
1

The Process and Value of Reprogramming a Legacy Global

Hydrological Model

Emmanuel Nyenah1, 2, Petra Döll1, 2, Martina Flörke3, Leon Mühlenbruch3, Lasse Nissen1, and Robert

Reinecke4

1Institute of Physical Geography, Goethe-UniversityGoethe University Frankfurt, 60438 Frankfurt am Main, Germany 5
2Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325438 Frankfurt am Main, Germany
3Institute of Engineering Hydrology and Water Resources Management, Ruhr University Bochum, 44801, Bochum, Germany
4Institute of Geography, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany

Correspondence to: Emmanuel Nyenah (Nyenah@em.uni-frankfurt.de) 10

Abstract

Global hydrological models (GHMs) improve our understanding of water flows and storage on the continents and have

undergone significant advancements in process representation over the past four decades. However, as research questions and

GHMs become increasingly complex, maintaining and enhancing existing model codes efficiently has become challenging.

Issues such as non-modular design, inconsistent variable naming, insufficient documentation, lack of automated software 15

testing suites, and containerization hinder the sustainability of GHM research software as well as the reproducibility of study

results obtained with the help of GHMs. Although some GHMs have been reprogrammed to address these challenges,

publications existing workliterature focus on evaluating model performance and primarily focuses on evaluating the quality of

model outputmodel performance rather than the quality of the reprogrammed softwareassessing the reprogramming process

itself.do not describe the reprogramming process. To address this research gap and guide other researchers who wish to 20

implement their existing models as sustainable research software, we describe in detail how the most recent version of the

GHM WaterGAP was reprogrammedTo address this research gap and to guide other researchers who wish to implement their

existing model in a sustainable research software, we describe in detail how the most recent version of the GHM WaterGAP

was reprogrammed. The reprogramming success is evaluated against numerous software sustainability criteria and the

principles of findability, accessibility, interoperability, and reusability for research software (FAIR4RS)FAIR4RS principles, 25

given that the objective of reprogramming was to enhance software sustainability and thus reproducibility of research results,

as opposed to improving model output. Here, we investigate whether reprogramming a GHM improves software sustainability.

We evaluate the reprogramming process by investigating multiple software sustainability criteria, such as linting

scorescomment density, compliance with coding standardsconsistent and meaningful variable naming, software testing and

comprehensive in-code and external documentation. 30

Our focus here is not on improving model accuracy, but on enhancing long-term software sustainability and maintainability.

Furthermore, we aim to provide guidance to other efforts in To support the reprogramming of large geoscientific research

2

software and thus, we present in detail how the GHM WaterGAP was reprogrammed, including lessons learned that others can

adopt into sustainable research software. Our focus here is not on improving model accuracy, but on enhancing long-term

software sustainability and maintainability. . Following an agile project management approach, the softwareWaterGAP was 35

rewritten from scratch in Python with a modular Model-View-Controller architecture, including development practices such

as open-source licensing, version control, unit testing, linting, containerization, consistent and meaningful variable naming,

and comprehensive in-code and external documentation. Due to the switch from C/C++ in the legacy code to Python, execution

time doubled. Our evaluation of the reprogrammed WaterGAP code against software sustainability criteria and FAIR4RS

principles indicates that the reprogramming substantially improved the software’s usability, maintainability, and extensibility, 40

making the reprogrammed WaterGAP software much more sustainable than its predecessor. The reprogrammed WaterGAP

software can be easily understood, applied, and enhanced by novice and experienced modellers and is suited for collaborative

code development across diverse teams and locations, fostering the establishment of a community GHM. We outline six

lessons learned from the reprogramming process concerning the sustainability-runtime trade-off, the applicability of the agile

approach, software design patterns, variable naming, external documentation, and automationThe six lessons learned from the 45

reprogramming process refer to the sustainability-runtime trade-off, the applicability of the agile approach, software design

patterns, variable naming, external documentation, and automation.The new WaterGAP software can be easily understood,

applied, and enhanced by novice and experienced modelers and is suited for collaborative code development across diverse

teams and locations, fostering the establishment of a community GHM.

 50

1 Introduction

Over the past four decades, global hydrological models (GHMs) have made remarkable progress in process representation,

such as the incorporation of artificial reservoirs and the differentiation of groundwater and surface water use (Telteu et al.,

2021). While the most widely used spatial resolution of GHMs is still 30 arc-minutes, the demand for more spatially resolved

information has led to GHMs running at 5 arc-minutes (Eisner, 2016; Flörke et al., 2018; Sutanudjaja et al., 2018), 3 arc-55

minutes (Choulga et al., 2024) or even 30 arc-seconds (Hoch et al., 2023). Still, further progress is required to improve GHMs,

e.g., to better represent human-environment interactions and reduce model uncertainties by improved integration of model

output observations (Burt and McDonnell, 2015; Döll et al., 2024).

As research questions and, thus, GHMs become more complex, maintaining and further developing an existing model code in 60

an efficient manner becomes increasingly challenging. Similar to other research software, GHMs are developed by scientists

with limited software development training, time, and funding, and thus lack the software quality that is required for sustainable

research software (Döll et al., 2023). A recent assessment of the software sustainability of global impact models, including

nine GHMs, revealed limited accessibility, low adoption of containerized solutions, non-modular design, suboptimal comment

3

density (defined as the number of lines of comment per total lines of code), and the absence of software testing (Nyenah et al., 65

2024). In addition, poor software quality also hinders the reproducibility of computational research (Döll et al., 2023; Reinecke

et al., 2022).

While there are various definitions of sustainable research software (e.g., Anzt et al., 2021; Katz, 2022; Venters et al., 2018),

the definition by Anzt et al. (2021) provides clear and measurable qualities that are suitable for evaluating the sustainability of 70

complex research software such as a GHM. Anzt et al. (2021) define sustainable research software as software that 1) is

maintainable, extensible, and flexible, i.e., adapts to user requirements, 2) has a defined software architecture, 3) is testable

thus ensuring software components function as intended through practices like unit testing, 4) has comprehensive in-code and

external documentation, and 5) is freely accessible, i.e., licensed as open source with a digital object identifier (DOI) for proper

attribution. In the following, the term “research software” includes the algorithms, source code files, computational workflows, 75

and executables developed during the research process or for a research objective (Barker et al., 2022).

The sustainability of GHMs and the reproducibility of GHM-based research could be significantly enhanced by reprogramming

GHMs using modern best practices (Nyenah et al., 2024). These include adopting an open-source license, containerization,

implementing a modular architecture, selecting informative variable names, and improving both the density of comments 80

within the code and external documentation (refers to manuals, guides, tutorials, and any materials that provide information

about your software to users and developers) (Nyenah et al., 2024). Additionally, applying FAIR (Findable, Accessible,

Interoperable, and Reusable) principles for research software (FAIR4RS) improves research software reusability,

reproducibility, as well as transparency (Barker et al., 2022; Wilkinson et al., 2016). For instance, the eWaterCycle (Hut et

al., 2022) platform has taken initial steps toward implementing FAIR principles for hydrological models, enabling other 85

researchers to use these models without significant support from the original authors.

To Efforts to improve comprehension, usage, maintenance, extension, and collaborative development, have led to the

reprogramming of several modelmodels, including the global land surface model CLASSIC (Melton et al., 2020) and the

GHMs such as HydroPy (Stacke and Hagemann, 2021) and PCR-GLOBWB (Sutanudjaja et al., 2018) were reprogrammed.. 90

However, the publications onf these reprogrammed software typically focus on evaluating model the performance of the model

output and lack a detailed account of the reprogramming process and an or evaluation of the success of the reprogramming

effort.

To address this research gap and support the reprogramming of other legacy software and facilitate the reprogramming of other 95

legacy research software, this paper provides a detailed account of the reprogramming process of GHM WaterGAP (Döll et

al., 2003; Müller -Schmied et al., 2024) and the characteristics of the new software. The success of the

reprogrammingReprogramming, which aimed to enhance the software’s sustainability and maintainability for long-term

4

research use by a broad community, and to increase the reproducibility of the computational research performed with this

model. The success of the reprogramming was assessed by comparing the legacy code to the reprogrammed version according 100

to a number ofnumerous specific sustainability criteria and FAIR4RS principles. we assesassess the software sustainability of

the GHM WaterGAP in comparison with a reprogrammed version ReWaterGAP. We further present the

 105

To address this gap and facilitate the reprogramming of other legacy research software, we present the reprogramming process

in detail for other researchers as guidance in their efforts to improve the software sustainability of their code.to transform the

GHM WaterGAP into a sustainable research software in a detailed and comprehensive way. It is important to note that our

goal in reprogramming WaterGAP iswas not to improve the modelmodel output accuracy; the reprogrammed software was to

result in the same model output as the latest WaterGAP version 2.2e (Müller Schmied et al., 2024)., but rather to enhance the 110

software’s sustainability and maintainability for long-term research use.

Key aspects of the reprogramming process include software requirement specifications, project management methods, use of

version control, in-code and external documentation, peer code review and other measures to maintain code quality such

software testing, and linting (analyzing source code for programming errors and suspicious constructs, (Heričko and Šumak,

2023)). In the so-called ReWaterGAP project, a new code that implements all algorithms and functionalities of the most recent 115

WaterGAP model version 2.2e (Müller Schmied et al., 2024) was written from scratch in Python, to replace a legacy code

whose development started in 1996 . The reprograming process integrated state-of-the-art software development practices

including software requirement specifications, project management, version control, Improvements include a modular software

architecture, a modern programming language (Python), and state-of-the-art practices such as version control, open-source

licensing, consistent variable naming, comprehensive in-code and documentation,. Additionally, peer code review and other 120

measures to maintain high code quality such software testing, and linting (analyzing source code for programming errors and

suspicious constructs, (Heričko and Šumak, 2023)) were employed. , and software testing; while maintaining computational

performance. Key aspects of the reprogramming process include software requirement specifications, project management

methods, use of version control, in-code and external documentation, peer code review and other measures to maintain code

quality such software testing, and linting (analyzing source code for programming errors and suspicious constructs, (Heričko 125

and Šumak, 2023)). The major aim of reprogramming was to facilitate efficient and joint code development across multiple

locations and by various developer groups to establish a community global hydrological model that can be easily understood.

In addition, we wanted to ensure that all model outputs and publication results are reproducible (Döll et al., 2023; Hutton et

al., 2016; Reinecke et al., 2022). It is important to note that our goal in reprogramming WaterGAP is not to improve model

accuracy, but rather to enhance the software’s sustainability and maintainability for long-term research use. 130

5

The paper is structured as follows: section Section 2 introduces the WaterGAP model and the legacy software. Sustainability

criteria for research software and methods relevant to this study are presented in section Section 3. After describing the

reprogramming process in section 4, we present the architecture and the new features of the reprogrammed software in

sectionSection 4, we present the architecture and new features of the reprogrammed software in Section 5. In Ssection 6, we 135

evaluate the new WaterGAP software against selected sustainability criteria and the FAIR4RS principles. We also demonstrate

that the reprogrammed and the legacy software result in very similar model output (section 7) and present share lesson learntand

the FAIR4RS principles. We also demonstrate that the reprogrammed and legacy software result in very similar model

outputyield very similar model outputs (Ssection 7) and share lessons learned for user perspectives others undertaking similar

efforts on the reprogrammed software obtained by an online survey (section Section 8). This is then followed by our 140

conclusionOur conclusions follow in Section in section 9The discussion in section 9 is followed by our conclusions.

2 The WaterGAP model 145

2.1 Model description

WaterGAP is a global-scale water resources and use simulation model that has been developed since 1996 (Müller Schmied

et al., 2024). Covering all land areas of the globe except Antarctica, it has been widely used in studies of water scarcity,

drought, and ecologically relevant streamflow characteristics, considering the impacts of human water use, reservoirs, and

climate change (Müller Schmied et al., 2021) as well as inter-basin transfers (Flörke et al., 2018). Model results have 150

contributed to various reports by the Intergovernmental Panel on Climate Change (IPCC) (Jiménez Cisneros et al., 2014) and

the State of Global Water Resources Report by the World Meteorological Organization (WMO) (WMO, 2024). WaterGAP is

also a key participant in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) where the focus is on both model

evaluation (and or improvement) and the impact assessment of anthropogenic changes such as human water use or climate

change (Frieler and Vega, 2019; Heinicke et al., 2024; Warszawski et al., 2014). WaterGAP output is utilized in diverse 155

research fields, e.g., life-cycle assessment (Boulay et al., 2015; Schomberg et al., 2021) or freshwater ecology (Datry et al.,

2021; Domisch et al., 2017; Schneider et al., 2017). Furthermore, simulated water storage anomalies were used by geodesists

to evaluate GRACE (Gravity Recovery and Climate Experiment) satellite observations of Earth's dynamic gravity field

(Kusche et al., 2009; Schmidt et al., 2006) and streamflow estimates were used to analyze thermal and hydropower production

(van Vliet et al., 2016; Wan et al., 2022). 160

WaterGAP exists as two main model families distinguished by their spatial resolutions. WaterGAP 2 operates at a 30 arc-

minutesarc-minute resolution, with the latest version being 2.2e (Müller Schmied et al., 2024), while WaterGAP 3 uses a finer

6

5 arc-minutesarc-minute resolution (Flörke et al., 2018). WaterGAP 2 and 3 also differ with respect to some algorithms and

input data. WaterGAP consists of five sectoral water use models for irrigation, livestock, domestic, manufacturing, and cooling 165

of thermal power plants. These water use models are interlinked through the Groundwater Surface Water Use (GWSWUSE),

which computes potential net abstractions from groundwater and surface water based on the output of the water use models.

These net abstractions are an input to the WaterGAP Global Hydrology Model (WGHM) (Müller Schmied et al., 2021, 2024).

All models combined are referred to as the WaterGAP model. WGHM computes both vertical water balance, encompassing

the canopy, snow, and soil components, and lateral water balance, which includes groundwater, lakes, artificial reservoirs, 170

wetlands, and rivers. The basin-specific calibration of WGHM distinguishes WaterGAP from other global hydrological models

(Müller Schmied et al., 2021). It aims at reducing the bias of simulated streamflow by using a simple method (see Section 5.2

of Müller Schmied et al., 2024) to match the long-term mean annual observed streamflow at 1509 basin outlets, covering 55%

of the global drainage area (excluding Antarctica and Greenland). This paper only concerns the reprogramming of the

GWSWUSE and WGHM models operating at the 30 arc-minutesarc-minute resolution. The reprogrammed code, however, is 175

flexible enough to also run at higher spatial resolutions if the appropriate inputs are supplied and processes specially tailored

to the 30-arcminutes30-arcminute resolutions are adapted (e.g., the snow processing routine and the water usage distribution

to neighbouring cells).

2.2 Characteristics of the legacy software

The legacy software of WaterGAP was primarily written in C and C++ by PhD students and postdoctoral researchers with 180

diverse programming backgrounds. The software is hosted on a private GitHub repository under the GNU Lesser General

Public License (LGPL v3.0). The available model documentation includes two model description papers (Müller Schmied et

al., 2021, 2024), as well as a number of documents not available to the public. The latest WGHM version (WaterGAP 2.2e) is

archived on Zenodo (https://zenodo.org/records/10026943). However, this version is limited to review only and cannot be

executed by external users. The source code of the latest WGHM version contains 25,204 lines of code across 85 files. The 185

linking model GWSWUSE contains 3550 lines of code across 14 files.

In addition to lacking comprehensive and easily accessible external documentation, the sustainability of the legacy software is

constrained by several software characteristics. The software has a limited modular structure, consisting of a collection of

“script-like” files, with some having up to 6,000 total lines of code (Nyenah et al., 2024). The WGHM code has a non-optimal 190

comment density (approximately 25%) compared to the recommended 30–60% (Nyenah et al., 2024). This makes the model

code challenging to read and maintain. In addition, the WaterGAP software uses a the non-standard binary file format called

UNF for input and output data instead of the now widely used NetCDF format. Climate forcing data, for example, must first

be converted to UNF before use. This introduces additional complexity, potentially creating barriers and susceptibility to errors

for external users unfamiliar with the format or conversion tools. No unit tests (verifying that individual code components 195

7

work correctly) exist to check if algorithms produce outputs within acceptable ranges. AlsoFurthermore, WaterGAP does not

utilize containerization technology, which makes the reproduction of research results more difficult.

3 Methods

3.1 Software evaluation against sustainability criteria andand FAIR4RS the principles of findability, accessibility,

interoperability, and reusability for research software 200

We assessed research software sustainability using nine indicators from Nyenah et al. (2024; their Table 1), consisting of five

indicators of best practices in software engineering and four indicators of source code quality. Each indicator, its rationale, and

how we evaluated both the legacy and reprogrammed models against them, are described in Table 1including five indicators

of best practices in software engineering and four indicators of source code quality. Table 1 describes each indicator, its

rationale, and how we evaluated both the legacy and reprogrammed models against it. 205

Table Table 1: Sustainability indicators used for the assessment of the legacy and reprogrammed research software.XXX

 210

No Indicators Description

Best practices in software engineering

1 External documentation Effective use and ease of software maintainability rely on clear and extensive

external documentation (Nyenah et al., 2024; Wilson et al., 2014). We evaluate

the availability and extensiveness of external documentation by analyzing the

following components: installation guide, tutorials, user guide, reference guide

(in-depth descriptions of the model processes and the governing equations),

glossary, contributor guide, and frequently asked questions (FAQs).

2 Version control and automation Version control facilitates change tracking and supportsupports collaboration

(Wilson et al., 2014). We evaluate the use of version control considering the

choice between public and private repositories, which significantly affects the

repository’s transparency and accessibility. We also checked the automation

practices,, focusing on automated testing, linting, and documentation to ensure

consistent quality and maintainability.

Formatted: Not Highlight

Formatted: Font: Bold

Formatted Table

Formatted: Font: Not Italic

Formatted: Font: Not Italic

8

3 Use of an open-source license We determine the presence of open-source licenses by reviewing license files

within repositories and comparing them with licenses approved by the Open

Source Initiative (OSI) (https://opensource.org/licenses) (Nyenah et al., 2024).

4 Number of active developers This indicates the capacity for ongoing software development and maintenance

(Nyenah et al., 2024). We measured this by counting individuals who made

commits to the codebase of the legacy and the reprogrammed code within the

past two years (2023–2024).

5 Containerization Containerization packages software with its full runtime environment, ensuring

consistent execution across different systems ((Nüst et al., 2020)Nüst et al.,

2020). This helps overcome reproducibility issues caused by variations in

operating systems or dependencies. We simply check whether a

containerization solution is provided.

Source code quality

6 Public availability of an

(automated) testing suite

We adopted the approach proposed by Nyenah et al. (2024), in using the public

availability of an (automated) testing suite as a proxy for the ability to test

software functionality. While test coverage is the ideal metric, current coverage

tools do not support Python functions with Numba decorators, which compile

Python functions into machine code for performance (GitHub issues, 2025;

Lam et al., 2015; Stack Overflow, 2025).

7 Compliance with coding

standards

Coding standards are industry best practices that guide software development

for consistency and quality (Wang et al., 2008). To assess compliance, we used

CLion static analysis for the legacy C/C++ code, which flags issues (including

errors, typos, and warnings) based on the C/C++ Core Guidelines but does not

provide a score to interpret results. A higher issue count generally indicates

lower reliability or maintainability. For the reprogrammed code, we used Pylint

to check compliance with PEP-8 conventions. Pylint assigns a score up to 10

for perfect compliance, with no lower bound (Molnar et al., 2020; Nyenah et

al., 2024).

8 Comment density We compute comment density as the ratio of the number of lines of comments

to the total lines of code (TLOC). TLOC refers to the sum of source lines of

code (SLOC) and comment lines. SLOC, in turn, represents the non-blank, non-

comment lines within a source file. We regard a comment density of 30% to

60% as optimal (Arafat and Riehle, 2009; He, 2019; Nyenah et al., 2024).

Formatted: Font: Not Italic

Formatted: Not Highlight

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted Table

Formatted: Not Highlight

Formatted: Font: Not Italic

Formatted: Font: Not Italic

https://opensource.org/licenses

9

9 Modularity We evaluate the modularity of the software by the TLOC per file metric, with

an ideal range of 10 to 1,000 TLOC per file (Nyenah et al., 2024). This metric

reflects the organization of source codes into manageable modules, each

focusing on a specific functionality. Modules within this range are typically

easier to read, modify, and reuse.

We examined nine indicators for research software sustainability evaluated in the study of Nyenah et al. (2024; their Table 1),

consisting of five indicators of best practices in software engineering and four indicators of source code quality. Additionally,

we assessed the research software against the FAIR4RS principles outlined by Barker et al., (2022). The FAIR4RS principles 215

aim to enhance transparency, reproducibility, and reusability of research software (Barker et al., 2022; Chue Hong et al., 2022).

Sustainability overlaps with the FAIR4RS principles, particularly regarding reusability, which ensures that software can be

understood, modified, built upon, or incorporated into other software. Findability and accessibility also support sustainability

by enabling users to easily retrieve the software.

 We describe the sustainability indicators in sections 3.1.1, 3.1.2 and the evaluation of the FAIR4RS principles in section 3.1.3. 220

3.1.1 Indicators for best practices in software engineering

External documentation. Effective use and ease of software maintainability relies on clear and extensive external

documentation (Nyenah et al., 2024; Wilson et al., 2014). Here, we evaluate the availability and extensiveness of external 225

documentation by analyzing the following components:

 Installation guide: step-by-step instructions for installing the software.

 Tutorials: practical guides for running various experimental setups (e.g., running WGHM for a specific basin).

 User guide: detailed information tailored to users with varying levels of programming expertise, from beginner

to advanced software users . 230

 Reference guide: in-depth descriptions of the model processes and the governing equations.

 Contributor guide and frequently asked questions (FAQs): guidelines for contributing to the code, reporting

documentation typos or software bugs, and resolving common issues.

 Glossary: definitions of terms and acronyms (e.g., variable names) used in the documentation to enhance user

comprehension. 235

Version control and automation. Version control systems play a crucial role in software development by facilitating change

tracking, enabling collaborative work, and maintaining a comprehensive history of software evolution (Wilson et al., 2014).

Formatted: Font: Not Italic

10

We evaluate the use of version control systems and examine specific version control practices. One key aspect we consider is

the choice between public and private repositories, significantly affecting the repository’s transparency and accessibility. 240

Regarding automation practices integrated into the repository, we consider automated testing, linting, and documentation. Such

automation ensures consistent testing of newly added or modified code, adherence to coding standards, and up-to-date

documentation throughout the development lifecycle.

Use of an open-source license. Following the approach outlined by Nyenah et al. (2024), we determine the presence of open-245

source licenses by reviewing license files within repositories and comparing them with licenses approved by the Open Source

Initiative (OSI) (https://opensource.org/licenses) (Nyenah et al., 2024).

Number of active developers. The number of active developers indicates the capacity for ongoing software development and

maintenance (Nyenah et al., 2024). We measured this by counting individuals who made commits to the codebase of the 250

legacy and the reprogrammed code within the past two years (2023–2024)..

Containerization. Containerization is a method of packaging software applications along with their entire runtime environment

(including libraries) into isolated units called containers (Nüst et al., 2020). Traditionally, reproducing experiments is

challenging due to variations in for instance operating systems and installed libraries across different machines. 255

Containerization solves this by encapsulating the complete and specific software environment within a container image. This

image becomes a portable and immutable snapshot of the execution environment. When an experiment is executed in a

container derived from a specific image, the researcher can be confident that the environment is exactly the same, regardless

of the host system. This guaranteed consistency across different machines and over time is the key reason why containerization

strongly supports the reproducibility of research software experiments. Here we only evaluate whether a containerization 260

solution exists or not.

For the FAIR4RS principles (Barker et al., 2022), we evaluated only the reprogrammed model against the eleven core

principles. 3.1.2 Indicators for source code quality

Public availability of an automated testing suite. We adopted the approach proposed by Nyenah et al. (2024), using the 265

availability of an automated testing suite as a proxy for evaluating the ease of testing software functionality. The actual property

of interest is test coverage, which verifies the software's functionality. However, existing test coverage tools do not support

Python functions with Numba decorators. Numba is a Just-in-Time compiler that boosts performance by converting Python

functions into machine code, and the decorators specify which functions Numba should compile into machine code at runtime

(Lam et al., 2015). See example issues reported on GitHub (https://github.com/nedbat/coveragepy/issues/849) and Stack 270

Overflow (https://stackoverflow.com/questions/26875191/analyzing-coverage-of-numba-wrapped-functions).

11

Compliance with coding standards. Coding standards represent a set of industry-acknowledged best practices that provide

guidelines for software code development (Wang et al., 2008). In our analysis, we employed two distinct tools to evaluate the

adherence to coding standards for the legacy and the reprogrammed code. For the legacy code, we utilized the CLion static 275

analysis tool (https://www.jetbrains.com/help/clion/code-inspection.html), which assesses code against the C/C++ Core

Guidelines. This tool identifies potential issues in the source code, including errors, typos, and warnings. However, it does not

provide an aggregate score, which makes it difficult to interpret the results. Nevertheless, a high number of identified issues

typically indicates critical problems that could compromise software reliability or maintainability. For the reprogrammed code,

we employed Pylint (https://pylint.readthedocs.io/en/latest/index.html), which assesses compliance with PEP-8 coding 280

conventions. Pylint quantifies adherence to this coding standard by assigning a maximum score of 10 for perfect compliance,

with no lower bound (Molnar et al., 2020; Nyenah et al., 2024).

Comment density. We compute comment density as the ratio of the number of lines of comments to the total lines of code

(TLOC). TLOC refers to the sum of source lines of code (SLOC) and comment lines. SLOC, in turn, represents the non-blank, 285

non-comment lines within a source file. We regard a comment density of 30% to 60% as optimal (Arafat and Riehle, 2009;

He, 2019; Nyenah et al., 2024).

Modularity. We evaluate the modularity of the software by the TLOC per file metric, with an ideal range of 10 to 1,000 TLOC

per file (Nyenah et al., 2024). This metric reflects the organization of source codes into smaller, manageable modules, each 290

focusing on a specific functionality. Modules within this range are typically easier to read, modify, and reuse.

3.1.3 Evaluation against FAIR4RS principles

 Based on Barker et al. (2022), the reprogrammed software were evaluated against eleven main principles. For findability (F),

we verified whether the software is assigned a globally unique and persistent identifier (F1) and described with rich metadata 295

(F2). We aimed at ensuring that the metadata included the software identifier (F3) as well asand was is searchable and

indexable (F4). Regarding accessibility (A), we checked whether the software is retrievable via a standardized protocol (A1)

and the metadata remain accessible even if the software was were to become unavailable (A2). To evaluate interoperability

(I), we examined whether the software reads, writes, and exchanges data following domain-relevant standards (I1) and includes

qualified references to other objects (I2). For reusability (R), we checked whether the software is given a clear and accessible 300

license (R1), includes qualified references to other software (R2), and meets community standards (R3).

12

3.2 Differences between the outputs of the reprogrammed and legacy software

To verify that the reprogrammed software computes the same model output as the legacy software unless an algorithm was

changed to improve the computation, we compared the globally averaged water balance components and the global maps of 305

renewable water resources, i.e., the long-term differences between precipitation and actual evapotranspiration in the 30 arc-

minute grid cells (Müller Schmied et al., 2021). Both were calculated using the WGHM output of the legacy and the

reprogrammed software. It is important to note that WGHM output also reflects the difference in GWSWUSE output as the

potential net abstractions computed by GWSWUSE are incorporated into WGHM. The model setup for calculating the water

balance components was “anthropogenic” (i.e., considering human water use and artificial reservoir management), with a 5-310

year spin-up and a the simulation period from 1901-2019. The water balance analysis focuses on key water balance components

and the long-term average volume balance error for five distinct periods: 1961–1990, 1971–2000, 1981–2010, 1991–2019,

and 2001–2019. Results for the legacy code are provided in Table 4 of Müller Schmied et al. (2024).

Renewable water resources were calculated over the period 1981-2010 by running the model in the naturalized mode, i.e., 315

without considering human water use and reservoir operations, as detailed in sections 4.7.3 and 7.2.1 of Müller Schmied et

al. (2021). It is worth noting that the total water resources value can be negative if the evapotranspiration value in a cell is

greater than the precipitation value, due to inflow from upstream cells.Notably, total water resources can have negative values

if evapotranspiration in a cell is largerlarge than precipitation due to inflow from upstream cells. Output differences for many

other model output variables were checked during the reprogramming process but are omitted here for clarity. 320

3.3 User survey

We conducted an online survey to determine perspectives on the reprogrammed WGHM software, focusing on the research

software sustainability (see also the complete questionnaire and answers in the Supplement). The survey evaluated the

readability, comprehensibility, modifiability, and documentation quality of a code snippet that implements the Priestley-Taylor

potential evapotranspiration algorithm in the reprogrammed software. The survey was conducted within approximately one 325

month, receiving 217 clicks, with 64 participants completing it.

4 The reprogramming process

The reprogramming process for WaterGAP was enabled by a grant that financed one full-time PhD and a student assistant

over three years, in the framework of the ReWaterGAP project.. Figure 1 shows the timeline of the reprogramming process,

emphasizing the important stages highlighting key tasks from the project proposal to the release of the reprogrammed software 330

. It also shows the use ofpresents the agile project management method to coordinate several of these taskswe applied in the

reprogramming process. Subsections 4.1 to 4.6 provide further details on how these tasks were implemented and managed

throughout the project.process.

13

 335

Figure 1: Timeline and agile project management setup for reprogramming of WaterGAP in the ReWaterGAP project.

4.1 Project management

 340

4.1.1 Project planning and setup

After the writing and approval of the project proposal, a preliminary meeting of six senior developers was held in November

2021 among six senior developers. These are late-stage PhDs, PostDocs, and Professors with extensive expertise in the

WaterGAP model and are also actively involved in developing and maintaining the software. The goal of the meeting was to

to draft the software requirement specification document (see software_requirement_WaterGAP.pdf in the Supplement) (Fig. 345

1), which outlined the technical and functional goals of the project (see section 4.42). This was followed by a kickoff meeting

to launch the project officially and a project briefing to align the product owners and development team (see section 4.1.2) on

the project’s purpose (comprehensively transforming the GHM WaterGAP into sustainable research software) (Fig. 1). As part

of the planning and setup phase, a GitHub repository was established for version control, and a software documentation

webpage was created. 350

Formatted: Font: Bold

Formatted: Normal

14

4.1.2 Agile project management

An agile methodology was adopted for software development, dividing the work into iterative sprints (Hema et al., 2020) (Fig.

1). The project spanned 31 sprints, 27 of which were focused on code development (see section 4.53), with the remainder

allocated for reading project materials. Each sprint lasted approximately one month, except for one instance in 2023 when a

sprint was extended to two months due to task complexity (Fig. 1). We adopted an agile process inspired by the well-known 355

SCRUM method (Hema et al., 2020), which was tailored to the available resources.

The agile team was comprised of two product owners (the two professors leading the WaterGAP model development, Petra

Döll and Martina Flörke), three developers (PhD student Emmanuel Nyenah reprogramming WGHM, Master student Lasse

Nissen reprogramming GWSWUSE, and student assistant Leon Mühlenbruch writing the external documentation), and the 360

software development advisor (Robert Reinecke). The software development advisor guides the developers on best practices,

architecture, and code quality to ensure robust and sustainable software. At the beginning of each sprint, the agile team met to

review past progress, with presentation and discussion of completed tasks, and review selected or newly defined user stories

(software functionality from the user perspective) which served together with the uncompleted tasks as the basis for the sprint

backlog for the next sprint (Fig. 1). User stories were selected from a comprehensive list of user stories and features (product 365

backlog) outlined in the software requirement specification document, which the senior developers wrote before the project

started. These user stories were assigned sprint points based on estimated difficulty and time required. A selection of user

stories with a combined total of 10 sprint points was then selected to form a sprint backlog.

 Progress during each sprint was monitored through weekly meetings between the PhD student and the software development

advisor, which provided an opportunity to address challenges encountered during the sprint (e.g., improving runtime of snow 370

module). The agile process allowed the team to maintain steady progress toward the project goals and adapt to new

requirements and challenges.

4.4.1.33 Tracking programming effort and progress

The use of agile project management facilitated the tracking of progress on user stories implementation and the corresponding 375

effort (working hours) during code development. While the reprogramming of GWSWUSE was not included in the initial

reprogramming scope, it was later included without the setup of user stories. As a result, progress tracking and effort

measurement are only limited to the reprogramming of WHGM (see progress_taking.xlsx in the Supplement). 24 major user

stories for the WGHM were implemented across 27 sprints and organized into three main phases, the programming of the

vertical water balance, the lateral water balance and the calibration routine (Fig. 2). The vertical water balance phase involved 380

implementing key WGHM algorithms such as net radiation, Priestley-Taylor evapotranspiration (PET), and processes related

to canopy, snow, and soil. A total of 14 user stories were completed over five sprints, requiring 872 working hours (Fig. 2).

15

The lateral water balance phase focused on the implementation of groundwater, lake, and wetland algorithms, among many

others. In total, eight user stories were completed during 18 sprints, requiring 1,800 working hours. A substantial portion of

this effort (816 working hours across seven sprints) was dedicated to developing the surface and groundwater abstraction 385

algorithm (see section 5.1.2). The Calibration phase focused on assessing the global water balance and implementing the

calibration scheme. This phase was completed within seven sprints, requiring 608 working hours)hours.

Figure 2: Cumulative plot of remaining user stories and corresponding working hours over 27 sprints (left), and a table of 24

major user stories (rightright, also see progress_taking.xlsx in supplement), grouped by their corresponding phases: vertical 390

water balance, lateral water balance, and calibration.

4.442 Software requirement specification

The software requirement specification document outlines the intended purpose, features, and functionality of the software, 395

providing guidance for the development process (see software_requirement_WaterGAP.pdf in the Supplement). Key elements

of the document are described below.

Formatted: Font: Bold

16

4.42.1 Software architecture and programming language:

The selected architectural framework is the Model-View-Controller pattern, which organizes software components into 400

coherent and modular structures with well-defined functionalities (Guaman et al., 2021). In this architecture, the Model

component manages the core logic, encompassing hydrological equations and assumptions and managing data for computed

results. The Controller component controls the data flow into the Model and facilitates user interactions (e.g., by a

configuration file). The View component presents outputs in various formats tailored to user needs, such as saving output in

NetCDF format. Section 5.1 shows a detailed Model–View-Controller diagram of WGHM, illustrating the class, function, and 405

package interactions.

The reprogrammed software is written in Python, chosen for its readability, extensive community support, and a rich ecosystem

of libraries (Oliphant, 2007). The Python ecosystem includes packages such as Xarray for handling NetCDF files and NumPy

for efficient array computations, as well as tools that enable parallel computing (Harris et al., 2020; Hoyer and Hamman, 2017; 410

Virtanen et al., 2020).

4.42.2 Flexible spatial resolution and restart at prescribed initial state:

The new software should allow flexible changes in spatial resolution (30 arc-minutes or 5 arc-minutes). The software should

be programmed in such a way that model states, such as storages and parameters, can be saved to disk. A new model run can 415

then be started from this prescribed initial state. This feature has applications for near-real-time monitoring, ensemble forecasts,

and data assimilation (e.g., with Parallel Data Assimilation Framework (PDAF))(Müller Schmied et al., 2024).

4.42.3 Data formats and user interfaces:

The reprogrammed software should have a configuration file in JSON format, while climate forcing and model outputs are 420

stored in NetCDF format. Using the NetCDF format avoids the need for conversion tools, making the software easier to use

and reducing complications. Users interact with the new software through a command-line interface (CLI) and a configuration

file that can be used to change the model inputs and outputs.

4.42.4 User stories: 425

The software requirement specification document also outlines what the software should do from the user’s perspective, known

as the user story (Curcio et al., 2018; Dimitrijević et al., 2015). The use of user stories ensures that the needs and expectations

of users are met. An example user story is “As a user, I want the canopy storage and related fluxes to be functionally

implemented, based on the model’s description paper of WaterGAP2.2d and 2.2e.” The requirement specification document

includes multiple user stories that capture various functional and non-functional requirements. Functional requirements specify 430

what the software should accomplish (e.g., compute canopy algorithm) (Curcio et al., 2018), while non-functional requirements

Formatted: Font: Italic

Formatted: Normal

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Normal

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Normal

Formatted: Font: Italic

Formatted: Normal

Formatted: Font: Italic

Formatted: Font: Italic

17

are quality constraints such as correctness, reusability, and maintainability that the software must meet (Curcio et al., 2018;

Muhammad et al., 2023).

4.553 Code development. 435

4.3.1 Best practices for code development

The following best practices were implemented during the code development process in order to ensure softwarethe

suitabilitysustainability of the software.Key best practices that were implemented during code development to ensure software

suitability are explained below:

 440

Meaningful and consistent variable names. A critical aspect of the code development process was the establishment of

consistent variable names. This was achieved through collaboration between developers, product owners, and the software

development advisor. The resulting variable names are descriptive, logical, and uniform across the entire code, significantly

enhancing readability and facilitating future maintenance. Examples of variable names can be found on the ReWaterGAP 445

project documentation (Nyenah, 2025c).

here (https://hydrologyfrankfurt.github.io/ReWaterGAP/Glossary/Index.html#glossary)

Version control and automation. The project uses Git for version control, with GitHub as the platform for hosting the codebase.

The source code of the reprogrammed software is open source and licensed under LGPL v3.0. Throughout the development 450

process, bugs identified in the codes through peer code reviews were tracked using GitHub's issue tracking tool, which

facilitates transparent tracking of progress and resolution. GitHub Actions were implemented to automate documentation

updates, linting, and testing processes. This automation ensures that documentation remains current and maintains code quality

through automated quality checks and testing prior to commits, significantly reducing the likelihood of errors in the main

codebase. 455

In-code documentation. Both inline comments and docstrings were used for in-code documentation. Algorithms within the

source code were carefully documented with inline comments, explaining the steps and assumptions underlying key processes.

Docstrings, on the other hand, are structured comments at the function, class, and module levels that provide a general

description of the code's purpose, parameters, and return values (Wiggins et al., 2023). They offer a quick reference for 460

developers interacting with the code and can be extracted by documentation generation tools like Sphinx to create external

documentation. The in-code documentation was done with the aim to makeof making the code comprehensible for new

developers and easy to maintain over time.

Formatted: Heading 2

Formatted: Normal

18

External documentation. In addition to in-code documentation, a comprehensive web-based documentation (Nyenah, 2025c) 465

(https://hydrologyfrankfurt.github.io/ReWaterGAP/) was generated using GitHub Actions, which facilitates the creation of

automated workflows, and the Sphinx library library (Sphinx Project, 2025)(https://www.sphinx-doc.org/en/master/), which

is designed for creating well-structured documentation. The automated workflow is set up through a YAML script

(https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/.github/workflows/docs_pages.yml) that utilizes Sphinx

library to automate the documentation process. A key feature of Sphinx is its ability to extract docstrings from classes and 470

functions, enabling developers to expand on these docstrings with additional content such as figures, equations, underlying

assumptions, and explanations of solution methods (both analytical and numerical). The Sphinx-generated documentation for

the reprogrammed software includes an installation guide, tutorials, a user guide, a reference guide, a contributor's guide,

frequently asked questions (FAQs), and a glossary. This web-based documentation is automatically updated in tandem with

source code modifications, ensuring that the documentation consistently reflects the current state of the software. Automation 475

for external documentation is currently only available for WGHM and that of GWSWUSE will be added later.

Logging. A logging system was added to the project to help with error handling and debugging. Errors and warnings are

recorded in a log file, making it easier to troubleshoot issues. The logging system can be adjusted to different user needs,

controlling the amount of detail saved. Additionally, the reprogrammed software can be run in debug mode, showing detailed 480

information on the screen and in the log file. This helps users easily spot and fix problems during use.

Specialized library. Given the computationally intensive nature of WGHM software, minimizing its run time was crucial. To

achieve this, the Numba library (https://numba.readthedocs.io/en/stable/index.html) was used. Numba is a Just-in-Time (JIT)

compiler for Python that can significantly enhance performance by converting Python functions into machine code at runtime 485

(Lam et al., 2015). Numba operates using function decorators defined as wrapper functions that inform Numba regarding the

specific functions that should be compiled into machine code (Lam et al., 2015).

Containerized solution for WGHM. A Dockerfile following best practices for writing Dockerfile (Nüst et al., 2020) is available

to create a containerized environment for running WGHM 490

(https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/Dockerfile). This Dockerfile sets up a Python environment

with the required packages and clones the source code of the reprogrammed software during the build of a Docker image

(executable file). Once the image is built, it can be run (the running instance of the image is known as a container (Nüst et al.,

2020)). A simple tutorial on running the WGHM Docker container can be found here in the ReWaterGAP project

documentation (Nyenah, 2025c). 495

(https://hydrologyfrankfurt.github.io/ReWaterGAP/user_guide/tutorials/tutorial_running_with_docker.html#tutorial-docker)

19

4.3.662 Quality assurance

Automated unit testing. Unit testing is a software development process in which individual pieces of code (units) are tested to

ensure they function as expected (Pajankar, 2022). If the code is changed at a later stage, e.g., as new features are added, the

automated execution of the test reduces the likelihood that something is “broken” without the developers noticing it. 500

Furthermore, tests can help to develop new software features according to a specification, also called test-driven development,

in which tests are written before implementing the software component (George and Williams, 2004). The code to test a

function is called a unit test or test case, while a collection of test cases forms a test suite. Unit testing can be was conducted

for the reprogrammed WGHM and GWSWUSE components using the Python unittest framework (Pajankar, 2022; Python,

2025). An example of unit tests written for the canopy storage module (Nyenah, 2025e) (Nyenah, 2025c) 505

(https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/test/test_canopy.py) contains

1. a setup function (lines 25-44) that generates randomly plausible input data for testing and stores plausible minimum

and maximum daily benchmark values (Müller Schmied et al., 2021)(Müller Schmied et al., 2021),

2. a first unit test (Lines 47–76) which runs the canopy storage module for one day and compares this result against the

benchmark, and 510

3. a second unit test (79-120) to verify whether the canopy storage module raises an error message when it encounters

negative precipitation values in a grid cell.

The complete suite of tests for the reprogrammed WGHM software is publicly available

(https://github.com/HydrologyFrankfurt/ReWaterGAP/tree/main/test) and that of the reprogrammed GWSWUSE are publicly 515

available on GitHub (Nissen, 2025b; Nyenah, 2025d)is. available via

(https://github.com/HydrologyFrankfurt/ReGWSWUSE/tree/main/test). To automate the execution of test suites, a GitHub

Actions workflow has been created using a YAML script. An example script is found on Github (Nyenah, 2025b) (Nyenah,

2025)here (https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/.github/workflows/unit_test.yaml). Automation

for testing is currently only available for WGHM, while automated testing of GWSWUSE will be added later. To ensure the 520

testing of model functionality, new tests must be added to the existing test suites whenever new process algorithms are

introduced. Expanding on existing tests, for example, to test additional edge cases, is the first task we recommend when

onboarding new developers into an existing project.

Peer code review. To enhance code quality, three hackathon-style peer code review sessions were organized. During these 525

events, eight WaterGAP developers examined the WGHM codebase, executed the software, and actively sought out bugs.

These sessions also evaluated the clarity of external documentation, ensuring that it was comprehensible and user-friendly. In

addition, several weekly meetings involving developers and the software development advisor were dedicated to code reviews.

20

Linting. To maintain consistency and readability across the code, the reprogrammed software code was checked against PEP-530

8 conventions, which define the style guidelines for Python code (van Rossum et al., 2001) (https://peps.python.org/pep-

0008/). The Python library Pylint was employed to assess the code for potential bugs and deviations from these conventions.

Linting is also automated and an example script is available on GitHub (Nyenah, 2025a). be found here

(https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/.github/workflows/lint.yaml). Automation for linting for is

currently only available for WGHM. 535

5 Architecture and new features of the reprogrammed software

Software architecture defines how different components of the software interact with each other (McConnell, 2004). When

components are designed to be modular, they form a coherent structure with well-defined functionality. This makes it easier

to extend, modify, and test individual components. As a result, good architecture helps improve software quality and long-

term maintainability. 540

5.1 WGHM

5.1.1 Architecture

In Figure 3, the Model-View-Controller (MVC) architectural pattern forpattern for the reprogrammed WGHM software is

shown in its low-level implementation. (Gamma et al., 1994; Guaman et al., 2021). The run_watergap module coordinates the 545

entire model workflow. It manages process initialization and daily time-stepping to perform computations. The Controller

package is responsible for handling configuration-related tasks. The Config_handler() function processes information from

configuration files, which includes paths to input data such as climate forcing and static datasets, as well as runtime settings

like the simulation period and the type of run (e.g., naturalized or anthropogenic). This information is passed into classes such

as ClimateForcing and StaticData, which read the specified input files and prepare the data for use in the model. For instance, 550

the ClimateForcing class accesses and processes precipitation and temperature data, while StaticData processes data for land

cover and other static variables.

The Model package implements all hydrological processes organized into vertical and lateral water balance components. In

the reprogrammed WGHM, each storage compartment is designed as a separate Python module. The VerticalWaterBalance 555

class coordinates hydrological processes such as the calculation of net radiation and potential evapotranspiration (PET) using

the Priestley-Taylor algorithm (although other PET schemes can be easily incorporated), canopy, snow, and the soil water

balance. The class uses its calculate() function to manage these computations and obtain the resulting storages and fluxes

through the get_storages_and_fluxes() function. Also, the LateralWaterBalance class addresses horizontal water movements

via calculate() function which further calls the river_routing() function. This involves the simulation of storage compartments 560

21

like groundwater, lakes and wetlands, reservoir-regulated water bodies, and rivers. It similarly retrieves all associated storages

and fluxes through its get_storages_and_fluxes() functions.

 Model parameters in NetCDF format are also processed here. The NetCDF format not only facilitates easy visualization of

parameter distribution but also enables convenient parameter modification using libraries like Xarray (Hoyer and Hamman,

2017). 565

The View package processes the outputs generated by the Model. It extracts storages and fluxes through the

get_storages_and_fluxes() functions of the VerticalWaterBalance and LateralWaterBalance classes. Outputs are then

converted to base units and saved as NetCDF files. NetCDFs are enriched with metadata, which comply with ISIMIP

conventions (ISIMIP, 2025). (https://www.isimip.org/protocol/preparing-simulation-files/). 570

Figure 3: Model-View–Controller (MVC) architectural pattern of the reprogrammed WGHM software at the package, class,

and function levels. The Controller package manages the configuration and input data (e.g., climate time series and static data),

the Model package contains core hydrological processes, and the View package handles the saving and presentation of model 575

outputs in NetCDF format. Classes are represented with capitalized names, and functions are denoted by lower-case names

ending with parentheses.

Field Code Changed

Formatted: Font: Bold

22

 580

As a new feature in the reprogrammed WGHM, 5.1.2 New features

Reprogramming enabled the revisionwe revised of the algorithm governing surface water demand satisfaction and its impact

on return flows to groundwater. The legacy code lacked sufficient in-code and external documentation to enable code

comprehension. After discussing the underlying conceptual model with the product owners, we developed an improved and 585

consistent algorithm. For more details about the new abstraction algorithm, readers can refer to WGHM model its

documentation (Nyenah, 2025c).

 (https://hydrologyfrankfurt.github.io/ReWaterGAP/model_processes/lateral_water_balance/net_abstractions.html).

 590

5.2 GWSWUSE

5.2.1 Architecture

The reprogrammed GWSWSUE component follows a similar MVC architecture (see Fig. S1 in the Supplement). The source 595

code is available on GitHub (Nissen, 2025a). (https://github.com/HydrologyFrankfurt/ReGWSWUSE.git).

 As part of the reprogramming process, several new features were added to the GWSWUSE. The reprogrammed 5.2.2

New features

Reprogramming GWSWUSE software includeincludesd the modification of model equations to enable the calculation and 600

write-out of potential sectoral net abstractions from groundwater and surface water, and the sectoral return flows to

groundwater and surface water, while the legacy GWSWUSE code only provided total net abstractions from groundwater and

surface water. Moreover, additional optional model settings were added in the reprogrammed GWSWUSE that enable an

improved and updated modelling of irrigation water use, including both water abstractions and consumptive use (i.e. abstracted

water that evapotranspirates during use (Müller Schmied et al., 2021). 605

Field Code Changed

Field Code Changed

23

Most importantly, the reprogrammed GWSWUSE can now optionally handle the input of a new variant of the irrigation water

use model GIM (Müller Schmied et al., 2021) that uses an updated dataset of the time series of area equipped for irrigation

(AEI) in each grid cell to compute the consumptive irrigation water use on the AEI. It then implements recent information on 610

country values of area actually irrigated (AAI) and AEI available from AQUASTAT (https://www.fao.org/aquastat/) for the

time period 1964-2020 to compute consumptive irrigation water use on the AAI since 1901. While the old gridded AEI dataset

covered the period from 1900 to 2005 (Siebert et al., 2015), the new gridded data incorporates new data for 2000 to 2015

(Mehta et al., 2024). Consumptive irrigation water use on AAI in the period 1901-2015 is computed by multiplying the gridded

output of GIM by the country-specific ratio of AAI-to-AEI, while results for the period 2016-2020 are computed in 615

reprogrammed GWSWUSE by multiplying the AAI-to-AEI ratio for 2015 by the ratio of AAI in the specific year to the AAI

in 2015. Irrigation after 2020 is handled in the new GWSWUSE like 2020. (Müller Schmied et al., 2021).

 Another newly included option is an alternative computation of irrigation water abstractions from groundwater. Instead of a

globally valid water use efficiency of 0.7, the user can select that the water use efficiency for irrigation with groundwater is

not less than the country-specific water use efficiency for irrigation with surface water. 620

For more details on these new features and the overall functionality of the new GWSWUSE software, please refer to the

external documentation (Nyenah, 2025c)

(https://hydrologyfrankfurt.github.io/ReWaterGAP/model_processes/gwswuse/index.html#gwswuse) and Fig. S2 in the

Supplement. 625

6 Evaluation against sustainability criteria and the principles of findability, accessibility, interoperability, and

reusability for research softwareFAIR4RS principles

The reprogrammed WGHM and GWSWUSE software demonstrate significant improvements in software engineering

practices and source code quality compared to the legacy software. They include a more comprehensive external 630

documentation, which was absent in the legacy software (Table 21). 46 out of 64 participants of a user survey on the

reprogrammed WGHM agreed (with 32 out of 64 strongly agreeing) that the provided external documentation clearly explained

the code (Fig. S78). While the legacy and reprogrammed software use GitHub for version control, the latter is publicly

accessible and includes automation (currently for WGHM) for documentation, testing, and linting (Table 21). The

reprogrammed software provides containerization (currently for WGHM), which was unavailable for the legacy software 635

(Table 21). Regarding active development over the past two years, both the reprogrammed and legacy WGHM software have

seen ongoing development, with three active developers working on the reprogrammed version and four developers

maintaining the legacy version. Research projects continue to rely on the legacy WGHM codebase; thus, development activities

24

are expected to continue until a smooth transition to the reprogrammed software is achieved. In contrast, no active development

has occurred for the legacy GWSWUSE model in the past two years. 640

Regarding source code quality, the reprogrammed WGHM includes a publicly available automated testing suite, which ensures

components of the software function as intended (Table 21). The reprogrammed software programs comply with Python PEP-

8 coding standards, with a Pylint score of 9.40 (out of 10) for WGHM and 9.65 for GWSWUSE. In contrast, the legacy

software contains several warnings, typos, and errors when evaluated against C/C++ Core guidelines, leading to potential 645

issues like poor code readability and difficulty in maintenance (Table 21). Comment density has improved for WGHM from

21% in the legacy software to 47% in the reprogrammed software, improving readability and enabling easier maintenance

(Table 21, Fig. S3a in Supplement). This aligns with a survey of 64 participantsthe user survey evaluating the reprogrammed

WGHM's Priestley-Taylor PET code snippet, which indicated high levels of code readability and modifiability (see

Supplementary Information on user perceptions of the reprogrammed WaterGAP software).. However, the comment density 650

in GWSWUSE decreased from 50% to 26%, even though it was sufficient for code comprehension. This decline is partly

because developers in the legacy version of GWSWUSE recorded file history in the headers, which increased the number of

comment lines. Based on the modularity metric, the legacy software programs include several files that exceed the

recommended range of 10–1,000 TLOC per file (see Fig. S3b in Supplement). The reprogrammed software have has a modular

structure, keeping TLOC per file within the recommended limits (see Fig. S3b in Supplement). 655

 660

Table 21: Sustainability indicators for the legacy and reprogrammed WGHM Software

No. Indicator Legacy WGHM & GWSWUSE Reprogrammed WGHM

& GWSWUSE

Best practice in software engineering

1 External documentation No Yes

2 Version control and

automation

Yes, GitHub (private),

no No automations available

Yes, GitHub (public),

25

Aautomation for documentation,

testing, and linting (currently for

WGHM)

3 Open-source license LGPLv3 LGPLv3

4 Number of active developers WGHM = 4 , GWSWUSE = 0 WGHM = 3, GWSWUSE =1

5 Containerization No Yes (currently for WHGM)

Source code quality

6 Public availability of an

automated

testing suite

No Yes (currently only for WGHM)

7 Compliance with coding

standardstandards

Several code violations: WGHM

(~280 warnings, ~3600 typos, 140

errors), GWSWUSE (~70

warnings, ~860 typos, 5 errors)

Yes, WGHM Pylint score = 9.40/10 ,

GWSWUSE Pylint score = 9.65/10

8 Comment density WGHM = 21%, GWSWUSE = 50% WGHM = 47%, GWSWUSE = 26%

9 Modularity No Yes

 665

The reprogrammed software aligns with the eleven main FAIR4RS principles. It has a versioned DOI from Zenodo (FAIR4RS

principle F1, Barker et al., 2022), along with rich metadata such as web-based documentation (F2) that includes the DOI (F3).

Metadata is searchable and indexable (e.g., via a search engine) (F4). The software can be downloaded from both the GitHub

repository and Zenodo (A1), and the metadata will remain accessible even if the software becomes unavailable on Zenodo 670

(A2). The software uses data types (NetCDF) for input, output, and data exchange that are widely used in the global

hydrological and impact model community (I1). The software includes qualified references to other objects (e.g., climate

forcing data) (I2). It is published under a Lesser General Public License v3.0 (R1). The code also includes qualified references

to other software, such as various Python libraries (e.g., Xarray, Numpy, Numba) (R2), and the software meets domain-relevant

community standards (e.g., variable naming convention from ISIMIP) (R3). 675

7 Differences between the outputs of the reprogrammed and legacy software

Globally aggregated water balance components (km3 yr−1) are shown for the reprogrammed version and the legacy code in

Table 32. As expected, the output of both WGHM versions is very similar. The most notable changes are in the actual net

abstraction from surface water and groundwater, which can be attributed to the implementation of a consistent water abstraction 680

26

algorithm in WGHM and small variations in the outputs of the reprogrammed GWSWUSE compared to the legacy version.

Additionally, the use of a new minimization algorithm for parameter calibration, the "Powell method" from SciPy (Virtanen

et al., 2020) (https://docs.scipy.org/doc/scipy-1.15.0/reference/optimize.minimize-powell.html), has contributed to the overall

variations in the water balance components (see Fig. S4 in the Supplement for the variations in calibrated parameters

contributing to variation in water balance components). 685

Table 32: Global-scale (excluding Antarctica and Greenland) water balance components (km3 yr−1) for the reprogrammed and

legacy WaterGAP global hydrological models, driven by the climate forcing data from gswp3-w5e5. Long-term average

volume balance error is calculated as the difference in between component 1 and the sum of components 2, 3, and 8. Values 690

without parentheses correspond to the reprogrammed WGHM, while values in parentheses refer to the legacy WGHM.Values

within parentheses are for the legacy WGHM.

No. Component 1961-1990 1971–2000 1981–2010 1991–2019 2001–2019

1 Precipitation 110637 (110637) 111279 (111279) 111350 (111350) 111574 (111574) 111655 (111655)

2 Actual

evapotranspiration

71427 (71325) 71861 (71755) 71926 (71816) 72113 (71998) 72179 (72063)

3 Streamflow into

oceans

39199 (39295) 39432 (39530) 39484 (39584) 39563 (39666) 39593 (39697)

4 Inflow into inland

sinks

774 (776) 793 (794) 794 (795) 840 (841) 845 (846)

5 Actual consumptive

water use

909 (904) 1055 (1049) 1203 (1195) 1316 (1307) 1379 (1369)

6 Actual net abstraction

from surface water

1000 (1036) 1140 (1186) 1282 (1338) 1386 (1448) 1434 (1501)

7 Actual net abstraction

from groundwater

-91 (−132) -85 (−137) -79 (−143) -70 (−141) -55 (−132)

8 Change in total water

storage

11 (17) -14 (−6) -59 (−49) -102 (−91) -117 (−105)

9 Long-term average

volume balance error

0.11 (−0.46) 0.11 (−0.34) 0.09 (−0.20) 0.09 (−0.08) 0.09 (−0.07)

The differences between the grid cell values of renewable water resources between the reprogrammed software (Fig. 4a) and 695

the legacy software are small. For 97.6% of the global land area, the difference remains within ±10% (Fig. 4b). More

specifically, 70.5% of the global land area has renewable water resources that differ within ±1 % while 27.1% of the global

Formatted: Font: Bold

27

land area falls within the range of ±1% and ±10% (Fig. 4b). Only 0.1% of the global land area shows relative difference

exceeding ±100%. The differences between the legacy and reprogrammed versions for renewable water resources are only due

to variations in calibration parameters 700

Figure 4: Total renewable water resources [mm yr−1] for the period 1981–2010 computed by the reprogrammed WaterGAP

model (a), percent differences of computed total renewable water resources between the reprogrammed and legacy WaterGAP

model for the period 1981–2010. Positive values in b) indicate that the legacy WGHM estimates higher renewable water 705

resources than the reprogrammed WGHM.

Formatted: Font: Bold

28

8 Users perceptions of the reprogrammed WaterGAP software

The online survey aimed to evaluate the readability, comprehensibility, modifiability, and documentation quality of a code

snippet implementing the Priestley-Taylor potential evapotranspiration algorithm in the reprogrammed software. The 64 710

survey participants who completed the survey represented a diverse group, with the majority being PhD students (38%),

scientific staff (20%), or Postdocs (14%) (see Fig. S5a in the Supplement). On average, participants had approximately 14

years of programming experience, with individual experience ranging from 1 to 50 years (see Fig. S5b in the Supplement).

The survey results demonstrate a high level of code readability, with about 72% of the participants correctly identifying the 715

Priestley-Taylor algorithm (see Fig. S6a in the Supplement). Approximately 72% of the participants agreed (with 50% strongly

agreeing) that the provided external documentation clearly explained the code (Fig 5). Furthermore, about 58% of participants

understood of the algorithm’s purpose after reading the external documentation, and about 64% confirmed that the

documentation was not difficult to comprehend (Fig 5). The survey also examined the ease of code modification by testing

participants' confidence in implementing a change to the algorithm. When asked about modifying the code with a new 720

atmospheric constant, approximately 62% of participants expressed some level of confidence (ranging from slightly to very

confident) in their ability to do so (see Fig. S6b in the Supplement). In contrast, 27% did not respond, 5% indicated having no

confidence, and 6% stated they had no idea how to proceed (see Fig. S6b in the Supplement). Additionally, about 66% correctly

identified the specific line of code that would require modification (see Fig. S6c in the Supplement). Meanwhile, about 26%

did not respond, and 8% selected the wrong line of code. 725

Figure 5: Survey results from 64 participants regarding external documentation readability and comprehension of the Priestley-

Taylor potential evapotranspiration (PET) code snippet.

 730

29

89 Lesson learned Discussion

Throughout the progress ofWhen reprogramming WaterGAP, we have made six key observations that we hope can guide

others in their efforts to improve the sustainability of their research software.

Improved readability, maintainability and adaptability may negatively impact model runtime. 735

Implementing an agile process can be challenging, but it is rewarding due to its flexibility.

Carefully revising the software architecture design throughout the process, ideally with expert input, and by applying

established software design patterns, yields highly modular software.

Consistent variable naming should be revised throughout the process. Guidelines for future code development should be

developed at the same time. 740

1. Documentation comes first and needs to be developed at the same time as code and not as an afterthought.

 Automation is key to ensuring efficient development and high software quality.

8.1 Improved readability, maintainability, and adaptability may negatively impact model runtime

Considering sustainable research software indicators and the FAIR4RS principles in the reprogramming of the legacy code 745

has enhanced the software quality, extensibility, reproducibility, and long-term sustainability of WaterGAP. Unfortunately,

the transition from C/C++ in the legacy software to Python, an interpreted language, has approximately doubled the WGHM

runtime. This is to be expected as numerical computations in Python can be 3-10 times slower compared to C/C++ (Cai et al.,

2005). The average runtime for a standard run on an AMD EPYC 7543 processor with 3.7 GHz is about 7-8 minutes per

simulated year for the reprogrammed software, compared to 3-4 minutes for the legacy software. Considering that this may 750

lead to critical run time-related constrains constraints for model calibration and ensemble methods, e.g., used for sensitivity

analysis and ensemble forecasts –, is the choice of Python justifiable?

To reach this runtime, we already utilized the optimization library Numba, which compiles parts of the Python code. Python

is generally slower in terms of runtime performance compared to C/C++ since it uses interpretation instead of compilation 755

(Cai et al., 2005). Compiled code is translated into machine code by a compiler before execution, resulting in a standalone

executable file that can be run directly by the processor. On the other hand, interpreted code is executed line by line by an

interpreter during runtime, meaning the code must be interpreted every time it is run. Compiled code generally executes faster

but often requires a separate compilation step and may be less portable. In contrast, interpreted code is typically more portable

but executes more slowly. The pure Python implementation of the GHM HydroPy model is three times slower than the version 760

with a routing scheme written in Fortran (Stacke and Hagemann, 2021).

Formatted: Normal, No bullets or numbering

Formatted: Font: Bold

Formatted: Outline numbered + Level: 2 + Numbering
Style: 1, 2, 3, … + Start at: 1 + Alignment: Left + Aligned at:
0" + Indent at: 0.25"

30

However, Python generally produces more readable, less error-prone, and more maintainable code than C++, primarily due to

its simpler syntax, dynamic typing, automatic memory management, and higher-level abstractions (Balreira et al., 2023;

Johnson, 2025; Prechelt, 2000). These features reduce the likelihood of errors and allow developers to express complex ideas 765

more concisely. Python's extensive standard library and ecosystem further enhance maintainability by reducing the need for

custom code. In contrast, C++'s more complex syntax and manual memory management can lead to more errors and harder-

to-maintain code. Most scientists lack the necessary skills to produce high-quality C++ code and are unlikely to follow any

best practices (Reinecke et al., 2022). We believe that the benefits of Python regarding of code quality outweigh the run

timeruntime increase. The switch from C/C++ to Python makes it easier for scientists, particularly those with restricted 770

programming experience, to understand, modify, extend, and maintain a complex model. Slow code can always be made fast

with better hardware, but hardware cannot fix bad code and unsustainable software.

8.2 Implementing an agile process benefits reprogramming also in an academic setting

The agile development process and the use of user stories were essential in, along with the use of user stories, was essential to 775

our reprogramming effort, enabling iterative improvements through continuous feedback. Agile principles offer significant

benefits in academic software development. Specifically, Agile supports flexibility in incorporating evolving research

questions and enables effective progress tracking. Tools such as task boards and backlogs provide transparency and help

manage workflows efficiently. This is particularly important in academic settings where timelines are often constrained and

team composition can change frequently, such as in PhD and Postdoc projects. Agile’s emphasis on regular communication 780

helps align the efforts of diverse contributors, including students, researchers, and supervisors (the “project owners”), ensuring

everyone stays informed and coordinated throughout the project.

 User stories helped ensure that the software features matched the scientific requirements of WaterGAP. However, estimating

the time needed to complete user stories was difficult, and coordinating an agile process with only a few developers in an

academic setting was somewhat challenging. Despite this, we recommend this approach for other reprogramming projects as 785

it supports timely and user-focused development and helps the team stay updated on progress.

8.3 Carefully applying established software design patterns throughout the process, ideally with expert input, yields

highly modular software

Defining software architecture and, consequently, its modular design is an iterative process that benefits greatly from the input 790

of software experts input. Architectural decisions play a critical role in determining how easily a model can be extended or

modified without affecting other software components. For example, implementing each storage compartment as an

independent Python module enabled targeted test development and comprehensive testing prior tobefore integration. Guidance

on software design patterns can be found, for example, in Gamma et al. (1994) (Gamma et al., 1994). A modular design also

leads to improved readability, as single components of a project (e.g., code files) are more concise in their purpose. 795

Formatted: Font: Bold

Formatted: Outline numbered + Level: 2 + Numbering
Style: 1, 2, 3, … + Start at: 1 + Alignment: Left + Aligned at:
0" + Indent at: 0.25"

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Outline numbered + Level: 2 + Numbering
Style: 1, 2, 3, … + Start at: 1 + Alignment: Left + Aligned at:
0" + Indent at: 0.25"

Formatted: Font: Bold

31

8.4 Consistent variable naming is paramount for code readability and maintainability

Alongside modular design

E, establishingEstablishing meaningful and consistent variable names is also also an iterative process that requires 800

collaborative effort among developers and domain experts. Clear and logical naming significantly enhances code readability

and maintainability. Importantly, naming conventions need to be documented to guide future model development.

 805

8.5 Documentation comes first and needsshould be written in parallel with code development to be developed at the

same time as code and not as an afterthought.

We strongly recommend writing model documentation alongside code development rather than leaving it until the end. This

approach helps to capture critical assumptions, such as those embedded in algorithms, while they are still fresh in the

developers' minds. Peer review of documentation improves its quality and clarity.We also strongly recommend writing model 810

documentation in parallel with code development, rather than postponing it to the end. This approach helps capture critical

assumptions, such as those embedded in algorithms, while they are still fresh in developers’ minds. Peer review of

documentation is recommended to improve its quality and clarity.

 815

8.6 Automation is key to ensuring efficient development and high software quality.

Automating the generation of the documentation reduces manual work and helps to keep it up to date. Automating linting and

testing ensures that the code functions correctly, without the need for constant manual checks.

Integrating automation into the development process especially for generating documentation, linting, and testing, especially 820

for generating documentation, linting, and testing, reduces manual work by keeping documentation up to date and

ensuresensuring the code works correctly without needing constant manual checks.

Our user survey has several limitations and potential biases. The survey was distributed to participants at the European

Geosciences Union (EGU) 2024 conference, which introduced self-selection bias. Respondents were likely more interested in

software sustainability topics, potentially skewing the results toward a more engaged subset of researchers. More importantly, 825

we assessed understanding and perceptions based on a code snippet rather than the full source code, which does not provide a

comprehensive evaluation of the software. Due to time constraints, we did not conduct a practical evaluation of reproducibility,

with guiding participants through executing the reprogrammed software with a tutorial.

Formatted: Font: Bold

Formatted: List Paragraph, Outline numbered + Level: 2 +
Numbering Style: 1, 2, 3, … + Start at: 1 + Alignment: Left +
Aligned at: 0" + Indent at: 0.25"

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Normal, No bullets or numbering

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Normal, No bullets or numbering

32

910 Conclusion

This study details how the legacy software of the state-of-the-art global hydrological model WaterGAP was reprogrammed to 830

obtain a sustainable research software that can be efficiently applied and enhanced within the original developer group and a

broader research community. The reprogrammed software (from the so-called ReWaterGAP project) has undergone extensive

quality control, thereby which has enhancinged its reliability. The new modular structure and use of the Python programming

language have greatly improved readability, modifiability, and extensibility. The software’s quality, comprehensive

documentation, containerization, and use of standardized input and output formats make render itthe software more accessible 835

to users with varying levels of expertise. The open-source nature of the reprogrammed software allows for easierfacilitates

comparison of algorithms, consistency checks, and error detection, ultimately contributing to the advancement of hydrological

sciences. Finally, the reprogrammed WaterGAP software can be expected to enable scientific studies that are more readily

reproducible than those conducted with the legacy software.

 840

With the reprogrammed WaterGAP software, interested researchers can now be taught at conferences or summer schools about

how to apply and improve the software, thus expanding the WaterGAP community and advancing global hydrological

modelingmodelling. Moreover, the reprogrammed software, with its improved modularity, can serve for teaching Bachelor

Bachelor's and Master Master's students how to write and modify algorithms or include new data, helping them to understand

more about the global hydrological cycle.to write and modify algorithm algorithms or include new input data, gaining new 845

insights into the global hydrological cycle.

Code and data availability

The reprogrammed WGHM model source code as well as Docker file can be found at

https://github.com/HydrologyFrankfurt/ReWaterGAP. An archived release of the reprogrammed WGHM is also made 850

available on Zenodo (https://doi.org/10.5281/zenodo.14988011) (Nyenah et al., 2025a). The source code of the new

GWSWUSE is available on GitHub (https://github.com/HydrologyFrankfurt/ReGWSWUSE.git) as well as Zenodo

(https://doi.org/10.5281/zenodo.14988011) (Nyenah et al., 2025a). External documentation for both source code codes can be

accessed via (https://hydrologyfrankfurt.github.io/ReWaterGAP/). The Python scripts utilized for analysis is are available on

Zenodo (https://doi.org/10.5281/zenodo.14988257) (Nyenah et al., 2025b). 855

Author contributions

EN, PD, and RR designed the study. EN performed the analysis and wrote the paper with significant contributions from PD,

MF, LM, LN and RR. RR and PD supervised EN.

Formatted: Font: Not Bold

https://github.com/HydrologyFrankfurt/ReWaterGAP
https://doi.org/10.5281/zenodo.14988011
https://github.com/HydrologyFrankfurt/ReGWSWUSE.git
https://doi.org/10.5281/zenodo.14988011
https://hydrologyfrankfurt.github.io/ReWaterGAP/
https://doi.org/10.5281/zenodo.14988257

33

Acknowledgments 860

The study was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (grant no. 443183317). We thank Linda

Söller and Laura Müller for their valuable advice for on the development of the user survey

References

Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P.,

Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P., Ebert, P., Flemisch, B., Friedl, S., Fritzsch, B., 865

Funk, M., Gast, V., Goth, F., Grad, J., Hegewald, J., Hermann, S., Hohmann, F., Janosch, S., Kutra, D., Linxweiler, J., Muth,

T., Peters-Kottig, W., Rack, F., Raters, F., Rave, S., Reina, G., Reißig, M., Ropinski, T., Schaarschmidt, J., Seibold, H., Thiele,

J., Uekermann, B., Unger, S., and Weeber, R.: An environment for sustainable research software in Germany and beyond:

current state, open challenges, and call for action [version 2; peer review: 2 approved], F1000Research, 9,

https://doi.org/10.12688/f1000research.23224.2, 2021. 870

Arafat, O. and Riehle, D.: The comment density of open source software code, in: 2009 31st International Conference on

Software Engineering - Companion Volume, 195–198, https://doi.org/10.1109/ICSE-COMPANION.2009.5070980, 2009.

Balreira, D. G., Silveira, T. L. T. da, and Wickboldt, J. A.: Investigating the impact of adopting Python and C languages for

introductory engineering programming courses, Computer Applications in Engineering Education, 31, 47–62,

https://doi.org/10.1002/cae.22570, 2023. 875

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J.,

Gruenpeter, M., Martinez, P. A., and Honeyman, T.: Introducing the FAIR Principles for research software, Scientific Data,

9, 622, https://doi.org/10.1038/s41597-022-01710-x, 2022.

Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resources Research, 51, 4923–4947,

https://doi.org/10.1002/2015WR017173, 2015. 880

Boulay, A.-M., Bare, J., De Camillis, C., Döll, P., Gassert, F., Gerten, D., Humbert, S., Inaba, A., Itsubo, N., Lemoine, Y.,

Margni, M., Motoshita, M., Núñez, M., Pastor, A. V., Ridoutt, B., Schencker, U., Shirakawa, N., Vionnet, S., Worbe, S.,

Yoshikawa, S., and Pfister, S.: Consensus building on the development of a stress-based indicator for LCA-based impact

assessment of water consumption: outcome of the expert workshops, Int J Life Cycle Assess, 20, 577–583,

https://doi.org/10.1007/s11367-015-0869-8, 2015. 885

Burt, T. P. and McDonnell, J. J.: Whither field hydrology? The need for discovery science and outrageous hydrological

hypotheses, Water Resources Research, 51, 5919–5928, https://doi.org/10.1002/2014WR016839, 2015.

Cai, X., Langtangen, H. P., and Moe, H.: On the Performance of the Python Programming Language for Serial and Parallel

Scientific Computations, Scientific Programming, 13, 619804, https://doi.org/10.1155/2005/619804, 2005.

Choulga, M., Moschini, F., Mazzetti, C., Grimaldi, S., Disperati, J., Beck, H., Salamon, P., and Prudhomme, C.: Technical 890

note: Surface fields for global environmental modelling, Hydrology and Earth System Sciences, 28, 2991–3036,

https://doi.org/10.5194/hess-28-2991-2024, 2024.

Curcio, K., Navarro, T., Malucelli, A., and Reinehr, S.: Requirements engineering: A systematic mapping study in agile

software development, Journal of Systems and Software, 139, 32–50, https://doi.org/10.1016/j.jss.2018.01.036, 2018.

34

Datry, T., Allen, D., Argelich, R., Barquin, J., Bonada, N., Boulton, A., Branger, F., Cai, Y., Cañedo-Argüelles, M., Cid, N., 895

Csabai, Z., Dallimer, M., Araújo, J. C. de, Declerck, S., Dekker, T., Döll, P., Encalada, A., Forcellini, M., Foulquier, A., Heino,

J., Jabot, F., Keszler, P., Kopperoinen, L., Kralisch, S., Künne, A., Lamouroux, N., Lauvernet, C., Lehtoranta, V., Loskotová,

B., Marcé, R., Ortega, J. M., Matauschek, C., Miliša, M., Mogyorósi, S., Moya, N., Schmied, H. M., Munné, A., Munoz, F.,

Mykrä, H., Pal, I., Paloniemi, R., Pařil, P., Pengal, P., Pernecker, B., Polášek, M., Rezende, C., Sabater, S., Sarremejane, R.,

Schmidt, G., Domis, L. S., Singer, G., Suárez, E., Talluto, M., Teurlincx, S., Trautmann, T., Truchy, A., Tyllianakis, E., 900

Väisänen, S., Varumo, L., Vidal, J.-P., Vilmi, A., and Vinyoles, D.: Securing Biodiversity, Functional Integrity, and Ecosystem

Services in Drying River Networks (DRYvER), Research Ideas and Outcomes, 7, e77750,

https://doi.org/10.3897/rio.7.e77750, 2021.

Dimitrijević, S., Jovanović, J., and Devedžić, V.: A comparative study of software tools for user story management,

Information and Software Technology, 57, 352–368, https://doi.org/10.1016/j.infsof.2014.05.012, 2015. 905

Döll, P., Kaspar, F., Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and

validation. Journal of Hydrology, 270 (1-2), 105-134. https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.

Döll, P., Sester, M., Feuerhake, U., Frahm, H., Fritzsch, B., Hezel, D. C., Kaus, B., Kolditz, O., Linxweiler, J., Müller Schmied,

H., Nyenah, E., Risse, B., Schielein, U., Schlauch, T., Streck, T., and van den Oord, G.: Sustainable research software for high-910

quality computational research in the Earth System Sciences: Recommendations for universities, funders and the scientific

community in Germany, https://doi.org/10.23689/fidgeo-5805, 2023.

Döll, P., Hasan, H. M. M., Schulze, K., Gerdener, H., Börger, L., Shadkam, S., Ackermann, S., Hosseini-Moghari, S.-M.,

Müller Schmied, H., Güntner, A., and Kusche, J.: Leveraging multi-variable observations to reduce and quantify the output

uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin, 915

Hydrology and Earth System Sciences, 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, 2024.

Domisch, S., Portmann, F. T., Kuemmerlen, M., O’Hara, R. B., Johnson, R. K., Davy-Bowker, J., Bækken, T., Zamora-Muñoz,

C., Sáinz-Bariáin, M., Bonada, N., Haase, P., Döll, P., and Jähnig, S. C.: Using streamflow observations to estimate the impact

of hydrological regimes and anthropogenic water use on European stream macroinvertebrate occurrences, Ecohydrology, 10,

e1895, https://doi.org/10.1002/eco.1895, 2017. 920

Eisner, S.: Comprehensive evaluation of the WaterGAP3 model across climatic, physiographic, and anthropogenic gradients,

2016, PhD thesis, Kassel University, 2016, https://kobra.uni-kassel.de/bitstreams/99b4fc59-8807-40a9-82a5-

d12a7f1a0788/download, last access: 11th March 2025

Flörke, M., Schneider, C., and McDonald, R. I.: Water competition between cities and agriculture driven by climate change

and urban growth, Nat Sustain, 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018. 925

Frieler, K. and Vega, I.: ISIMIP & ISIpedia - Inter-sectoral impact modeling and communication of national impact

assessments, 2019, Bonn Climate Change Conference, session SBSTA 50, https://unfccc.int/documents/197148, last access:

20th February 2025.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design patterns, Addison Wesley, Boston, MA, 1994.

George, B. and Williams, L.: A structured experiment of test-driven development, Information and Software Technology, 46, 930

337–342, https://doi.org/10.1016/j.infsof.2003.09.011, 2004.

GitHub issues: coveragepy Issue #849, https://github.com/nedbat/coveragepy/issues/849, last access: 1st July 2025.

https://doi.org/10.1016/S0022-1694(02)00283-4

35

Guaman, D., Delgado, S., and Perez, J.: Classifying Model-View-Controller Software Applications Using Self-Organizing

Maps, IEEE Access, 9, 45201–45229, https://doi.org/10.1109/ACCESS.2021.3066348, 2021.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., 935

Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson,

P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array

programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.

He, H.: Understanding Source Code Comments at Large-Scale, in: Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering, New York, NY, 940

USA, event-place: Tallinn, Estonia, 1217–1219, https://doi.org/10.1145/3338906.3342494, 2019.

Heinicke, S., Volkholz, J., Schewe, J., Gosling, S. N., Müller Schmied, H., Zimmermann, S., Mengel, M., Sauer, I. J., Burek,

P., Chang, J., Kou-Giesbrecht, S., Grillakis, M., Guillaumot, L., Hanasaki, N., Koutroulis, A., Otta, K., Qi, W., Satoh, Y.,

Stacke, T., Yokohata, T., and Frieler, K.: Global hydrological models continue to overestimate river discharge, Environ. Res.

Lett., 19, 074005, https://doi.org/10.1088/1748-9326/ad52b0, 2024. 945

Hema, V., Thota, S., Naresh Kumar, S., Padmaja, C., Rama Krishna, C. B., and Mahender, K.: Scrum: An Effective Software

Development Agile Tool, IOP Conf. Ser.: Mater. Sci. Eng., 981, 022060, https://doi.org/10.1088/1757-899X/981/2/022060,

2020.

Hoch, J. M., Sutanudjaja, E. H., Wanders, N., van Beek, R. L. P. H., and Bierkens, M. F. P.: Hyper-resolution PCR-GLOBWB:

opportunities and challenges from refining model spatial resolution to 1 km over the European continent, Hydrology 950

and Earth System Sciences, 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, 2023.

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5,

https://doi.org/10.5334/jors.148, 2017.

Hut, R., Drost, N., van de Giesen, N., van Werkhoven, B., Abdollahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B.,

Camphuijsen, J., Dzigan, Y., van Haren, R., Hutton, E., Kalverla, P., van Meersbergen, M., van den Oord, G., Pelupessy, I., 955

Smeets, S., Verhoeven, S., de Vos, M., and Weel, B.: The eWaterCycle platform for open and FAIR hydrological collaboration,

Geoscientific Model Development, 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, 2022.

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible,

so is it really science?, Water Resources Research, 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016.

ISIMIP: ISIMIP protocol: Preparing simulation files, https://www.isimip.org/protocol/preparing-simulation-files/, last access: 960

1st July 2025.

Jiménez Cisneros, B. E., Oki, T., Arnell, N. W., Benito, G., Döll, P., Jiang, T., Cogley, J. G., and Mwakalila, S. S.: Freshwater

resources, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA, 229–269, 2014.

Johnson, S.: Python vs. C++: A Comparison of Key Features and Differences, https://www.stxnext.com/blog/python-vs-cplus-965

plus-comparison, last access: 20th February 2025.

Katz, D. S.: Research Software: Challenges & Actions. The Future of Research Software: International Funders Workshop,

Amsterdam, Netherlands., https://doi.org/10.5281/zenodo.7295423, 2022.

36

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions by GFZ, and

their validation using a hydrological model, J Geod, 83, 903–913, https://doi.org/10.1007/s00190-009-0308-3, 2009. 970

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: a LLVM-based Python JIT compiler, in: Proceedings of the Second Workshop

on the LLVM Compiler Infrastructure in HPC, SC15: The International Conference for High Performance Computing,

Networking, Storage and Analysis, Austin Texas, 1–6, https://doi.org/10.1145/2833157.2833162, 2015.

McConnell, S.: in: Code Complete, Second Edition, Microsoft Press, USA, 565–596, 2004.

Mehta, P., Siebert, S., Kummu, M., Deng, Q., Ali, T., Marston, L., Xie, W., and Davis, K. F.: Half of twenty-first century 975

global irrigation expansion has been in water-stressed regions, Nat Water, 2, 254–261, https://doi.org/10.1038/s44221-024-

00206-9, 2024.

Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., and Teckentrup, L.: CLASSIC v1.0: the

open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem

Model (CTEM) – Part 1: Model framework and site-level performance, Geoscientific Model Development, 13, 2825–2850, 980

https://doi.org/10.5194/gmd-13-2825-2020, 2020.

Molnar, A.-J., Motogna, S., and Vlad, C.: Using static analysis tools to assist student project evaluation, in: Proceedings of the

2nd ACM SIGSOFT International Workshop on Education through Advanced Software Engineering and Artificial

Intelligence, ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, Virtual USA, 7–12, https://doi.org/10.1145/3412453.3423195, 2020. 985

Muhammad, A., Siddique, A., Mubasher, M., Aldweesh, A., and Naveed, Q. N.: Prioritizing Non-Functional Requirements in

Agile Process Using Multi Criteria Decision Making Analysis, IEEE Access, 11, 24631–24654,

https://doi.org/10.1109/ACCESS.2023.3253771, 2023.

Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T.,

Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use 990

model WaterGAP v2.2d: model description and evaluation, Geoscientific Model Development, 14, 1037–1079,

https://doi.org/10.5194/gmd-14-1037-2021, 2021.

Müller Schmied, H., Trautmann, T., Ackermann, S., Cáceres, D., Flörke, M., Gerdener, H., Kynast, E., Peiris, T. A.,

Schiebener, L., Schumacher, M., and Döll, P.: The global water resources and use model WaterGAP v2.2e: description and

evaluation of modifications and new features, Geoscientific Model Development Discussions, 1–46, 995

https://doi.org/10.5194/gmd-2023-213, 2023.

Müller Schmied, H., Trautmann, T., Ackermann, S., Cáceres, D., Flörke, M., Gerdener, H., Kynast, E., Peiris, T. A.,

Schiebener, L., Schumacher, M., and Döll, P.: The global water resources and use model WaterGAP v2.2e: description and

evaluation of modifications and new features, Geoscientific Model Development, 17, 8817–8852,

https://doi.org/10.5194/gmd-17-8817-2024, 2024. 1000

Nissen, L.: Reprogrammed groundwater surface water use model, https://github.com/HydrologyFrankfurt/ReGWSWUSE.git

last access: 1st July 2025a.

Nissen, L.: Unit tests for reprogrammed GWSWUSE software,

https://github.com/HydrologyFrankfurt/ReGWSWUSE/tree/main/test, last access: 1st July 2025b.

Nüst, D., Sochat, V., Marwick, B., Eglen, S. J., Head, T., Hirst, T., and Evans, B. D.: Ten simple rules for writing Dockerfiles 1005

for reproducible data science, PLoS Comput Biol, 16, e1008316, https://doi.org/10.1371/journal.pcbi.1008316, 2020.

37

Nyenah, E.: Automated linting workflow for WGHM software,

https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/.github/workflows/lint.yaml, last access: 1st July 2025a.

Nyenah, E.: Automated unit test workflow for WGHM software,

https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/.github/workflows/unit_test.yaml, last access: 1st 1010

July2025b.

Nyenah, E.: ReWaterGAP Web-based Documentation, https://hydrologyfrankfurt.github.io/ReWaterGAP/, last access: 1st

July 2025c.

Nyenah, E.: Unit tests for reprogrammed WGHM software,

https://github.com/HydrologyFrankfurt/ReWaterGAP/tree/main/test, last access: 1st July 2025d. 1015

Nyenah, E.: Unit tests for the canopy storage module,

https://github.com/HydrologyFrankfurt/ReWaterGAP/blob/main/test/test_canopy.py, last access: 1st July2025e.

Nyenah, E., Döll, P., Katz, D. S., and Reinecke, R.: Software sustainability of global impact models, Geoscientific Model

Development Discussions, 1–29, https://doi.org/10.5194/gmd-2024-97, 2024.

Nyenah, E., Döll, P., Floerke, M., Mühlenbruch, L., Nissen, L., and Reinecke, R.: Reprogrammed version of the WaterGAP 1020

V2.2e and Groundwater Surface Water Use (GWSWUSE) linking model.,l, https://doi.org/10.5281/zenodo.14988011, 2025a.

Nyenah, E., Döll, P., Floerke, M., Mühlenbruch, L., Nissen, L., and Reinecke, R.: The Process and Value of Reprogramming

a Legacy Global Hydrological Model, https://doi.org/10.5281/zenodo.14988258, 2025b.

Oliphant, T. E.: Python for Scientific Computing, Computing in Science & Engineering, 9, 10–20,

https://doi.org/10.1109/MCSE.2007.58, 2007. 1025

Pajankar, A.: unittest, in: Python Unit Test Automation: Automate, Organize, and Execute Unit Tests in Python, edited by:

Pajankar, A., Apress, Berkeley, CA, 43–90, https://doi.org/10.1007/978-1-4842-7854-3_3, 2022.

Prechelt, L.: An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a search/string-processing program,

https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf, last access: 20th February 2025.

Python, S. F.: unittest — Unit testing framework, https://docs.python.org/3/library/unittest.html, last access: 20th February 1030

2025.

Reinecke, R., Trautmann, T., Wagener, T., and Schüler, K.: The critical need to foster computational reproducibility,

Environmental Research Letters, 17, https://doi.org/10.1088/1748-9326/ac5cf8, 2022.

van Rossum, G., Warsaw, B., and Coghlan, N.: PEP 8 – Style guide for Python code, 2001,

https://docs.python.org/3/library/unittest.html, last access: 20th February 2025, last access: 1st July 2025. 1035

Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, Ch., Güntner, A., Döll, P., Ramillien, G., Cazenave, A., Petrovic, S.,

Jochmann, H., and Wünsch, J.: GRACE observations of changes in continental water storage, Global and Planetary Change,

50, 112–126, https://doi.org/10.1016/j.gloplacha.2004.11.018, 2006.

Schneider, C., Flörke, M., De Stefano, L., and Petersen-Perlman, J. D.: Hydrological threats to riparian wetlands of

international importance – a global quantitative and qualitative analysis, Hydrology and Earth System Sciences, 21, 2799–1040

2815, https://doi.org/10.5194/hess-21-2799-2017, 2017.

38

Schomberg, A. C., Bringezu, S., and Flörke, M.: Extended life cycle assessment reveals the spatially-explicit water scarcity

footprint of a lithium-ion battery storage, Commun Earth Environ, 2, 1–10, https://doi.org/10.1038/s43247-020-00080-9, 2021.

Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated

land from 1900 to 2005, Hydrology and Earth System Sciences, 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, 1045

2015.

Sphinx Project: Sphinx Documentation, https://www.sphinx-doc.org/en/master/, last access: 1st July 2025.

Stack Overflow: Analyzing coverage of numba-wrapped functions, https://stackoverflow.com/questions/26875191/analyzing-

coverage-of-numba-wrapped-functions, last access: 1st July 2025.

Stacke, T. and Hagemann, S.: HydroPy (v1.0): a new global hydrology model written in Python, Geoscientific Model 1050

Development, 14, 7795–7816, https://doi.org/10.5194/gmd-14-7795-2021, 2021.

Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M.,

Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E.,

Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model,

Geoscientific Model Development, 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. 1055

Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M.,

Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki,

N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and

Herz, F.: Understanding each other’s models: an introduction and a standard representation of 16 global water models to

support intercomparison, improvement, and communication, Geoscientific Model Development, 14, 3843–3878, 1060

https://doi.org/10.5194/gmd-14-3843-2021, 2021.

Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Nakagawa, E. Y., Becker, C., and Carrillo, C.:

Software sustainability: Research and practice from a software architecture viewpoint, Journal of Systems and Software, 138,

174–188, https://doi.org/10.1016/j.jss.2017.12.026, 2018.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, 1065

W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,

Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,

I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental

algorithms for scientific computing in Python, Nat Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

van Vliet, M. T. H., van Beek, L. P. H., Eisner, S., Flörke, M., Wada, Y., and Bierkens, M. F. P.: Multi-model assessment of 1070

global hydropower and cooling water discharge potential under climate change, Global Environmental Change, 40, 156–170,

https://doi.org/10.1016/j.gloenvcha.2016.07.007, 2016.

Wan, W., Döll, P., and Zheng, H.: Risk of Climate Change for Hydroelectricity Production in China Is Small but Significant

Reductions Cannot Be Precluded for More Than a Third of the Installed Capacity, Water Resources Research, 58,

e2022WR032380, https://doi.org/10.1029/2022WR032380, 2022. 1075

Wang, Y., Zheng, B., and Huang, H.: Complying with Coding Standards or Retaining Programming Style: A Quality Outlook

at Source Code Level, Journal of Software Engineering and Applications, 1, 88–91, https://doi.org/10.4236/jsea.2008.11013,

2008.

39

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model

Intercomparison Project (ISI–MIP): Project framework, Proceedings of the National Academy of Sciences, 111, 3228–3232, 1080

https://doi.org/10.1073/pnas.1312330110, 2014.

Wiggins, G., Cage, G., Smith, R., Hitefield, S., McDonnell, M., Drane, L., McGaha, J., Brim, M., Abraham, M., Archibald,

R., and Malviya-Thakur, A.: Best practices for documenting a scientific Python project, ,

https://doi.org/10.5281/zenodo.10426364, 2023.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da 1085

Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S.,

Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A.

C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P.,

Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van

der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The 1090

FAIR Guiding Principles for scientific data management and stewardship, Sci Data, 3, 160018,

https://doi.org/10.1038/sdata.2016.18, 2016.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I.

M., Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best Practices for Scientific Computing, PLOS Biology, 12,

e1001745, https://doi.org/10.1371/journal.pbio.1001745, 2014. 1095

WMO: State of Global Water Resources report 2023, https://library.wmo.int/records/item/69033-state-

ofglobalwaterresources-report-2023, last access: 20th February 2025.

