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​Abstract.​ ​Sea-ice​​biogeochemical​​models​​are​​key​​to​​understanding​​polar​​marine​​ecosystems.​​We​​present​​an​​intercomparison​

​of​ ​six​ ​one-dimensional​ ​sea-ice​ ​biogeochemical​ ​models,​ ​assessing​ ​their​ ​ability​ ​to​ ​simulate​ ​algal​ ​phenology​ ​and​ ​nutrient​

​dynamics​​by​​comparing​​them​​with​​sea-ice​​physical-biogeochemical​​data​​collected​​during​​an​​Arctic​​drift​​expedition​​in​​spring​

​2015.​​While​​no​​model​​fully​​captured​​observed​​bloom​​dynamics​​using​​their​​default​​parameter​​set,​​tuning​​improved​​biomass​

​simulations​​but​​had​​a​​limited​​impact​​on​​nutrient​​representation.​​Variability​​in​​tuning​​strategies​​underscores​​key​​knowledge​

​gaps​ ​and​ ​the​ ​need​ ​for​ ​further​ ​model​ ​development​ ​in​ ​more​ ​harmonised​ ​ways.​ ​Our​ ​findings​ ​can​ ​inform​ ​future​ ​efforts​ ​to​

​enhance the reliability and predictive capacity of sea-ice biogeochemical models.​

​1 Introduction​

​Sea​ ​ice​ ​is​ ​home​ ​to​ ​an​ ​active​ ​microbial​ ​community,​ ​with​ ​ice​ ​algae​ ​displaying​ ​some​ ​of​ ​the​ ​highest​ ​Chlorophyll-a​ ​(Chl-a)​

​concentrations​​of​​any​​aquatic​​environment​​(Arrigo,​​2017).​​Ice​​algae​​play​​multiple​​pivotal​​roles​​in​​polar​​oceans,​​representing​

​the​​largest​​biomass​​fraction​​in​​sea​​ice​​(Poulin​​et​​al.,​​2011),​​contributing​​to​​overall​​marine​​primary​​production​​(Dalman​​et​​al,​

​2025),​ ​acting​ ​as​ ​a​ ​critical​ ​food​ ​source​ ​for​ ​the​ ​marine​ ​food​ ​web,​ ​especially​ ​during​ ​winter​ ​(Schaafsma​ ​et​ ​al.,​ ​2017),​ ​and​

​efficiently​ ​contributing​ ​to​ ​the​ ​ocean​ ​carbon​ ​sink​ ​(Boetius​ ​et​ ​al.,​ ​2013).​ ​Together​ ​with​ ​phytoplankton,​ ​ice​ ​algae​ ​form​​the​

​foundation​​of​​the​​polar​​marine​​food​​web,​​supporting​​key​​under-ice​​foraging​​species​​such​​as​​Arctic​​cod​​(​​Boreogadus​​saida​​)​

​in​​the​​Arctic​​Ocean​​(Geoffroy​​et​​al.,​​2023)​​and​​Antarctic​​krill​​(​​Euphausia​​superba​​)​​in​​the​​Southern​​Ocean​​(Kohlbach​​et​​al.,​
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​2017).​​These​​species​​depend​​on​​the​​presence​​of​​sea​​ice​​and​​play​​a​​crucial​​role​​in​​transferring​​carbon​​to​​higher​​trophic​​levels,​

​including humans (Steiner et al., 2021).​

​Current​​environmental​​changes​​are​​placing​​considerable​​pressure​​at​​the​​base​​of​​the​​food​​web,​​triggering​​significant​​effects​

​throughout​ ​trophic​ ​levels​ ​(e.g.,​ ​Post​ ​et​ ​al.,​ ​2013;​ ​Koch​ ​et​ ​al.,​ ​2023).​ ​Despite​ ​the​ ​recognised​ ​importance​ ​of​ ​the​ ​sea-ice​

​ecosystems​ ​(Lannuzel​ ​et​ ​al.,​ ​2020),​ ​our​ ​knowledge​ ​remains​ ​limited​ ​due​ ​to​ ​their​ ​remote​ ​location​ ​and​ ​extreme​ ​weather​

​conditions,​ ​which​ ​restrict​ ​observational​ ​data​ ​-​ ​particularly​ ​biological​ ​observations​ ​-​ ​to​ ​sparse​ ​spatial​ ​and​ ​temporal​

​distributions.​ ​As​ ​a​ ​result,​ ​the​ ​representation​ ​of​ ​sea-ice​ ​biological​ ​and​ ​ecological​ ​processes​ ​in​ ​numerical​ ​models​ ​has​

​historically​​been​​limited.​​However,​​in​​recent​​decades,​​significant​​advances​​have​​been​​made​​in​​modelling​​sea-ice​​habitats​​and​

​the​ ​evolution​ ​of​ ​sea-ice​ ​biological​ ​communities​ ​(Castellani​ ​et​ ​al.,​ ​2025).​ ​Progress​ ​includes​ ​improved​ ​representation​ ​of​

​physical processes, greater biodiversity, and enhanced ecosystem complexity.​

​An​ ​intercomparison​ ​of​ ​three-dimensional​ ​models​ ​has​​already​​been​​conducted​​to​​understand​​similarities​​and​​differences​​in​

​simulated​​ice​​algae​​abundance​​and​​distribution,​​the​​Ice​​Algae​​Model​​Intercomparison​​Project​​–​​Phase​​1​​(IAMIP1,​​Watanabe​

​et​​al.,​​2019).​​This​​study​​investigated​​the​​seasonal-to-decadal​​variability​​in​​ice-algal​​primary​​productivity​​across​​four​​Arctic​

​regions​ ​during​ ​1980–2009,​ ​as​ ​simulated​ ​by​ ​five​ ​participating​ ​models.​ ​Its​ ​conclusions​ ​indicated​ ​that,​ ​despite​ ​the​​ongoing​

​reduction​​in​​Arctic​​sea​​ice,​​the​​decadal​​trend​​in​​ice-algal​​productivity​​remained​​unclear.​​The​​vernal​​bloom​​shifted​​towards​​an​

​earlier​​onset​​and​​shorter​​duration​​over​​the​​simulated​​period,​​and​​the​​choice​​of​​maximum​​algal​​growth​​rate​​was​​identified​​as​​a​

​key​ ​driver​ ​of​ ​inter-model​ ​differences​ ​in​ ​simulated​ ​ice-algal​ ​primary​ ​productivity.​ ​A​ ​second​ ​phase,​ ​expanding​​the​​study’s​

​scope​ ​to​ ​global​ ​coverage​ ​and​ ​centennial​ ​timescales​ ​following​ ​CMIP6​ ​(Coupled​ ​Model​ ​Intercomparison​ ​Project​ ​Phase​ ​6,​

​Eyring​ ​et​ ​al.,​ ​2016)​ ​protocols,​ ​is​ ​currently​ ​underway​ ​(IAMIP2,​ ​Hayashida​ ​et​ ​al.,​ ​2021).​ ​However,​ ​given​ ​the​ ​numerous​

​limitations​​and​​uncertainties​​associated​​with​​these​​large-scale​​models,​​they​​are​​more​​useful​​for​​deriving​​bulk​​properties​​than​

​for investigating more detailed ecological processes.​

​To​ ​this​ ​end,​ ​one-dimensional​ ​(1D)​ ​process​ ​models​ ​become​ ​essential​ ​for​ ​addressing​ ​knowledge​ ​gaps​ ​in​ ​sea-ice​

​biogeochemistry​​and​​ecological​​dynamics,​​as​​they​​provide​​a​​level​​of​​detail​​that​​large-scale​​models​​lack.​​They​​also​​allow​​for​

​direct​ ​comparisons​ ​with​ ​in-situ​ ​observations,​ ​improving​ ​the​ ​ability​ ​to​ ​validate​ ​results.​ ​However,​ ​existing​ ​process​​models​

​have​​been​​developed​​independently​​during​​periods​​of​​limited​​observations​​and​​incomplete​​process​​understanding,​​validated​

​by​ ​observations​ ​at​ ​different​ ​locations,​ ​leading​ ​to​ ​substantial​ ​differences​ ​across​ ​models.​ ​These​ ​differences​ ​make​ ​an​

​intercomparison​​of​​models​​performances​​challenging.​​To​​address​​this,​​the​​BEPSII​​(Biogeochemical​​Exchange​​Processes​​at​

​Sea-Ice​​Interfaces,​​https://www.bepsii.org)​​expert​​group​​initiated​​an​​intercomparison​​of​​1D​​sea-ice​​biogeochemical​​models,​

​presented​ ​here,​ ​aiming​ ​at:​ ​i)​ ​understanding​ ​variability​ ​among​ ​models​ ​in​ ​representing​ ​key​ ​processes​ ​and​ ​responses​ ​to​ ​a​

​common​​set​​of​​boundary​​conditions,​​ii)​​identifying​​divergences​​in​​models’​​behaviour,​​the​​variety​​of​​tuning​​strategy,​​and​​the​

​drivers​ ​of​ ​model​ ​sensitivity,​ ​iii)​ ​testing​ ​transferability,​ ​and​ ​finally​ ​iv)​ ​promoting​ ​harmonisation​ ​for​ ​future​ ​model​
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​developments.​ ​The​ ​focus​ ​has​ ​been​ ​on​ ​understanding​ ​the​ ​similarities​ ​and​ ​differences​ ​in​​simulated​​ice​​algae​​dynamics​​and​

​investigating​​the​​controlling​​factors​​responsible​​for​​the​​temporal​​variability​​and​​magnitude​​of​​ice-algal​​productivity​​among​

​participating 1D models.​

​We​​present​​in​​this​​study​​an​​intercomparison​​of​​1D​​sea-ice​​biogeochemical​​models​​(briefly​​described​​in​​Sect.​​2.1​​and​​more​

​comprehensively​ ​in​ ​the​ ​Supplementary​ ​Material),​ ​focusing​ ​on​ ​their​ ​ability​ ​to​ ​simulate​ ​ice​ ​algal​ ​dynamics​ ​and​ ​nutrient​

​cycling.​ ​Using​ ​a​ ​refrozen​ ​lead​ ​time​ ​series​ ​(described​ ​in​ ​Sect​ ​2.2)​ ​as​ ​a​ ​test​​case,​​we​​assess​​model​​performance​​through​​a​

​structured​​comparison​​of​​simulated​​and​​observed​​biogeochemical​​variables.​​Two​​experiments​​-​​no​​tuning​​and​​tuning​​-​​were​

​conducted​​(Sect​​2.3)​​to​​evaluate​​the​​baseline​​model​​configurations​​as​​well​​as​​the​​impact​​of​​targeted​​parameter​​adjustments​

​on​​model​​accuracy.​​We​​analyse​​differences​​in​​model​​outputs,​​identify​​key​​sources​​of​​variability,​​and​​discuss​​the​​challenges​

​associated​​with​​simulating​​ice​​algal​​growth​​and​​nutrient​​fluxes​​(Sect​​3).​​Finally,​​we​​highlight​​the​​implications​​of​​our​​findings​

​for​ ​future​ ​model​ ​development​ ​and​ ​propose​ ​directions​ ​for​ ​improving​ ​the​ ​representation​ ​of​ ​biogeochemical​ ​processes​ ​in​

​sea-ice models (Sect. 4).​

​2 Methods​

​2.1 Sea-ice biogeochemical models​

​1D​ ​process​ ​models​ ​are​ ​typically​ ​designed​ ​to​ ​represent​ ​only​ ​vertical​ ​processes,​ ​assuming​ ​that​ ​horizontal​ ​advection​ ​is​

​negligible.​​Since​​they​​are​​computationally​​efficient,​​these​​models​​can​​incorporate​​a​​high​​level​​of​​ecosystem​​complexity,​​such​

​as​ ​representing​ ​multiple​ ​functional​ ​groups​ ​of​ ​organisms​​and​​providing​​high​​vertical​​resolution​​by​​discretising​​sea​​ice​​into​

​several layers.​

​1D​ ​sea-ice​ ​biogeochemical​ ​models​ ​vary​​in​​vertical​​resolution,​​ecosystem​​complexity,​​and​​whether​​they​​are​​coupled​​to​​the​

​ocean​ ​and/or​ ​atmosphere​ ​(Castellani​ ​et​ ​al.,​ ​2025).​ ​The​ ​biogeochemically​ ​active​ ​part​ ​of​ ​sea​ ​ice,​ ​also​ ​known​ ​as​ ​the​

​Biologically​​Active​​Layer​​(BAL)​​(Tedesco​​et​​al.,​​2010),​​is​​represented​​either​​as​​a​​single​​layer​​near​​the​​ice-ocean​​interface​​of​

​prescribed​​or​​variable​​thicknesses​​depending​​on​​sea-ice​​permeability,​​or​​as​​multiple​​layers​​spanning​​the​​vertical​​range​​of​​the​

​sea​​ice​​with​​an​​active​​brine​​network​​(e.g.,​​Jeffery​​et​​al.,​​2016).​​Single-layer​​approaches​​are​​computationally​​more​​efficient​

​than​​multi-layer​​models.​​A​​single-layer​​model​​of​​variable​​thicknesses​​in​​response​​to​​thermodynamic​​growth,​​often​​referred​

​to​ ​as​ ​dynamic​ ​layering,​ ​provides​ ​a​ ​more​ ​realistic​ ​representation​ ​of​ ​bottom​ ​community​ ​dynamics​ ​(Tedesco​ ​et​ ​al.,​ ​2010).​

​Multi-layer​ ​models,​ ​on​ ​the​ ​other​ ​hand,​ ​capture​ ​the​ ​vertical​ ​variability​ ​of​ ​biogeochemical​ ​variables​ ​and​ ​allow​ ​simulating​

​surface and infiltration communities.​

​As​​in​​ocean​​models,​​the​​structure​​of​​sea-ice​​microbial​​ecosystems​​is​​represented​​using​​a​​set​​of​ ​“Plankton​​Functional​​Types”​

​(PFTs,​​e.g.,​​sea-ice​​algae​​and​​bacteria)​​and​​non-living​​inorganic​​(e.g.,​​sea-ice​​micro-​​and​​macronutrients)​​and​​organic​​matter​
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​(e.g.,​ ​sea-ice​ ​detritus).​​The​​simplest​​models​​are​​N-P​​models,​​which​​include​​only​​one​​nutrient​​(N)​​and​​one​​algal​​functional​

​type​ ​(P).​ ​The​ ​elemental​​composition​​of​​ice​​algae​​is​​typically​​fixed,​​based​​on​​prescribed​​Redfield​​carbon,​​nitrogen,​​silicon,​

​phosphorous​ ​ratios​ ​(106:16:16:1),​ ​along​ ​with​ ​fixed​ ​Chl-a:carbon​ ​ratios.​ ​The​ ​more​ ​comprehensive​ ​N-P-Z-D​ ​models​ ​also​

​include​​grazers​​(Z)​​(such​​as​​sea-ice​​fauna)​​and​​sea-ice​​detritus​​(D).​​In​​the​​simplest​​version​​of​​these​​models,​​only​​one​​limiting​

​nutrient​​is​​considered.​​More​​complex​​models​​may​​represent​​multiple​​nutrients​​and​​different​​PFTs​​for​​ice​​algal​​communities,​

​as​ ​well​ ​as​ ​bacteria​ ​and​ ​grazers.​ ​In​ ​simpler​ ​models,​​the​​processes​​associated​​with​​bacterial​​remineralisation​​or​​grazing​​are​

​often implicitly parameterised using constant rates.​

​The​​intercomparison​​included​​five​​modelling​​teams​​and​​a​​total​​of​​six​​model​​configurations.​​These​​models​​varied​​in​​several​

​aspects,​ ​encompassing​ ​differences​ ​in​ ​physical​ ​(from​ ​Semtner​ ​0-layer​ ​to​ ​energy-conserving​ ​multi-layer​ ​models)​ ​and​

​biogeochemical​ ​process​ ​complexity​ ​(from​ ​a​ ​single​ ​PFT​ ​to​ ​several​ ​PFTs),​ ​radiation​ ​schemes​ ​(from​ ​a​ ​single​ ​band​

​Lambert-Beer​ ​to​ ​a​ ​multi-band​ ​Delta-Eddington),​ ​vertical​ ​resolution​ ​(from​ ​a​ ​static​ ​single​ ​layer​ ​to​ ​dynamic​ ​multi​ ​layers),​

​choice​ ​of​ ​limiting​ ​nutrient​ ​(from​ ​one​ ​single​ ​nutrient​ ​limiting​ ​to​ ​multi-nutrient​ ​limitation),​ ​area​ ​of​ ​original​ ​tuning​ ​of​ ​the​

​model,​ ​and​ ​coupling​ ​to​ ​an​ ​interactive​ ​sea-ice​ ​physical​ ​model​ ​and/or​ ​ocean​ ​biogeochemical​ ​model​ ​of​ ​various​​complexity​

​(from​ ​none​ ​to​ ​fully​ ​resolved).​ ​Table​ ​1​ ​summarises​ ​the​ ​main​ ​commonalities​ ​and​​differences​​among​​the​​models.​​For​​more​

​details​​on​​a​​specific​​model,​​we​​refer​​to​​the​​model’s​​original​​reference​​(Table​​1)​​and​​further​​description​​in​​the​​Supplementary​

​Material.​

​Most​ ​of​ ​the​ ​models​ ​had​ ​interactive​ ​physical​ ​components,​ ​while​ ​only​ ​one​ ​(i.e.,​ ​SIMBA)​ ​required​ ​prescribed​ ​ice​ ​physics.​

​Additionally,​ ​only​ ​half​ ​of​ ​the​ ​models​ ​were​ ​coupled​ ​to​ ​an​ ​interactive​ ​ocean​ ​biogeochemical​ ​model.​ ​Among​ ​the​ ​sea-ice​

​physical​ ​models,​ ​complexities​ ​ranged​ ​from​ ​a​ ​Semtner​ ​0-layer​ ​scheme​​(SM​​0L)​​to​​multi-layer​​energy-conserving​​models​

​(EC​​ML).​​All​​models,​​except​​one,​​used​​a​​single-band​​radiation​​transfer​​scheme,​​with​​several​​assuming​​Beer-Lambert​​(BL)​

​light​​attenuation,​​while​​only​​one​​employed​​a​​Delta-Eddington​​(DE)​​scheme.​​The​​majority​​of​​the​​models​​simulated​​ice​​algae​

​only​​in​​the​​bottom​​sea-ice​​layer,​​either​​as​​a​​static​​or​​dynamic​​system,​​while​​two​​models​​were​​multi-layer​​models,​​simulating​

​ice​​algae​​along​​the​​entire​​ice​​column.​​In​​terms​​of​​ecosystem​​complexity,​​models​​varied​​from​​simple​​Redfield-based​​models​

​(RFD)​​with​​a​​single​​limiting​​nutrient,​​one​​algal​​group,​​and​​a​​detritus​​compartment​​to​​more​​comprehensive​​quota​​models​​with​

​several functional groups, including ice bacteria, ice fauna, and multi-nutrient limitations.​

​2.2 The N-ICE2015 Dataset​

​The​​refrozen​​lead​​time​​series​​monitored​​during​​the​​N-ICE2015​​expedition​​(Granskog​​et​​al.,​​2018)​​was​​selected​​as​​a​​test​​case​

​for​ ​the​ ​model​ ​intercomparison​ ​due​ ​to​ ​the​ ​high​ ​frequency​ ​of​ ​available​ ​physical​ ​and​ ​biogeochemical​ ​measurements​ ​(e.g.​

​Kauko​​et​​al.,​​2017;​​Olsen​​et​​al.,​​2017).​​The​​N-ICE​​expedition​​was​​a​​field​​campaign​​conducted​​aboard​​the​​RV​​Lance,​​which​

​was​​frozen​​into​​pack​​ice​​north​​of​​Svalbard,​​drifting​​between​​approximately​​83°​​and​​80°N​​in​​the​​southern​​Nansen​​Basin​​of​

​the​​Arctic​​Ocean​​between​​January​​and​​June​​2015.​​Among​​the​​four​​ice​​floes​​monitored​​during​​the​​study​​period,​​the​​refrozen​
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​lead​​data​​were​​derived​​from​​Floe​​3,​​which​​was​​studied​​from​​mid-April​​to​​early​​June​​2015​​as​​it​​drifted​​southward​​from​​81.8°​

​N to 80.5° N.​

​Table​​1:​ ​Sea-ice​​biogeochemical​​models​​participating​​in​​the​​1D​​intercomparison​​project.​​BGC​​stands​​for​​biogeochemistry.​​Please​​see​​the​

​main text for the remaining nomenclature used in the table.​

​Model/​
​Properties​

​BFM-SI​ ​BFM-SI-Clim​ ​CICE 5.1​ ​CSIB-1D​ ​SIESTA​ ​SIMBA​

​Ice Physics​ ​Modified SM 0L​ ​Modified SM 0L​ ​EC ML​ ​SM 0L​ ​EC ML​ ​Prescribed​

​Transport​ ​Growth/melt​ ​Growth/melt​ ​Growth/melt,​
​brine​
​drainage/diffus​
​ion​

​Melt​ ​Desalination​ ​Growth​​/​​melt​

​Radiation​ ​1 band; BL​ ​1 band; BL​ ​1 band; BL​ ​1 band; BL​ ​32 bands; DE​ ​1 band; BL​

​Grid for sea ice​
​BGC​

​1L, bottom,​
​dynamic​

​1L, bottom,​
​dynamic​

​Multi-layer​ ​1L bottom static​ ​Multi-layer​ ​1L bottom static​

​Sea-ice​
​functional​
​groups​

​3N-2P-2D-1B-1Z​ ​3N-1P-2D​ ​2N-1P​ ​2N-1P-1D​ ​3N-1P-1D​ ​1N-1P-1D​

​Cell​
​quotas/Chl:C​

​Quota/Prognostic​ ​Quota/Prognosti​
​c​

​RFD/Constant​ ​RFD/Constant​ ​RFD/Constant​ ​RFD/Constant​

​Limiting​
​element(s)​

​Nitrogen,​
​Phosphorous,​
​Silicon​

​Silicon​ ​Nitrogen,​
​Silicon​

​Nitrogen,​
​Silicon​

​Nitrogen,​
​Phosphorous,​
​Silicon​

​Nitrogen​

​Ocean BGC​ ​1D slab​ ​1D slab​ ​n.a.​ ​1D​ ​n.a.​ ​n.a.​

​Area of model​
​original tuning​

​Arctic​ ​Arctic​ ​Arctic​ ​Arctic​ ​Antarctic​ ​Arctic​

​Reference​ ​Tedesco et al​
​(2010)​

​Tedesco and​
​Vichi (2014)​

​Duarte et al​
​(2017)​

​Mortenson et al​
​(2017)​

​Saenz and​
​Arrigo (2014)​

​Castellani et al​
​(2017)​

​The​​lead,​​approximately​​400​​m​​wide,​​opened​​on​​23​​April,​​began​​refreezing​​on​​26​​April,​​and​​was​​fully​​refrozen​​by​​1​​May.​

​The​​newly​​formed​​young​​ice​​in​​the​​lead​​was​​sampled​​from​​6​​May​​along​​a​​100​​m-long​​transect​​extending​​from​​the​​edge​​of​

​the​​lead​​toward​​its​​centre​​every​​2–3​​days​​until​​it​​broke​​up​​on​​4​​June​​(Kauko​​et​​al.,​​2017).​​The​​algal​​growth​​period​​occurred​
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​in​​April​​and​​May.​​While​​the​​ice​​algal​​community​​was​​initially​​highly​​mixed,​​pennate​​diatoms​​of​​the​​genus​​Nitzschia​​became​

​dominant later in the season.​

​The N-ICE2015 refrozen lead time series was chosen for this intercomparison based on two key factors:​

​●​ ​Observational​​data​​availability:​​It​​provides​​sufficient​​observations​​(Kauko​​et​​al.,​​2017)​​for​​comparison​​with​​model​

​simulations of physico-biogeochemical variables.​

​●​ ​Ancillary​​data​​availability:​​It​​includes​​detailed​​time​​series​​of​​atmosphere​​and​​ocean​​data,​​necessary​​to​​force​​model​

​runs, and has been tested for feasibility in a previous 1D  modelling study (Duarte et al., 2017).​

​2.3 Experimental setup​

​A​​strict​​protocol​​was​​developed​​and​​followed​​by​​all​​modelling​​groups.​​To​​accommodate​​the​​diversity​​of​​models,​​a​​minimum​

​set​ ​of​ ​variables​ ​was​ ​selected​ ​for​ ​comparison​ ​with​ ​observations.​ ​These​ ​included​ ​sea-ice​ ​season​ ​timing,​​ice​​thickness,​​and​

​snow​ ​thickness​ ​for​ ​coupled​ ​physical-biogeochemical​ ​models,​ ​as​ ​well​​as​​sea-ice​​nutrient​​concentrations​​and​​algal​​biomass​

​(represented by Chl-a) for all models.​

​Two​ ​distinct​ ​experiments​​were​​conducted​​to​​assess​​model​​performance.​​The​​first​​experiment,​​labelled​ ​no​​tuning​​,​ ​aimed​​to​

​run​​each​​model​​in​​its​​default​​configuration.​​The​​primary​​objective​​was​​to​​analyze​​the​​differences​​between​​model​​outputs​​and​

​observational​​data​​and​​quantify​​the​​extent​​of​​biases.​​The​​intercomparison​​within​​this​​experiment​​sought​​to​​identify​​potential​

​reasons​​for​​deviations​​from​​observations,​​such​​as​​the​​omission​​of​​key​​processes​​or​​inadequate​​parameterisations.​​The​​second​

​experiment,​ ​labelled​ ​tuning​​,​ ​involved​ ​adjusting​ ​the​ ​models​ ​to​ ​better​ ​align​ ​with​ ​observed​ ​physical​ ​and​ ​biogeochemical​

​properties.​ ​This​ ​experiment​ ​aimed​ ​to​ ​identify​ ​which​ ​processes​ ​needed​ ​to​ ​be​ ​modified​ ​or​ ​added,​ ​as​ ​well​ ​as​ ​the​ ​specific​

​parameterisations or parameters that were adjusted and fine-tuned to improve agreement with observations.​

​Both​​experiments​​were​​carried​​out​​independently​​by​​each​​modelling​​group,​​without​​prior​​knowledge​​of​​the​​work​​undertaken​

​by​ ​others.​ ​This​ ​approach​ ​was​ ​adopted​ ​to​ ​eliminate​ ​potential​ ​biases,​ ​whether​ ​conscious​ ​or​ ​unconscious,​ ​during​ ​the​

​implementation​​phase.​​To​​ensure​​a​​standardized​​comparison​​across​​models,​​all​​simulations​​used​​the​​same​​atmospheric​​and​

​ocean​ ​forcing,​ ​as​ ​well​ ​as​ ​identical​ ​initial​ ​and​ ​boundary​ ​conditions,​ ​described​ ​in​ ​Duarte​​et​​al.​​(2017).​​Forcing​​time​​series​

​included​​air​​temperature,​​precipitation,​​specific​​humidity,​​and​​wind​​speed​​(Hudson​​et​​al.,​​2015;​​Cohen​​et​​al.,​​2017);​​incident​

​surface​​short​​and​​longwave​​radiation​​(Taskjelle​​et​​al.,​​2016;​​Hudson​​et​​al.,​​2016);​​sea​​ice​​temperature​​and​​salinity​​(Gerland​

​et​​al.,​​2017);​​surface​​current​​velocity,​​heat​​fluxes,​​salinity,​​and​​temperature​​(Peterson​​et​​al.,​​2016,​​2017);​​and​​ocean​​surface​

​nutrient​ ​concentrations​ ​(Assmy​ ​et​ ​al.,​ ​2016).​ ​For​ ​the​ ​sea-ice​​biogeochemical​​model​​without​​a​​thermodynamic​​component​

​(i.e.,​​SIMBA),​​observed​​ice​​and​​snow​​thickness​​data​​were​​provided.​​This​​standardised​​approach​​improved​​the​​comparability​
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​of​ ​the​ ​models,​ ​allowing​ ​for​ ​a​ ​robust​ ​evaluation​ ​of​ ​model​ ​performance.​​In​​the​​final​​phase,​​results​​were​​presented​​by​​each​

​modelling group, and teams collaboratively discussed challenges, adjustments, and tuning choices.​

​3. Results and discussion​

​To​​support​​the​​interpretation​​of​​the​​biogeochemical​​models’​​performances,​​we​​first​​compared​​modelled​​and​​observed​​sea-ice​

​physical​​properties,​​in​​particular​​sea-ice​​thickness​​and​​surface​​temperature​​(Fig.​​1).​​We​​did​​not​​include​​snow​​thickness​​in​​this​

​comparison,​ ​as​​observed​​values​​were​​relatively​​low​​and​​little​​variable,​​ranging​​between​​2​​and​​6​​cm​​between​​7​​May​​and​​3​

​June (Kauko et al., 2017) and thus had a limited influence on model differences for this specific case.​

​Observed​​sea-ice​​thickness​​shows​​relatively​​stable​​values​​around​​0.2​​m​​from​​early​​May​​to​​early​​June,​​with​​minor​​variability​

​(Fig.1).​ ​Models​ ​with​ ​thermodynamic​ ​components​ ​(BFMSI/BFMSI-CLIM,​ ​CICE5.1,​ ​CSIB-1D,​ ​and​ ​SIESTA)​ ​generally​

​captured​ ​the​ ​observed​ ​thickness​ ​range​ ​and​ ​seasonal​ ​trend,​ ​although​ ​some​ ​diverge​ ​more​ ​notably.​ ​Surface​ ​temperature​

​simulations​ ​show​ ​stronger​ ​deviations​ ​across​ ​models.​ ​Although​ ​all​ ​models​ ​follow​ ​the​ ​overall​ ​seasonal​ ​warming​ ​trend​

​observed​​in​​the​​N-ICE2015​​air​​temperature​​data​​(Fig.​​1,​​right​​panel),​​the​​amplitude​​and​​short-term​​variability​​differ.​​While​

​some​ ​models​ ​reproduce​ ​much​ ​of​ ​the​ ​daily​ ​variability,​ ​others​ ​exhibit​ ​smoother​ ​or​ ​warmer​ ​biases.​ ​These​ ​differences​ ​in​

​physical​ ​conditions​ ​influenced​ ​light​ ​penetration​ ​and​ ​melt​ ​timing,​ ​which​ ​in​ ​turn​ ​affected​ ​the​ ​timing​ ​and​ ​magnitude​ ​of​

​simulated algal blooms, which will be analysed next.​

​Figure​​1:​ ​Model​​results​ ​for​​sea-ice​​thickness​​(left)​ ​and​​surface​​temperature​​(right).​ ​Observations​​of​​sea-ice​​thickness​​are​​shown​​as​​dots​

​for​​the​​mean​​among​​replicates​​(at​ ​least​ ​5​​each)​​from​​different​​ice​​cores,​​while​​associated​​bars​​indicate​​the​​variability​​of​​the​​measurements​

​between​​their​ ​maximum​​and​​minimum.​​The​​observed​​air​​temperature​​is​​part​​of​​the​​forcings​​provided​​to​​the​​modelling​​groups​ ​(Hudson​​et​

​al., 2015; Cohen et al., 2017) and it is shown for comparison with modelled surface temeprature.​
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​Although​​the​​N-ICE​​refrozen​​lead​​resembles​​a​​typical​​ice​​season,​​in​​the​​no​​tuning​​experiment,​​none​​of​​the​​models​​accurately​

​captured​​the​​observed​​algal​​phenology​​and​​bloom​​magnitude​​(Fig.​​2,​​top​​left).​​All​​but​​one​​model​​underestimated​​Chl-a​​and​

​produced​​a​​delayed​​bloom​​onset,​​though​​performances​​varied​​across​​diagnostic​​measures.​​Since​​most​​of​​the​​models​​tended​

​to​ ​overestimate​ ​sea-ice​ ​thickness​ ​(Fig.​ ​1),​ ​the​ ​delay​ ​in​ ​the​ ​simulated​ ​algal​ ​bloom​ ​could​ ​be​ ​attributed​ ​to​ ​reduced​ ​light​

​transmittance​ ​through​ ​thicker​ ​ice.​ ​However,​ ​the​ ​delay​ ​also​ ​occurred​ ​in​ ​models​ ​that​ ​did​ ​not​ ​overestimate​ ​ice​ ​thickness,​

​suggesting​​that​​other​​factors​​must​​had​​contributed​​to​​this​​bias.​​Due​​to​​limited​​nutrient​​data,​​few​​considerations​​can​​be​​drawn​

​about​​simulated​​nutrient​​dynamics​​beyond​​an​​assessment​​of​​the​​potential​​model​​error’s​​order​​of​​magnitude.​​Here,​​all​​but​​one​

​model​ ​underestimated​ ​nitrate​ ​and​ ​silicate​ ​concentrations​ ​(Fig.​ ​2,​ ​mid​ ​and​ ​bottom​ ​left),​ ​though​ ​all​ ​remained​ ​within​ ​a​

​reasonable range.​

​In​ ​the​ ​tuning​ ​experiment,​ ​all​ ​models​ ​were​ ​able​ ​to​ ​reasonably​ ​simulate​ ​the​ ​ice​ ​algal​ ​phenology,​ ​though​ ​performance​​still​

​varied​​across​​models​​(Fig.​​2,​​top​​right).​​However,​​little​​improvement​​was​​achieved​​in​​the​​simulation​​of​​nitrate​​and​​silicate​

​dynamics. Interestingly, tuning focused on different processes and parameters among models (Table 2), including:​

​●​ ​Change in the algal growth rate and/or in the size of the initial seeding population​

​●​ ​The possibility of downward vertical migration of algae during melting​

​●​ ​Magnitude​​of​​silicic​​acid​​limitation​​by​​changing​​the​​half​​saturation​​constant​​and/or​​the​​nitrogen:​​silicon​​ratio​​of​​ice​

​algae and/or the reference quota of silicon in sea-ice algae.​

​Overall,​​all​​tuning​​strategies​​aimed​​to​​either​​lessen​​nutrient​​limitation​​or​​increase​​algal​​seeding​​or​​growth.​​However,​​despite​

​tuning​​efforts,​​none​​of​​the​​models​​significantly​​improved​​the​​simulation​​of​​nitrate​​magnitude,​​except​​for​​BFM-SI,​​which​​was​

​also​ ​the​ ​only​ ​model​ ​that​ ​did​ ​not​ ​underestimate​ ​nitrate​ ​and​ ​silicate​ ​before​ ​tuning​ ​(Fig.​ ​2,​ ​mid​ ​and​ ​bottom​ ​left).​ ​When​

​comparing​​nutrient​​parameterisations​​across​​models​​(Table​​1),​​BFM-SI​​stands​​out​​as​​the​​only​​model​​in​​which​​the​​variability​

​of​ ​the​ ​dynamic​ ​sea-ice​ ​BAL​ ​modulates​​the​​upward​​fluxes​​of​​dissolved​​inorganic​​matter.​​CSIB-1D​​also​​performed​​well​​in​

​simulating​ ​the​ ​silicate​ ​dynamics,​ ​matching​ ​the​ ​magnitude​ ​of​ ​the​ ​observations​ ​before​ ​and​ ​after​ ​tuning.​ ​For​ ​most​ ​models,​

​silicon​​had​​the​​strongest​​effect​​on​​ice​​algal​​growth​​during​​tuning,​​suggesting​​a​​potentially​​dominant​​role​​of​​silicon​​limitation.​

​This​ ​would​ ​also​ ​explain​ ​why​ ​SIMBA​ ​was​ ​the​ ​only​ ​model​ ​that​ ​did​ ​not​ ​underestimate,​ ​but​​rather​​overestimated,​​ice​​algal​

​growth, since it did not include silicon among its limiting nutrients.​

​In​​general,​​models​​performed​​more​​poorly​​when​​simulating​​sea-ice​​nutrient​​dynamics.​​The​​limited​​improvement​​in​​nutrient​

​representation​​compared​​to​​biomass​​can​​be​​attributed​​to​​model​​groups​​prioritising​​fitting​​simulations​​to​​Chl-a​​observations​

​during​​the​​tuning​​phase,​​as​​these​​data​​were​​more​​temporally​​resolved​​and​​directly​​linked​​to​​the​​main​​focus​​of​​the​​study,​​i.e.,​

​the​​ice​​algal​​bloom.​​In​​contrast,​​nutrient​​observations​​were​​limited​​to​​a​​single​​time​​point,​​which​​made​​them​​more​​difficult​​to​
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​constrain​ ​reliably.​ ​Nevertheless,​ ​despite​ ​the​ ​scarcity​ ​of​ ​available​​data,​​the​​simulation​​of​​nutrient​​processes​​appears​​poorly​

​constrained, pointing to the need for more in-depth observational and experimental work.​

​Figure​ ​21:​ ​Experiment​ ​with​ ​no​ ​tuning​ ​(left)​ ​and​ ​tuning​ ​(right).​ ​Model​ ​results​ ​for​ ​ice​ ​algae​ ​Chl-a​ ​(top),​ ​nitrate​ ​(middle),​ ​and​​silicate​
​(bottom).​ ​Observations​​are​​shown​​as​​dots​​for​​the​​mean​​of​​the​​entire​​ice​​core​​or​​the​​bottom​​10​​cm​​(5​​replicates​​each),​​while​​associated​​bars​
​indicate the variability of the measurements between their maximum and minimum measures.​
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​The​ ​tuning​ ​experiment​ ​highlights​ ​the​ ​diversity​ ​of​​tuning​​parameters​​across​​models​​(Table​​2),​​prompting​​critical​​questions​

​about​ ​model​ ​functionality​ ​and​ ​calibration.​ ​While​ ​models​ ​can​ ​be​ ​adjusted​ ​to​ ​align​ ​with​ ​observations,​ ​there​ ​is​ ​a​ ​risk​ ​of​

​achieving​ ​accurate​ ​results​ ​for​ ​the​ ​wrong​ ​reasons,​ ​particularly​ ​when​ ​tuning​ ​compensates​ ​for​ ​a​ ​missing​ ​or​ ​misrepresented​

​process.​​In​​our​​case,​​none​​of​​our​​models​​included​​young​​ice​​formation.​​Observations​​indicate​​that​​a​​consistent​​fraction​​of​​the​

​sea-ice​​sampled​​from​​the​​refrozen​​lead​​was​​granular​​(Graham​​et​​al.,​​2019),​​formed​​as​​frazil​​ice​​in​​turbulent​​conditions.​​As​

​turbulence​ ​subsides,​ ​frazil​ ​crystals​ ​rise​ ​and​ ​can​ ​entrain​ ​suspended​ ​particles,​ ​including​ ​biological​ ​material,​ ​during​ ​acent,​

​effectively​​concentrating​​them​​in​​the​​newly​​forming​​ice​​(Weeks​​and​​Ackley,​​1982,​​Janssen​​et​​al.,​​2018).​​This​​may​​explain​

​some​ ​of​ ​the​​tuning​​strategies,​​such​​as​​increases​​in​​algal​​growth​​rate​​(​​CSIB-1D​​)​​or​​the​​size​​of​​the​​initial​​seeding​​population​

​(BFM-SI, BFM-SI-Clim).​

​However,​ ​other​ ​factors​ ​likely​ ​influenced​ ​tuning​​choices​​as​​well.​​For​​example,​​some​​models​​used​​diatom​​Si:N​​ratios​​more​

​appropriate​ ​for​​Antarctic​​waters,​​which​​overestimate​​the​​silica​​demand​​of​​Arctic​​diatoms.​​For​​example,​​CICE​​used​​a​​Si:N​

​ratio​​close​​to​​4:1,​​whereas​​Arctic​​diatoms​​may​​be​​closer​​to​​1:1​​(Duarte​​et​​al.,​​2017).​​In​​addition,​​the​​presence​​of​​relatively​

​low​ ​Si:N​ ​ratios​ ​in​ ​Atlantic​ ​Water​ ​entering​ ​the​ ​region,​ ​as​ ​discussed​ ​in​ ​studies​ ​such​ ​as​ ​Duarte​ ​et​ ​al.​ ​(2021),​ ​supports​ ​the​

​potential​ ​for​ ​silica​ ​limitation​ ​to​ ​emerge​ ​before​ ​nitrogen​ ​is​ ​exhausted.​ ​These​ ​regional​ ​nutrient​ ​characteristics​ ​and​ ​model​

​structural​ ​features​ ​may​ ​have​ ​prompted​ ​tuning​ ​strategies​ ​involving​​relaxed​​silica​​limitation​​(BFM-SI,​​BFM-SI-Clim,​ ​CICE​

​5.1,​ ​and​ ​SIESTA​​).​ ​Furthermore,​ ​the​ ​apparent​ ​need​ ​to​ ​reduce​ ​nutrient​ ​limitation​ ​in​ ​order​ ​to​​simulate​​realistic​​biomass​​may​

​indicate that ocean-to-ice nutrient fluxes are underestimated in some models (Duarte et al., 2022).​

​Taken​​together,​​this​​intercomparison​​underscores​​how​​model​​tuning​​decisions​​can​​reveal​​not​​only​​numerical​​sensitivities​​but​

​also​ ​areas​ ​where​ ​physical​ ​and​ ​biogeochemical​ ​process​ ​representations​ ​remain​​uncertain​​or​​incomplete.​​These​​insights​​are​

​valuable for guiding future model development and targeted observations.​

​4. Conclusions​

​This​ ​study​ ​presents​ ​an​ ​intercomparison​ ​of​ ​one-dimensional​ ​sea-ice​ ​biogeochemical​ ​models,​ ​evaluating​ ​their​ ​ability​ ​to​

​simulate​ ​algal​ ​phenology,​ ​bloom​ ​magnitude,​ ​and​ ​nutrient​ ​dynamics​ ​in​ ​a​ ​refrozen​ ​lead​​environment.​​The​​results​​highlight​

​significant​ ​disparities​ ​in​ ​model​ ​performance,​ ​with​ ​most​ ​models​ ​struggling​ ​to​ ​accurately​ ​reproduce​ ​the​ ​observed​ ​algal​

​biomass​​and​​nutrient​​concentrations,​​for​​some​​models​​even​​after​​tuning.​​While​​adjustments​​improved​​the​​representation​​of​

​ice​​algal​​phenology,​​they​​had​​a​​limited​​impact​​on​​nutrient​​concentration​​for​​most​​of​​the​​models,​​emphasizing​​the​​challenges​

​of​ ​parameterizing​ ​key​ ​processes​ ​such​ ​as​ ​nutrient​ ​fluxes​ ​and​ ​reinforcing​ ​the​ ​need​ ​for​ ​continued​ ​model​ ​development​ ​and​

​validation supported by dedicated field and experimental observations.​
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​Table 2.​ ​Comparison among models’ performances before and after tuning.​

​Model/​
​Properties​

​BFM-SI​ ​BFM-SI-Clim​ ​CICE 5.1​ ​CSIB-1D​ ​SIESTA​ ​SIMBA​

​Ice algal​
​phenology​
​before​
​tuning​

​Good algal growth​
​timing but lower​
​algal biomass.​

​Max [Chl-a]=​
​0.18 mg m​​-2​

​Day of the year of​
​peak of Chl-a =​
​146​

​Good algal​
​growth timing​
​but lower algal​
​biomass.​

​Max [Chl-a]=​
​0.26 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 146​

​Good algal​
​growth timing​
​but lower algal​
​biomass.​

​Max [Chl-a]=​
​0.56 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 142​

​Good algal​
​growth and​
​lower algal​
​biomass.​

​Max [Chl-a]=​
​0.90 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 152​

​Good algal​
​growth timing​
​but lower algal​
​biomass.​

​Max [Chl-a] =​
​0.41 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 147​

​Earlier algal​
​growth and​
​higher algal​
​biomass​

​Max [Chl-a]=​
​3.77 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 131​

​Tuning​
​strategy​

​Lower silica​
​limitation and​
​higher algal​
​biomass in​
​seawater​

​Lower silica​
​limitation and​
​higher algal​
​biomass in​
​seawater​

​Lower silica​
​limitation and​
​reduced​
​recruitment​

​Higher algal​
​max spec​
​growth rate​

​Active algal​
​migration​
​against brine​
​movement and​
​lower Si​
​half-saturation​
​constant.​

​Lower algal​
​growth rate and​
​removal of​
​winter drainage​
​of nutrients​

​Parameter(s)​
​before​
​tuning​

​Initial seawater​
​[Chl-a] =0.05 mg​
​m​​-3​

​Rereference Si​
​quotum for​
​adapted​
​diatoms=0.0085​
​mmol m​​-3​

​Initial seawater​
​[Chl-a] =0.05 mg​
​m​​-3​

​Rereference Si​
​quotum for​
​adapted​
​diatoms=0.0085​
​mmol m​​-3​

​Diatom Si:N​
​ratio = 1.8​
​Half saturation​
​for silicon​
​uptake = 4.0 µM​
​Diatom​
​boundary​
​concentration =​
​0.002 μM​

​Chl-a max spec​
​growth rate =​
​0.85 d​​-1​

​Algae fixed in​
​ice layer grid;​
​Half saturation​
​of silicon​
​uptake = 4.0​
​µM​

​Chl-a max spec​
​growth rate =​
​0.86 d-1​

​Parameter(s)​
​after tuning​

​Initial seawater​
​[Chl-a] in =0.5​
​mg m​​-3​

​Rereference Si​
​quotum for​
​adapted​
​diatoms=0.0025​
​mmol m​​-3​

​Initial seawater​
​[Chl-a] in =0.5​
​mg m​​-3​

​Rereference Si​
​quotum for​
​adapted​
​diatoms=0.0025​
​mmol m​​-3​

​Diatom Si:N​
​ratio = 1.0​
​Half saturation​
​for silicon​
​uptake = 2.2 µM​
​Diatom​
​boundary​
​concentration =​
​0.0011 μM​

​Chl-a max spec​
​growth rate​
​increased to​
​0.95 d​​-1​

​Algae allowed​
​to migrate​
​downward with​
​ice growth, up​
​to 1.5 cm d​​-1​​;​
​Half saturation​
​of silicon​
​uptake = 1.0​
​µM​

​Chl-a max spec​
​growth rate = 0.5​
​d-1​

​Ice algal​
​phenology​
​after tuning​

​Algal phenology​
​and magnitude​

​Algal phenology​
​and magnitude​

​Algal phenology​
​and magnitude​

​Algal phenology​
​and magnitude​

​Algal​
​phenology​

​Algal phenology​
​and magnitude​

​11​

​268​

​269​



​within observed​
​range; Nitrate and​
​silicate within​
​range.​

​Max [Chl-a] =​
​1.67 mg m​​-2​

​Day of the year of​
​peak of Chl-a =​
​146​

​within observed​
​range, Silicate​
​within range.​

​Max [Chl-a] =​
​2.14 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 147​

​within observed​
​range; Lower​
​nitrate, Silicate​
​within range.​

​Max [Chl-a] =​
​1.26 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 141​

​within observed​
​range; Lower​
​nitrate; Silicate​
​within range.​

​Max [Chl-a]=​
​1.56 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 152​

​within observed​
​range; Earlier​
​algal decay;​
​Lower silicate​
​and nitrate.​

​Max [Chl-a]=​
​1.23 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 147​

​within observed​
​range; Lower​
​nitrate.​

​Max [Chl-a]=​
​0.89 mg m​​-2​

​Day of the year​
​of peak of Chl-a​
​= 137​

​The​​intercomparison​​highlights​​the​​unexpected​​challenges​​encountered​​in​​simulating​​a​​refrozen​​lead,​​primarily​​attributed​​to​

​the​ ​short​ ​ice​ ​season​ ​and​ ​the​ ​difficulty​​most​​models​​faced​​in​​accumulating​​sufficient​​sympagic​​biomass.​​In​​a​​future​​Arctic​

​Ocean​ ​characterized​ ​by​ ​increased​ ​lead​ ​openings,​ ​refreezing​ ​events,​ ​and​ ​young​ ​ice​ ​formation,​ ​there​ ​is​ ​an​​urgent​​need​​for​

​models​ ​to​ ​be​ ​able​ ​to​ ​represent​ ​such​ ​a​​dynamic​​environment.​​This​​study​​underscores​​the​​importance​​of​​understanding​​and​

​addressing the complexities involved in simulating specific and dynamic environmental scenarios.​

​The​ ​diversity​ ​of​ ​adjustments​ ​across​ ​models​ ​highlights​ ​both​ ​the​ ​range​ ​of​ ​tuning​ ​options​ ​available​ ​and​ ​the​ ​persisting​

​knowledge​ ​gaps.​ ​The​ ​insights​ ​gained​ ​contribute​ ​valuable​ ​knowledge​ ​to​ ​ongoing​ ​efforts​ ​aimed​ ​at​ ​refining​ ​and​​improving​

​numerical​​models,​​ensuring​​their​​accuracy​​and​​reliability​​in​​capturing​​complex​​interactions.​​To​​further​​advance​​this​​field​​of​

​science,​ ​collaborative​ ​and​ ​harmonized​ ​modelling​ ​developments​ ​are​ ​recommended.​ ​Variability​ ​in​ ​tuning​ ​strategies​

​underscores​ ​key​​knowledge​​gaps​​and​​the​​need​​for​​further​​model​​development​​using​​more​​coordinated​​approaches,​​such​​as​

​common​ ​evaluation​ ​criteria​ ​and/or​ ​shared​ ​parameter​ ​ranges.​ ​In​ ​doing​ ​so,​ ​sea-ice​ ​biogeochemical​ ​modelling​​can​​build​​on​

​lessons​ ​learned​ ​from​ ​open-ocean​ ​biogeochemical​ ​intercomparison​ ​and​ ​tuning​ ​efforts​ ​(e.g.,​ ​Schartau​ ​et​ ​al.,​ ​2017),​ ​while​

​addressing​​the​​unique​​challenges​​of​​simulating​​sympagic​​(i.e.,​​in-ice)​​systems.​​A​ ​Phase​​2​ ​of​​the​​intercomparison​​would​​be​

​highly​ ​valuable,​ ​potentially​ ​extending​ ​the​ ​study​ ​to​ ​the​ ​variability​ ​of​ ​habitats​ ​that​ ​characterizes​ ​Antarctic​ ​sea​ ​ice.​

​Collaborative​ ​sensitivity​ ​tests​ ​could​ ​be​ ​conducted,​ ​with​ ​all​ ​models​ ​evaluating​ ​biological​ ​responses​ ​to​ ​the​ ​same​ ​tuning​

​adjustments,​ ​tuning​ ​options​ ​could​ ​be​ ​expanded,​ ​and​ ​standard​ ​parameter​ ​ranges​ ​could​ ​be​ ​revisited​ ​based​ ​on​ ​newer​ ​data​

​collected​ ​in​ ​recent​ ​years.​ ​Increased​ ​clarity​ ​of​ ​model​ ​sensitivities​ ​would​ ​improve​ ​future​ ​model​ ​robustness​ ​and​ ​enhance​

​confidence in simulations of biogeochemical processes in ice-covered oceans.​

​Code and data availability​

​All​ ​relevant​ ​data,​ ​model​ ​code​ ​and​ ​numerical​ ​simulations​ ​presented​ ​in​ ​this​ ​work​ ​will​ ​be​ ​publicly​ ​made​ ​available​ ​upon​

​manuscript’s acceptance.​
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​Supplementary Material​

​S1 Model description​

​BFM-SI and BFM-SI-Clim​

​Overview​

​The​​Biogeochemical​​Flux​​Model​​for​​sea​​ice​​(BFM-SI,​​Tedesco​​et​​al.,​​2010)​​is​​derived​​from​​the​​Biogeochemical​​Flux​​Model​
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​(BFM)​​framework​​(Vichi​​et​​al.,​​2023​​and​​references​​therein),​​retaining​​its​​structure​​based​​on​​Chemical​​Functional​​Families​

​(CFFs)​​and​​Living​​Functional​​Groups​​(LFGs).​​CFFs​​represent​​the​​elemental​​composition​​of​​living​​and​​non-living​​matter​​(C,​

​N, P, Si, etc.), while LFGs describe groups of organisms with similar functional behavior.​

​The​ ​model​ ​simulates​ ​biogeochemical​ ​processes​ ​within​ ​the​ ​Biologically​ ​Active​ ​Layer​ ​(BAL,​ ​Tedesco​ ​et​ ​al.,​ ​2010),​ ​the​

​time-varying,​ ​permeable​ ​fraction​ ​of​ ​sea​ ​ice​ ​where​ ​liquid​​brine​​channels​​remain​​interconnected​​and​​biological​​activity​​can​

​occur.​ ​This​ ​dynamic​ ​layer,​​typically​​located​​at​​the​​ice​​bottom,​​evolves​​according​​to​​physical​​conditions​​(e.g.,​​temperature,​

​salinity,​ ​brine​ ​volume)​ ​computed​​by​​a​​sea-ice​​physical​​model.​​The​​biological​​model​​simulates​​algal​​growth​​and​​elemental​

​cycling​ ​only​ ​within​ ​this​ ​layer,​ ​assuming​ ​all​ ​biomass​ ​is​ ​confined​ ​to​ ​the​ ​permeable​ ​ice​ ​fraction​​continuously​​connected​​to​

​seawater, maintaining full mass conservation at the ice–ocean–atmosphere interfaces.​

​The​​sea-ice​​physical​​model​​used​​in​​this​​study​​is​​ESIM​​(Enhanced​​Sea​​Ice​​Model).​​ESIM​​is​​a​​sea-ice​​thermodynamic​​model​

​originally​​based​​on​​the​​Semtner​​0-layer​​model​​(Semtner,​​1976),​​but​​with​​more​​physical​​processes.​​It​​was​​initially​​built​​as​​a​

​1-D​​thermodynamic​​model​​of​​the​​sea-ice​​growth​​and​​decay​​(Tedesco​​et​​al.,​​2009),​​calculating​​vertical​​heat​​fluxes​​based​​on​

​the​​1-dimensional​​heat​​conduction​​equation.​​ESIM​​has​​been​​later​​enhanced​​with​​a​​halodynamic​​component​​(Tedesco​​et​​al.,​

​2010).​​Initial​​salt​​entrapment,​​gravity​​drainage,​​and​​flushing​​processes​​have​​been​​added​​to​​simulate​​the​​salinity​​evolution​​of​

​the​​sea​​ice.​​In​​addition,​​the​​model​​takes​​into​​account​​other​​processes​​such​​as​​different​​forms​​of​​snow​​metamorphism​​(snow​

​compaction,​ ​snow​ ​ice​ ​and​ ​superimposed​ ​ice​ ​formation).​ ​ESIM​ ​has​ ​been​ ​developed​​targeting​​biological​​applications,​​thus​

​with​​a​​focus​​on​​the​​physical​​requirements​​to​​model​​the​​biogeochemistry​​of​​the​​sea​​ice.​​The​​feature​​that​​makes​​this​​coupling​

​possible​ ​is​ ​the​ ​innovative​ ​concept​​of​​the​​sea-ice​​BAL​​(Tedesco​​et​​al.,​​2010).​​The​​application​​of​​the​​BAL​​concept​​is​​more​

​realistic​ ​than​ ​a​ ​prescribed​ ​static​ ​bottom​ ​BAL​ ​and​ ​is​ ​lighter​ ​than​ ​multi-layer​ ​models,​ ​thus​ ​it​ ​is​ ​suitable​ ​for​ ​large-scale​

​applications without losing performance (Tedesco and Vichi, 2010, 2014).​

​State variables and structure​

​BFM-SI resolves 28 state variables organized as:​

​●​ ​2 LFGs for sea-ice algae:​

​1.​ ​Adapted diatoms (20–200 µm; Si-limited, highly acclimated)​

​2.​ ​Surviving nanoflagellates (2–20 µm; low acclimation capacity)​

​●​ ​1 LFG for sea-ice fauna​

​●​ ​1 LFG for sea-ice bacteria​

​●​ ​6 inorganic CFFs: phosphate, nitrate, ammonium, silicate, oxygen, carbon dioxide.​

​●​ ​2 organic non-living CFFs: dissolved and particulate detritus.​
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​Each​​algal​​group​​is​​described​​by​​up​​to​​five​​state​​variables​​(C,​​N,​​P,​​Si,​​and​​Chl),​​while​​ice​​fauna​​and​​bacteria​​up​​to​​three​​state​

​variables​ ​(C,​ ​N,​ ​P,​ ​).​ ​The​ ​model​ ​includes​ ​four​ ​macronutrients​ ​(phosphate,​ ​nitrate,​ ​ammonium,​ ​silicate),​​oxygen,​​and​​two​

​detrital​​pools​​(dissolved​​and​​particulate,​​featuring​​up​​to​​4​​state​​variables​​C,​​N,​​P,​​Si).​​Biological​​processes​​include​​primary​

​production​ ​respiration,​ ​exudation,​ ​nutrient​ ​uptake,​ ​lysis,​ ​and​ ​chlorophyll​ ​synthesis,​ ​with​ ​flexible​ ​stoichiometry​

​(C:N:P:Si:Chl).​

​BFM-SI-Clim​ ​(Tedesco​ ​et​ ​al.,​ ​2014)​ ​is​ ​a​ ​simplified​ ​version​ ​of​ ​BFM-SI,​ ​retaining​ ​the​ ​same​ ​ecological​ ​dynamics,​ ​but​

​including​ ​a​ ​reduced​ ​number​ ​of​ ​state​​variables.​​BFM-SI-Clim​​features​​only​​one​​single​​limiting​​macronutrient​​(Si)​​and​​one​

​single group of sea ice algae (i.e. ice diatoms), same detritus detritus and gases for totally 11 state variables.​

​Coupling and boundary fluxes​

​BFM-SI and BFM-SI-Clim are coupled online to the​​pelagic BFM with matching LFGs and CFFs.​

​●​ ​Ice–ocean fluxes: The entrainment or release of dissolved and particulate matter is proportional to ice growth/melt​

​rate and brine volume.​

​●​ ​Ice–atmosphere fluxes: The nutrient input from snow and precipitation can be considered and scaled to snow-melt​

​rate.​

​These exchanges ensure conservation of mass and consistent carbon, nutrient, and gas cycling across the interfaces.​

​Applications and relevance​

​BFM-SI​ ​represents​ ​the​ ​first​ ​process-based,​ ​biomass-explicit​ ​sea-ice​ ​biogeochemical​ ​model​ ​within​ ​a​ ​generalized​ ​marine​

​biogeochemical​​framework.​​It​​can​​be​​used​​as​​a​​standalone​​1-D​​module​​(Tedesco​​et​​al.,​​2010;​​Tedesco​​et​​al.,​​2012;​​Tedesco​​et​

​al.,​​2014)​​or​​in​​coupled​​online​​or​​offline​​configuration​​to​​3-D​​ocean​​circulation​​models​​(Tedesco​​et​​al.,​​2017;​​Tedesco​​et​​al.,​

​2019)​ ​to​​study​​seasonal​​productivity,​​biomass​​export,​​and​​the​​contribution​​of​​sea-ice​​biogeochemistry​​to​​the​​global​​carbon​

​cycle.​

​CICE 5.1​

​Overview​

​A​​comprehensive​​description​​of​​the​​Los​​Alamos​​Sea​​Ice​​Model​​physics​​and​​biogeochemistry​​may​​be​​found​​in​​Hunke​​et​​al.​

​(2015)​​and​​Jeffery​​et​​al.​​(2016).​​The​​implementation​​used​​in​​the​​present​​work​​is​​detailed​​in​​Duarte​​et​​al.​​(2017).​​Therefore,​

​in​ ​the​​next​​paragraphs​​we​​provide​​only​​a​​brief​​description​​of​​the​​model​​based​​on​​the​​cited​​references.​​There​​are​​two​​main​

​approaches​​to​​simulate​​biogeochemical​​processes​​with​​CICE:​​one​​based​​on​​bottom​​ice​​biogeochemistry​​and​​another​​based​

​on​ ​vertically-resolved​ ​biogeochemistry,​ ​which​​was​​used​​in​​the​​present​​study.​​This​​configuration​​uses​​a​​biogrid​​of​​variable​
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​height​ ​which​ ​overlaps​ ​part​ ​of​​the​​physical​​grid,​​used​​to​​compute​​thermodynamic​​processes.​​The​​number​​of​​layers​​of​​both​

​grids​​is​​the​​same​​but​​their​​vertical​​resolution​​differs.​​The​​vertical​​extent​​of​​the​​biogrid​​is​​defined​​by​​the​​brine​​height​​which​

​represents the sea ice vertical extent with an active brine network.​

​State variables and structure​

​The​​number​​of​​biogeochemical​​state​​variables​​in​​CICE​​biogeochemistry​​depends​​on​​user-defined​​options.​​In​​the​​simulations​

​presented​​herein,​​these​​included​​brine​​height,​​the​​concentrations​​of​​nitrate,​​ammonia,​​silicic​​acid​​and​​diatom​​nitrogen.​​Brine​

​concentrations​​are​​used​​for​​internal​​calculations​​and​​bulk​​values​​stored​​in​​model​​output​​files.​​The​​brine​​is​​exchanged​​across​

​the​ ​layers​​of​​the​​biogrid​​and​​across​​the​​ice-ocean​​interface.​​These​​exchanges​​include​​brine​​drainage,​​driven​​by​​hydrostatic​

​instability,​​and​​diffusion,​​driven​​by​​concentration​​gradients.​​Other​​exchanges​​occur​​during​​freezing​​and​​melting.​​In​​the​​case​

​of​​sea​​ice​​inundation​​or​​snow​​melt,​​exchanges​​occur​​also​​at​​the​​ice-snow​​or​​ice-atmosphere​​interface.​​The​​biogeochemical​

​model​​uses​​nitrogen​​as​​its​​“currency”.​​The​​model​​computes​​nutrient​​and​​silicic​​acid​​(in​​the​​case​​of​​diatoms)​​uptake​​by​​ice​

​algae,​ ​remineralization​ ​and​ ​nitrification.​ ​Ice​ ​algal​ ​growth​ ​and​ ​production​ ​may​ ​be​ ​light,​ ​temperature​ ​or​ ​nutrient​ ​limited​

​(nitrogen​ ​and​ ​silica,​ ​in​ ​the​ ​case​ ​of​ ​diatoms),​ ​following​ ​the​ ​Liebig’s​ ​law​ ​of​ ​minimum.​ ​Some​ ​tracers​ ​may​ ​cling​​to​​the​​ice​

​matrix, such as ice algae, resisting expulsion during desalination, unlike dissolved nutrients.​

​Coupling and boundary fluxes​

​The​​CICE​​model​​may​​be​​coupled​​with​​ocean​​models​​and​​atmospheric​​models.​​We​​used​​a​​standalone​​configuration​​with​​an​

​ocean​ ​slab​ ​layer​ ​as​ ​the​ ​bottom​ ​boundary.​ ​Time​ ​series​ ​of​​current​​velocities,​​heat​​fluxes,​​salinity,​​temperature,​​and​​nutrient​

​concentrations​​forced​​the​​model.​​The​​atmosphere​​boundary​​was​​implemented​​using​​time​​series​​of​​air​​temperature,​​humidity,​

​short and long wave radiation, precipitation, and wind velocity.​

​Applications and relevance​

​The​ ​CICE​ ​model​ ​is​ ​a​ ​community-type​​model​​used​​in​​several​​Earth​​System​​Models.​​It​​is​​one​​of​​the​​few​​models​​resolving​

​biogeochemistry vertically.​

​CSIB-1D​

​Overview​

​The​​Canadian​​Sea​​Ice​​Biogeochemistry​​1-Dimensional​​(CSIB-1D)​​model​​simulates​​ice​​algae​​and​​changes​​to​​nutrients​​within​

​the​​ice.​​It​​is​​designed​​to​​simulate​​a​​sympagic​​ecosystem​​and​​biogeochemical​​processes​​coupled​​to​​a​​pelagic​​ecosystem​​in​​the​
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​underlying​ ​water​​column​​in​​order​​to​​represent​​the​​Arctic​​marine​​environment.​​An​​in-depth​​description​​of​​the​​development​

​and application of this model can be found in Mortenson et al. (2017).​

​State variables and structure​

​The​ ​CSIB-1D​​ecosystem​​is​​represented​​by​​one​​functional​​sea-ice​​algal​​group​​dependent​​on​​three​​nutrients​​(silicate,​​nitrate​

​and​​ammonium)​​in​​the​​lower​​skeletal​​layer​​of​​the​​sea​​ice,​​set​​as​​a​​default​​in​​the​​bottom​​3​​centimeters​​of​​the​​ice.​​The​​sea​​ice​

​algae​ ​are​ ​limited​ ​by​ ​nutrients,​ ​light,​​and​​ice​​melt.​​The​​model​​uses​​a​​subgrid-scale​​non-uniform​​snow​​depth​​distribution​​to​

​represent​​gradual​​snow​​melt​​and​​formation​​of​​melt​​ponds​​impacting​​light​​transmissions​​and​​heat​​fluxes​​during​​melt​​periods​

​(Abraham et al., 2015). CSIB-1D ice algae are meant to represent diatoms, prevalent in the Arctic sea ice environment.​

​The​ ​ocean​ ​biogeochemistry​ ​model​ ​is​ ​a​ ​ten-compartment​ ​(small​ ​and​ ​large​ ​phytoplankton,​ ​microzooplankton,​

​mesozooplankton,​ ​small​​and​​large​​detritus,​​biogenic​​silica,​​nitrate,​​ammonium,​​and​​silicate)​​based​​on​​Steiner​​et​​al.​​(2006).​

​The module was updated by including mesozooplankton as a prognostic.​

​Coupling and boundary fluxes​

​Exchange​​of​​nutrients​​between​​the​​skeletal​​layer​​and​​the​​water​​column​​is​​by​​molecular​​diffusion​​and​​parameterized​​based​​on​

​currents​ ​at​ ​the​ ​ice-water​ ​interface.​ ​The​​model​​is​​coupled​​to​​a​​physical-biogeochemical​​ocean​​model​​based​​on​​the​​General​

​Ocean​ ​Turbulence​ ​Model​ ​(GOTM).​ ​GOTM​ ​provides​ ​the​ ​physical​ ​quantities​ ​required​ ​for​ ​computation​ ​of​​biogeochemical​

​variables​ ​in​ ​the​ ​water​ ​column,​ ​such​ ​as​ ​horizontal​ ​velocity​ ​fields,​ ​turbulent​ ​transports,​ ​photosynthetically​ ​active​​radiation​

​(PAR),​​and​​temperature.​​They​​contribute​​to​​pelagic​​diatoms​​and​​detritus​​following​​Lavoie​​et​​al.​​(2009):​​sloughed​​ice​​algae​

​enter​​either​​the​​large​​phytoplankton​​pool​​in​​which​​they​​continue​​to​​grow​​or​​the​​large​​detritus​​pool​​in​​which​​they​​sink​​rapidly​

​as aggregate products in the coupled ocean model.​

​Application and Relevance​

​CSIB​​has​​been​​applied​​to​​studies​​on​​the​​evolution​​of​​the​​ice-water​​exchange​​of​​dissolved​​inorganic​​carbon​​(Mortenson​​et​​al.,​

​2018) and ice-water-air exchange of dimethyl sulfide (Hayashida et al., 2017) in the marine Arctic.​

​SIESTA​

​Overview​

​The​​Sea-Ice​​Ecosystem​​State​​(SIESTA)​​model​​is​​a​​thermodynamic​​vertically-layered​​sea​​ice​​and​​snow​​model​​coupled​​to​​an​

​algal​​ecosystem​​model.​​The​​model​​and​​associated​​equations​​and​​parameterizations​​are​​described​​in​​Saenz​​and​​Arrigo​​(2012,​
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​2014).​ ​The​ ​model​ ​was​ ​developed​ ​to​ ​vertically​ ​resolve​ ​sea​ ​ice​ ​brine​ ​processes​ ​(and​ ​associated​ ​nutrient​ ​transfer),​ ​sea​ ​ice​

​optics,​​shortwave​​radiation​​transfer,​​and​​the​​sea​​ice​​algal​​productivity​​that​​is​​controlled​​by​​those​​processes.​​The​​model​​uses​​a​

​minimum​ ​layer​ ​thickness​ ​of​ ​2​ ​cm.​ ​When​ ​the​ ​snow​ ​or​ ​ice​ ​thicknesses​ ​become​ ​greater​ ​than​ ​is​ ​resolved​ ​by​ ​the​​maximum​

​number​​of​​layers​​(snow:​​26,​​ice:​​42),​​model​​layers​​grow​​and​​shrink​​in​​an​​accordion-fashion​​to​​preserve​​2​​cm​​resolution​​at​​the​

​surface and snow-ice boundaries.​

​State variables and structure​

​Sea​​ice​​algae​​in​​SIESTA​​is​​represented​​by​​a​​single​​(diatom)​​class​​of​​algae​​with​​a​​fixed​​stoichiometry,​​with​​internal​​units​​of​

​carbon​​(mg/m​​3​​).​​Algae​​may​​be​​present​​in​​any​​layer​​of​​sea​​ice.​​Besides​​algal​​carbon,​​the​​ecological​​state​​variables​​used​​by​​the​

​SIESTA​ ​model​ ​include​ ​temperature,​ ​salinity,​ ​density,​ ​particulate​ ​organic​ ​carbon​ ​(detritus​ ​that​ ​is​ ​remineralized​​to​​liberate​

​macronutrients),​ ​and​ ​4​ ​macronutrients​ ​(ammonium,​ ​nitrate,​ ​phosphate,​ ​silica).​ ​The​ ​model​ ​dynamically​ ​calculates​ ​sea​ ​ice​

​brine​ ​density​ ​and​ ​volume,​ ​and​ ​has​ ​parameterizations​​of​​snow​​metamorphosis,​​sea​​ice​​surface​​melt​​and​​ponding,​​snow-ice​

​formation,​​brine​​pumping​​and​​drainage,​​and​​enhanced​​convection​​in​​the​​skeletal​​layer​​of​​growing​​sea​​ice.​ ​Sea​​ice​​algae​​are​

​considered​​motile​​and​​can​​migrate​​downward​​at​​a​​limited​​rate,​​but​​do​​not​​migrate​​upward​​and​​are​​considered​​released​​to​​the​

​water column during bottom ice melt.​

​Coupling and boundary fluxes​

​SIESTA​ ​simulations​ ​in​ ​this​ ​manuscript​ ​were​ ​forced​ ​by​ ​time​ ​series​ ​of​ ​surface​ ​atmospheric​​and​​surface​​ocean​​parameters.​

​SIESTA​​is​​mass-​​and​​energy-conservative​​to​​the​​accuracy​​of​​its​​1st-order​​implicit​​solver.​​Coupling​​at​​the​​surface​​boundary​

​requires​​the​​following​​atmospheric​​parameters:​​air​​temperature,​​wind​​speed,​​air​​pressure,​​dew​​point​​temperature,​​cloud​​cover​

​(or​ ​downward​ ​longwave​​radiation),​​downwelling​​shortwave​​radiation)​​total​​precipitation.​ ​Coupling​​at​​the​​lower​​boundary​

​requires​​the​​following​​surface​​ocean​​parameters:​​temperature,​​salinity,​​and​​macronutrient​​concentrations​​(ammonia,​​nitrate,​

​phosphate,​ ​silica).​ ​SIESTA​ ​calculates,​​and​​can​​return​​to​​coupled​​models,​​energy​​and​​mass​​fluxes​​from​​the​​snow/ice/brine.​

​Boundary flux calculations in SIESTA are derived from CICE version 4 (Hunke and Lipscomb, 2008).​

​Applications and relevance​

​SIESTA has been used to help bound the contribution of sea ice algae to overall Southern Ocean primary production (Saenz​

​and Arrigo, 2014).  SIESTA is also coupled to a 1-dimensional vertical ocean model (KPP-Ecosystem-Ice [KEI]) for​

​investigation of dynamic-thermodynamic sea-ice-ocean-ecosystem controls and interactions (Saenz et al. 2023).​

​SIMBA​

​Overview​

​18​

​431​

​432​

​433​

​434​

​435​

​436​

​437​

​438​

​439​

​440​

​441​

​442​

​443​

​444​

​445​

​446​

​447​

​448​

​449​

​450​

​451​

​452​

​453​

​454​

​455​

​456​

​457​

​458​

​459​



​A​ ​comprehensive​ ​description​ ​of​ ​the​ ​Sea​ ​Ice​ ​Model​ ​for​ ​Bottom​ ​Algae​ ​(SIMBA)​ ​can​ ​be​​found​​in​​Castellani​​et​​al.​​(2017).​

​Different​​from​​Castellani​​et​​al.​​(2017)​​where​​the​​process​​of​​growth/melt​​was​​responsible​​for​​only​​algal​​loss,​​in​​the​​present​

​study it is applied to nutrients as well, and it is responsible for nutrient replenishment in the bottom of the ice.​

​State variables and structure​

​SIMBA resolves only 3 state variables:​

​●​ ​1 for sea-ice algae:​

​●​ ​1 for nutrients (nitrate)​

​●​ ​1 for detritus​

​The​ ​simulated​ ​biological​ ​processes​ ​are​ ​primary​ ​production​ ​and​ ​nutrient​ ​uptake,​ ​whereas​ ​respiration,​ ​mortality,​ ​and​

​remineralization​​are​​taken​​as​​constant.​​Equations​​are​​solved​​in​​mmol​​N​​m-3.​​Equations​​are​​solved​​in​​the​​bottom​​of​​the​​ice,​

​the thickness of the ice bottom can be set according to the available observations. In the case of N-ICE we use 10 cm.​

​Coupling and boundary fluxes​

​SIMBA​ ​is​ ​coupled​ ​with​ ​the​ ​underlying​ ​ocean​ ​through​ ​the​ ​growth​ ​and​ ​melt​ ​processes​ ​which​ ​are​ ​responsible​ ​for​ ​nutrient​

​exchanges​​and​​for​​algal​​loss.​​Ocean​​variables​​(i.e.,​​nutrients​​concentrations,​​ocean​​currents,​​and​​ocean​​temperature)​​must​​be​

​provided​​as​​forcing.​​Other​​required​​forcing​​includes​​ice​​and​​snow​​thickness,​​integrated​​downward​​shortwave​​radiation,​​and​

​atmospheric temperature.​

​Applications and relevance​

​SIMBA​​was​​developed​​to​​study​​algal​​phenology​​on​​a​​pan-Arctic​​scale​​in​​two​​different​​environments:​​level​​ice​​and​​deformed​

​ice.​​With​​this​​aim,​​SIMBA​​requires​​a​​prescribed​​physics.​​In​​Castellani​​et​​al.​​(2017)​​the​​physical​​constraints​​were​​provided​​by​

​the​​MITgcm​​(Marshall​​et​​al.,​​1997;Losch​​et​​al,​​2010).​ ​This​​characteristic​​of​​the​​model​​enhances​​its​​flexibility​​in​​applications​

​and studies with different models (see e.g., Castellani et al., 2021).​

​19​

​460​

​461​

​462​

​463​

​464​

​465​

​466​

​467​

​468​

​469​

​470​

​471​

​472​

​473​

​474​

​475​

​476​

​477​

​478​

​479​

​480​

​481​

​482​



​Figure​​S1.​ ​RV​​Lance​​drift​​between​​18​​April​​and​​5​​June​​2015​​during​​the​​drift​​of​​Floe​​3​​of​​the​​N-ICE2015​​expedition,​​from​

​the​​Nansen​​Basin​​and​​across​​the​​Yermak​​Plateau.​​The​​segment​​corresponding​​to​​the​​time​​span​​of​​the​​simulations​​described​

​in this study is shown in red (Duarte et al., 2017).​
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