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Abstract. Sea-ice biogeochemical models are key to understanding polar marine ecosystems. We present an intercomparison 19 

of six one-dimensional models, assessing their ability to simulate algal phenology and nutrient dynamics using physical-20 

biogeochemical data from an Arctic drift expedition in spring 2015. While no model fully captured observed bloom dynamics 21 

with default settings, tuning improved biomass but had a limited impact on nutrients. The experiment revealed challenges in 22 

simulating short-lived, dynamic ice habitats, which are expected to become more common in a changing Arctic. Variability in 23 

tuning strategies underscores key knowledge gaps and highlights the need for coordinated future model developments to 24 

improve reliability and predictive capacity. 25 

1 Introduction  26 

Sea ice is home to an active microbial community, with ice algae displaying some of the highest Chlorophyll-a (Chl-a) 27 

concentrations of any aquatic environment (Arrigo, 2017). Ice algae play multiple pivotal roles in polar oceans, representing 28 

the largest biomass fraction in sea ice (Poulin et al., 2011), contributing to overall marine primary production (Dalman et al, 29 

2025), acting as a critical food source for the marine food web, especially during winter (Schaafsma et al., 2017), and efficiently 30 

contributing to the ocean carbon sink (Boetius et al., 2013). Together with phytoplankton, ice algae form the foundation of the 31 

polar marine food web, supporting key under-ice foraging species such as Arctic cod (Boreogadus saida) in the Arctic Ocean 32 

(Geoffroy et al., 2023) and Antarctic krill (Euphausia superba) in the Southern Ocean (Kohlbach et al., 2017). These species 33 
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depend on the presence of sea ice and play a crucial role in transferring carbon to higher trophic levels, including humans 34 

(Steiner et al., 2021).  35 

 36 

Current environmental changes are placing considerable pressure at the base of the food web, triggering significant effects 37 

throughout trophic levels (e.g., Post et al., 2013; Koch et al., 2023). Despite the recognised importance of the sea-ice 38 

ecosystems (Lannuzel et al., 2020), our knowledge remains limited due to their remote location and extreme weather 39 

conditions, which restrict observational data - particularly biological observations - to sparse spatial and temporal distributions. 40 

As a result, the representation of sea-ice biological and ecological processes in numerical models has historically been limited. 41 

However, in recent decades, significant advances have been made in modelling sea-ice habitats and the evolution of sea-ice 42 

biological communities (Castellani et al., 2025). Progress includes improved representation of physical processes, greater 43 

biodiversity, and enhanced ecosystem complexity.  44 

 45 

An intercomparison of three-dimensional models has already been conducted to understand similarities and differences in 46 

simulated ice algae abundance and distribution, the Ice Algae Model Intercomparison Project – Phase 1 (IAMIP1, Watanabe 47 

et al., 2019). This study investigated the seasonal-to-decadal variability in ice-algal primary productivity across four Arctic 48 

regions during 1980–2009, as simulated by five participating models. Its conclusions indicated that, despite the ongoing 49 

reduction in Arctic sea ice, the decadal trend in ice-algal productivity remained unclear. The vernal bloom shifted towards an 50 

earlier onset and shorter duration over the simulated period, and the choice of maximum algal growth rate was identified as a 51 

key driver of inter-model differences in simulated ice-algal primary productivity. A second phase, expanding the study’s scope 52 

to global coverage and centennial timescales following CMIP6 (Coupled Model Intercomparison Project Phase 6, Eyring et 53 

al., 2016) protocols, is currently underway (IAMIP2, Hayashida et al., 2021). However, given the numerous limitations and 54 

uncertainties associated with these large-scale models, they are more useful for deriving bulk properties than for investigating 55 

more detailed ecological processes. 56 

 57 

To this end, one-dimensional (1D) process models become essential for addressing knowledge gaps in sea-ice biogeochemistry 58 

and ecological dynamics, as they provide a level of detail that large-scale models lack. They also allow for direct comparisons 59 

with in-situ observations, improving the ability to validate results. However, existing process models have been developed 60 

independently during periods of limited observations and incomplete process understanding, validated by observations at 61 

different locations, leading to substantial differences across models. These differences make an intercomparison of models 62 

performances challenging. To address this, the BEPSII (Biogeochemical Exchange Processes at Sea-Ice Interfaces, 63 

https://www.bepsii.org) expert group initiated an intercomparison of 1D sea-ice biogeochemical models, presented here, 64 

aiming at: i) understanding variability among models in representing key processes and responses to a common set of boundary 65 

conditions, ii) identifying divergences in models’ behaviour, the variety of tuning strategy, and the drivers of model sensitivity, 66 

iii) testing transferability, and finally iv) promoting harmonisation for future model developments. The focus has been on 67 
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understanding the similarities and differences in simulated ice algae dynamics and investigating the controlling factors 68 

responsible for the temporal variability and magnitude of ice-algal productivity among participating 1D models. 69 

 70 

We present in this study an intercomparison of 1D sea-ice biogeochemical models (briefly described in Sect. 2.1 and more 71 

comprehensively in Appendix A), focusing on their ability to simulate ice algal dynamics and nutrient cycling. Using a refrozen 72 

lead time series (described in Sect 2.2) as a test case, we assess model performance through a structured comparison of 73 

simulated and observed biogeochemical variables. Two experiments - no tuning and tuning - were conducted (Sect 2.3) to 74 

evaluate the baseline model configurations as well as the impact of targeted parameter adjustments on model accuracy. We 75 

analyse differences in model outputs, identify key sources of variability, and discuss the challenges associated with simulating 76 

ice algal growth and nutrient fluxes (Sect 3). Finally, we highlight the implications of our findings for future model 77 

development and propose directions for improving the representation of biogeochemical processes in sea-ice models (Sect. 4). 78 

2 Methods 79 

2.1 Sea-ice biogeochemical models 80 

1D process models are typically designed to represent only vertical processes, assuming that horizontal advection is negligible. 81 

Since they are computationally efficient, these models can incorporate a high level of ecosystem complexity, such as 82 

representing multiple functional groups of organisms and providing high vertical resolution by discretising sea ice into several 83 

layers.  84 

 85 

1D sea-ice biogeochemical models vary in vertical resolution, ecosystem complexity, and whether they are coupled to the 86 

ocean and/or atmosphere (Castellani et al., 2025). The biogeochemically active part of sea ice, also known as the Biologically 87 

Active Layer (BAL) (Tedesco et al., 2010), is represented either as a single layer near the ice-ocean interface of prescribed or 88 

variable thicknesses depending on sea-ice permeability, or as multiple layers spanning the vertical range of the sea ice with an 89 

active brine network (e.g., Jeffery et al., 2016). Single-layer approaches are computationally more efficient than multi-layer 90 

models. A single-layer model of variable thicknesses in response to thermodynamic growth, often referred to as dynamic 91 

layering, provides a more realistic representation of bottom community dynamics (Tedesco et al., 2010). Multi-layer models, 92 

on the other hand, capture the vertical variability of biogeochemical variables and allow simulating surface and infiltration 93 

communities. 94 

 95 

As in ocean models, the structure of sea-ice microbial ecosystems is represented using a set of “Plankton Functional Types” 96 

(PFTs), which in our model framework include sea-ice algae, sea-ice heterotrophic bacteria, and sea-ice fauna such as grazers, 97 

and non-living inorganic (e.g., sea-ice micro- and macronutrients) and organic matter (e.g., sea-ice detritus). The simplest 98 

models are N-P models, which include only one nutrient (N) and one algal functional type (P). The elemental composition of 99 
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ice algae is typically fixed, based on prescribed Redfield carbon, nitrogen, silicon, phosphorous ratios (106:16:16:1), along 100 

with fixed Chl-a:carbon ratios. The more comprehensive N-P-Z-D models also include grazers (Z) (such as sea-ice fauna) and 101 

sea-ice detritus (D). In the simplest version of these models, only one limiting nutrient is considered. More complex models 102 

may represent multiple nutrients and different PFTs for ice algal communities, as well as bacteria and grazers. In simpler 103 

models, the processes associated with bacterial remineralisation or grazing are often implicitly parameterised using constant 104 

rates.  105 

 106 

The intercomparison included five modelling teams and a total of six model configurations. These models varied in several 107 

aspects, encompassing differences in physical and biogeochemical process complexity, radiation schemes, vertical resolution, 108 

choice of limiting nutrient, area of original tuning of the model, and coupling to an interactive sea-ice physical model and/or 109 

ocean biogeochemical model of various complexity. Table 1 summarises the main commonalities and differences among the 110 

models. For more details on a specific model, we refer to the model’s original reference (Table 1) and further description in 111 

Appendix A.  112 

 113 

Most of the models had interactive physical components, while only one (i.e., SIMBA) required prescribed ice physics. 114 

Additionally, only half of the models were coupled to an interactive ocean biogeochemical model. Among the sea-ice physical 115 

models, complexities ranged from a Semtner 0-layer scheme (SM 0L) to multi-layer energy-conserving models (EC ML). All 116 

models, except one, used a single-band radiation transfer scheme, with several assuming Beer-Lambert (BL) light attenuation, 117 

while only one employed a Delta-Eddington (DE) scheme. The majority of the models simulated ice algae only in the bottom 118 

sea-ice layer, either as a static or dynamic system, while two models were multi-layer models, simulating ice algae along the 119 

entire ice column. In terms of ecosystem complexity, models varied from simple Redfield-based models (RFD) with a single 120 

limiting nutrient, one algal group, and a detritus compartment to more comprehensive quota models with several functional 121 

groups, including ice bacteria, ice fauna, and multi-nutrient limitations. 122 

2.2 The N-ICE2015 Dataset 123 

The refrozen lead time series monitored during the N-ICE2015 expedition (Granskog et al., 2018) was selected as a test case 124 

for the model intercomparison due to the high frequency of available physical and biogeochemical measurements (e.g. Kauko 125 

et al., 2017; Olsen et al., 2017). The N-ICE expedition was a field campaign conducted aboard the RV Lance, which was 126 

frozen into pack ice north of Svalbard, drifting between approximately 83° and 80°N in the southern Nansen Basin of the 127 

Arctic Ocean between January and June 2015. Among the four ice floes monitored during the study period, the refrozen lead 128 

data were derived from Floe 3, which was studied from mid-April to early June 2015 as it drifted southward from 81.8° N to 129 

80.5° N.  130 

 131 
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Table 1: Sea-ice biogeochemical models participating in the 1D intercomparison project. BGC stands for biogeochemistry. Please see the 132 

main text for the remaining nomenclature used in the table. 133 

Model/ 

Properties 

BFM-SI BFM-SI-Clim CICE 5.1 CSIB-1D SIESTA SIMBA 

Ice Physics Modified SM 0L Modified SM 0L EC ML SM 0L EC ML Prescribed 

Transport Growth/melt Growth/melt Growth/melt, 

brine 

drainage/diffus

ion 

Melt Desalination Growth/melt 

Radiation 1 band; BL 1 band; BL 1 band; BL 1 band; BL 32 bands; DE 1 band; BL 

Grid for sea ice 

BGC 

1L, bottom, 

dynamic 

1L, bottom, 

dynamic 

Multi-layer 1L bottom static Multi-layer 1L bottom static 

Sea-ice 

functional 

groups  

4N-2P-2D-1B-1Z 1N-1P-2D 3N-1P-1D 3N-1P-1D 4N-1P-1D 1N-1P-1D 

Cell 

quotas/Chl:C 

Quota/Prognostic Quota/Prognostic RFD/Constant RFD/Constant RFD/Constant RFD/Constant 

Limiting 

element(s) 

Nitrogen, 

Phosphorous, 

Silicon 

Silicon Nitrogen, 

Silicon 

Nitrogen, 

Silicon 

Nitrogen, 

Phosphorous, 

Silicon 

Nitrogen 

Ocean BGC 1D slab 1D slab n.a. 1D  n.a. n.a. 

Area of model 

original tuning  

Greenland fjord 

(Arctic) 

Greenland fjord 

(Arctic) 

Barents Sea 

(Arctic) 

Resolute 

Passage (Arctic) 

Weddel Sea 

(Antarctic)  

Central Arctic 

Ocean (Arctic) 

Reference Tedesco et al 

(2010) 

Tedesco and 

Vichi (2014) 

Duarte et al 

(2017) 

Mortenson et al 

(2017) 

Saenz and 

Arrigo (2014) 

Castellani et al 

(2017) 

 134 

The lead, approximately 400 m wide, opened on 23 April, began refreezing on 26 April, and was fully refrozen by 1 May. The 135 

newly formed young ice in the lead was sampled from 6 May along a 100 m-long transect extending from the edge of the lead 136 

toward its centre every 2–3 days until it broke up on 4 June (Kauko et al., 2017). The algal growth period occurred in April 137 

and May. While the ice algal community was initially highly mixed, pennate diatoms of the genus Nitzschia became dominant 138 

later in the season. 139 

 140 

The N-ICE2015 refrozen lead time series was chosen for this intercomparison based on two key factors: 141 
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 142 

● Observational data availability: It provides sufficient observations (Kauko et al., 2017) for comparison with model 143 

simulations of physico-biogeochemical variables. 144 

● Ancillary data availability: It includes detailed time series of atmosphere and ocean data, necessary to force model 145 

runs, and has been tested for feasibility in a previous 1D modelling study (Duarte et al., 2017). 146 

 147 

2.3 Experimental setup 148 

A strict protocol was developed and followed by all modelling groups. To accommodate the diversity of models, a minimum 149 

set of variables was selected for comparison with observations. These included sea-ice season timing, ice thickness, and snow 150 

thickness for coupled physical-biogeochemical models, as well as sea-ice nutrient concentrations and algal biomass 151 

(represented by Chl-a) for all models. 152 

 153 

Two distinct experiments were conducted to assess model performance. The first experiment, labelled no tuning, aimed to run 154 

each model in its default configuration. The primary objective was to analyse the differences between model outputs and 155 

observational data and quantify the extent of biases. The intercomparison within this experiment sought to identify potential 156 

reasons for deviations from observations, such as the omission of key processes or inadequate parameterisations. The second 157 

experiment, labelled tuning, involved adjusting the models to better align with observed physical and biogeochemical 158 

properties. This experiment aimed to identify which processes needed to be modified or added, as well as the specific 159 

parameterisations or parameters that were adjusted and fine-tuned to improve agreement with observations.  160 

 161 

Both experiments were carried out independently by each modelling group, without prior knowledge of the work undertaken 162 

by others. This approach was adopted to eliminate potential biases, whether conscious or unconscious, during the 163 

implementation phase. To ensure a standardized comparison across models, all simulations used the same atmospheric and 164 

ocean forcing, as well as identical initial and boundary conditions, described in Duarte et al. (2017). Forcing time series 165 

included air temperature, precipitation, specific humidity, and wind speed (Hudson et al., 2015; Cohen et al., 2017); incident 166 

surface short and longwave radiation (Taskjelle et al., 2016; Hudson et al., 2016); sea ice temperature and salinity (Gerland et 167 

al., 2017); surface current velocity, heat fluxes, salinity, and temperature (Peterson et al., 2016, 2017); and ocean surface 168 

nutrient concentrations (Assmy et al., 2016). Atmospheric forcing was provided at hourly resolution, while oceanic forcing 169 

was available daily. For the sea-ice biogeochemical model without a thermodynamic component (i.e., SIMBA), observed ice 170 

and snow thickness data were provided. This standardised approach improved the comparability of the models, allowing for a 171 

robust evaluation of model performance. In the final phase, results were presented by each modelling group, and teams 172 

collaboratively discussed challenges, adjustments, and tuning choices.  173 
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3. Results and discussion 174 

To support the interpretation of the biogeochemical models’ performances, we first compared modelled and observed sea-ice 175 

physical properties, in particular sea-ice thickness and surface (snow/ice) temperature (Fig. 1). While the models were forced 176 

with 2 m air temperature, the surface temperature shown here refers to the simulated snow or ice surface temperature, which 177 

may diverge from the atmospheric forcing depending on the model physics and surface energy budget. We did not include 178 

snow thickness in this comparison, as observed values were relatively low and little variable, ranging between 2 and 6 cm 179 

between 7 May and 3 June (Kauko et al., 2017) and thus had a limited influence on model differences for this specific case.  180 

 181 

Observed sea-ice thickness shows relatively stable values around 0.2 m from early May to early June, with minor variability 182 

in the observations (Fig.1). Models with thermodynamic components (BFMSI/BFMSI-CLIM, CICE5.1, CSIB-1D, and 183 

SIESTA) generally captured the observed thickness range and seasonal trend, although some diverge more notably. Surface 184 

temperature simulations show stronger deviations across models. Although all models follow the overall seasonal warming 185 

trend observed in the N-ICE2015 air temperature data (Fig. 1, right panel), the amplitude and short-term variability differ. 186 

While some models reproduce much of the daily variability, others exhibit smoother or warmer biases. These differences in 187 

physical conditions influenced light penetration and melt timing, which in turn affected the timing and magnitude of simulated 188 

algal blooms, which will be analysed next.  189 

 190 

Figure 1: Model results for sea-ice thickness (left) and surface temperature (right). Observations of sea-ice thickness are shown as dots for 191 

the mean among replicates (at least 5 each) from different ice cores, while associated bars indicate the variability of the measurements 192 

between their maximum and minimum. The observed air temperature is part of the forcings provided to the modelling groups  (Hudson et 193 

al., 2015; Cohen et al., 2017) and it is shown for comparison with modelled surface temperature.   194 
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Although the N-ICE refrozen lead resembles a typical ice season, in the no tuning experiment, none of the models accurately 195 

captured the observed algal phenology and bloom magnitude (Fig. 2, top left). All but one model underestimated Chl-a and 196 

produced a delayed bloom onset, though performances varied across diagnostic measures. Since most of the models tended to 197 

overestimate sea-ice thickness (Fig. 1), the delay in the simulated algal bloom could be attributed to reduced light transmittance 198 

through thicker ice. However, the delay also occurred in models that did not overestimate ice thickness, suggesting that other 199 

factors must had contributed to this bias. Due to limited nutrient data, few considerations can be drawn about simulated nutrient 200 

dynamics beyond an assessment of the potential model error’s order of magnitude. Here, all but one model underestimated 201 

nitrate and silicate concentrations (Fig. 2, mid and bottom left), though all remained within a reasonable range.  202 

 203 

In the tuning experiment, all models were able to reasonably simulate the ice algal phenology, though performance still varied 204 

across models (Fig. 2, top right). However, little improvement was achieved in the simulation of nitrate and silicate dynamics. 205 

Interestingly, tuning focused on different processes and parameters among models (Table 2), including: 206 

 207 

● Change in the algal growth rate and/or in the size of the initial seeding population (initial ice algal biomass) 208 

● The possibility of downward vertical migration of algae during melting 209 

● Magnitude of silicic acid limitation by changing the half saturation constant and/or the nitrogen: silicon ratio of ice 210 

algae and/or the reference quota of silicon in sea-ice algae. 211 

 212 

Overall, all tuning strategies aimed to either lessen nutrient limitation or increase algal seeding or growth. However, despite 213 

tuning efforts, none of the models significantly improved the simulation of nitrate magnitude, except for BFM-SI, which was 214 

also the only model that did not underestimate nitrate and silicate before tuning (Fig. 2, mid and bottom left). When comparing 215 

nutrient parameterisations across models (Table 1), BFM-SI stands out as the only model in which the variability of the 216 

dynamic sea-ice BAL modulates the upward fluxes of dissolved inorganic matter. CSIB-1D also performed well in simulating 217 

the silicate dynamics, matching the magnitude of the observations before and after tuning. For most models, silicon had the 218 

strongest effect on ice algal growth during tuning, suggesting a potentially dominant role of silicon limitation. This would also 219 

explain why SIMBA was the only model that did not underestimate, but rather overestimated, ice algal growth, since it did not 220 

include silicon among its limiting nutrients.  221 

 222 

In general, models performed more poorly when simulating sea-ice nutrient dynamics. The limited improvement in nutrient 223 

representation compared to biomass can be attributed to model groups prioritising fitting simulations to Chl-a observations 224 

during the tuning phase, as these data were more temporally resolved and directly linked to the main focus of the study, i.e., 225 

the ice algal bloom. In contrast, nutrient observations were limited to a single time point, which made them more difficult to 226 

constrain reliably. Nevertheless, despite the scarcity of available data, the simulation of nutrient processes appears poorly 227 

constrained, pointing to the need for more in-depth observational and experimental work.  228 
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 229 

Figure 2: Experiment with no tuning (left) and tuning (right). Model results for ice algae Chl-a (top), nitrate (middle), and silicate (bottom). 230 
Observations are shown as dots for the mean of the entire ice core or the bottom 10 cm (5 replicates each), while associated bars indicate the 231 
variability of the measurements between their maximum and minimum measures.  232 

The tuning experiment highlights the diversity of tuning parameters across models (Table 2), prompting critical questions 233 

about model functionality and calibration. While models can be adjusted to align with observations, there is a risk of achieving 234 
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accurate results for the wrong reasons, particularly when tuning compensates for a missing or misrepresented process. In our 235 

case, none of our models included young ice formation. Observations indicate that a consistent fraction of the sea-ice sampled 236 

from the refrozen lead was granular (Graham et al., 2019), formed as frazil ice in turbulent conditions. As turbulence subsides, 237 

frazil crystals rise and can entrain suspended particles, including biological material, during acent, effectively concentrating 238 

them in the newly forming ice (Weeks and Ackley, 1982, Janssen et al., 2018). This may explain some of the tuning strategies, 239 

such as increases in algal growth rate (CSIB-1D) or the size of the initial seeding population (BFM-SI, BFM-SI-Clim). 240 

 241 

However, other factors likely influenced tuning choices as well. For example, some models used diatom Si:N ratios more 242 

appropriate for Antarctic waters, which overestimate the silica demand of Arctic diatoms. For example, CICE used a Si:N ratio 243 

close to 4:1, whereas Arctic diatoms may be closer to 1:1 (Duarte et al., 2017). In addition, the presence of relatively low Si:N 244 

ratios in Atlantic Water entering the region, as discussed in studies such as Duarte et al. (2021), supports the potential for silica 245 

limitation to emerge before nitrogen is exhausted. These regional nutrient characteristics and model structural features may 246 

have prompted tuning strategies involving relaxed silica limitation (BFM-SI, BFM-SI-Clim, CICE 5.1, and SIESTA). 247 

Furthermore, the apparent need to reduce nutrient limitation in order to simulate realistic biomass may indicate that ocean-to-248 

ice nutrient fluxes are underestimated in some models (Duarte et al., 2022). 249 

 250 

Taken together, this intercomparison underscores how model tuning decisions can reveal not only numerical sensitivities but 251 

also areas where physical and biogeochemical process representations remain uncertain or incomplete. These insights are 252 

valuable for guiding future model development and targeted observations. 253 

 254 

4. Conclusions 255 

This study presents an intercomparison of one-dimensional sea-ice biogeochemical models, evaluating their ability to simulate 256 

algal phenology, bloom magnitude, and nutrient dynamics in a refrozen lead environment. The results highlight significant 257 

disparities in model performance, with most models struggling to accurately reproduce the observed algal biomass and nutrient 258 

concentrations. For some models, this difficulty persisted even after tuning. While adjustments improved the representation of 259 

ice algal phenology, they had a limited impact on nutrient concentration across most models, emphasizing the challenges of 260 

parameterizing key processes such as nutrient fluxes and reinforcing the need for continued model development and validation 261 

supported by dedicated field and experimental observations.  262 

 263 

 264 

 265 

 266 
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Table 2.  Comparison among models’ performances before and after tuning. For reference, observed chlorophyll-a concentrations peaked 267 

on 3 June at ~2.1 mg m⁻³ in bottom sea ice and ~2.6 mg m⁻³ in whole sea ice, aiding comparison of simulated bloom timing and magnitude. 268 

Only parameters that were explicitly tuned are listed. Parameters not shown were kept at their default values or followed the standard initial 269 

and boundary conditions provided for the intercomparison. 270 

Model/ 

Properties 

BFM-SI BFM-SI-Clim CICE 5.1 CSIB-1D SIESTA SIMBA 

Ice algal 

phenology 

before 

tuning 

Good algal growth 

timing but lower 

algal biomass. 

 

Max [Chl-a] = 

0.18 mg m-2 

 

Day of the year of 

peak of Chl-a = 

146 

Good algal 

growth timing 

but lower algal 

biomass. 

 

Max [Chl-a] = 

0.26 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 146 

Good algal 

growth timing 

but lower algal 

biomass. 

 

Max [Chl-a] = 

0.56 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 142 

Good algal 

growth and 

lower algal 

biomass. 

 

Max [Chl-a] = 

0.90 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 152 

Good algal 

growth timing 

but lower algal 

biomass. 

 

Max [Chl-a] = 

0.41 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 147 

Earlier algal 

growth and 

higher algal 

biomass 

 

Max [Chl-a] = 

3.77 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 131 

Tuning 

strategy 

Lower silica 

limitation and 

higher algal 

biomass in 

seawater 

Lower silica 

limitation and 

higher algal 

biomass in 

seawater 

Lower silica 

limitation and 

reduced 

recruitment 

Higher algal 

max spec 

growth rate 

Active algal 

migration 

against brine 

movement and 

lower Si half-

saturation 

constant. 

Lower algal 

growth rate and 

removal of 

winter drainage 

of nutrients 

Parameter(s) 

before 

tuning 

Initial seawater 

[Chl-a] =0.05 mg 

m-3 

 

Reference Si 

quotum for 

adapted 

diatoms=0.0085 

mmol m-3   

Initial seawater 

[Chl-a] =0.05 mg 

m-3 

 

Reference Si 

quotum for 

adapted 

diatoms=0.0085 

mmol m-3  

Diatom Si:N 

ratio = 1.8 

Half saturation 

for silicon 

uptake = 4.0 µM 

Diatom 

boundary 

concentration = 

0.002 μM 

Chl-a max spec 

growth rate = 

0.85 d-1    

Algae fixed in 

ice layer grid; 

Half saturation 

of silicon 

uptake = 4.0 

µM 

Chl-a max spec 

growth rate = 

0.86 d-1 

Parameter(s) 

after tuning 

Initial seawater 

[Chl-a] in =0.5 mg 

m-3 

 

Reference Si 

quotum for 

adapted 

diatoms=0.0025 

mmol m-3  

Initial seawater 

[Chl-a] in =0.5 

mg m-3 

 

Reference Si 

quotum for 

adapted 

diatoms=0.0025 

mmol m-3  

Diatom Si:N 

ratio = 1.0 

Half saturation 

for silicon 

uptake = 2.2 µM 

Diatom 

boundary 

concentration = 

0.0011 μM 

Chl-a max spec 

growth rate 

increased to 0.95 

d-1 

Algae allowed 

to migrate 

downward with 

ice growth, up 

to 1.5 cm d-1;  

Half saturation 

of silicon 

uptake = 1.0 

µM 

Chl-a max spec 

growth rate = 0.5 

d-1 
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Ice algal 

phenology 

after tuning 

Algal phenology 

and magnitude 

within observed 

range; Nitrate and 

silicate within 

range. 

 

 

Max [Chl-a] = 

1.67 mg m-2 

 

Day of the year of 

peak of Chl-a = 

146 

Algal phenology 

and magnitude 

within observed 

range, Silicate 

within range. 

 

 

 

Max [Chl-a] = 

2.14 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 147 

Algal phenology 

and magnitude 

within observed 

range; Lower 

nitrate, Silicate 

within range. 

 

 

Max [Chl-a] = 

1.26 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 141 

Algal phenology 

and magnitude 

within observed 

range; Lower 

nitrate; Silicate 

within range. 

 

 

Max [Chl-a] = 

1.56 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 152 

Algal 

phenology 

within observed 

range; Earlier 

algal decay; 

Lower silicate 

and nitrate. 

 

Max [Chl-a] = 

1.23 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 147 

Algal phenology 

and magnitude 

within observed 

range; Lower 

nitrate. 

 

 

 

Max [Chl-a] = 

0.89 mg m-2 

 

Day of the year 

of peak of Chl-a 

= 137 

 271 

The intercomparison highlights the unexpected challenges encountered in simulating a refrozen lead, primarily attributed to 272 

the short ice season and the difficulty most models faced in accumulating sufficient sympagic (i.e., in-ice) biomass. In a future 273 

Arctic Ocean characterized by increased lead openings, refreezing events, and young ice formation, there is an urgent need for 274 

models to be able to represent such a dynamic environment. This study underscores the importance of understanding and 275 

addressing the complexities involved in simulating specific and dynamic environmental scenarios.  276 

 277 

The diversity of adjustments across models highlights both the range of tuning options available and the persisting knowledge 278 

gaps. The insights gained contribute valuable knowledge to ongoing efforts aimed at refining and improving numerical models, 279 

ensuring their accuracy and reliability in capturing complex interactions. To further advance this field of science, collaborative 280 

and harmonized modelling developments are recommended. Variability in tuning strategies underscores key knowledge gaps 281 

and the need for further model development using more coordinated approaches, such as common evaluation criteria and/or 282 

shared parameter ranges. In doing so, sea-ice biogeochemical modelling can build on lessons learned from open-ocean 283 

biogeochemical intercomparison and tuning efforts (e.g., Schartau et al., 2017), while addressing the unique challenges of 284 

simulating sympagic systems. A Phase 2 of the intercomparison would be highly valuable, potentially extending the study to 285 

the variability of habitats that characterizes Antarctic sea ice. Collaborative sensitivity tests could be conducted, with all models 286 

evaluating biological responses to the same tuning adjustments, tuning options could be expanded, and standard parameter 287 

ranges could be revisited based on newer data collected in recent years. Increased clarity of model sensitivities would improve 288 

future model robustness and enhance confidence in simulations of biogeochemical processes in ice-covered oceans.  289 

Code and data availability 290 

All relevant data, model code and numerical simulations presented in this work will be publicly made available upon 291 

manuscript’s acceptance. 292 
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Appendix A 315 

 316 

A1 Models description 317 

 318 

BFM-SI and BFM-SI-Clim 319 

Overview 320 

The Biogeochemical Flux Model for sea ice (BFM-SI, Tedesco et al., 2010) is derived from the Biogeochemical Flux Model 321 

(BFM) framework (Vichi et al., 2023 and references therein), retaining its structure based on Chemical Functional Families 322 

(CFFs) and Living Functional Groups (LFGs). CFFs represent the elemental composition of living and non-living matter (C, 323 

N, P, Si, etc.), while LFGs describe groups of organisms with similar functional behaviour.  324 

The model simulates biogeochemical processes within the Biologically Active Layer (BAL, Tedesco et al., 2010), the time-325 

varying, permeable fraction of sea ice where liquid brine channels remain interconnected and biological activity can occur. 326 

This dynamic layer, typically located at the ice bottom, evolves according to physical conditions (e.g., temperature, salinity, 327 

brine volume) computed by a sea-ice physical model. The biological model simulates algal growth and elemental cycling only 328 

within this layer, assuming all biomass is confined to the permeable ice fraction continuously connected to seawater, 329 

maintaining full mass conservation at the ice–ocean–atmosphere interfaces.  330 

The sea-ice physical model used in this study is ESIM (Enhanced Sea Ice Model). ESIM is a sea-ice thermodynamic model 331 

originally based on the Semtner 0-layer model (Semtner, 1976), but with more physical processes. It was initially built as a 1-332 

D thermodynamic model of the sea-ice growth and decay (Tedesco et al., 2009), calculating vertical heat fluxes based on the 333 

1-dimensional heat conduction equation. ESIM has been later enhanced with a halodynamic component (Tedesco et al., 2010). 334 

Initial salt entrapment, gravity drainage, and flushing processes have been added to simulate the salinity evolution of the sea 335 

ice. In addition, the model takes into account other processes such as different forms of snow metamorphism (snow 336 

compaction, snow ice and superimposed ice formation). ESIM has been developed targeting biological applications, thus with 337 
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a focus on the physical requirements to model the biogeochemistry of the sea ice. The feature that makes this coupling possible 338 

is the innovative concept of the sea-ice BAL (Tedesco et al., 2010). The application of the BAL concept is more realistic than 339 

a prescribed static bottom BAL and is lighter than multi-layer models, thus it is suitable for large-scale applications without 340 

losing performance (Tedesco and Vichi, 2010, 2014).  341 

State variables and structure 342 

BFM-SI resolves 28 state variables organized as: 343 

● 2 LFGs for sea-ice algae: 344 

1. Adapted diatoms (20–200 µm; Si-limited, highly acclimated) 345 

2. Surviving nanoflagellates (2–20 µm; low acclimation capacity) 346 

● 1 LFG for sea-ice fauna 347 

● 1 LFG for sea-ice bacteria 348 

● 6 inorganic CFFs: phosphate, nitrate, ammonium, silicate, oxygen, carbon dioxide. 349 

● 2 organic non-living CFFs: dissolved and particulate detritus. 350 

Each algal group is described by up to five state variables (C, N, P, Si, and Chl), while ice fauna and bacteria up to three state 351 

variables (C, N, P). The model includes four macronutrients (phosphate, nitrate, ammonium, silicate), oxygen, and two detrital 352 

pools (dissolved and particulate, featuring up to 4 state variables C, N, P, Si). Biological processes include primary production 353 

respiration, exudation, nutrient uptake, lysis, and chlorophyll synthesis, with flexible stoichiometry (C:N:P:Si:Chl).   354 

BFM-SI-Clim (Tedesco et al., 2014) is a simplified version of BFM-SI, retaining the same ecological dynamics, but including 355 

a reduced number of state variables. BFM-SI-Clim features only one single limiting macronutrient (Si) and one single group 356 

of sea ice algae (i.e. ice diatoms), same detritus and gases for totally 11 state variables. 357 

Coupling and boundary fluxes 358 

 BFM-SI and BFM-SI-Clim are coupled online to the pelagic BFM with matching LFGs and CFFs. 359 

● Ice–ocean fluxes: The entrainment or release of dissolved and particulate matter is proportional to ice growth/melt 360 

rate and brine volume. 361 

● Ice–atmosphere fluxes: The nutrient input from snow and precipitation can be considered and scaled to snow-melt 362 

rate. 363 

These exchanges ensure conservation of mass and consistent carbon, nutrient, and gas cycling across the interfaces. 364 
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Applications and relevance 365 

BFM-SI represents the first process-based, biomass-explicit sea-ice biogeochemical model within a generalized marine 366 

biogeochemical framework. It can be used as a standalone 1-D module (Tedesco et al., 2010; Tedesco et al., 2012; Tedesco 367 

et al., 2014) or in coupled online or offline configuration to 3-D ocean circulation models (Tedesco et al., 2017; Tedesco et 368 

al., 2019) to study seasonal productivity, biomass export, and the contribution of sea-ice biogeochemistry to the global 369 

carbon cycle.  370 

 371 

CICE 5.1 372 

Overview 373 

A comprehensive description of the Los Alamos Sea Ice Model physics and biogeochemistry may be found in Hunke et al. 374 

(2015) and Jeffery et al. (2016). The implementation used in the present work is detailed in Duarte et al. (2017). Therefore, in 375 

the next paragraphs we provide only a brief description of the model based on the cited references. There are two main 376 

approaches to simulate biogeochemical processes with CICE: one based on bottom ice biogeochemistry and another based on 377 

vertically-resolved biogeochemistry, which was used in the present study. This configuration uses a biogrid of variable height 378 

which overlaps part of the physical grid, used to compute thermodynamic processes. The number of layers of both grids is the 379 

same but their vertical resolution differs. The vertical extent of the biogrid is defined by the brine height which represents the 380 

sea ice vertical extent with an active brine network.  381 

State variables and structure 382 

The number of biogeochemical state variables in CICE biogeochemistry depends on user-defined options. In the simulations 383 

presented herein, these included brine height, the concentrations of nitrate, ammonium, silicic acid and diatom nitrogen. Brine 384 

concentrations are used for internal calculations and bulk values stored in model output files. The brine is exchanged across 385 

the layers of the biogrid and across the ice-ocean interface. These exchanges include brine drainage, driven by hydrostatic 386 

instability, and diffusion, driven by concentration gradients. Other exchanges occur during freezing and melting. In the case 387 

of sea ice inundation or snow melt, exchanges occur also at the ice-snow or ice-atmosphere interface. The biogeochemical 388 

model uses nitrogen as its “currency”. The model computes nutrient and silicic acid (in the case of diatoms) uptake by ice 389 

algae, remineralization and nitrification. Ice algal growth and production may be light, temperature or nutrient limited (nitrogen 390 

and silica, in the case of diatoms), following the Liebig’s law of minimum. Some tracers may cling to the ice matrix, such as 391 

ice algae, resisting expulsion during desalination, unlike dissolved nutrients.      392 

Coupling and boundary fluxes 393 
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The CICE model may be coupled with ocean models and atmospheric models. We used a standalone configuration with an 394 

ocean slab layer as the bottom boundary. Time series of current velocities, heat fluxes, salinity, temperature, and nutrient 395 

concentrations forced the model. The atmosphere boundary was implemented using time series of air temperature, humidity, 396 

short and long wave radiation, precipitation, and wind velocity.  397 

Applications and relevance 398 

The CICE model is a community-type model used in several Earth System Models. It is one of the few models resolving 399 

biogeochemistry vertically.  400 

 401 

CSIB-1D  402 

Overview 403 

The Canadian Sea Ice Biogeochemistry 1-Dimensional (CSIB-1D) model simulates ice algae and changes to nutrients within 404 

the ice. It is designed to simulate a sympagic ecosystem and biogeochemical processes coupled to a pelagic ecosystem in the 405 

underlying water column in order to represent the Arctic marine environment. An in-depth description of the development and 406 

application of this model can be found in Mortenson et al. (2017). 407 

State variables and structure 408 

The CSIB-1D ecosystem is represented by one functional sea-ice algal group dependent on three nutrients (silicate, nitrate and 409 

ammonium) in the lower skeletal layer of the sea ice, set as a default in the bottom 3 centimetres of the ice. The sea ice algae 410 

are limited by nutrients, light, and ice melt. The model uses a subgrid-scale non-uniform snow depth distribution to represent 411 

gradual snow melt and formation of melt ponds impacting light transmissions and heat fluxes during melt periods (Abraham 412 

et al., 2015). CSIB-1D ice algae are meant to represent diatoms, prevalent in the Arctic sea ice environment.  413 

The ocean biogeochemistry model is a ten-compartment (small and large phytoplankton, microzooplankton, mesozooplankton, 414 

small and large detritus, biogenic silica, nitrate, ammonium, and silicate) based on Steiner et al. (2006). The module was 415 

updated by including mesozooplankton as a prognostic.  416 

Coupling and boundary fluxes 417 

Exchange of nutrients between the skeletal layer and the water column is by molecular diffusion and parameterized based on 418 

currents at the ice-water interface. The model is coupled to a physical-biogeochemical ocean model based on the General 419 

Ocean Turbulence Model (GOTM). GOTM provides the physical quantities required for computation of biogeochemical 420 



18 

 

variables in the water column, such as horizontal velocity fields, turbulent transports, photosynthetically active radiation 421 

(PAR), and temperature. They contribute to pelagic diatoms and detritus following Lavoie et al. (2009): sloughed ice algae 422 

enter either the large phytoplankton pool in which they continue to grow or the large detritus pool in which they sink rapidly 423 

as aggregate products in the coupled ocean model. 424 

Application and Relevance 425 

CSIB has been applied to studies on the evolution of the ice-water exchange of dissolved inorganic carbon (Mortenson et al., 426 

2018) and ice-water-air exchange of dimethyl sulfide (Hayashida et al., 2017) in the marine Arctic.  427 

 428 

SIESTA 429 

Overview 430 

The Sea-Ice Ecosystem State (SIESTA) model is a thermodynamic vertically-layered sea ice and snow model coupled to an 431 

algal ecosystem model. The model and associated equations and parameterizations are described in Saenz and Arrigo (2012, 432 

2014). The model was developed to vertically resolve sea ice brine processes (and associated nutrient transfer), sea ice optics, 433 

shortwave radiation transfer, and the sea ice algal productivity that is controlled by those processes. The model uses a minimum 434 

layer thickness of 2 cm. When the snow or ice thicknesses become greater than is resolved by the maximum number of layers 435 

(snow: 26, ice: 42), model layers grow and shrink in an accordion-fashion to preserve 2 cm resolution at the surface and snow-436 

ice boundaries. 437 

State variables and structure 438 

Sea ice algae in SIESTA is represented by a single (diatom) class of algae with a fixed stoichiometry, with internal units of 439 

carbon (mg/m3). Algae may be present in any layer of sea ice. Besides algal carbon, the ecological state variables used by the 440 

SIESTA model include temperature, salinity, density, particulate organic carbon (detritus that is remineralized to liberate 441 

macronutrients), and 4 macronutrients (ammonium, nitrate, phosphate, silica). The model dynamically calculates sea ice brine 442 

density and volume, and has parameterizations of snow metamorphosis, sea ice surface melt and ponding, snow-ice formation, 443 

brine pumping and drainage, and enhanced convection in the skeletal layer of growing sea ice.  Sea ice algae are considered 444 

motile and can migrate downward at a limited rate, but do not migrate upward and are considered released to the water column 445 

during bottom ice melt.  446 

Coupling and boundary fluxes 447 



19 

 

SIESTA simulations in this manuscript were forced by time series of surface atmospheric and surface ocean parameters.  448 

SIESTA is mass- and energy-conservative to the accuracy of its 1st-order implicit solver. Coupling at the surface boundary 449 

requires the following atmospheric parameters: air temperature, wind speed, air pressure, dew point temperature, cloud cover 450 

(or downward longwave radiation), downwelling shortwave radiation) total precipitation.  Coupling at the lower boundary 451 

requires the following surface ocean parameters: temperature, salinity, and macronutrient concentrations (ammonium, nitrate, 452 

phosphate, silica). SIESTA calculates, and can return to coupled models, energy and mass fluxes from the snow/ice/brine. 453 

Boundary flux calculations in SIESTA are derived from CICE version 4 (Hunke and Lipscomb, 2008). 454 

Applications and relevance 455 

SIESTA has been used to help bound the contribution of sea ice algae to overall Southern Ocean primary production (Saenz 456 

and Arrigo, 2014).  SIESTA is also coupled to a 1-dimensional vertical ocean model (KPP-Ecosystem-Ice [KEI]) for 457 

investigation of dynamic-thermodynamic sea-ice-ocean-ecosystem controls and interactions (Saenz et al. 2023). 458 

 459 

SIMBA 460 

Overview 461 

A comprehensive description of the Sea Ice Model for Bottom Algae (SIMBA) can be found in Castellani et al. (2017). 462 

Different from Castellani et al. (2017) where the process of growth/melt was responsible for only algal loss, in the present 463 

study it is applied to nutrients as well, and it is responsible for nutrient replenishment in the bottom of the ice. 464 

State variables and structure 465 

SIMBA resolves only 3 state variables: 466 

● 1 for sea-ice algae: 467 

● 1 for nutrients (nitrate) 468 

● 1 for detritus 469 

The simulated biological processes are primary production and nutrient uptake, whereas respiration, mortality, and 470 

remineralization are taken as constant. Equations are solved in mmol N m-3. Equations are solved in the bottom of the ice, the 471 

thickness of the ice bottom can be set according to the available observations. In the case of N-ICE we use 10 cm.  472 

Coupling and boundary fluxes 473 
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SIMBA is coupled with the underlying ocean through the growth and melt processes which are responsible for nutrient 474 

exchanges and for algal loss. Ocean variables (i.e., nutrients concentrations, ocean currents, and ocean temperature) must be 475 

provided as forcing. Other required forcing includes ice and snow thickness, integrated downward shortwave radiation, and 476 

atmospheric temperature. 477 

Applications and relevance 478 

SIMBA was developed to study algal phenology on a pan-Arctic scale in two different environments: level ice and deformed 479 

ice. With this aim, SIMBA requires a prescribed physics. In Castellani et al. (2017) the physical constraints were provided by 480 

the MITgcm (Marshall et al., 1997; Losch et al, 2010).  This characteristic of the model enhances its flexibility in applications 481 

and studies with different models (see e.g., Castellani et al., 2021).  482 

 483 

 484 
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 485 

Figure A1. RV Lance drift between 18 April and 5 June 2015 during the drift of Floe 3 of the N-ICE2015 expedition, from 486 

the Nansen Basin and across the Yermak Plateau. The segment corresponding to the time span of the simulations described in 487 

this study is shown in red (Duarte et al., 2017). 488 

 489 

 490 

 491 

 492 

 493 
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