
Dear Reviewer,

We sincerely appreciate your prompt and insightful review of our manuscript. Your valuable

comments and suggestions have significantly improved the quality of our manuscript. Below, we

address each of your points in detail and outline the corresponding changes made to the manuscript.

For clarity, your comments are highlighted in blue, our responses are in black, and any newly added

text appears in italics. All sections and line numbers refer to the revised version of the manuscript.

To improve our manuscript, we have

 revised key aspects of the Introduction and Methods sections (Sections 1 and 3, respectively).

In particular, we have reformulated the manuscript's objectives.

 simplified the structure of the manuscript, moving the user survey to the supplement.

 enhanced the sections describing the programming process (Section 4) to avoid repetition

with the Methods section.

 included a “Lessons learned” section (section 8) to benefit others undertaking similar efforts.

Reply to Reviewer 1: Rolf Hut

The authors present their work on reprogramming the WaterGAP model from its legacy code in C/C++

into python. The main purpose of this activity is to enhance the reproducibility of science done with

WaterGAP, to make the science more transparent (FAIR) and overall reduce the effort required to

maintain such a large code-base.

This is a worthwhile effort that will greatly help the (hydrological) scientific community in general and

the WaterGAP user base in particular. The python version of WaterGAP has potential for bigger

uptake, easier collaboration and is generally a better piece of research software than the legacy C/C++

version.

Thank you for highlighting the importance and quality of our paper.

I do, however, struggle with this publication and its place in the academic literature. I find it hard both

to judge what the intention of the authors is with the publication and if they success in that.

Sidenote: reporting on the progress of software projects within academia is a struggle. The classic

“report on results of work done so others can build on it”-structure of academic articles doesn’t fit on

reporting on developing new software, because the software in and of itself is not a scientific result. I

would argue, however, that in the current age where academic credit is almost solely awarded based

on “publications” a form of reporting on important software projects is needed. Both for informing

the academic community on the new software (availability) and for rewarding / acknowledging those

working on building that software. We had exactly the same problem when writing our eWaterCycle

papers, where the first eWaterCycle paper never made it past peer review because it lacked “scientific

results”. In the second paper we focused on providing use cases to illustrate the platform and did

manage to publish the work. I think this illustrates that GMD as a journal is accepting more and more

software-like contributions.

Below I will list the different purposes I identified in the manuscript and provide feedback and tips for

each different purpose to optimize the paper towards that purpose. I leave it to the combined team

of authors and the editors of GMD to decide on which purpose they want to prioritize in the

manuscript (or maybe even split in different manuscripts, for different audiences, using different

platforms?)

Announcing reprogrammed version of WaterGAP for potential users

The new WaterGAP seems to me like an amazing tool for hydrologists to work with. Sections 2.1

(Model description), 5 (architecture), 6 (eval against sustainability criteria), 7 (Difference between

output of C/C++ and Python versions) are essential for communicating this. For this focus I strongly

suggest to add a few case studies that demonstrate the capabilities and user friendly-ness of the new

WaterGAP.

Reporting on the process of reprogramming a legacy model

For those that contemplate reprogramming a legacy model, lessons learned from the transition from

C/C++ version of WaterGAP to Python are very valuable. Section 3.1 on software evaluation against

(FAIR) criteria and section 4 on the reprogramming process are very valuable here. I would add a

paragraph on “lessons learned” that give pointers for others that set out to undertake a similar effort.

Reporting on user experience with the new WaterGAP codebase

The overview gathered from the survey conducted at EGU (section 3.3 and 8) gives some preliminary

info on the perception of (potential) users of the new WaterGAP code towards its quality. This is in

principle a valuable addition to the literature, but the width and execution of the survey is slim for a

stand-alone publication. The selective response and low number of respondents make generalizing

claims from this survey hard. I would strongly advice to present the results in terms of absolute

numbers instead of percentages, so “10 people thought it was easy” versus “15% of people thought it

was easy”. For a full report on how outside users experience the new WaterGAP I suggest additional

work, including for example a focus group session where users working with the new WaterGAP are

observed.

Thank you very much for your thoughtful and constructive feedback. We appreciate your recognition

of the value of our work and your insights into the challenges of publishing software-focused

contributions in academic literature. Our goal, in fact, was not to announce the reprogrammed version

of the WaterGAP but to report on the process of reprogramming a legacy model into a sustainable

research software and to scientifically investigate the value of reprogramming scientific software. The

main intention of the manuscript is to provide guidance for those who wish to reprogram the legacy

code of the scientific model into sustainable software that can be easily maintained and improved,

thus improving the reproducibility of the computational research done with this software. The

comments provided by you and Reviewer 2, however, highlight that we did not succeed in conveying

that in our initial manuscript.

We have revised the manuscript based on your feedback and our own reflections to focus explicitly

and strongly on “Reporting on the process of reprogramming a legacy model”. As you highlighted, the

lessons learned from transitioning the WaterGAP model from C/C++ to Python are indeed valuable for

undertaking similar efforts. In response, we have removed the previous discussion section and have

included a dedicated “Lessons learned” section. This new section, along with sections 3 on software

sustainability and the FAIR principles, and section 4 on the reprogramming process, significantly

streamlines the manuscript's intention. We furthermore rephrased the abstract and introduction to

clarify the focus of this paper.

Additionally, the section on the user survey has been moved to the supplementary material. We agree

that the width and execution of the survey are slim for a standalone publication. Furthermore, the

survey results are now presented in absolute numbers rather than percentages. The results of the user

survey are now used as a supporting statement regarding the quality of the external documentation,

code readability, and code modifiability in Section 6.

The abstract now reads (Lines 11-31):

“Abstract

Global hydrological models (GHMs) improve our understanding of water flows and storage on the

continents and have undergone significant advancements in process representation over the past four

decades. However, as research questions and GHMs become increasingly complex, maintaining and

enhancing existing model codes efficiently has become challenging. Issues such as non-modular design,

inconsistent variable naming, insufficient documentation, lack of automated software testing suites,

and containerization hinder the sustainability of GHM research software as well as the reproducibility

of study results obtained with the help of GHMs. Although some GHMs have been reprogrammed to

address these challenges, existing literature focuses on evaluating the quality of model output rather

than the quality of the reprogrammed software. To address this research gap and guide other

researchers who wish to implement their existing models as sustainable research software, we describe

in detail how the most recent version of the GHM WaterGAP was reprogrammed. The reprogramming

success is evaluated against numerous software sustainability criteria and the principles of findability,

accessibility, interoperability, and reusability for research software (FAIR4RS), given that the objective

of reprogramming was to enhance software sustainability and thus reproducibility of research results,

as opposed to improving model output. Following an agile project management approach, WaterGAP

was rewritten from scratch in Python with a modular Model-View-Controller architecture. Due to the

switch from C/C++ in the legacy code to Python, execution time doubled. Our evaluation indicates that

the reprogramming substantially improved the software’s usability, maintainability, and extensibility,

making the reprogrammed WaterGAP software much more sustainable than its predecessor. The

reprogrammed WaterGAP software can be easily understood, applied, and enhanced by novice and

experienced modellers and is suited for collaborative code development across diverse teams and

locations, fostering the establishment of a community GHM. We outline six lessons learned from the

reprogramming process concerning the sustainability-runtime trade-off, the applicability of the agile

approach, software design patterns, variable naming, external documentation, and automation.”

The section of the introduction on the research objectives now reads (Section 1, Lines 75-89):

“To address this research gap and support the reprogramming of other legacy software, this paper

provides a detailed account of the reprogramming process of GHM WaterGAP (Döll et al., 2003; Müller

Schmied et al., 2024) and the characteristics of the new software. Reprogramming aimed to enhance

the software’s sustainability for long-term research use by a broad community and to increase the

reproducibility of the computational research performed with this model. The success of the

reprogramming was assessed by comparing the legacy code to the reprogrammed version according

to numerous specific sustainability criteria and FAIR4RS principles. It is important to note that our goal

in reprogramming WaterGAP was not to improve the model output; the reprogrammed software was

to result in the same model output as the latest WaterGAP version 2.2e (Müller Schmied et al., 2024).

The paper is structured as follows: Section 2 introduces the WaterGAP model and the legacy software.

Sustainability criteria for research software and methods relevant to this study are presented in Section

3. After describing the reprogramming process in Section 4, we present the architecture and new

features of the reprogrammed software in Section 5. In Section 6, we evaluate the new WaterGAP

software against selected sustainability criteria and the FAIR4RS principles. We also demonstrate that

the reprogrammed and legacy software yield very similar model outputs (Section 7) and share lessons

learned for others undertaking similar efforts (Section 8). Our conclusions follow in Section 9.”

We also added a new table to the method section that more clearly communicates the metrics we

utilized to assess the software sustainability of the reprogrammed and legacy research software

(Section 3, Lines 148-150):

“Table 1: Sustainability indicators used for the assessment of the legacy and reprogrammed research

software.

No Indicators Description

Best practices in software engineering

1 External documentation Effective use and ease of software maintainability rely on clear

and extensive external documentation (Nyenah et al., 2024;

Wilson et al., 2014). We evaluate the availability and

extensiveness of external documentation by analyzing the

following components: installation guide, tutorials, user guide,

reference guide (in-depth descriptions of the model processes

and the governing equations), glossary, contributor guide, and

frequently asked questions (FAQs).

2 Version control and

automation.

Version control facilitates change tracking and supports

collaboration (Wilson et al., 2014). We evaluate the use of

version control considering the choice between public and

private repositories, which significantly affects the repository’s

transparency and accessibility. We also checked the automation

practices, focusing on automated testing, linting, and

documentation to ensure consistent quality and maintainability.

3 Use of an open-source

license

We determine the presence of open-source licenses by

reviewing license files within repositories and comparing them

with licenses approved by the Open Source Initiative (OSI)

(https://opensource.org/licenses) (Nyenah et al., 2024).

4 Number of active

developers

This indicates the capacity for ongoing software development

and maintenance (Nyenah et al., 2024). We measured this by

counting individuals who made commits to the codebase of the

https://opensource.org/licenses

legacy and the reprogrammed code within the past two years

(2023–2024).

5 Containerization Containerization packages software with its full runtime

environment, ensuring consistent execution across different

systems (Nüst et al., 2020). This helps overcome reproducibility

issues caused by variations in operating systems or

dependencies. We simply check whether a containerization

solution is provided.

Source code quality

6 Public availability of an

(automated) testing suite

We adopted the approach proposed by Nyenah et al. (2024), in

using the public availability of an (automated) testing suite as a

proxy for the ability to test software functionality. While test

coverage is the ideal metric, current coverage tools do not

support Python functions with Numba decorators, which

compile Python functions into machine code for performance

(GitHub issues, 2025; Lam et al., 2015; Stack Overflow, 2025).

7 Compliance with coding

standards

Coding standards are industry best practices that guide software

development for consistency and quality (Wang et al., 2008). To

assess compliance, we used CLion static analysis for the legacy

C/C++ code, which flags issues (including errors, typos, and

warnings) based on the C/C++ Core Guidelines but does not

provide a score to interpret results. A higher issue count

generally indicates lower reliability or maintainability. For the

reprogrammed code, we used Pylint to check compliance with

PEP-8 conventions. Pylint assigns a score up to 10 for perfect

compliance, with no lower bound (Molnar et al., 2020; Nyenah

et al., 2024).

8 Comment density We compute comment density as the ratio of the number of

lines of comments to the total lines of code (TLOC). TLOC refers

to the sum of source lines of code (SLOC) and comment lines.

SLOC, in turn, represents the non-blank, non-comment lines

within a source file. We regard a comment density of 30% to 60%

as optimal (Arafat and Riehle, 2009; He, 2019; Nyenah et al.,

2024).

9 Modularity We evaluate the modularity of the software by the TLOC per file

metric, with an ideal range of 10 to 1,000 TLOC per file (Nyenah

et al., 2024). This metric reflects the organization of source

codes into manageable modules, each focusing on a specific

functionality. Modules within this range are typically easier to

read, modify, and reuse.

“

The new lesson learned section (Section 8, Lines 497 - 565) now reads:

“8 Lesson learned

When reprogramming WaterGAP, we made six key observations that we hope can guide others in their

efforts to improve the sustainability of their research software.

8.1 Improved readability, maintainability, and adaptability may negatively impact model runtime

Considering sustainable research software indicators and the FAIR4RS principles in the reprogramming

of the legacy code has enhanced the software quality, extensibility, reproducibility, and long-term

sustainability of WaterGAP. Unfortunately, the transition from C/C++ in the legacy software to Python,

an interpreted language, has approximately doubled the WGHM runtime. This is to be expected as

numerical computations in Python can be 3-10 times slower compared to C/C++ (Cai et al., 2005). The

average runtime for a standard run on an AMD EPYC 7543 processor with 3.7 GHz is about 7-8 minutes

per simulated year for the reprogrammed software, compared to 3-4 minutes for the legacy software.

Considering that this may lead to critical run time-related constraints for model calibration and

ensemble methods, e.g., used for sensitivity analysis and ensemble forecasts, is the choice of Python

justifiable?

To reach this runtime, we already utilized the optimization library Numba, which compiles parts of the

Python code. Python is generally slower in terms of runtime performance compared to C/C++ since it

uses interpretation instead of compilation (Cai et al., 2005). Compiled code is translated into machine

code by a compiler before execution, resulting in a standalone executable file that can be run directly

by the processor. On the other hand, interpreted code is executed line by line by an interpreter during

runtime, meaning the code must be interpreted every time it is run. Compiled code generally executes

faster but often requires a separate compilation step and may be less portable. In contrast, interpreted

code is typically more portable but executes more slowly. The pure Python implementation of the GHM

HydroPy model is three times slower than the version with a routing scheme written in Fortran (Stacke

and Hagemann, 2021).

However, Python generally produces more readable, less error-prone, and more maintainable code

than C++, primarily due to its simpler syntax, dynamic typing, automatic memory management, and

higher-level abstractions (Balreira et al., 2023; Johnson, 2025; Prechelt, 2000). These features reduce

the likelihood of errors and allow developers to express complex ideas more concisely. Python's

extensive standard library and ecosystem further enhance maintainability by reducing the need for

custom code. In contrast, C++'s more complex syntax and manual memory management can lead to

more errors and harder-to-maintain code. Most scientists lack the necessary skills to produce high-

quality C++ code and are unlikely to follow any best practices (Reinecke et al., 2022). We believe that

the benefits of Python regarding code quality outweigh the runtime increase. The switch from C/C++

to Python makes it easier for scientists, particularly those with restricted programming experience, to

understand, modify, extend, and maintain a complex model. Slow code can always be made fast with

better hardware, but hardware cannot fix bad code and unsustainable software.

8.2 Implementing an agile process benefits reprogramming also in an academic setting

The agile development process, along with the use of user stories, was essential to our reprogramming

effort, enabling iterative improvements through continuous feedback. Agile principles offer significant

benefits in academic software development. Specifically, Agile supports flexibility in incorporating

evolving research questions and enables effective progress tracking. Tools such as task boards and

backlogs provide transparency and help manage workflows efficiently. This is particularly important

in academic settings where timelines are often constrained and team composition can change

frequently, such as in PhD and Postdoc projects. Agile’s emphasis on regular communication helps align

the efforts of diverse contributors, including students, researchers, and supervisors (the “project

owners”), ensuring everyone stays informed and coordinated throughout the project. User stories

helped ensure that the software features matched the scientific requirements of WaterGAP. However,

estimating the time needed to complete user stories was difficult, and coordinating an agile process

with only a few developers in an academic setting was somewhat challenging. Despite this, we

recommend this approach for other reprogramming projects as it supports timely and user-focused

development and helps the team stay updated on progress.

8.3 Carefully applying established software design patterns throughout the process, ideally with

expert input, yields highly modular software

Defining software architecture and its modular design is an iterative process that benefits greatly from

the input of software experts. Architectural decisions play a critical role in determining how easily a

model can be extended or modified without affecting other software components. For example,

implementing each storage compartment as an independent Python module enabled targeted test

development and comprehensive testing before integration. Guidance on software design patterns can

be found, for example, in Gamma et al. (1994) (Gamma et al., 1994). A modular design also leads to

improved readability, as single components of a project (e.g., code files) are more concise in their

purpose.

8.4 Consistent variable naming is paramount for code readability and maintainability

Establishing meaningful and consistent variable names is also an iterative process that requires

collaborative effort among developers and domain experts. Clear and logical naming significantly

enhances code readability and maintainability. Importantly, naming conventions need to be

documented to guide future model development.

8.5 Documentation should be written in parallel with code development

We strongly recommend writing model documentation alongside code development rather than

leaving it until the end. This approach helps to capture critical assumptions, such as those embedded

in algorithms, while they are still fresh in the developers' minds. Peer review of documentation

improves its quality and clarity.

8.6 Automation is key to ensuring efficient development and high software quality.

Automating the generation of the documentation reduces manual work and helps to keep it up to date.

Automating linting and testing ensures that the code functions correctly, without the need for constant

manual checks ”

Minor remarks

Independent of the direction chosen I have a few smaller remarks on the current version of the

text:

- Line 61, add a citation to Wilkinson 2016 for FAIR.

We added a citation to Wilkinson 2016 for FAIR (Section 1, Lines 63-65).

“Additionally, applying FAIR (Findable, Accessible, Interoperable, and Reusable) principles for

research software (FAIR4RS) improves research software reusability, reproducibility as well as

transparency (Barker et al., 2022; Wilkinson et al., 2016).”

- Line 65: the unsuspecting reader might conclude that “to improve … … were reprogrammed” was

done as part of the aforementioned eWatercycle project

Thank you for the comment. We have revised the section to better highlight the broader problem

statement, rather than implying a direct connection with the eWatercycle initiative. The revised

section (Section 1, Lines 69–73) now reads:

“Efforts to improve comprehension, usage, maintenance, extension, and collaborative development

have led to the reprogramming of several models, including the global land surface model CLASSIC

(Melton et al., 2020) and GHMs such as HydroPy (Stacke and Hagemann, 2021) and PCR-GLOBWB

(Sutanudjaja et als., 2018). However, the publications on these reprogrammed software focus on

evaluating the performance of the model output and lack a detailed account of the reprogramming

process and an evaluation of the success of the reprogramming effort”

- Line 181 and continuing: I would avoid as much as possible using URLs as citations and use bibtex

citations to websites (preferably with a “last accessed” field).

Thank you for the comment. We have replaced the majority of URLs in the revised manuscript as

bibtex citations with a “last accessed” field.

- Section 4.1.2. I always learned that agile is a project management tool for when you have a fixed

amount of hours, or people, to work on something, but the end goal is not fixed, just “create as much

value as quickly as possible” (ideal for start-up culture). This is ideal when project goals are allowed to

fluctuate during the project. In most scientific large projects the end goal is quite fixed (reprogram this

model into python). Therefore, I would invite the authors to highlight why they settled on Agile as a

project management practice for this project (there might well be very good reasons!)

Thank you for the valuable comment. We agree that Agile is often associated with projects where the

end goal is flexible, which is common in start-up environments. However, we believe that certain Agile

principles can also offer significant benefits in academic software development. Specifically, Agile

supports flexibility in incorporating evolving research questions and enables effective progress

tracking. Tools such as task boards and backlogs provide transparency and help manage workflows

efficiently. This is particularly important in academic settings where timelines are often constrained

and team composition can change frequently such as in PhD and Postdoc projects. Agile’s emphasis

on regular communication helps align the efforts of diverse contributors, including students,

researchers, and supervisors, ensuring everyone stays informed and coordinated throughout the

project.

We now include this in the new lesson learned (Section 8, Lines 531-542)

“ 8.2 Implementing an agile process benefits reprogramming also in an academic setting

The agile development process, along with the use of user stories, was essential to our reprogramming

effort, enabling iterative improvements through continuous feedback. Agile principles offer significant

benefits in academic software development. Specifically, Agile supports flexibility in incorporating

evolving research questions and enables effective progress tracking. Tools such as task boards and

backlogs provide transparency and help manage workflows efficiently. This is particularly important

in academic settings where timelines are often constrained and team composition can change

frequently, such as in PhD and Postdoc projects. Agile’s emphasis on regular communication helps align

the efforts of diverse contributors, including students, researchers, and supervisors (the “project

owners”), ensuring everyone stays informed and coordinated throughout the project. User stories

helped ensure that the software features matched the scientific requirements of WaterGAP. However,

estimating the time needed to complete user stories was difficult, and coordinating an agile process

with only a few developers in an academic setting was somewhat challenging. Despite this, we

recommend this approach for other reprogramming projects as it supports timely and user-focused

development and helps the team stay updated on progress.

”

- Line 288: “senior developers” are introduced as a role, but not previously explained.

We have explained the term senior developers in the revised manuscript (Section 4, lines 189-191).

“After the writing and approval of the project proposal, a preliminary meeting was held in November

2021 among six senior developers. These are late-stage PhDs, PostDocs, and Professors with extensive

expertise in the WaterGAP model and are also actively involved in developing and maintaining the

software.”

- Line 291: same for “software development advisor”

We have explained the term software development advisor in the revised manuscript (Section 4, lines

207-208).

“The software development advisor guides the developers on best practices, architecture, and code

quality to ensure robust and sustainable software. ”

Concluding

I really like the new python version of WaterGAP. (I like it so much that I would invite the authors to

work together to add support for WaterGAP in eWaterCycle to make it even more accessible to

hydrologists!). I hope the above suggestions will help in choosing a focus direction for the manuscript

and emphasizing those parts throughout. I am happy to review an updated version of this manuscript.

Thank you for the thoughtful and encouraging feedback, and we are delighted to hear that you liked

the Python version of WaterGAP. We appreciate your suggestion regarding integration with

eWaterCycle. This is an exciting idea, and we would be very open to exploring such a collaboration in

the future.

