOD

value (LOD: 0.24 mg L) was used for analysis.

2.5 DOM chemistry via ultra-high resolution mass spectrometry and biochemical transformations

Organic matter chemistry was characterized via ultra-high resolution mass spectrometry using a 12 Tesla (12T) Bruker SolariX
Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) at the PNNL Environmental Molecular Sciences

Laboratory in Richland, Washington, following methods described in Garayburu-Caruso et al. (2020a).. Measured DOC

concentrations were used to normalize the DOC concentration of the sample to 1.5 mg C L-* prior to further processing. Samples
were thawed in the dark at 4°C overnight before acidifying to pH 2 using 85 % H3PO4. Samples were then subjected to solid phase
extraction (SPE) using Bond Elut PPL cartridges (Agilent; Santa Clara, CA, USA) following protocols employed by Dittmar et al.
(2008). Extracted samples were run in the FTICR-MS with a standard electrospray ionization source in negative mode. Data were
collected with an ion accumulation time of 0.08 seconds. BrukerDaltonik Data Analysis version 4.2 was used to convert raw spectra
to a list of molecular compound mass-to-charge ratios (m/z) with a signal-to-noise ratio (S/N) threshold set to 7 and absolute

intensity threshold to the default value of 100. Peaks were aligned (0.5 ppm threshold) and molecular formula were assigned using
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the Formularity software with S/N > 7 and mass measurement error < 0.5 ppm (Toli¢ et al., 2017). The Compound Identification
algorithm takes into consideration the presence of C, H, O, N, S, and P and excludes other elements. Aligned and calibrated data
was further processed using ftmsRanalysis (Bramer et al., 2020). Replicate samples were merged into one site where peaks in a
sample were retained if they were present in at least one of the replicates. DOM biochemical transformations were inferred
following methods previously employed by Ryan et al., (2024); Danczak et al., (2023); Fudyma et al., (2021); Garayburu-Caruso
etal., (2020); Stegen et al., (2018). In summary, we calculated pairwise mass differences between every peak in a sample regardless
of molecular formula assigned and compared that mass difference to a list of 1,255 molecular masses associated with commonly
observed biochemical transformations (Table S4). Biochemical transformations allow you to infer the number of times the mass
that corresponds to a specific molecule is gained or lost. For example, if a mass difference between two peaks corresponded to
128.095, that would correlate to the loss or gain of the amino acid lysine (see Table S4). We further calculated the total number of
DOM transformations per site and the total number of DOM transformations normalized by the number of peaks present in the site

(i.e., “normalized DOM transformations™).

2.6 DO sensor data cleaning, processing, and analysis

We extracted the raw DO concentration (mg O, L™1) and temperature (°C) sensor data for each site and plotted DO and temperature
against incubation time for each set of triplicate incubations (n = 141). The plots were visually inspected to a) confirm that
temperature sensors were at equilibrium with the river temperature when the 2 h incubation test period began and b) identify data
gaps, outliers, and other data anomalies. Following the visual inspection of plots, the first 5 min of the time series was removed,
then the data was trimmed to 90 min to account for anomalies due to emptying and refreshing river water in the bottles, and to

ensure all sites had the same incubation time. Sensor data distributions were also evaluated using violin plots for each site.

ERw. rates for individual triplicate incubation samples were calculated as the slope of the linear regression between the DO sensor
data and the incubation time, which was converted to { g O, m® d)units. All samples met the normalized
root mean square error (NRMSE) criteria of < 0.01 - Mean ER,. for each
site and the global mean and variance were then calculated from the samples (n = 141). Nearly one-fifth of ERy. values were
slightly positive. Positive respiration rates are biologically unrealistic, however positive values less than 0.5 g O, m= d* are difficult
to distinguish from zero (Appling et al., 2018b). Thus, we retained positive ERwc values less than 0.5 g O, m= d-?

and removed values greater than 0.5 g O, m= d* (n = 2). ERwc values greater than 0.5 g O, m d* were observed when
the DO concentration in the bottle started near 5 mg O, L and increased over the 2-hour incubation period. The increase in

concentration and the high, positive respiration rate is likely due to diffusion of DO through the bottle walls.

2.7 Relationship of water column respiration rates to watershed characteristics and surface water chemistry

We evaluated the relationship between ERwc, watershed characteristics, physical parameters, and surface water chemistry using
LASSO regression models, which perferms, variable selection and model regularization, to establish the suite of
explanatory variables that most influence variation in ERy. across the Yakima River basin. We observed that several model input
variables had skewed distributions, thus a cube root transformation was applied to all variables to reduce the impact of high leverage
points in the regression analysis. Further, all data was standardized as z-scores before analysis to ensure all data was in the same

quantitative range. 3 coefficients reported for each variable were calculated by performing LASSO regression using the glmnet

8


https://www.zotero.org/google-docs/?lCwXvT
https://www.zotero.org/google-docs/?cTxRXA
https://www.zotero.org/google-docs/?9y0p0S
https://www.zotero.org/google-docs/?9y0p0S
https://www.zotero.org/google-docs/?Llirez

277
278
279
280
281
282
283
284
285
286
287
288
289
290

291

292
293
294
295
296
297
298
299
300
301
302
303
|@04
305
306

307
308

309
310
11

12
13

function in R (Friedman et al., 2010) over 100 random seeds, normalizing to the maximum [ coefficient in each regression, and
averaging the normalized B coefficients across the 100 iterations. The minimum penalty parameter (A) determined by cross
validation was used in each regression. Because LASSO regression was used for exploratory analysis, not prediction, data was not

split into training and testing sets. LASSO does not inherently estimate R?, so we calculated it using the total sum of squares and

residual sum of squares for each fitted model, as traditionally done with standard multiple regression. The estimation of residual

sum of squares used predicted values of ERy. based on the explanatory variables used in the model. The R? estimates were used

to estimate how much variation in ERwc was explained by each of the LASSO models. Standard deviation of [ coefficients were

compared to mean values of B coefficients to confirm that the most important variables were relatively consistent across seeds.

Total drainage area (km?) was defined as the total upstream drainage area from each site and was extracted for each site from the
NHDPIlusV2.1 stream database using site latitude and longitude. Stream order for each site was extracted as the reach attribute
“StreamOrde” from the NHDPlusV2.1 stream database, which is a modified version of Strahler stream order (Blodgett & Johnson,
2022; McKay et al., 2012; Willi & Ross, 2023). To evaluate whether the directionality of relationships observed in the LASSO
regression were consistent with univariate relationships, we used Pearson correlations between ERwc, drainage area, water

chemistry, and environmental factors; these correlations were calculated using the cor function in R.

2.8 Comparison to published water column respiration rates

To contextualize the magnitude of observed ERy. rates in the Yakima River basin, we compared our results to published literature
values of ERy.c (n = 118) (Table S5) and ER (n = 208). Published ERy. values were converted to volumetric units (g O2 m 3 d?)
using standard unit conversions. For example, molar values (umol O, Lt H1) as in Devol et al. (1995) and Quay et al. (1995)
were corrected using the molar mass of oxygen and standard time conversions. When ERyc was reported with respect to C or
carbon dioxide (CO>), as in Ellis et al. (2012) and Ward et al. (2018), conversions provided in the text were used to convert to an
O, basis. Areal estimates of ERw: (g O m2 d1), as in Genzoli and Hall (2016) and Reisinger et al. (2021), were converted to
volumetric units by multiplying by 1/depth (m?) using same-day depth data for each reach studied. We also compared our ERwc
values to daily reach-averaged estimates of ER: (n = 490,907) for 356 rivers and streams across the CONUS by using the datasets
published in Appling et al., (2018b) and Bernhardt et al., (2022) where ER:: Was estimated by a single-station, open channel
approach using the streamMetabolizer package in R (Appling et al., 2018b, 2018a). For our comparative analysis, we used the
cleaned, gap-filled data from Bernhardt et al. (2022) (n = 208). The Bernhardt et al. (2022) sites are a subset from the Appling et
al. (2018a, 2018b) dataset generated through a robust data quality analysis to remove sites potentially affected by process or
observation error. For comparison with our ERw. values, we first averaged Bernhardt et al. (2022) ERy: areal units (g ©20, m?2 d-
1) at each site. Then, average ER values were converted to volumetric units by calculating average river depth per site from the

Appling et al. (2018a, 2018b) dataset and multiplying average ERw: by 1/depth.

3 Results and discussion
3.1 Yakima River basin ERwc rates spanned literature values

At baseflow conditions, ERy. varied widely across the Yakima River basin. The linear regression

models for each triplicate set of DO sensor measurements were well—fit to the data and all

sites met the criteria for NRMSE < 0.01 (Fig. S2; Fig. S3). Afterremovingpositive-respiration-rates>0.5¢g-0,

m-2-d-*which-are-associated-with-diffusion-effects- on- DO-ERyFatesranged-from—7-38-10-0.36-g- O m—>-d-*~with-a-median-value

of-0-58-g-Or-m—=-d-*-{mean:—0.82-g-O,-m->-d-*-standard-deviation=1-25-g-O,-m—3-d-*){Fig—\We observed consistency across
9
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triplicate-measurements-iHustrates that the method was effective in providing repeatable estimates of ERy. rates throughout the

Yakima River basin (Fig. S2; Fig. S3). After removing positive respiration rates > 0.5 g O, m* d"*, which were associated with

diffusion effects on DO, and turning small positive rates to zero, ERy. rates ranged from -7.38 to 0 g O, m~2 d-*, with a median
value of -0.58 g O, m~3 d* (mean: -0.84 g O, m~2 d%, standard deviation = 1.23 g O, m~% d!) (Fig. 2a).

The values of ERwc observed in our study spanned the range of published literature values (Fig. 2; Table S5). From 118 published
measurements of ERwc across the CONUS and the Amazon River basin, ERy. ranged from -4.63 g O, m2 d* to -0.07 g O, m®
d. We compared median values, rather than means, across studies as medians are more appropriate for skewed distributions and
are less sensitive to outliers in the data. The median ERw. from this study (-0.58 g O, m= d*!) is slower than the median of
literature-reported ERwc values (-0.96 g O, m~3 d1). However, the fastest ERy. rate in the Yakima River basin (-7.38 g O, m=d 1),
exceeded the fastest reported literature value (-4.63 g O, m® d) (Reisinger et al., 2021)}—R. Reisinger et al. (2021) measured
ERwc in 15 mid-sized rivers across basins with differing turbidity levels and nutrient concentrations, finding a similar median ERwc
(-0.60 g O, m2 dY) to this study. In the Klamath River, median ERwc (-0.51 g O> m~3 d1) was also similar to the Yakima River
basin. However, ERyc doubled following summer cyanobacteria blooms, emphasizing the temporal variability in water column
processes with changing environmental conditions (Genzoli & Hall, 2016). In the Amazon basin, literature comparisons varied,
with median ERw. measurements similar to those found in the Yakima River basin in some studies (Devol et al., 1995; Ellis et al.,
2012; Quay et al., 1995) and faster than the Yakima River basin in others (Ward et al., 2018). Ward et al. (2018) highlighted the
importance of mixing in large rivers, noting that previous measurements of aquatic respiration in large tropical rivers, such as those
measured in Quay et al. (1995) and Devol et al. (1995), may underestimate microbial respiration contribution due to lack of mixing
during rate measurements. While comparisons across study medians are variable, the observation that ERyc in the Yakima River
basin spans — and exceeds — reported literature values highlights the potential for using it as a test basin for understanding and

uncovering transferable principles linked to stream metabolism.

While ER estimates are not available across the Yakima River basin at the time of ERy estimation for this manuscript, measured
ERwc rates spanned a large fraction of CONUS-scale ERy: rates estimated by Appling et al., (2018a, 2018b) and Bernhardt et al.
(2022). ER rates are reach-scale estimates of stream metabolism derived from time series measurements of DO. This method
assumes well-mixed conditions such that sensor measurements represent homogenous reach observations. Under well-mixed
conditions, ERw measurements from dark bottle incubations are also representative of reach-scale processes (Genzoli & Hall,
2016). The median ERy: for 208 CONUS measurements was -5.25 g O, m=d* with a range from -36.55 to -3.73 g O, m2d™. The
median ERy rate (-0.58 g O, m2d?) observed in the Yakima River basin was 11% of median ER (Fig. 2). The fastest ERy. rate
in the Yakima River basin (-7.38 g O, m?d?), was faster than the median ER: (Fig. 2). While both ER and ER . measurements

span a range of stream conditions, we acknowledge that we did not compare these rates directly at the same places and times.

However, given the overlap of ERwc from the Yakima River basin with CONUS-scale ER, We suggest that ERw could typically

representsrepresent a small fraction of ERyw: but may occasionally have larger contributions across the Yakima River basin. ta
comparison-Genzohli-and-Hal-1f we had observed consistently very slow ERy. across the Yakima River basin, there would be little

overlap with literature ERyo Values, and we would have inferred consistently small contributions of ERwc to ERyt. In comparison,

Genzoli and Hall (2016) observed that before summer cyanobacteria blooms, ERy. contributed around 10% of ER in sites along
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the Klamath River, with the contribution of ERw. to ERy: increasing following cyanobacteria blooms. Additionally, Reisinger et
al. (2021) found that ERwc was not the dominant contributor to ER: in mid-sized rivers, except at sites with low ER: (mean ERy.
contributions to ERt: 35%, range 2 — 81%). While these studies have shown spatiotemporal variability of the contributions of
ERwc to ERt, exploring these relationships in the Yakima River basin requires further research where ERq: is measured in
conjunction with ERye.
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Figure -2. Water column respiration data from the Yakima River basin (ERwc (this study); n = 45), published water column respiration
rates (ERwc (Lit); n = 118), and reach-scale estimates of ecosystem respiration by Appling et al., (2018a, 2018b) and Bernhardt et al.
(2022) (ERwt; n = 208). (a) Kernel density plots of ERwc from the Yakima River basin (this study), published ERwc rates (Lit) that have been
converted to the same units as this study (g O m3d?), and published reach-scale ERwt (Lit) from Bernhardt et al. (2022) that have been converted
to volumetric units using depth data from Appling et al. (2018a). The left y-axis is for ERwc values. The right y-axis is for ERtwt values. The
vertical blue line is the median ERwc observed in the Yakima River basin (-0.58 g O2 m3dt). The vertical red line is the median ERwc values
from studies in rivers across the CONUS and the Amazon River basin (-0.96 g O2 m3d). The vertical black line is the median ERwt value (-
5.25 g O2 m3d?). (b) Boxplots of published ERwe and ERwc from the Yakima River basin. The blue horizontal dashed line represents median
ERwc in the Yakima River basin. The red horizontal dashed line represents median ERwc from literature values.

3.2 Water column respiration rates varied weakly with drainage area and stream order

We observed a correlation between ERw.ERyc and drainage area across the Yakima River basin that was weak enough that we
consider it to-effectively-rejecttheinconsistent with our hypothesis that ERw. is faster moving down the stream network (Fig. 3).3).

In latter sections, we use multivariate analysis for further evaluation of the relationships between ERwc: and explanatory variables.
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The lack of a strong connection between ERw and drainage area is somewhat surprising as such a relationship could emerge from
downstream C transport as well as increasing autochthonous C inputs due to increasing temperature and light availability, providing
additional substrate for microbial respiration (Finlay, 2011; Webster, 2007). The fastest observed ERuc rate in the Yakima River
basin occurred in an agriculturally influenced, low gradient, 51" order stream, as opposed to a-highererderriver{Fig.our hypothesis

of ERyc being fastest in the highest stream orders (Fig. 3). The conditions at this sampling location were not representative of the

whole drainage area, as areas upstream of this site are mountainous with little human influence. This finding suggests that localized
factors, not upstream conditions or drainage area, provide primary controls over ERwc. Anthropogenic impacts, such as from
agriculture and urbanization, can alter nutrient dynamics and flow regimes in these areas, influencing biogeochemical processes

such as ERw. (Bernot et al., 2010). Additionally, while we report ERyc 0n a volumetric basis, we acknowledge that this approach

does not account for variation in water column depth along the river continuum. As river depth increases downstream, we expect

the areal contribution of water column processes will also increase because areal contributions integrate across the whole water
column (Wang et al., 2022)—Fhe-weak-correlation-between. The weak correlation between volumetric-based ERwc and drainage

area in the Yakima River basin likely reflects the interplay of multiple factors, including spatially variable local conditions,

underscoring the complex controls on ecosystem processes in this region.
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Figure :3. ERwc across the Yakima River basin and its relationship with total drainage area. (a) Map of land use/land cover classes in the
Yakima River basin with ERwc values (g O2 m d!) overlaid. Faster rates are indicated by larger circle diameters. The fastest rate is indicated by
the yellow circle. The map was generated using the Free and Open Source QGIS (v. 3.16.1 and v. 3.26.0). Map data include catchment boundaries
and hydrography from the National Hydrography Dataset Plus (NHDPlusV2.1) (McKay et al., 2012) and 2016 land use/land cover data from the
National Land Cover Dataset (Brown, 2024). (b) Scatter plot of cube root transformed ERwc related to cube root transformed total drainage area
with points colored by stream order. The Pearson correlation coefficient (r) is provided on the panel.

3.3 Higher temperatures and nutrient concentrations are associated with faster ERwc.

Regression analyses shewshowed that ERwc in the Yakima River basin varied with chemical and physical water quality parameters.
TDN, temperature, DOC, and TSS emerged as key variables in the LASSO regression, whereby ERyc was faster with higher values
of all these variables (Table 2). The LASSO regression explained 40% of the variation in ERw. (Table 2). LASSO results are
similar to univariate relationships, whereby DOC, TDN, temperature, and TSS had the strongest correlations with ERy. (r = -0.4446
10 -0.5363) (Fig. 4, Fig. S4) and all correlations were qualitatively in the same direction as indicated by the LASSO f coefficients.

Changing positive ERw. values less than 0.5 g O» m3 d! to 0 did not change the overall interpretation of univariate or multivariate

relationships (Fig. S4, Fig. S5, Table S4). Collectively, the relative importance of these variables suggests that ERyc is not
controlled by a single variable, and instead multiple factors (i.e., nutrient concentrations, suspended particles, and temperature) are

simultaneously linked to ERyc.

Collinearity between LASSO variables could result in one variable being retained in the LASSO model over another. We used

LASSO regressions across 100 random seeds, averaging the model coefficients, to help minimize spurious outcomes. This revealed

relatively small standard deviations of 3 coefficients compared to mean [ coefficient values, indicating that the four most important

variables are consistent across seeds, even when one variable is chosen over another (Table 2). For example, total drainage area

was correlated with nutrient concentrations and temperature (Fig. S4), which were retained as more directly explaining variation

in ERy, in the LASSO regression. Additionally, while total drainage area showed a negative univariate correlation with ER . (Fig.

3b), it showed a slight positive relationship with ERw in the LASSO regression. This suggests that total drainage area likely acts

as a proxy for regional watershed processes that influence ERy. directly, like nutrients and temperature, rather than a causal
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relationship (Caissie, 2006; Manning et al., 2020). Similarly, TDN was strongly correlated with other explanatory variables, such

as NOs', Cl-, and SO.*, likely reflecting an increase of agricultural inputs that, in turn, lead to faster ERwc through supporting

microbial metabolism (Bernot et al., 2010)Fable—. Including phosphorus data could further improve model performance, as

phosphorus is often a limiting factor for microbial growth in freshwater rivers (Carroll 2022). Phosphorus limitation is likely in

the Yakima River basin, as more than two-thirds of the phosphorus concentrations were below instrument detection, leading to its

exclusion from analysis. These results underscore the importance of interpreting LASSO results within the context of all

explanatory variables used in the model, particularly in large, heterogenous catchments.

Table 2. B coefficients from LASSO analyses for explaining ERwc across the Yakima River Basin. ERwc and all explanatory variables were
cube root transformed and standardized as z-scores. LASSO was performed over 100 seeds, and B coefficients for each variable were normalized
to the maximum B coefficient in each seed and averaged across all seeds for the reported values. Values of zero indicate that while the variable
was included in the model, it was deemed not influential in predicting model outcomes and thus was not assigned a § coefficient.

Predictor Variable Mean B Coefficient Standard Deviation
TDN -0.9896 0.0311
Temperature -0.9562 0.0815
DOC -0.7453 0.0917
TSS -0.4836 0.0916
NOs -0.0419 0.1436
%4@42' 0 0
Normalized DOM Transformations 0 0
DIC 0 0
DOM Transformations 0 0
Total drainage areaBDOM-Paaks 0.6820005 0.62005
DOM PeaksFotal-drainage-area 0.04001 0.04008
Cl 0.13 0.2527
R? 0.4049 0.03
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transformed dissolved organic carbon (DOC); (d) cube root transformed total suspended solids (TSS). Pearson correlation coefficients (r) are
provided on each panel.

Faster ERwc with increasing TDN, temperature, DOC, and TSS in the Yakima River basin is expected, as nutrients and temperature
can impact variation in stream metabolism (Ardon et al., 2021; Bernot et al., 2010; Honious et al., 2021; Hornbach, 2021; Nakano
etal., 2022). In-stream metabolism relies on terrestrially-derived and internally-fixed inputs of DOC, which supports heterotrophic
metabolism that degrades and removes organic C inputs through respiration (Hall et al., 2016; Hotchkiss & Hall, 2014; Plont et
al., 2022). Faster ERw: and ERwc have been reported with increases in DOC (Bernot et al., 2010; Ellis et al., 2012). However,
elevated DOC does not always correspond to greater ER, as discharge and residence time also affect C dynamics (Ulseth et al.,
2018). In addition to DOC, suspended sediment can regulate ecosystem metabolism by decoupling ecosystem respiration and GPP
through limiting light availability, thereby reducing autochthonous C production, and conversely, by stimulating processing of
organic matter through increased surface area (Glover et al., 2019; Honious et al., 2021). The increased surface area of suspended
particles in the water column provides microsite habitats for microorganisms (Liu et al., 2013; Ochs et al., 2010), where bacterial
production and enzymatic activity is concentrated, contributing substantially to material processing in the water column,
particularly in rivers 5" order and higher (Gardner & Doyle, 2018; Reisinger et al., 2015). Nutrient dynamics, particularly N, also
influence ecosystem respiration, where elevated N concentrations have been linked to increased ecosystem respiration across
stream orders (Benstead et al., 2009; Reisinger et al., 2016, 2021; Rosemond et al., 2015). Nitrogen is a key nutrient for microbial
growth and is often a limiting nutrient in freshwater rivers (Carroll, 2022). Consistent with this, we found the fastest ERw. at
an agriculturally-influenced stream with the greatest TDN and NOs™ concentrations. Elevated nutrient levels at this site likely
stimulate microbial respiration, similar to Cross et al. (2022) who found an increase in heterotrophic respiration in response to N
enrichment. Moreover, respiratory processes are typically faster at higher temperatures (Pietikéinen et al., 2005), which can shift
riverine ecosystems toward heterotrophy (Song et al., 2018). By stimulating microbial respiration, higher temperatures can also
amplify the effects of increasing nutrients (Cross et al., 2022)-

Ultimately, our results
emphasize the complex and dynamic roles of the physical, chemical, and biological factors that influence ERyc in the Yakima

River basin and other similar freshwater ecosystems.

4 Conclusions, limitations, and next steps

Our study shows that ERy, rates observed in rivers and streams across the Yakima River basin span published rates from studies
conducted in rivers across the CONUS and the Amazon River basin. While this study didn’t measure ERy, the observed overlap
between ERywc and literature ERw: show the potential relevance of ERyc to overall stream metabolism. We pose that the high
variability observed in ERy. rates across the basin will likely translate into variable contributions of ERw¢ to ERtt, ranging from
negligible to potentially dominant. We anticipate that these influences will not vary systematically moving down the stream
network as we observed a very weak association between ERy. and drainage area across the Yakima River basin. Our results point
to more localized control and the LASSO regression specifically indicated that ERy is faster with increasing TDN, stream
temperature, DOC, and TSS, consistent with previous work. Overall, our findings show that the complex interactions between
physical and chemical factors affect the spatial variability in ERy. aeross the Yakima River basin. We encourage future work
to expand on our current study by collecting both ER\ and ER: measurements at a basin scale, and to parse

the contributions from both the water column and sediments to total ecosystem metabolism.
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Code and data availability

Data and scripts used to generate the main findings within this manuscript will be published at the U.S. Department of Energy’s
Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) repository (https://ess-
dive.lbl.gov/about/) upon manuscript acceptance. Currently, scripts associated with this manuscript are located on GitHub
(https://github.com/river-corridors-sfa/rcsfa-RC2-SPS-ERwc). Other data collected during the field efforts (i.e., sensor data;
surface water chemistry data; and geospatial information, metadata, and maps for 2021 Spatial Study sampling event) can be
accessed on ESS-DIVE .
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