
We would like to thank the reviewer for their constructive assessment of our submission.
We will respond to each point in the order listed by the reviewer. We have highlighted the
reviewer’s comments in yellow and the changes made to the manuscript in response in
blue.
(Technical report) The quantitative results are compelling and offer valuable insights for
optimizing workflow submissions on congested HPC systems. However, there are still
significant issues. I agree with another reviewer that the submission is much like a
technical report, instead of a scientific paper. Further more, several technical problems
should be addressed.
We appreciate the feedback and acknowledge that our submission appears to be a
technical report. To address this, we revised the manuscript to provide more
contextualization of our work within the current state of research and clarified the
hypothesis.
Specifically, we expanded the introduction of this work to include a thorough state-of-the-
art overview. The field of workflows is notoriously compartmentalized, but we have
covered examples from multiple fields. Among the changes, we have included references
to tools used in life and material sciences. Additionally, we have included pilot-job systems
whose community will also benefit from this work because they also aggregate tasks into a
large submissions. These changes were included in lines 53–59 and read as follows:
Aggregation was implemented in other fields, with different degrees of sophistication. In
Earth Sciences, Mickelson et al. 2020 suggested using Cylc's feature to submit multiple jobs
to reduce the queue time. Both Aiida (Huber et al. 2020) and Snakemake (Mölder et al.
2021)— from the material and life sciences fields, respectively — provide a way of to
submit multiple workflow tasks as a single job. The former implements this via a
``metascheduler'' plugin (HyperQueue plugin), while the latter refers to aggregation as
``grouping.''
Moreover, Pilot-job systems were developed to increase workflow throughput, but later
evolved into more sophisticated solutions (Turilli et al. 2018). These systems are
characterized by implementing "resource placeholders, multi-level scheduling, and
coordination patterns to enable task-level distribution and parallelism on multi-tenant
resources." One major example of a modern pilot-job system is Radical-PILOT (Merzky et
al., 2021)
Wrappers share some of the features of a typical pilot-job system. Wrappers provide a
simpler ``resource placeholder'', where all the task requests are added into a large
submission. However, their objective is to either increase throughput by reducing
submissions or to comply with maximum job restrictions. Therefore, besides fault
tolerance, wrappers do not improve task scheduling and coordination within the allocation.
We have expanded the paragraph that quantifies the queue time issue in climate
simulations. Lines 30-34 now read:



However, lately the community has drawn attention to the efficiency of the simulations,
taking into account the most demanding part along with the postprocessing, failure, and
time spent in the queue. With this in mind, Balaji et al. 2017 proposed a set of performance
metrics for Earth system model simulations. Among these metrics, the authors proposed
the simulated years per day (SYPD), which is the ratio of the time simulated in years with
respect to the runtime of the job in days, as well as the actual simulated years per day
(ASYPD), which is the simulated time in years divided by the the time-to-solution of the
simulation. Thus, this metric now accounts for time in the queue and also system
interruptions.
In Acosta et al. 2024, the authors computed these metrics for 33 CMIP6 simulations
executed on 14 machines. Their analysis showed that the difference between ASYPD and
SYPD ranged from 0% to 78%. But, they noted that not all institutions reported ASYPD
consistently. Some accounted for both interruptions and queue time, while others
accounted only for queue time. For those institutions that only accounted for queue time,
the spread was between 10% and 20%. The authors therefore concluded ``that queuing
time represents an increment of around 10%–20% of the speed of the ESM.''
In the Background section, where we introduce the wrappers, we have included their
design goal (according to the Autosubmit developers; we do not claim it is our original
idea). The wrappers subsection now reads (lines 116–126):
In a shared HPC environment, queuing for resources is ever so frequent (Patel et al., 2020),
and users have a limited impact on the priority of their jobs given the importance of fair
share.
To reduce the time-to-solution of an Earth System Model (ESM) simulation workflow, the
Autosubmit developers came up with a technique called task aggregation or wrapping.
Their idea was to increase throughput by avoiding queuing subsequent tasks. For this
reason they implemented vertical wrappers, which append workflow tasks into a longer
submission.
In addition to vertical wrappers, horizontal wrappers were developed to comply with the
platform's policy regarding the maximum number of jobs in the queue.
Finally, there is also the combination of the two types: vertical-horizontal and horizontal-
vertical. A vertical-horizontal is made of multiple vertical wrappers running concurrently.
Similarly, the horizontal-vertical is a single job made of multiple subsequent horizontal
wrappers.
In all wrapper types, the dependencies among the tasks are respected and the underlying
application task is not altered by their employment. Tasks are submitted together to the
remote platform. Therefore, all steps normally performed, such as saving the restart
conditions (or checkpointing), are still executed. Moreover, if a task fails within the
aggregated job, Autosubmit will relaunch the failed task without the need of a new job
submission.



In this work, we will focus on vertical wrappers, as they are the proposed solution for the
long queue times.
In this work, we will focus on vertical wrappers, as they are the proposed solution for long
queue times.
Finally, we have further detailed our original hypothesis regarding the vertical wrappers in
the introduction (lines 62–64). It now reads:
Although aggregation is utilized in other fields and also by Autosubmit users, with positive
impact reported, there is a lack of understanding of the reasons and conditions under
which aggregating reduces queue time. Therefore, in this work, we tested whether
wrapping subsequent tasks together reduces queue time and if the fair share is the most
important factor in reducing queue time.
And we clarified the abstract (lines 2-19). It now reads:
High Performance Computing (HPC) is commonly employed to run high-impact Earth
System Model (ESM) simulations, such as those for climate change. However, running
workflows of ESM simulations on cutting-edge platforms can take a long time due to the
congestion of the system and the lack of coordination between current HPC schedulers
and workflow manager systems (WfMS). The Earth Sciences community has estimated the
time in queue to be between 10% to 20% of the runtime in climate prediction experiments,
the most time-consuming exercise. To address this issue, the developers of Autosubmit, a
WfMS tailored for climate and air quality sciences, have developed wrappers to submit
multiple subsequent workflow tasks -- the atomic unit of compute in the workflow -- as
single submission, without changing them. However, although wrappers are widely used in
production for community models such as EC-Earth3, MONARCH, and Destination Earth
simulations, to our knowledge, the benefits and potential drawbacks have never been
rigorously evaluated. Later, the developers of Autosubmit noticed that the performance of
the wrappers was related to the past utilization of the user which reflects on job priority in
Slurm via the fair share factor. The objective of this paper is to quantify the impact of
wrapping subsequent tasks on queue time and understand its relationship with the fair
share and the job's CPU and runtime request. To do this, we used a Slurm simulator to
reproduce the behavior of the scheduler and, to recreate a representative usage of an HPC
platform, we generated synthetic static workloads from data of the LUMI supercomputer
and a dynamic workload from a past flagship HPC platform. As an example, we introduced
jobs modeled after the MONARCH air quality application in these workloads, and we
tracked their queue time. We found that, by simply joining tasks, the total time-to-solution
of the simulation reduces up to 7% with respect to the runtime of the simulations, and we
believe that this value is larger the longer the workflow. This saving translates to absolute
terms of about eight days less wasted in queue time for half of the simulations from the IS-
ENES3 consortium of CMIP6 simulations. We also identified a high inverse correlation of -
0.87, between the queue time and the fair share factor in the static experiments.



(1) The manuscript states that the observed 7% reduction in runtime could be "larger in
reality". Please expand on the specific real-world factors or complexities (e.g., more
dynamic system loads, nuanced fair share policies, or varied backfill algorithm
effectiveness) that might contribute to a greater benefit in practice. This would enhance the
practical applicability and persuasiveness of the findings.
We thank the reviewer for this constructive comment, and we agree that we should explain
precisely why we believe the 7% figure is likely higher in reality.
First, we would like to clarify that the 7% is the maximum difference between the time-to-
solution of the unwrapped minus the wrapped workflow divided by the runtime of the
workflow. We have observed across all the fair share values, that the wrapped workflow
was shorter on average (in terms of time-to-solution) than its unwrapped counterpart, as
indicated by the green triangle in Figure 6 that is always positive.
Thus the gains of using wrappers come from 1) the jobs stay about the same or less in
queue and 2) there are many times less jobs (if wrappers of 10 tasks are employed in a
workflow with 50 sequential jobs, there would be 10 times less jobs submitted to the
remote platform).
Therefore, the longer the workflow and the wrappers, the larger should be the gains.
We have rewritten lines 266-273 that introduce the discussion with a clarification of the 7%
and also why we believe that it would be beneficial, in general, for longer workflows.
As seen in Figure 6, we achieved a reduction in queue time across all fair share values in
the dynamic results. On average, this reduction was 1%, reaching up to a 7% decrease in
queue time relative to the total workflow runtime. These results support the hypothesis
that the reduction is caused by avoiding multiple submissions.
Since we observed consistent reductions when using aggregation, we anticipate greater
gains in longer workflows because longer wrappers can be created, reducing the time
spent waiting for resources.
Additionally, the 7% figure could be greater if we consider that the machine had only two
days of congestion per week. Current flagship systems are usually congested, and it is not
uncommon for jobs to queue for days.
(2) While the Slurm simulator is a strength, a more explicit discussion of its known
limitations and how these might influence the generalizability of the results is warranted.
For instance, the paper mentions that the simulator "does not have support for dynamic
submission times" for constrained jobs as a real Workflow Management System like
Autosubmit would. While the authors address this by calculating submission times based
on assumed predecessor completion, further detail on the potential implications of this
approximation on the reported queue times would be beneficial.



We thank the reviewer for pointing out that the Slurm simulator is a strength of our
methodology. We agree that we should be more explicit about its shortcomings.
Therefore, in line 294, we have included a new subsection called "Limitations" in the
discussion section that reads:
In this subsection, we discuss the major weaknesses that we identified during our work.
First, the Slurm simulator does not support dynamic submissions, i.e., launching a job the
moment its dependency finishes. Therefore, we had to define the submission time in
advance by assuming the best-case scenario, in which no task is delayed. Thus, the age
factor increases while the job waits in the queue for its dependency to finish, resulting in a
higher priority than they would have in reality.
However, with the configuration we tested, we found that the priority added by the age
factor was marginal. The maximum time that a job was in the queue in any of our
simulations was 1,776 seconds, in the worst fair share case submitted at 15/6/2012 at 20
(submission instant B.3). This adds just 293 (1,176 seconds divided by the total number of
seconds in seven days multiplied by 10^5) to the job’s priority. This is minimal compared
with the priority added by a fair share of just 0.01, which after being multiplied by its
corresponding weight of $10^5$, adds 1,000 to the job's priority.
Another limitation is that the simulator does not support node sharing among jobs, as is
the case in MareNostrum 4. Therefore less than a node requests would be scheduled to
whole nodes, wheareas, in MareNostrum 4, they would share resources. But, we have seen
systems enforce node exclusivity across the board, as is the case with Lumi.
Finally, the Slurm simulator here employed is not determinist, although the authors of the
BSC contribution to it have greatly reduced it (Jokanovic et al., 2018). This is another reason
to run multiple experiments and take the average.
(3) The methodology for controlling fair share in static workloads using "dummy" jobs is
clear. However, consider adding a brief discussion on whether this method fully captures
the complex and dynamic evolution of fair share in a truly live, highly utilized HPC system.
We agree with the reviewer's suggestion to include a discussion of why "dummy" jobs
capture the complex dynamics of HPC systems. We expanded the subsection that explains
the experimental design of the static workloads (lines 197–201). The paragraph now reads:
In order to control the fair share, given that all the jobs of the workload are submitted at
the same time, we preceded the simulation with a batch of ``dummy'' jobs so that all
users have usage recorded. Otherwise, all users would have nil usage, therefore maximum
fair share, and it would effectively remove the fair share from the scheduling. We set all the
users ``dummy'' submission runtime to be proportional to the synthetically generated
usage, except for the user employed with launching the workflow, for whom we chose its
usage to control its fair share. This was done because we know that users have a recurrent
pattern of utilization, as described by Patel et al. 2020. Therefore, the introduction of



dummy jobs made the fair share of the users coherent with respect to the synthetically
generated usage.
In the introduction to the static workloads, we also included a reference to a peer-reviewed
paper utilizing static traces for performance modeling in HPC. Lines 170–172 now read:
Static workloads are those where all jobs in the description are submitted at the same
time. We made this decision to simplify the modeling, since we disregard the complex
modeling of the arrival time (Cirne et al., 2000). We chose the number of jobs to be
generated so that we stress the system but still within plausible bounds. Moreover, this
methodology was also employed by Jeannot et al. 2023 to recreate a HPC environment for
performance analysis..
(4) The paper outlines several categories of wrappers (vertical, horizontal, vertical-
horizontal, and horizontal-vertical) but focuses solely on vertical wrappers. A brief
justification for this specific focus, and perhaps a suggestion for future research avenues
exploring the impact of the other wrapper types, would strengthen the introduction or
discussion.
We agree that our explanation of why we focused on vertical wrappers was unclear.
Therefore, we rewrote the entire subsection about wrappers in the background section
(lines 116–126). It now reads:
In a shared HPC environment, queuing for resources is ever so frequent (Patel et al., 2020)
and users have a limited impact on the priority of their jobs given the importance of fair
share.
To reduce the time-to-solution of an Earth System Model (ESM) simulation workflow, the
Autosubmit developers came up with a technique called task aggregation or wrapping.
Their idea was to increase throughput by avoiding queuing subsequent tasks. For this
reason they implemented vertical wrappers, which append workflow tasks into a longer
submission.
In addition to vertical wrappers, horizontal wrappers were developed to comply with the
platform's policy regarding the maximum number of jobs in the queue.
Finally, there is also the combination of the two types: vertical-horizontal and horizontal-
vertical. A vertical-horizontal is made of multiple vertical wrappers running concurrently.
Similarly, the horizontal-vertical is a single job made of multiple subsequent horizontal
wrappers.
In all wrapper types, the dependencies among the tasks are respected and the underlying
application task is not altered by their employment. Tasks are submitted together to the
remote platform. Therefore, all steps normally performed, such as saving the restart
conditions (or checkpointing), are still executed. Moreover, if a task fails within the
aggregated job, Autosubmit will relaunch the failed task without the need of a new job
submission.



In this work, we will focus on vertical wrappers, as they are the proposed solution for the
long queue times.


