
We would like to thank the reviewer for their constructive comments. We will address each
point raised by the reviewer in the original order and numbering. We have highlighted the
reviewer’s comments in yellow. Changes made to the manuscript in response are included
in blue highlights.
Major points:
1. The material is not put well in the context of prior work, not only on measurement (e.g.
Balazji et al 2017, whose results differ from those presented here - my quick calculation
from their table 2 suggests the problem is of order 30%, so I don't know where the 10-20%
they use as their motivation came from), and the large literature on pilot jobs on
distributed and high throughput computing. The concept of wrapping things together is
quite well established, but that leads me to my second concern:
We thank the reviewer for comment. We agree that the figure representing the overhead
due to queue time was unclear. We have therefore changed the introduction (lines 30–35)
to clarify it. It now reads:
However, lately the community has drawn attention to the efficiency of the simulations,
taking into account the most demanding part along with the postprocessing, failure, and
time spent in the queue. With this in mind, Balaji et al. 2017 proposed a set of performance
metrics for Earth system model simulations. Among these metrics, the authors proposed
the simulated years per day (SYPD), which is the ratio of the time simulated in years with
respect to the runtime of the job in days, as well as the actual simulated years per day
(ASYPD), which is the simulated time in years divided by the the time-to-solution of the
simulation. Thus, this metric now accounts for time in the queue and also system
interruptions.
In Acosta et al. 2024, the authors computed these metrics for 33 CMIP6 simulations
executed on 14 machines. Their analysis showed that the difference between ASYPD and
SYPD ranged from 0% to 78%. But, they noted that not all institutions reported ASYPD
consistently. Some accounted for both interruptions and queue time, while others
accounted only for queue time. For those institutions that only accounted for queue time,
the spread was between 10% and 20%. The authors therefore concluded ``that queuing
time represents an increment of around 10%–20% of the speed of the ESM.''
Regarding the contextualization of the work, we agree that pilot-job systems share a
fundamental characteristic with wrappers, making them an essential topic for the
introduction. Moreover, this community would also benefit of the results and discussions
of our work.
In addition to the pilot-job systems, we have expanded the introduction to include other
workflow managers that offer solutions similar to those of Autosubmit’s wrappers. Lines
53-59 have been altered and now read:



Aggregation was implemented in other fields, with different degrees of sophistication. In
Earth Sciences, Mickelson et al. 2020 suggested using Cylc's feature to submit multiple jobs
to reduce the queue time. Both Aiida (Huber et al. 2020) and Snakemake (Mölder et al.
2021)— from the material and life sciences fields, respectively — provide a way of to
submit multiple workflow tasks as a single job. The former implements this via a
``metascheduler'' plugin (HyperQueue plugin), while the latter refers to aggregation as
``grouping.''
Moreover, Pilot-job systems were developed to increase workflow throughput, but later
evolved into more sophisticated solutions (Turilli et al. 2018). These systems are
characterized by implementing "resource placeholders, multi-level scheduling, and
coordination patterns to enable task-level distribution and parallelism on multi-tenant
resources." One major example of a modern pilot-job system is Radical-PILOT (Merzky et
al., 2021)
Wrappers share some of the features of a typical pilot-job system. Wrappers provide a
simpler ``resource placeholder'', where all the task requests are added into a large
submission. However, their objective is to either increase throughput by reducing
submissions or to comply with maximum job restrictions. Therefore, besides fault
tolerance, wrappers do not improve task scheduling and coordination within the allocation.
2. One of the reasons that this is not done substantially in large-scale climate simulation is
that the "chunks" of simulation (their nomenclature) provide natural checkpointing, and
with bigger jobs than those they discuss model and hardware failures do lead to the need
to checkpoint. Hardware failures are more prevalent now, and with bigger jobs that can be
problematic. Perhaps this is why they only did Vertical Wrapping (they are only using one
node per job if they only need 96 cores). Possibly horizontal wrapping would be more
subject to this issue, but it might also be possible for the workflow manager to cope.
We thank the reviewer for the comment on checkpointing. We have expanded the
introduction to clarify that the wrappers neither remove nor alter the frequency of the
application's checkpoints.
Additionally, we explained the reasoning behind each type of wrapper (vertical and
horizontal). We have revised the manuscript in the "Wrapper" subsection of the
"Background" section (lines 116-126), that now reads:
In a shared HPC environment, queuing for resources is ever so frequent (Patel et al., 2020),
and users have a limited impact on the priority of their jobs given the importance of fair
share.
To reduce the time-to-solution of an Earth System Model (ESM) simulation workflow, the
Autosubmit developers came up with a technique called task aggregation or wrapping.
Their idea was to increase throughput by avoiding queuing subsequent tasks. For this



reason they implemented vertical wrappers, which append workflow tasks into a longer
submission.
In addition to vertical wrappers, horizontal wrappers were developed to comply with the
platform's policy regarding the maximum number of jobs in the queue.
Finally, there is also the combination of the two types: vertical-horizontal and horizontal-
vertical. A vertical-horizontal is made of multiple vertical wrappers running concurrently.
Similarly, the horizontal-vertical is a single job made of multiple subsequent horizontal
wrappers.
In all wrapper types, the dependencies among the tasks are respected and the underlying
application task is not altered by their employment. Tasks are submitted together to the
remote platform. Therefore, all steps normally performed, such as saving the restart
conditions (or checkpointing), are still executed. Moreover, if a task fails within the
aggregated job, Autosubmit will relaunch the failed task without the need of a new job
submission.
In this work, we will focus on vertical wrappers, as they are the proposed solution for the
long queue times.
In this work, we will focus on vertical wrappers, as they are the proposed solution for long
queue times.
We rewritten the abstract to clarify that wrappers do not alter the underlying application
(lines 2–19). The new text reads as follows:
High Performance Computing (HPC) is commonly employed to run high-impact Earth
System Model (ESM) simulations, such as those for climate change. However, running
workflows of ESM simulations on cutting-edge platforms can take a long time due to the
congestion of the system and the lack of coordination between current HPC schedulers
and workflow manager systems (WfMS). The Earth Sciences community has estimated the
time in queue to be between 10% to 20% of the runtime in climate prediction experiments,
the most time-consuming exercise. To address this issue, the developers of Autosubmit, a
WfMS tailored for climate and air quality sciences, have developed wrappers to submit
multiple subsequent workflow tasks -- the atomic unit of compute in the workflow -- as
single submission, without changing them. However, although wrappers are widely used in
production for community models such as EC-Earth3, MONARCH, and Destination Earth
simulations, to our knowledge, the benefits and potential drawbacks have never been
rigorously evaluated. Later, the developers of Autosubmit noticed that the performance of
the wrappers was related to the past utilization of the user which reflects on job priority in
Slurm via the fair share factor. The objective of this paper is to quantify the impact of
wrapping subsequent tasks on queue time and understand its relationship with the fair
share and the job's CPU and runtime request. To do this, we used a Slurm simulator to



reproduce the behavior of the scheduler and, to recreate a representative usage of an HPC
platform, we generated synthetic static workloads from data of the LUMI supercomputer
and a dynamic workload from a past flagship HPC platform. As an example, we introduced
jobs modeled after the MONARCH air quality application in these workloads, and we
tracked their queue time. We found that, by simply joining tasks, the total time-to-solution
of the simulation reduces up to 7% with respect to the runtime of the simulations, and we
believe that this value is larger the longer the workflow. This saving translates to absolute
terms of about eight days less wasted in queue time for half of the simulations from the IS-
ENES3 consortium of CMIP6 simulations. We also identified a high inverse correlation of -
0.87, between the queue time and the fair share factor in the static experiments.
We have also changed the introduction (lines 48-51) to further emphasize that using
wrappers does not affect the application.
Observing the impact of fair share on the priority, the developers of Autosubmit
(Manubens et al., 2016), a Workflow Manager System (WfMS) designed for climate and air-
quality applications, have implemented a task aggregation technique called ``wrappers.''
The idea is that Autosubmit aggregates, or wraps, multiple subsequent tasks into a single
job submission to save the users from queuing multiple jobs under a low priority without
changing the underlying script that executes the task. Additionally, wrapping is also
employed for concurrent tasks in order to comply with the maximum number of jobs in the
queue.
3. The use of MONARCH and 96 core jobs (which are small for these systems) means that
these results might not be typical of bigger jobs, not least because most large systems also
prioritise bigger jobs, and so the fair-share factor influence may be less important. There is
a large problem space that has not been examined. It's certainly the case that the CMIP
extrapolation cannot be substantiated without exploring this in their simulations.
We thank the reviewer for the comment. We acknowledge that the jobs used in our
experiments (96 cores) are small compared to typical CMIP simulations. And it is absolutely
true that bigger jobs, in terms of cores, normally have more priority from the size factor.
But our subject of study are the vertical wrappers, which were developed to avoid
requeuing. Therefore we have clarified our hypothesis in lines 62-64 and now it reads:
Although aggregation is utilized in other fields and also by Autosubmit users, with positive
impact reported, there is a lack of understanding of the reasons and conditions under
which aggregating reduces queue time. Therefore, in this work, we tested whether
wrapping subsequent tasks together reduces queue time and if the fair share is the most
important factor in reducing queue time.
Moreover, following on the reviewer’s comment on the impact of size and fair share, we
have extended the subsection “Scheduling Algorithms of Slurm” in the background section,



lines 85-94, to explain how each one of the factors of the priority are computed. Now it
reads:
When a job is submitted, Slurm immediately attempts to allocate resources to it. If no
resources are available, the job will be placed in a queue. This queue is sorted in
descending order according to the priority integer, which updates periodically.
Slurm’s scheduling design consists of two coordinated algorithms that traverse the ordered
list of queued jobs and attempt to allocate resources to them. The main algorithm tries to
schedule as many jobs as possible from the queue. If it fails because of a lack of resources,
it breaks the loop and sleeps. There are two options for the second algorithm: built-in and
backfill. The first option works like the main algorithm. The second option is the backfill
algorithm (Srinivasan et al., 2002).
The backfill algorithm is an optimization technique that allows jobs with lower priority to be
scheduled before higher-priority jobs, as long as they do not interfere with the start time of
the higher-priority jobs. Therefore, the smaller the job is in terms of wallclock and/or CPUs
requested, the more likely it is to be backfilled. Without considering the effects of the
backfill algorithm, jobs with higher priority are scheduled earlier.
Slurm uses the multifactor policy by default to compute the priority integer. In Slurm
terminology, factors are always floats stored in double-precision between zero and one.
The priority is computed as a weighted sum of the following factors: age, size, association,
fair share, and quality of service (QoS). A 32-bit encoded integer weight is associated with
each of these values by the configuration.
The age factor, which is the one related to the time in queue, starts at zero and linearly
grows until reaching the maximum, which is configured by setting the flag PriorityMaxAge
in the Slurm configuration file. The default is seven days. In Equation 1 we have the
expression used to compute the factor where 𝑡 is the time elapsed from submission,
discounted by the time voluntarily held by user, and 𝑇 is the total amount of seconds set by
the administrator with flag PriorityMaxAge.
𝑎𝑖 𝑡 =

𝑡
𝑇 ,𝑡 ≤ 𝑇
1,𝑡 ≥ 𝑇

. (1)
By default, the size factor is the proportion of CPUs used by the job with respect to the
total available. Therefore, when the whole machine is requested, the maximum is reached.
System administrators can invert this by setting the flag PriorityFavorSmall}to True, which
would give job requesting a single CPU the maximum value.
The size factor is computed as in Equation 2, where 𝑟𝑖 is the number of CPUs requested by
job 𝑖 and 𝑆 is the total number of CPUs on the machine.



𝑠𝑖 =
𝑟𝑖
𝑆    𝑜𝑟   𝑠𝑖 =

𝑆−𝑟𝑖+1
𝑆 .(2)

QoS stands for quality of service. It is a mechanism that system administrators normally
use to benefit smaller jobs (such as debug execution), since by default Slurm gives more
priority to larger jobs. From the user side, this means higher priority upon submission,
hence less waiting time, at the cost of a more constrained job submission. System
administrators typically create different QoSs according to job length and size — for
example, standard, debug, xlarge, and xlong.
Each QoS is configured with an associated priority, which is another integer value. Then the
factor is computed as the proportion with respect to the largest priority of all QoSs.
Therefore, if the job 𝑖 is submitted to QoS 𝑢 with priority 𝑞

𝑢
, its QoS factor is calculated

according to Equation 3, where 𝑄 is the set of the priorities of all QoSs configured by the
system administrator.
𝑞

𝑖
=

𝑞
𝑢

𝑚𝑎𝑥𝑞∈𝑄𝑞 .(3)
The fair share factor is the one that aims to balance the resources among users. It is
computed in two different ways, which will be addressed in its separate Section 2.2.
Finally, the job’s priority is computed according to Equation 4. 𝑃𝑖 𝑡 Is job 𝑖’s priority at time
𝑡. 𝑎𝑖 is the age factor, 𝑤𝑎 the age factor weight, 𝑠𝑖 is the size factor, 𝑤𝑠 the weight factor
associated with size, 𝑓

𝑖
is the fair share of the user that launched job 𝑖, 𝑤𝑓 is the weight, and

finally 𝑞
𝑖
and 𝑤𝑞 are the factor and weight associated to QoS.

𝑃𝑖 𝑡 = 𝑎𝑖 𝑡 ⋅ 𝑤𝑎 + 𝑠𝑖 ⋅ 𝑤𝑠 + 𝑓
𝑖

⋅ 𝑤𝑓 + 𝑞
𝑖
𝑤𝑞 . (4)

Finally, given the weights that size and fair share factors are normally assigned, we have
that to match an extremely low fair share it would be necessary to make an extremely large
request in CPU resources.
For example, in MareNostrum 5 — and it also applied for the previous version of the
machine — the highest weight is the given to the QoS factor (10^6), followed by age and
fair share (10^5), and finally size (10^4). Taking the largest simulation CMIP6 simulation
analyzed by Acosta et al. 2024 in terms of CPUs, NERC-HadGEM3-GC3.1-HH, which
requested 12,024 of the 118,080 available CPUs in the Archer x30 system, the size factor
adds to the job a priority of 1,018 (12,024/118,080*10^4 = 1,018). This is nearly matched by
an extremely low fair share of 0.01 (0.01*10^5 = 1,000). In the case of Destination Earth,
their 30 year simulation runs on 305 nodes of the MareNostrum 5’s general partition. This
means the size factor adds to the job a priority of 470 (35,160/725,760*10^5 = 470) , as
35,160 out of the 725,760 available cores are requested. The aforementioned fair share of
0.01 (0.01*10^5 = 1,000) more than doubles the priority that the size factor gives to the job.



This argument is fundamentally dependent on the configuration of the system. What we
observe is that the majority of the EuroHPC systems have weights that make the fair share
more impactful on the job’s priority than the size. In Lumi, both have the same weight
(1,000), on MareNostrum fair share has ten times more impact (100,000 for fair share and
10,000 to size), and Leonardo is the only system that places a thousand times more weight
to the size (10,000,000) versus the fair share (25,000).
Minor points:
1. There is a language (ASYPD, SYPD) for the difference between the overall throughput and
the peak throughput that was introduced in Balaji et al (2017) - a paper that shares a co-
author with this one, so it is surprising that language is not used, and that Balaji et al is not
cited
We appreciate the suggestion to include the ASYPD and SYPD metrics since they are the
standard for measuring the performance of climate and weather simulations. However,
despite their strengths, they have an important temporal component, i.e., the total time
simulated, which does not translate to other applications. For example, aggregation could
be emplyed in genome sequence alignment applications typically executed with
Snakemake [1] or material sciences simulations using SIESTA [2] with AiiDa [3]. Therefore,
we prefer to continue using the universal metrics of time-to-solution and queue time,
which applies across all fields.
But, following on the reviewer’s comment, we have included Balaji et al (2017) reference to
the manuscript, where we introduce the issue of queue time and climate simulations (lines
30-35). It now reads:
However, lately the community has drawn attention to the efficiency of the simulations,
taking into account the most demanding part along with the postprocessing, failure, and
time spent in the queue. With this in mind, Balaji et al. 2017 proposed a set of performance
metrics for Earth system model simulations. Among these metrics, the authors proposed
the simulated years per day (SYPD), which is the ratio of the time simulated in years with
respect to the runtime of the job in days, as well as the actual simulated years per day
(ASYPD), which is the simulated time in years divided by the the time-to-solution of the
simulation. Thus, this metric now accounts for time in the queue and also system
interruptions.
In Acosta et al. 2024, the authors computed these metrics for 33 CMIP6 simulations
executed on 14 machines. Their analysis showed that the difference between ASYPD and
SYPD ranged from 0% to 78%. But, they noted that not all institutions reported ASYPD
consistently. Some accounted for both interruptions and queue time, while others
accounted only for queue time. For those institutions that only accounted for queue time,
the spread was between 10% and 20%. The authors therefore concluded ``that queuing
time represents an increment of around 10%–20% of the speed of the ESM.''



[1] https://workflowhub.eu/workflows/547
[2] https://doi.org/10.1063/5.0005077
[3]
https://phantomsfoundation.com/AI4AM/2025/Abstracts/AI4AM2025_Garrido_Jaime_134.p
df
2. I had not seen Abhinit etal 2022, so I looked at it. I do not think it is saying the same thing
as stated here. The problem in climate is unlikely to reach a need to wrap more than
dozens of tasks (any more and the checkpoint issue dominates), whereas Abhinit et all
were looking at wrapping thousands of tasks - in their case the issue is that most SLURM
configurations do not have enough memory or resources to deal with the look ahead for
queues with thousands of tasks. (Those that do are typically configured for High
Throughput Computing, which is a different configuration to those encountered in most
HPC sites where climate simulation is undertaken.) Abhinit et al's discussion is more
relevant to Dask workflows than simulation workflows. That said, it is indeed the case that
HPC sites often limit the number of jobs users can have in queues, which is why tools like
Autosubmit and Cylc exist. The issue of number of jobs is not the same as the issue of the
queuing time for those jobs.
We thank the reviewer for their comments on the Abhinit et al. 2022 paper. We agree that
our intention with the citation was unclear, therefore we removed it.
We have revised the introduction to include the aforementioned pilot-job systems, as well
as other workflow managers that implement solutions similar to those of Autosubmit’s
wrappers and removed this reference. Our goal is to provide context for the reader and
clarify that we do not claim novelty with wrapping.
The introduction, at lines 53-59, now reads as follows:
Aggregation was implemented in other fields, with different degrees of sophistication. In
Earth Sciences, Mickelson et al. 2020 suggested using Cylc's feature to submit multiple jobs
to reduce the queue time. Both Aiida (Huber et al. 2020) and Snakemake (Mölder et al.
2021)— from the material and life sciences fields, respectively — provide a way of to
submit multiple workflow tasks as a single job. The former implements this via a
``metascheduler'' plugin (HyperQueue plugin), while the latter refers to aggregation as
``grouping.''
Moreover, Pilot-job systems were developed to increase workflow throughput, but later
evolved into more sophisticated solutions (Turilli et al. 2018). These systems are
characterized by implementing "resource placeholders, multi-level scheduling, and
coordination patterns to enable task-level distribution and parallelism on multi-tenant

https://workflowhub.eu/workflows/547
https://doi.org/10.1063/5.0005077
https://phantomsfoundation.com/AI4AM/2025/Abstracts/AI4AM2025_Garrido_Jaime_134.pdf
https://phantomsfoundation.com/AI4AM/2025/Abstracts/AI4AM2025_Garrido_Jaime_134.pdf


resources." One major example of a modern pilot-job system is Radical-PILOT (Merzky et
al., 2021)
Wrappers share some of the features of a typical pilot-job system. Wrappers provide a
simpler ``resource placeholder'', where all the task requests are added into a large
submission. However, their objective is to either increase throughput by reducing
submissions or to comply with maximum job restrictions. Therefore, besides fault
tolerance, wrappers do not improve task scheduling and coordination within the allocation.
3. The decision to use pilot jobs for "wrappers" is not surprising, as pilot jobs have a long
history, and a significant literature, none of which is referenced here.
We thank the reviewer for pointing out the absence of job-pilot systems in our
contextualization. We have included an overview of pilot-job systems and cited a modern
implementation of them in the introduction, which now reads as follows (lines 53–59):
Aggregation was implemented in other fields, with different degrees of sophistication. In
Earth Sciences, Mickelson et al. 2020 suggested using Cylc's feature to submit multiple jobs
to reduce the queue time. Both Aiida (Huber et al. 2020) and Snakemake (Mölder et al.
2021)— from the material and life sciences fields, respectively — provide a way of to
submit multiple workflow tasks as a single job. The former implements this via a
``metascheduler'' plugin (HyperQueue plugin), while the latter refers to aggregation as
``grouping.''
Moreover, Pilot-job systems were developed to increase workflow throughput, but later
evolved into more sophisticated solutions (Turilli et al. 2018). These systems are
characterized by implementing "resource placeholders, multi-level scheduling, and
coordination patterns to enable task-level distribution and parallelism on multi-tenant
resources." One major example of a modern pilot-job system is Radical-PILOT (Merzky et
al., 2021)
Wrappers share some of the features of a typical pilot-job system. Wrappers provide a
simpler ``resource placeholder'', where all the task requests are added into a large
submission. However, their objective is to either increase throughput by reducing
submissions or to comply with maximum job restrictions. Therefore, besides fault
tolerance, wrappers do not improve task scheduling and coordination within the allocation.
4. 7% is interesting, but they then say this corresponds to 8 days of their CMIP project,
which means that they were running for 3-4 months. Saving eight days sounds less
impressive in that context, and surely suggests on that timescale background workload
would influence things by at least the same factor (that is our experience). The use of a
short selected trace means this longer-term variability is not sampled, but the more
important issue is the influence of JobSizeWeight and JobSizeFactor.



We thank the reviewer for pointing out the 7% gain and its implications for CMIP6
simulations. We agree that our explanation was not clear enough.
First, we would like to point out that aggregation is a simple and agnostic technique. It is
independent of the underlying application, workflow manager, and platform. Contrast
these gains with the cost-benefit of optimizing the code of these mature applications,
which requires a lot of effort and platform-specific solutions.
Second, we would like to clarify that the 7% is the maximum difference between the time-
to-solution of the unwrapped minus the wrapped workflow divided by the runtime of the
workflow. We have observed across all the fair share values, that the wrapped workflow
was shorter on average (in terms of time-to-solution) than its unwrapped counterpart, as
indicated by the green triangle in Figure 6.
This takes us to the gains of using wrappers. These come from 1) jobs stay about the same
or less in queue and 2) there are many times less jobs (if you wrap in groups of 10 a
workflow with 50 sequential jobs, you would have 10 times less jobs submitted to the
remote platform). Therefore, the longer the workflow and the wrappers, the larger should
be the gains.
We clarified this in the manuscript by adding the rewriting the first paragraph of the
discussion section, lines 266-273 . It now reads:
As seen in Figure 6, we achieved a reduction in queue time across all fair share values in
the dynamic results. On average, this reduction was 1%, reaching up to a 7% decrease in
queue time relative to the total workflow runtime. These results support the hypothesis
that the reduction is caused by avoiding multiple submissions.
Since we observed consistent reductions when using aggregation, we anticipate greater
gains in longer workflows because longer wrappers can be created, reducing the time
spent waiting for resources.
Additionally, the 7% figure could be greater if we consider that the machine had only two
days of congestion per week. Current flagship systems are usually congested, and it is not
uncommon for jobs to queue for days.
Regarding the influence of JobSizeWeight and JobSizeFactor: we agree that we should be
more precise about the behavior of all the scheduling factors. For this reason, we extended
the “Scheduling Algorithm of Slurm” subsection to include the computation of all the
factors and the final expression to compute the job’s priority.
5. It is a pity that the discussion of horizontal wrappers was not followed through as that is
likely to result in better throughput for ensembles where there is any risk of a failure
during execution.



We greatly value the reviewer’s comment about increasing throughput using horizontal
wrappers. Therefore, we included it in the rewritten "Wrappers" subsection of the
"Background" section (lines 116–126). It now reads:
In a shared HPC environment, queuing for resources is ever so frequent (Patel et al., 2020)
and users have a limited impact on the priority of their jobs given the importance of fair
share.
To reduce the time-to-solution of an Earth System Model (ESM) simulation workflow, the
Autosubmit developers came up with a technique called task aggregation or wrapping.
Their idea was to increase throughput by avoiding queuing subsequent tasks. For this
reason they implemented vertical wrappers, which append workflow tasks into a longer
submission.
In addition to vertical wrappers, horizontal wrappers were developed to comply with the
platform's policy regarding the maximum number of jobs in the queue.
Finally, there is also the combination of the two types: vertical-horizontal and horizontal-
vertical. A vertical-horizontal is made of multiple vertical wrappers running concurrently.
Similarly, the horizontal-vertical is a single job made of multiple subsequent horizontal
wrappers.
In all wrapper types, the dependencies among the tasks are respected and the underlying
application task is not altered by their employment. Tasks are submitted together to the
remote platform. Therefore, all steps normally performed, such as saving the restart
conditions (or checkpointing), are still executed. Moreover, if a task fails within the
aggregated job, Autosubmit will relaunch the failed task without the need of a new job
submission.
In this work, we will focus on vertical wrappers, as they are the proposed solution for the
long queue times.
6. The linear correlation exposed probably comes directly from the equation used by
SLURM - surely they should include that equation and discuss the influence of all the key
factors and relate to their results?
We thank the reviewer for their remark on the linear correlation. The reviewer’s suspicion
of this correlation is correct. This fact is explained by the weighted sum that Slurm uses to
calculate the job priority.
To clarify this in the manuscript, we extended the section on Slurm's scheduling algorithms
to explain how each factor is computed and how the job's priority is expressed (lines 85-
94). It now reads:



When a job is submitted, Slurm immediately attempts to allocate resources to it. If no
resources are available, the job will be placed in a queue. This queue is sorted in
descending order according to the priority integer, which updates periodically.
Slurm’s scheduling design consists of two coordinated algorithms that traverse the ordered
list of queued jobs and attempt to allocate resources to them. The main algorithm tries to
schedule as many jobs as possible from the queue. If it fails because of a lack of resources,
it breaks the loop and sleeps. There are two options for the second algorithm: built-in and
backfill. The first option works like the main algorithm. The second option is the backfill
algorithm (Srinivasan et al., 2002).
The backfill algorithm is an optimization technique that allows jobs with lower priority to be
scheduled before higher-priority jobs, as long as they do not interfere with the start time of
the higher-priority jobs. Therefore, the smaller the job is in terms of wallclock and/or CPUs
requested, the more likely it is to be backfilled. Without considering the effects of the
backfill algorithm, jobs with higher priority are scheduled earlier.
Slurm uses the multifactor policy by default to compute the priority integer. In Slurm
terminology, factors are always floats stored in double-precision between zero and one.
The priority is computed as a weighted sum of the following factors: age, size, association,
fair share, and quality of service (QoS). A 32-bit encoded integer weight is associated with
each of these values by the configuration.
The age factor, which is the one related to the time in queue, starts at zero and linearly
grows until reaching the maximum, which is configured by setting the flag PriorityMaxAge
in the Slurm configuration file. The default is seven days. In Equation 1 we have the
expression used to compute the factor where 𝑡 is the time elapsed from submission,
discounted by the time voluntarily held by user, and 𝑇 is the total amount of seconds set by
the administrator with flag PriorityMaxAge.
𝑎𝑖 𝑡 =

𝑡
𝑇 ,𝑡 ≤ 𝑇
1,𝑡 ≥ 𝑇

. (1)
By default, the size factor is the proportion of CPUs used by the job with respect to the
total available. Therefore, when the whole machine is requested, the maximum is reached.
System administrators can invert this by setting the flag PriorityFavorSmall}to True, which
would give job requesting a single CPU the maximum value.
The size factor is computed as in Equation 2, where 𝑟𝑖 is the number of CPUs requested by
job 𝑖 and 𝑆 is the total number of CPUs on the machine.
𝑠𝑖 =

𝑟𝑖
𝑆 𝑜𝑟𝑠𝑖 =

𝑆−𝑟𝑖+1
𝑆 .(2)



QoS stands for quality of service. It is a mechanism that system administrators normally
use to benefit smaller jobs (such as debug execution), since by default Slurm gives more
priority to larger jobs. From the user side, this means higher priority upon submission,
hence less waiting time, at the cost of a more constrained job submission. System
administrators typically create different QoSs according to job length and size — for
example, standard, debug, xlarge, and xlong.
Each QoS is configured with an associated priority, which is another integer value. Then the
factor is computed as the proportion with respect to the largest priority of all QoSs.
Therefore, if the job 𝑖 is submitted to QoS 𝑢 with priority 𝑞

𝑢
, its QoS factor is calculated

according to Equation 3, where 𝑄 is the set of the priorities of all QoSs configured by the
system administrator.
𝑞

𝑖
=

𝑞
𝑢

𝑚𝑎𝑥𝑞∈𝑄𝑞 .(3)
The fair share factor is the one that aims to balance the resources among users. It is
computed in two different ways, which will be addressed in its separate Section 2.2.
Finally, the job’s priority is computed according to Equation 4. 𝑃𝑖 𝑡 Is job 𝑖’s priority at time
𝑡. 𝑎𝑖 is the age factor, 𝑤𝑎 the age factor weight, 𝑠𝑖 is the size factor, 𝑤𝑠 the weight factor
associated with size, 𝑓

𝑖
is the fair share of the user that launched job 𝑖, 𝑤𝑓 is the weight, and

finally 𝑞
𝑖
and 𝑤𝑞 are the factor and weight associated to QoS.

𝑃𝑖 𝑡 = 𝑎𝑖 𝑡 ⋅ 𝑤𝑎 + 𝑠𝑖 ⋅ 𝑤𝑠 + 𝑓
𝑖

⋅ 𝑤𝑓 + 𝑞
𝑖
𝑤𝑞 . (4)

We have also included the following comment about the linear relationship of the priority
with respect to the fair share in the discussion (lines 287-288):
Finally, Figure 5 shows the expected linear relationship between priority and fair share.
This is due to the weighted sum that Slurm uses to compute the priority in Equation 4. The
slope of the fitted line, 84,374, nearly matches the fair share weight of the Slurm
configuration that we used, which is 100,000.


