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Abstract.

We-determine-European-emissions-of-sulfur-Sulfur hexafluoride (SF¢) is a highly potent and long-lived greenhouse gas whose
atmospheric concentrations are increasing due to human emissions. In this study, we determine European SFgz emissions from

2005 to 2021 using a large ensemble of atmospheric inversions. To assess uncertainty, we systematically vary key inversion
parameters across 986 sensitivity tests and apply a Monte Carlo approach to randomly combine these parameters in 1,003
additional inversions. Our analysis focuses on high-emitting countries with robust observational coverage — UK, Germany,
France, and Italy — while also examining aggregated EU-27 emissions.

SFg emissions declined across all studied regions except Italy, largely attributed to EU F-gas regulations (2006, 2014),
however, national reports underestimated emissions: (i) UK emissions dropped from 6541368 (47-77) t yr—! in 2008 to 26
619 (15-26) t yr—!in 2018, aligning with the reports from 2018 onward; (ii) French emissions fell from 883778 (51-117)
t yr—! (2005) to 52835 (19-54) t yr~! (2021), exceeding reports by 7388%; (iii) Italian emissions fluctuated (34—6725-48
t yr—1), surpassing reports by 88107%; (iv) German emissions declined from 1664414182 (155-251) t yr~1 (2005) to 95
1197 (88-104) t yr~! (2021), aligning reasonably well with reports; (v) EU-27 emissions decreased from 484-(+213403
(335-501) tyr—! (2005) to 25558225 (191-260) t yr—! (2021), exceeding reports by 4920%. A substantial drop from 2017
to 2018 mirrored the trend in southern Germany, suggesting regional actions were taken as the 2014 EU regulation took effect.

Our sensitivity tests highlight the crucial role of dense monitoring networks in improving inversion reliability. The UK
system expansions (2012, 2014) significantly enhanced result robustness, demonstrating the importance of comprehensive

observational networks in refining emission estimates.
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Sulfur hexafluoride (SFg) is a fluorinated gas (F-gas), which has the highest global warming potential (GWP) of all known
greenhouse gases (GHG), with current estimates of 18,400, 24,700, and 29,800 for 20-, 100-, and 500-year time horizons,
respectively (WMO, 2022). Even more concerning, estimates of its atmospheric lifetime range between 850 and 1,280 years
(WMO, 2022), implying that SF4 from past, present, and future anthropogenic emissions will accumulate in the atmosphere

and will warm the climate for thousands of years.

Due to its high stability, SFg is used mainly as an insulator for electric equipment in the power industry (e.g. IEEE,
2012; Koch et al., 2018; Cui et al., 2024), with emissions occurring during equipment leakage, failures, maintenance, and
decommissioning. It is also used in the metal industry as a blanketing gas (e.g. Maiss and Brenninkmeijer, 1998), as a cover
gas in magnesium production and processing (Bartos et al., 2007; Ottinger et al., 2015), for semiconductor manufacturing for
equipment cleaning and plasma etching (e.g. Cheng et al., 2013), and in the past it was even used to fill sports shoes (Pedersen,
2000) and car tires (Schwaab, 2000). In the 1990s, especially in Western Europe, SFg was used to fill double-glazed windows
(e.g. Schwarz, 2005), which still represents a substantial European emission source (United Nations Framework Convention

on Climate Change, 2023).

SFEs-was regulated under the Kyoto Protocol, where it is listed as one of the six categories of major GHGs (United Nations

Framework Convention on Climate Change, 1997). To meet the Kyoto Protocol’s targets, the EU passed regulation No.
842/2006 (EU, 2006), setting rules for the containment, recovery, use, and reporting of fluorinated gases. It banned the use
of SFg in vehicle tires (starting in 2007) and in large-scale magnesium die-casting (starting in 2008), as well as in soundproof
windows and footwear. The EU’s 2014 regulation (No0.517/2014, EU, 2014) further restricted SF¢ use, requiring leak detection
systems for electrical switchgear by 2017 and banning it from recycling magnesium alloys by 2018. The new 2024 F-gas
regulation mandates the phase-out of F-gases in medium-voltage switchgear by 2030, high-voltage switchgear by 2032, and
prohibits SFg use for switchgear maintenance by 2035, unless reclaimed or recycled (EU, 2024).

A key aspect of the Kyoto Protocol was the implementation of a robust system for monitoring GHG emissions, requiring
Annex-I countries (industrialized countries) to submit annual reports to the United Nations Framework Convention on Climate
Change (UNFCCC), including SF¢. These reports are almost exclusively calculated by so-called bottom-up methods, where

statistical data on economic production and consumption are combined with source-specific emission factors to estimate
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national emissions. The Emissions Database for Global Atmospheric Research (EDGAR) and the Greenhouse Gas and Air
Pollution Interactions and Synergies (GAINS) model also provide bottom-up inventories of SFg emissions. However, due to
inherent uncertainties associated with bottom-up methods, there is a strong demand for independent verification (e.g. Weiss
et al., 2021), which can be achieved through top-down approaches, such as inverse modeling (e.g. Leip et al., 2017). In an
inversion approach, atmospheric observations are used together with an atmospheric transport model to optimize the emissions.
Several inversion studies have investigated SFg emissions, however, limited research has specifically focused on the European
continent. The global inversion study by Rigby et al. (2010) estimated total European SFg emissions from 2004 to 2008,
distinguishing between emissions from reporting and non-reporting countries. Ganesan et al. (2014) estimated SFg emissions
for 2012 in well-monitored countries, including Germany, France, and the UK. Their estimates indicated higher emissions than
those officially reported to the UNFCCC. Brunner et al. (2017) used four independent inverse models to estimate European SFg
emissions in 2011. Their results were 47% higher than the UNFCCC reports, with Germany identified as the largest emitter.
Simmonds et al. (2020) used three different inversion systems to estimate total SFg emissions from western Europe between
2013 and 2018, with one of the systems extending its analysis to cover 2007-2018. Their calculated emissions ranged from
comparable to significantly higher than the reported values. Their work also suggested substantial SFg emissions in southwest
Germany. In the UK’s annual report to the UNFCCC, Manning et al. (2022) presented inversion results for SFg emissions in
both the UK and northwest Europe, revealing a downward trend in both regions. The global inversion study by Vojta et al.
(2024) provided an annual SFg time series for the aggregated EU-27 emissions, between 2005 and 2021. They found a decline
in SFg emissions, with a significant drop in 2018, which they attributed to the impact of the EU’s 2014 F-gas regulation.
While recent studies have employed regional high-resolution inversions to constrain SFs emissions in China (An et al.,
2024) and the U.S. (Hu et al., 2023), there is no recent high-resolution regional study examining the trend of SFg emissions
in Europe. This research endeavors to bridge a significant gap in our understanding of European SFg emissions. We adopt
the methodology established by Vojta et al. (2024), adapting it for a high resolution (0.25x0.25°) inversion covering all of
Europe. Utilizing the same datasets, we quantify SFg emissions across the continent for the period 2005 to 2021. While
Vojta et al. (2024) primarily investigated the influence of different a priori inventories, this study delves deeper by conducting a
comprehensive sensitivity and uncertainty analysis. We systematically examine the impact of a wide range of parameters on our
inversion results, enabling a more robust quantification of overall uncertainties and a thorough investigation of the sensitivity

to individual inversion components.

2 Methods

2.1 Measurement data

In this study, we utilize the same global observational dataset as employed by Vojta et al. (2024), where a detailed description
is available. Therefore, we only provide a brief overview here. The dataset is based on globally distributed atmospheric
observations of SFg dry-air mole fractions collected between 2005 and 2021. It includes continuous on-line measurements,

instantaneous flask sample data from surface stations, and observations from mobile platforms. The measurements were
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contributed by various independent organizations such as the National Oceanic and Atmospheric Administration (NOAA)
and the Advanced Global Atmospheric Gases Experiment (AGAGE) international network. Continuous surface measurements
were averaged over 3-hour intervals and all observations were standardized to the SIO-2005 calibration scale (for more details
see Vojta et al., 2024). It is noteworthy that the number of available European on-line monitoring stations increased over the
study period. While at the beginning only 5 such stations were available (Bialystok: BIK, Jungfraujoch: JFJ, Mace Head:
MHD, Zeppelin: ZEP, Zugspitze-Schneefernerhaus: ZSF), the monitoring network in Western Europe significantly expanded
with the addition of UK observations from Ridge Hill (RGL) and Tacolneston Tall Tower (TAC) in 2012 and further from

Bilsdale (BSD) and Heathfield (HFD) in 2014. Figure S1 provides an overview of all the ground-based measurements globall

while Fig. 1 shows the stations in Europe.
To determine the influence of data selection criteria on our results, we created eight different subsets. 1) We used the entire

global dataset (presented in Vojta et al., 2024), and 2) we sele
WMM&W%W&M
NWR, RPB, SMO, SPO, SUM, THD; see Fig.S1) while retaining the European sites' (BIK, BRM, BSD, CMN, HFD, JFJ,

Tenerife are geographically closest to the European inversion domain. For these global and European datasets, we further
refined the selection by: a) retaining only night observations (00:00 - 06:00) at mountain stations and afternoon observations

(12:00 - 18:00) at all other sites for continuous monitoring stations; b) creating a data subset that excludes mountain stations,

and c) generating a subset that omits low-frequency measurements and data from moving platforms, retaining only high-

frequency surface observations. Table S1 provides the number of observations used from each dataset for each year, whereas
Tab. S2 shows the availability of online measurements within and outside Europe.

2.2 Emission sensitivities

We use the Lagrangian particle dispersion model (LPDM) FLEXPART 10.4 (Pisso et al., 2019) in backward mode to simulate
the atmospheric transport of SFg, tracing its movement from the measurement locations back to the emission sources. We
neglect loss processes, given that SFg is almost inert up to the middle stratosphere. For every observation, we release 50,000
virtual particles continuously over a 3-hour interval from the measurement site, tracking their trajectories backward in time for
50 days. The average time spent by these particles in a given emission grid cell determines the sensitivity of the observation to
emissions from that specific grid cell. These simulated emission sensitivities form the basis for the atmospheric inversion. We
run FLEXPART on a European domain (15 °W-40 °E, 30 °N-72 °N) with an output resolution of 0.25 °x 0.25 © and on a global
domain with an output resolution of 1.0 °x1.0 °, both with 18 vertical layers of 0.1,0.5, 1, 2,3,4,5,7,9, 11, 13, 15, 17, 20, 25,
30, 40, and 50 km above ground level (agl) interface heights. The emission sensitivities were calculated solely for the lowest

layer, ranging from 0 to 100 meters agl, where almost all emissions occur. We utilize hourly ECMWF ERA5? wind fields

'We initially still kept the globally distributed flask measurements and observations from moving platforms to improve the baseline optimization

2ERADS is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, providing comprehensive

global climate and weather data from January 1940 to the present.
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Figure 1. Locations of the observation stations in and around Europe. Stations with continuous surface measurements (BIK, BSB-BRM,
BSD, CMN, HFD, JFJ, MHD, RGL, TAC, ZEP, ZSF) are represented with red triangles, while surface flask measurements (BAL, BSC, CIB,
HPB, HUN, LMP, MHD, OBN, OXK, MHB;-PAL, STM, TAC, WIS, ZEP) are shown with black dots.

(Hersbach et al., 2018) to drive the FLEXPART simulations. Specifically, we use 0.25 °x0.25 ° resolution wind fields for the
European domain and 0.5 °x 0.5 © wind fields for the global domain, both with 137 vertical levels. Figure 2 shows the simulated
annual averaged emission sensitivities for the years (a) 2005 and (b) 2018. In 2018, Europe - particularly northwestern Europe
- shows significantly higher emission sensitivities compared to 2005. This increase is largely due to the expansion of the
observation network in the UK. As a result, northwestern Europe, including major emitters such as Germany, France, and
the UK, became well-monitored, suggesting that substantial improvements in emission estimates through the inversion can be

expected over time.
2.2.1 Baseline

Using the emission sensitivities simulated by FLEXPART, we can link the mole fractions at the receptor to emissions occurring
within 50 days of the backward tracking. However, emissions preceding the 50-day period can not directly be captured with
these backward simulations. Nevertheless, they still have to be considered when comparing the modeled mole fraction values
with the observations. Therefore, all these emission contributions are aggregated in a so-called baseline which must be added
to the modeled emission contributions. We apply a Global-Distribution-Based (GDB) method (Vojta et al., 2022) to calculate
the baseline, directly from a 3D global mole fraction field. For this, the endpoints of the FLEXPART back-trajectories, are used
to determine an observation’s sensitivity to the mole fractions at the end of the 50-day simulation period. These sensitivities
are simply obtained by dividing the number of trajectories ending in a specific grid cell by the total number of trajectories
calculated, as loss processes are omitted. We then multiply the sensitivities with globally 3D gridded SF¢ mole fractions at the

time of particle termination and integrate the product over the entire globe. As for the 3D SF field, we employed the data set
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Figure 2. Simulated emission sensitivities for the years 2005 and 2018 in Europe. The displayed values represent the annual sum of
FLEXPART calculations. As a result, sites with frequent online observations carry more weight than those relying on flask measurements or

observations from mobile platforms.
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created by Vojta et al. (2024). Finally, the contributions from emissions occurring during the 50-day FLEXPART simulation
period but outside of the European domain are added to the baseline. For a more detailed description of the GDB method and

the simulation of the mole fraction fields please see Vojta et al. (2022) and Vojta et al. (2024).
2.3 A priori emissions

We create seven different European SFg a priori emission fields with 0.25x0.25° resolution for our inversion domain and for
the period 2005 to 2021 that are based on three different bottom-up sources: GAINS, the annual national emission reports to
the UNFCCC, and the bottom-up estimates from EDGAR.

— GAINS: We created two a priori emission fields based on the GAINS inventory (Purohit and Hoglund-Isaksson, 2017

, which is detailed in Vojta et al. (2024). The inventory is available at 0.5° resolution globally and at 0.1° resolution for
a European subset covering the EU-27, Iceland, Norway, Switzerland, and the UK. For the first field —we-started-with-a

globalinventory-at-aresolation-of(GS), we re-gridded the global 0.5° and-regridded-these-datato-afinerresolution-of
inventory to 0.25° fer-over the European domain (GS);-using-by interpolation. For the second field (GS-HR), we used

]

also-regridded-this-datasetthe higher-resolution European dataset, aggregated it to 0.25°, and combined it with the first
content differs: GS is interpolated from coarser data, whereas GS-HR retains detail from the original high-resolution
European inventory.

— Reports to the UNFCCC: We utilize the total national SF¢ emissions reported annually to the UNFCCC (United Nations
Framework Convention on Climate Change, 2023) and distribute these emissions within each country’s borders on a
0.25°x0.25° grid, based on two different proxy datasets: (1) gridded population density (CIESIN, 2018) (UP), or (2)
nightlight remote sensing data (Elvidge et al., 2021) (UN). 3

— EDGAR: We use the newly updated, 0.1° x0.1°-gridded annual SFg emission inventory EDGARv8.0 (EDGAR, 2023;
Crippa et al., 2023) and regrid it to 0.25° x0.25° resolution (E8). In addition, we also utilize the national annual total
emissions provided by the previous version EDGARvV7.0 (EDGAR, 2022; Crippa et al., 2021), and distribute those totals
according to (1) gridded population density (CIESIN, 2018) (E7P) or (2) night light remote sensing (Elvidge et al., 2021)
(E7N).

To account for contributions from emissions occurring during the 50-day FLEXPART simulation period but outside the
European domain, we utilize the global a priori emission fields generated by Vojta et al. (2024). These fields were calculated
using the same methodology as our European a priori fields but at a coarser resolution of 1.0x1.0°. Note that this approach

results in a single global coarse GAINS inventory.

3Emissions of non-Annex I countries, that fall within our inversion domain but are not further investigated, were estimated proportionally to their national

electricity generation as described in Vojta et al. (2024).
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Figure 3. Seven a priori emission fields, shown as an average over the study period 2005-2021: (a) GS (GAINS), (b) GS_HR (GAINS high
resolution), (¢) UP (UNFCCC reports - population density distribution), (d) UN (UNFCCC reports - night light remote sensing distribution),
(e) E8 (EDGARVS), (f) E7P (EDGARV7 - population density distribution), and (g) E7N (EDGARV7 - night light remote sensing distribution).

The table in the bottom right corner provides an overview of the ensemble.

Figure 3 shows the seven generated European a priori emission fields averaged across the study period from 2005 to 2021.
Overall, these emission fields display a relatively similar spatial pattern, especially when compared to the significantly larger
differences observed in the global patterns of the bottom-up SFy inventories (see Vojta et al., 2024). All European inventories
show high SF¢ emissions in central Europe, with Germany being the largest emitter. Notably, a priori emissions are particularly
high in western Germany, especially in the area around Cologne. The EDGAR and UNFCCC inventories also highlight
substantial emissions in Berlin, which are less prominent in the GAINS inventories. In France, the UNFCCC and EDGAR
inventories concentrate emissions in the Paris region, whereas GAINS indicates more dispersed emissions. For the UK, all
inventories show the highest emissions in London, with elevated values also occurring in other large cities such as Liverpool,
Manchester, and Birmingham. In Italy, the EDGAR inventories estimate higher a priori emissions compared to those from
GAINS and UNFCCC. Substantial emissions occur also in the Moscow region, particularly for the EDGAR- and GAINS-
based inventories. A detailed discussion on the differences among the a priori inventories and their influence on inversion

results are provided in Appendix B.
2.4 Inversion method

We use the Bayesian inversion framework FLEXINVERT+ to find an optimized estimate for European SFg emissions based
on a priori emissions (Sect. 2.3), atmospheric observations (Sect. 2.1), and atmospheric transport (Sect. 2.2). The framework

minimizes the cost function J:
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J(x) = %(X - Xp)TBil(X —Xp) + %(Hx —-y) 'R (Hx —y), (D

where x and x,, represent the state vector and its a priori values, respectively; y represents the mole fraction enhancements
with respect to the baseline, H represents the atmospheric transport operator, B is the a priori error covariance matrix, and R is
the observation error covariance matrix. From a Bayesian point of view, J represents the negative logarithm of the a posteriori
probability distribution, derived using Bayes’ theorem (e.g., Tarantola, 2005). The minimum of the cost function, therefore,
defines the maximum of the a posteriori probability distribution, and provides the most probable emission estimate (a posteriori

emissions). The analytic solution to minimize J, reads:

x=x,+ G(y —Hx,) (2)
with the defined gain matrix G:

G=BH'HBH! +R)! 3)
The a posteriori emission error covariance matrix, B, can also be derived analytically using:

B=B-GHB )

For SFg, positive fluxes are expected over land, but the inversion may still yield negative a posteriori values in some grid cells.
To correct this, we apply the truncated Gaussian method of (Thacker, 2007), which enforces non-negativity as an inequalit
constraint, The adjusted fluxes X’ are calculated as

—1

% =%+ BPT (PBPT) (c— P%), )

where x is the original a posteriori estimate, B the a posteriori error covariance matrix, P the operator identifying violations
and c the constraint vector.

A detailed description of the inversion framework FLEXINVERT+ is provided by Thompson and Stohl (2014), and its

application to SFg in Vojta et al. (2024). Although we also use observations from outside the European domain and perform

FLEXPART simulations globall the inversions are regional; that is, emissions are optimized onl

3

with a European nest)

within Europe. Following the inversion process, national emission totals are calculated by aggregating the a posteriori emissions

within the respective grid cells of the corresponding country, employing a national identifier grid (CIESIN, 2018).
2.5 Inversion sensitivity studies

A key challenge in inverse modeling is accurately determining the uncertainties of the optimized emissions. Traditionally,
the uncertainties in inversion-derived emissions are based on Gaussian error statistics within a Bayesian framework, often

relying on a single inversion setup. However, many aspects of the inversion process are based on assumptions and expert
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judgments. One example is the error covariance matrix used for the a priori emissions. Both the magnitude of this uncertainty
as well as its spatiotemporal correlation are usually not available from the bottom-up inventories, and the assumption of
a Gaussian distribution is not always well justified. Several studies (e.g., Bergamaschi et al., 2015; Brunner et al., 2017,
Chevallier et al., 2019; Locatelli et al., 2013) have demonstrated that the range of emissions derived from different inversion
configurations can be significantly larger than the uncertainties calculated by individual inversions. Therefore, in this study, we
examine the sensitivity of the inversion results to various inversion settings. Initially, we define 58 distinct inversion settings by
systematically varying key parameters, starting from a reference inversion. Thesesettings-For the reference inversion, parameter
choices were informed by a set of preliminary runs, in which we evaluated chi-squared statistics, and by values reported in
previous studies. The settings of the sensitivity tests are applied to each of the 17 years in the study period (2005-2021),

resulting in a total of 986 inversions (58 x 17). Our sensitivity tests include:

— a priori emissions: We use 7 different a priori emissions-emission fields based on the inventories of GAINS, the
UNFCCC reports and EDGAR (see Sect.2.3).

— a priori emission uncertainties: In each grid cell, the a priori emission uncertainty is calculated as a fraction of its
respective emission value. We test 4 different settings with fractions of 30%, 50%, 70%, and 100%. Furthermore,
different minimum absolute values for the emission uncertainty are tested, controlling the freedom of the algorithm
to adjust emissions in grid cells with small a priori values. The seven minimum values tested are 5 x 10714, 1 x 10713,

5x 1078, 1x10712,5x 10712, 1 x 107!, and 5 x 10~ kgm=2 h~1L.

— spatial a priori emission uncertainty correlations: FLEXINVERT+ uses an exponential decay function to account for
spatial emission uncertainty correlations. We test different spatial scale lengths of 50, 100, 250, 500, 1000 km, as well as

a setup with no spatial correlation.
— observation datasets: We test all of the eight observation subsets described in Sect.2.1.

— observation uncertainties: FLEXINVERT+ assumes a diagonal observation error covariance s-matrix* and we test
different configurations of this uncertainty. The observation uncertainty includes the transport model error projected into
the observation space, which is assumed to be the dominant part. Initially, we test constant values of 0.02, 0.04, 0.06,
0.08, and 0.1 ppt. However, it is likely that the model error varies both spatially and temporally. To account for the spatial
dependencies, uncertainty estimates are often based on model residuals (the difference between observed and simulated
mole fractions) at the measurement stations (e.g. Stohl et al., 2009; Henne et al., 2016). Therefore, we also test two
different approaches: (i) using the RMSE between prior modeled and observed values, averaged per station, to determine

the observation error, and (ii) estimating the model error from the standard deviation of the a posteriori error distribution

4Omitting the off-diagonal elements of the observation error covariance matrix could potentially lead to an underestimation of the total observation

uncertainty, resulting in an over-weighting of observations. This could especially be relevant for high-frequency observations, driving results further awa

from the a priori emissions. However, we reduce this risk by averaging the observations and by verifying through chi-squared statistics that the assumed

10



through a series of initial inversion runs. In idealized experiments, it has been demonstrated that incorporating temporally
varying, flow-dependent uncertainty can enhance the accuracy of emission estimates (Steiner et al., 2024). This transport

model ensemble approach, however, requires a lot of resources and lies beyond the scope of our study.

240 — baseline optimization: FLEXINVERT+ includes an option for baseline optimization, where spatially aggregated contributions
are optimized on a coarse grid. Firstly, we test different resolutions for the coarse grid, where the global field is divided
into 8, 4, and 2 latitude bands, with northern edges at [-60°, -30°, -15°, 0°, 15°, 30°, 60°, 90°], [-30°, 0°, 30°, 90°],
[0°, 90°], respectively. We also run inversions where we optimize the-global-field-at-eneeone scaling factor for the
whole global field. Additionally, we tried different temporal baseline optimization intervals of 15, 30, 45 and 60 days.

245 Furthermore, we test various baseline uncertainty values set to 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.01, 0.1,

and 1 ppt, and run an inversion without any baseline optimization.

— emission grid: We use emission grids with varying cell sizes, determined by aggregating cells with low emission
contributions based on emission sensitivities and a priori emissions (for further details, see Thompson and Stohl, 2014).

We test grid configurations with 588, 744, 1,992, 2,781, 4,248, 5,370, and 7,229 cells, each configuration kept constant

250 over time. Additionally, we implement three dynamic setups where the grid configuration changes each year, with the

number of cells ranging from (i) 2,781 to 5,916, (ii) 3,645 to 6,599, and (iii) 4,151 to 7,229.

The set-up of the reference inversion and an overview of all tested inversion configurations are listed in Tab. 1.
2.6 Inversion uncertainties

While the sensitivity studies give-provide insight into how different parameter settings influence the inversion results, the
255 overall uncertainties of the inversion are determined by all these parameters simultaneously. Therefore, in order to guantify-the
uneertainties-of the-inversionresults-accurately quantify the inversion uncertainties, one must apply random variations of these
parameters. However, testing all possible combinations is infeasible due to the vast number of permutations. To address this, we
employ a Monte Carlo method (e.g. Metropolis et al., 1953) to randomly select and combine inversion parameters, generating
an additional 59-member ensemble (1,003 inversions). Since the uncertainty distribution of the input parameters is not known,
260 parameters are sampled either continuously from a uniform-distribution-within-a-defined-range-normal distribution or discretely
from a set of predetermined values. The Monte Carlo sampling of the parameter space is performed independently for each
parameter. The final selection of parameter ranges for ensemble construction is based on the results of our sensitivity tests.
A detailed overview of the ensemble configuration is provided in Table 2?-—Please-note-thatfor-this-approach,-we-excluded

265

discussed in Appendix J. To assess the representativeness of our ensemble and the robustness of our findings, we constructed
three additional independent Monte Carlo ensembles using the same parameter ranges: (i) another 59-member ensemble with
different parameters compared to the initial ensemble (E59, see Tab. 22 i s : L i

11
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Table 1. Reference inversion set-up and overview of all inversion configurations used in the sensitivity tests

Inversion aspect Reference set-up Tested configuration Number of tests”
A priori emissions inventory GS GS, GS-HR, UP, UN, E8, E7P, ETN 6 (+1)
A priori emissions uncertainty [%] 50 30, 50, 70, 100 3(+1)
Minimal a priori emission value [kg m~2 h™!] 1x107138 5x 1071, 1x 10713, 5 x 10713, 6 (+1)
1x10712,5x 10712, 1 x 1071,
5x 1071
A priori uncertainty decorrelation distance [km] 250 no correlation, 50, 100, 250, 500, 1000 5 (+1)
Observation dataset Global Global 7 (+1)
Global: excluding mountain stations,
Global: night/afternoon selection,
Global: high-frequency surface stations,
Europe
Europe: excluding mountain stations,
Europe: night/afternoon selection,
Europe: high-frequency surface stations
Observation uncertainty [ppt] 0.02, 0.04, 0.06, 0.08, 0.1, 6 (+1)
66006 standard deviation (a posteriori distribution),
RMSE (a priori distribution)
Baseline optimization: grid resolutions [#] 4 1,2,4,8 3(+1)
Baseline optimization: temporal window [days] 30 15, 30, 45, 60 3(+1)
Baseline optimization: uncertainty [ppt] 0.1 no optimization, 0.0001, 0.0003, 0.0005, 9 (+1)
0.0007, 0.0009, 0.001, 0.01, 0.1, 1
number of gridcells [#] 3,645—6,599 588;744; 1,992; 2,781, 4,248; 5,370, 7,229, 9 (+1)
2,781—5,916; 3,645—6,599; 4,151—7,229

@ (+1) represents the reference inversion setup, which adds one test to the total number for each parameter. However, as the reference inversion is only

conducted once, it is only counted once in the overall number of tests.

~S4), (ii) an ensemble with half the original size
(30 days-and-a-baseline-uncertainty-of-O---pptmembers, E30, see Tab. SJ), and (iii) an ensemble with double the original size
118 members, E118, see Tab. S6). The results of these ensembles were then evaluated against those of the original ensemble.

3 Results and discussion
3.1 Inversion increments, error reduction, and a posteriori emission distribution

Figure 4 presents (a) the inversion increments (a posteriori minus a priori), (b) the relative error reduction, calculated for each

a posteriori uncertainty
a priori uncertainty

distribution, and (d) the a posteriori emissions uncertainty (as calculated using Eq. 4). The results are shown for the reference

grid cell based on the a priori and a posteriori emission uncertainties as 1 — , (c) the a posteriori emission
inversion settings, averaged over the years 2005-2021. Strongly negative increments (Fig. 4a) are found in northern Germany,
particularly around Cologne, where a priori emissions are very high (see also Fig. 3). The inversion further reveals large
positive increments in southwestern Germany. Other positive increments are evident in France, Italy, the UK, and Russia,

whereas negative increments are observed in Switzerland, parts of Scotland, and Israel.
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Consistent with the distribution of emission sensitivities (Fig. 2), the largest error reductions (Fig. 4b) are concentrated in
central Europe, particularly in well-monitored countries such as the UK, Germany, and Switzerland. Additional areas with
notable error reduction include northwestern France and northernmost Italy, Moscow and Israel. Notice that the elevated error
reductions in Moscow and Israel are likely a consequence of the relatively high a priori uncertainties in these regions, which
give the algorithm more flexibility to adjust emissions. However, since these areas are poorly covered by the observation
network, the a posteriori emissions may still be considered unreliable despite the notable error reduction.

Figure 4c reveals particularly high emissions in southwestern Germany, aligning with the findings of Simmonds et al. (2018),
who also reported an emission maximum in this region. We also obtain elevated emissions in southern UK, northern and
southeastern France, and northern Italy. A posteriori emissions are also high in Moscow and Israel, which, however, show
large a posteriori uncertainties, despite the notable uncertainty reductions there (Fig. 4d). As discussed in the Appendix B,
the Russian a posteriori emissions are highly sensitive to the choice of a priori emissions, leading to unstable results. In the
following sections, we therefore focus on the high-emitting European countries with better observational coverage: the UK,

Germany, France, and Italy.

Table S7 and Fig. S3 demonstrate the statistical improvements at all continuous surface stations, with the sites TAC, HFD
RGL, and BSD showing the largest improvements, thereby highlighting the importance of the UK network expansion.

3.2 Results of the sensitivity tests

The results of all performed sensitivity tests are detailed in the Appendix, organized according to various aspects of the
inversion process to assess the sensitivity of the results to each specific setting. Generally, the sensitivities to the different tested
settings vary between different years and regions, however, there is one common feature: The better a region is monitored by
the observation network, the smaller is the sensitivity to the inversion setting. This is especially apparent in the well-monitored
countries like Germany and the UK, where the inversion results are extremely stable across all tested cases (Fig. I1).

In our spectrum of sensitivity tests, inversion results were most sensitive to changes in the spatial correlation length of the
a priori emission uncertainty (Fig. D1) and to changes in the baseline uncertainty (Fig. G4). The results were also sensitive to
the magnitude of the a priori emission uncertainties (Fig. C1/ C3) and observation errors (Fig. F1), with greater sensitivity in
poorly monitored areas and minimal sensitivity in well-monitored regions. Additionally, the inversion results were moderately
sensitive to the choice of the observation dataset (Fig. E1). Furthermore, our tests suggest that optimizing the baseline across
two or more latitudinal bands can lead to substantial differences compared to optimizing the global field with a single scalar
(Fig. G1). In contrast, changing the temporal interval for baseline optimization, ranging between 15 and 60 days, had almost no
impact on the results (Fig. G3). Also, changing the number of optimized emission grid cells had minimal impact on the results
when considering national or European emission totals (Fig. H2). This finding is particularly noteworthy, as computational

time is heavily influenced by the number of inversion grid cells.
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Figure 4. (a) Emission increments from the inversion (a posteriori - a priori), (b) relative error reduction, (c) a posteriori emission distribution,

and (d) a posteriori uncertainty obtained for our reference inversion and averaged over all years of the study period 2005-2021.

3.3 A posteriori emissions-emission ensemble

Building on the sensitivity tests, we employed a Monte Carlo ensemble presented in Tab. 22-S3 and calculated the a posteriori
emissions for all different settings. The ensemble mean (Fig. 5a) closely resembles the a posteriori emissions of the reference

inversion (Fig. 5b), with the largest differences observed in Moscow and Israel, and generally more pronounced discrepancies
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Figure 5. A posteriori emissions: (a) ensemble mean, calculated as the average of all a posteriori emissions from the Monte Carlo ensemble
over the study period (2005-2021), and (b) difference between the ensemble mean a posteriori emissions and the a posteriori emissions

obtained from the reference inversion.

in larger cities. Note that the ensemble spread (Fig.?? S2) results in significantly larger uncertainties than the analytically

derived uncertainties from the reference inversion (Fig. 4d), which likely fail to capture the full extent of the actual uncertainty.
3.4 Regional emissions-emission time series

For the regional emission time series, the inversion results of all members of the Monte Carlo ensemble are shown in Fig. 22

and-S4 and final results are presented in Tab. 2?-Ourfinal-resutts-S8, which are defined as ensemble averages across the full

set of inversions, with a 2-5-2.5th-97.5th percentile uncertainty range for each year. Doubling or halving the ensemble size
ielded consistent posterior results, suggesting that the ensemble is sufficiently large to represent the prescribed uncertaint
distributions (see Fig. S5).

Figure 6 shows the a posteriori SFg emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy,
and (e) the EU-27. In the UK, SFs emissions declined from 44+(4-1338 (31-46) t yr~! in 2005 to 20(+619 (15-26) t yr—1
by 2021 (Fig. 6a: black solid line), with a substantial drop from 654+1368 (47-77) t yr—! in 2008 to 264+619 (15-26) t
yr~! in 2018, corresponding to an average annual decrease of -3—-3.2 t yr—!. The substantial decrease in emissions observed
after 2008 is likely a result of the 2006 EU F-gas regulations, with most bans coming into effect in 2008. Although inversion
results exceed the reported values (dashed red line) by an average of 5069% between 2005 and 2017, they align closely
from 2018 onward. While our results are slightly higher than these-the estimates of Ganesan et al. (2014) in 2012, they

agree within the uncertainties with-the estimates of Brunner et al. (20 —20H-—Our—results—and Brunner et al. (2017) in
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Figure 6. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. The solid black lines
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previous studies are shown with colored markers. The vertical grey-gray lines indicate the times when additional observational data from the

expansion of the UK network became available. 16
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2011, they are in excellent agreement with the results of Manning et al. (2022) for the whole study period, particularly from
2012 onward, when uncertainties also become significantly smaller. We find equally good agreements when comparing with
the a posteriori emissions for northwestern Europe from Manning et al. (2022) (Fig. 2256). These good agreements are a
particularly noteworthy result, as the inversion system used by Manning et al. (2022) differs significantly from ours. Their
approach employs the INTEM inversion technique (Manning et al., 2011, 2021), with a priori emissions uniformly distributed
across the country, large a priori emission uncertainties, and inversion intervals of 1 and 3 months (Fig. 6, In'TEM 1mth, INTEM
3mth).

In Germany, our results show a decline in emissions from +66(+4+182 (155-251) t yr~! in 2005 to 92886 (66-109)
t yr—! in 2013. Afterwards, emissions increased significantly, peaking at =1-199 (172-241) in 2017. This was
followed by a sharp drop to +854+1+5109 (97-125) t yr—! in 2018, after which emissions stabilized. Over the entire study
period, emissions decreased from +66(+4+182 (155-251) t yr—! in 2005 to 95(+H97 (88-104) t yr—!in 2021. Overall, the
German a posteriori emissions align well with the values reported to the UNFCCC, however, the inversion results reveal distinct
emission trends during specific time periods that are not reflected in the reported data. Our results for Germany agree well with
three of the four inversions performed in Brunner et al. (2017), but give much lower emissions than those estimated by Ganesan
etal. (2014). However, their high estimates were likely a result of the use of excessive German a priori emissions (~650 t yr—1),
which were based on the EDGAR v4.2 inventory. Although their German a posteriori emissions were substantially lower than
their a priori values, the inversion likely could not fully correct the huge bias present in this version of the EDGAR inventory.
As mentioned in Sect. 3.1, the inversion reveals notable regional differences between southern and northern Germany, with
significant negative increments in the North and substantial positive increments in the South, especially in the Southwest
(Fig. 7a). To further investigate these regional variations, we examine the annual emission trends separately for the North
(Fig. 7b) and the South (Fig, 7c), with the division between the two regions at 51°N. In the north, SFs emissions decreased
substantially, from 76112 (2779-152) t yr—! in 2005 to 2527 (+=522-33) t yr—* by 2021. Note that this decrease in emissions
is comparable to the reduction observed in the UK. In contrast, the southern emission trend follows a similar pattern to that of
Germany as a whole, including a peak of 186166 (+49125-205) t yr~! in 2017, followed by a sharp decline to 93 (+497-110)
tyr~!in 2018.

In France, a posteriori emissions declined from 88+3778 (51-117) t yr~! in 2005 to 52835 (19-54) t yr—! in 2021, with

anaverageannualdecreaseof-t—/lvgytyrfl. hi ne;-however, remains—-w d atnty-ranee,w

e he-beginning-of the-study period-and-deereases-after 2014--Our results exceed the reported values throughout the whole
study period by 7388% on average, while they are in good agreement with the-Ganesan et al. (2014), and the lower estimates
of Brunner et al. (2017)and-Ganesan—etal-(2014).

For Italy, our inversion results exhibit large uncertainties in certain years, likely due to limited observational constraint in the
central and southern regions. Over the study period, annual a posteriori emissions do not show a clear trend, varying between
3+-and-67-25 and 48 t yr~'; however, they exceed the values reported to the UNFCCC by 88107% on average. Our results are

within the range of estimates calculated in Brunner et al. (2017), which show a comparable level of uncertainty.
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Figure 7. Inversion increments from the reference inversion averaged over the period 2005-2021, with the dashed line indicating our
separation of northern and southern Germany (a). Annual emission time series for (b) northern Germany (>51°N) and (c) southern Germany

(<51°N). The solid black lines represent the average a posteriori emissions across all performed inversions, and a-2-c—uneertainty-shaded
areas indicate the 2.5th—97.5th percentile range for each yearis-indicated-by-coloredshading.

For the aggregated emissions of the EU-27 countries, our results show a decrease in a posteriori emissions from
48444213403 (335-501) t yr—! in 2005 to 255458225 (191-260) t yr—! in 2021, with a substantial emission drop from
4694144396 (311-490) t yr—! in 2048-t0-294+622017 t0 256 (216-303) t yr—! in 2647-2018. While until 2017 our results
are on average 4628% higher than the reported values, they align well with the reports from 2018 onward. Our results are
very similar to the recent estimates of the global SF¢ inversion study of Vojta et al. (2024) —after 2012, This is not surprising,
as we use the same dataset, atmospheric transport model, and inversion framework. In-speeifie-yearsBefore 2012, our values
shightly-deviate-are slightly higher from those in Vojta et al. (2024), which we attribute to the improved resolution of our
study, the baseline optimization in 8 latitudinal bands, and the definition of our a posteriori emissions as averages over a
large inversion ensemble. Our uncertainty intervals, defined as the 2--2.5th-97.5th percentile uncertainty range across the
performed inversions, are much wider than those reported in Vojta et al. (2024). Their uncertainty intervals, in contrast, were
based on the minimum and maximum uncertainty limits across inversion results using only six different a priori emission
inventories.

Note that the temporal pattern of EU-27 a posteriori emissions closely resembles the German pattern after 2012, as Germany
is the largest European SFg emitter. The high emissions in Southern Germany (Fig. 7¢), in particular, seem to have a large
influence on the total EU-27 emission variations. We interpret the decline in SF¢ emissions as a consequence of the EU F-gas
regulations introduced in 2006 (EU, 2006) and 2014 (EU, 2014). As suggested by Vojta et al. (2024), the sharp drop in EU-27

emissions from 2017 to 2018 might indicate an immediate effect of the 2014 regulation, which mandated that new electrical
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switchgear be put into service starting in 2017 and banned the use of SFg in recycling magnesium die-casting alloys from 2018.
It seems that strong actions were taken particularly in south Germany when the 2014 regulation came into effect.

The vertical solid-dashed gray lines in Fig. 6 indicate the times when additional observational data from the expansion of
the UK network became available (RGL: March 2012, TAC July 2012, HFD: January 2014, BSD: February 2014). Consistent
with our sensitivity studies, we observe that the additional observations noticeably reduce emission uncertainties in the UK.
Similarly, this effect is observed in Germany, particularly in the north (see Fig. 7). However, the large southern emissions in
2016 and 2017 led to elevated uncertainties, primarily due to the use of different observational datasets (see Seet-Appendix E),
making them an exception to this trend. Our tests cover a broad range of key inversion settings; however, additional factors
such as alternative atmospheric transport models, wind field data, or inversion frameworks could lead to further deviations from
our results. Nevertheless, the excellent agreement of the emissions in the UK and northwestern Europe (Fig. 6a and Fig. 22S6)
with those reported by Manning et al. (2022), particularly after the network expansion, stggests-might suggest that, with a

dense monitoring network, inversion results remain stable even when these factors change.

4 Conclusions

In this study, we estimated European SFg emissions from 2005 to 2021, focusing on the largest emitters - the United Kingdom,
Germany, France, Italy - and the aggregated EU-27 emissions. We conducted an extensive ensemble of 987 inversions to test
the sensitivity of the results to various settings within the inversion framework. Building on this, we performed an additional
1003 inversions, using Monte Carlo methods to randomly select and combine inversion parameters, allowing us to quantify the

uncertainties in the inversion results. The key findings of our study are as follows:

— We observe a decline in SFg emissions across most of the studied countries, as well as in the aggregated EU-27 emissions,
over the period from 2005 to 2021. We interpret these declining emissions as a direct consequence of the EU F-gas
regulations in 2006 and 2014. While our results are consistent with previous inversion studies, they indicate clearly that

European countries generally underreport their SFg emissions to the UNFCCC.

— In the UK, SFg emissions decreased from 411338 (31-46) t yr—! in 2005 to 20619 (15-26) t yr~! by 2021, with
a considerable decrease from 651368 (47-77) t yr—! in 2008 to 264619 (15-26) t yr~! in 2018, corresponding to
an average annual decrease of -3--3.2 t yr—!. While the inversion results are, on average, 5069% higher than the values

reported to UNFCCC prior to 2018, they align closely for the most recent investigated years, 2018-2021.

— Germany is the largest SF¢ emitter in Europe. Over the study period, emissions decreased from +66(+4+182 (155-251)
t yr—! in 2005 to 951197 (88-104) t yr! in 2021, aligning relatively well with UNFCCC-reported values. Our
results suggest that emission inventories overestimate emissions in northern Germany and underestimate emissions in
southern Germany (division at 51°N). Emissions in northern Germany declined from 76112 (+2779-152) t yr~! in 2005
t0 2527 (£522-33) tyr~! in 2021, while emissions in southern Germany showed a distinct peak of 86166 (49125-205)
tyr~!in 2017, followed by a sharp decline to 93 (++497-110) t yr—! in 2018.
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— In France, a posteriori emissions decreased from 88(+3778 (51-117) t yr~! in 2005 to 5++2835 (19-54) t yr~! in
2021, on average exceeding the reported values by 7388%.

— In Italy, annual a posteriori emissions show no clear trend, varying between 3+-and-67-25 and 48 t yr—! throughout the

study period, On average, emissions exceeded the reported UNFCCC values by $8107%.

420 — For the aggregated emissions of the EU-27 countries, our results show a decrease in a posteriori emissions from
48444213403 (335-501) t yr~! in 2005 to 2554458225 (191-260) t yr~! in 2021, with a substantial emission drop
from 469144396 (311-490) t yr—! in 2017 to 29462256 (216-303) t yr—! in 2018. On average, our results are
4028% higher than the reported values before 2018, however, after the drop in 2018, they align better with the reported
values from 2018 to 2021. As noted by Vojta et al. (2024), this drop is likely a direct result of the 2014 regulation, which

425 mandated that new electrical switchgear containing SFg be put into service starting in 2017 and prohibited the use of SFg
in recycling magnesium die-casting alloys from 2018. Additionally, we notice that the drop closely mirrors the decline in
emissions in southern Germany over the same period, suggesting that strong actions were likely taken there when these

regulations came into force.

— Our large ensemble of sensitivity tests shows that as the observational coverage in a region increases, the inversion results

430 become less sensitive to the various a priori settings that are subject to uncertainty. This becomes especially apparent
in countries like Germany and the UK, where the inversion results stabilize substantially following the expansion of

the British observation network. The good agreement of emissions in the UK and northwest Europe after 2014 with

Manning et al. (2022) further suggests that factors not tested in this study - such as alternative atmospheric transport

models, meteorological data driving the models, or different inversion frameworks - become less significant when a

435 dense monitoring system is in place. It also demonstrates the considerable potential of inverse modeling to provide
reliable emission estimates and underscores the importance of extending the existing network (e.g. Weiss et al., 2021;

Leip et al., 2017).
In addition, our sensitivity tests, described in detail in the Appendix, reveal the following:

— Inversion results demonstrate high sensitivity to the choice of spatial correlation length for the a priori emission

440 uncertainty, ranging from 0 to 1000 km. While the optimal correlation length depends on the specific problem, a
range of-50-and-around 250 km appears to produce-relativelystableresultsbe a good compromise between providing

sufficient constraint on emissions and maintaining the inversion’s ability to resolve regional emission patterns. In

contrast, correlation lengths of 500 km, 1000 km, or the absence of correlation led to substantial differences. When
emission uncertainties are assumed to be entirely uncorrelated, the inverse problem becomes relatively ill-determined.

445 However, excessively large correlation lengths prevent the inversion’s ability to capture regional emission patterns.

— Inversion results were also significantly influenced by the choice of baseline uncertainty, particularly within the range of

0 to 0.0003 ppt. Although increasing the uncertainty further led to additional changes, the effect gradually diminished,
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stabilizing between 0.01 and 0.1 ppt. We recommend ensuring the baseline uncertainty is not underestimated, as this can

significantly impact the results.

— Optimizing the baseline using two or more latitudinal bands most likely yields better results than optimizing the entire
field with a single scalar. Therefore, we recommend optimizing the baseline in at least two latitudinal bands, particularly
for species such as SFg, which exhibit a strong latitudinal gradient and large interhemispheric differences. In contrast,

the choice of temporal interval for baseline optimization (ranging from 15 to 60 days) had minimal impact on the results.

— The number of optimized emission grid cells, ranging from 588 to 7,229, had minimal impact on the obtained national
total emissions. Given that the computational time for an inversion is strongly influenced by the number of grid cells
optimized, we recommend conducting prior sensitivity tests related to the grid configuration. This approach could help

conserve significant computational resources using a coarser grid where appropriate.

— Results were sensitive to variations in both a priori emission uncertainties and observation errors, with greater sensitivity
in poorly monitored areas and minimal impact in well-monitored regions. We recommend conducting sensitivity tests

on these uncertainties to improve the accuracy of uncertainty estimates in inversion results.

— Inversion results showed moderate sensitivity to the choice of the observation dataset and a priori emission fields. Again,
we suggest using multiple a priori emission datasets and observational datasets to improve the reliability of uncertainty

estimates in the inversion results.

Our study indicates that regulations, such as those implemented by the EU for F-gases, can have a significant positive impact
on regional GHG emissions. It will be interesting to observe how the EU’s new 2024 F-gas regulation will further reduce
European SFg emissions in the future. Considering the substantial regional emission reductions observed, Europe could serve
as a role-model for effectively reducing SFs emissions. Similar regulations would be crucial in other regions for mitigating
global SFg emissions (Vojta et al., 2024; An et al., 2024). Furthermore, expanding observation networks - similar to the
dense British network - should be a top priority, as this would greatly reduce uncertainties in top-down emission estimates
derived from inverse modeling. These improved estimates could then be incorporated into national reports, as already done by
Switzerland, the UK, and Australia (e.g. Rypdal et al., 2005; Leip et al., 2017), substantially enhancing our understanding of

GHG emissions.

. The FLEXINVERT+ code (described by Thompson and Stohl, 2014), along with configuration files, is provided at https://doi.org/10.25365/
phaidra.648. The FLEXPART 10.4 source code (described by Pisso et al., 2019) is accessible at https://doi.org/10.5281/zenodo.3542278.
FLEXPART 8-CTM-1.1 and its user guide can be freely downloaded from https://doi.org/10.5281/zenodo.1249190 (Henne et al., 2018).
Daily global SF¢ mole fraction fields from the re-analysis (2005-2021) are available at https://doi.org/10.25365/phaidra.489.

All links and references to the atmospheric mole fractions used in this study are detailed in Vojta et al. (2024) and are repeated

here for convenience: AGAGE data: https://data.ess-dive.lbl.gov/view/doi%3A10.15485%2F1909711 (Prinn et al., 2023); Heathfield Tall
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Tower data: https://catalogue.ceda.ac.uk/uuid/df502fe4715c4177ab5e4e367a99316b (Arnold et al., 2019); Bilsdale Tall Tower data: https:
//catalogue.ceda.ac.uk/uuid/d2090552c8fed4c16a2fd7d616adc2d9f (O’ Doherty et al., 2019); Zeppelin mountain data: https://ebas-data.nilu.
no/Pages/DataSetList.aspx ?key=4548F5S9E3CBD48E0AS05E8968BD268EB (2005-2010 EBAS, 2024); NOAA/GML Chromatograph for
Atmospheric Trace Species (CATS) program: https://doi.org/10.7289/V5X0659V (all stations, hourly data, Dutton and Hall, 2023); Monte
Cimone, Cape Ochiishi, Izafia, Ridge Hill, Zugspitze-Schneefernerhaus: https://doi.org/10.50849/WDCGG_SF6_ALL_2022 (di Sarra et al.,
2022); Atmospheric SF¢ Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network:
https://doi.org/10.15138/p646-pa37 (Lan et al., 2024a); NOAA Global Greenhouse Gas Reference Network provided flask-air PFP sample
measurements of SFs at Tall Towers and other Continental Sites https://doi.org/10.15138/5R14-K382 (Andrews et al., 2022); Atmospheric
Sulfur Hexafluoride Dry Air Mole Fractions from the NOAA GML Carbon Cycle Aircraft Vertical Profile Network https://doi.org/10.
15138/39HR-9N34: (McKain et al., 2022); NOAA ObsPACK SFs data: https://doi.org/10.15138/g3ks7p (NOAA Carbon Cycle Group
ObsPack Team, 2018); IAGOS-CARIBIC Aircraft measurements: https://zenodo.org/records/10495039 (Schuck and Obersteiner, 2024);
NOAA/ESRL/GMD/HATS Trace Gas Measurements from Airborne Platforms: https://gml.noaa.gov/aftp/data/hats/airborne/ (Elkins et al.,
2020); NOAA Atmospheric Carbon and Transport - America aircraft measurements: https://doi.org/10.3334/ORNLDAAC/1575 (Sweeney
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Appendix A: Evaluation of inversion setup sensitivities

This Appendix presents the results from various inversion setups, organized by specific aspects of the inversion process to
examine the sensitivity of results to each setting. We display emission time series for four major emitting countries: the UK,
Germany, France, and Italy, as well as for the aggregated EU-27 emissions. Where relevant, we include a priori or a posteriori
emission maps, as well as inversion increments (a posteriori - a priori), either averaged over the entire study period or focused
on specific years or countries. Additionally, we provide error reduction information for one particular case to provide further
insight. The reference inversion is indicated by a black frame around the respective inversion maps or by a thick line in the

case of emission time series.
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Appendix B: Sensitivity to the a priori emissions

We employ seven different a priori emission fields derived from the GAINS inventories, UNFCCC reports, and EDGAR data
(see Sect. 2.3 and Fig. 3). Figure B1 shows the inversion increments averaged throughout the entire study period when using
different a priori inventories. While in some regions the increments vary in magnitude, they show a very similar pattern across
all cases. We see negative increments in northern Germany, especially in the area around Cologne, where a priori emissions
tend to be very high. The UNFCCC- and EDGAR-based inversions also show strong negative increments in Berlin, where
the a priori estimates are high. All tests show large positive increments in southwest Germany, positive increases in France,
Italy, and the UK, and negative increments in Switzerland. Notice that the EDGAR-based inventories E7P and E8 show negative
increments in the area of Moscow, in contrast to the other inventories. For a more detailed analysis, Fig. B2 presents the a priori
(a—g) and a posteriori (h—n) emissions in the Moscow region, averaged over the study period 2005-2021. While the a priori
emissions exhibit significant differences, the a posteriori emissions show better agreement. However, substantial uncertainties
persist due to the use of different a priori inventories, even after the correction from the inversion.

Figure B3 presents the a posteriori emission time series for the UK, Germany, France, Italy, and the EU-27 based on different
a priori emission inventories. In the UK (Fig. B3a), differences in the a posteriori emissions due to different a priori inventories
are relatively large in the early years of the study period, but decrease significantly toward the end, particularly after 2011, when
the British observation network was expanded. Similarly, the differences in the French a posteriori SF¢s emissions (Fig, B3c)
decrease over the study period; however, this is less evident than for the UK. In Germany (Fig. B3b), the sensitivity to different
inventories remains relatively low throughout the study period. This is particularly noteworthy toward the end of the period,
when a priori inventories show considerable differences, indicating substantial improvements from the optimization. In Italy
(Fig. B3d), a priori emissions from the different inventories are quite similar until 2017, leading to relatively closely aligned
a posteriori emissions. However, toward the end of the time series, the a priori estimates start to diverge, resulting in larger
differences in the corresponding a posteriori emissions, especially in 2021. This divergence is likely related to the fact that
Monte Cimone provided observations only until 2017, after which constraints on Italian emissions were substantially reduced.
A closer examination of the year 2021 reveals significantly higher a priori emissions and positive increments close to Milan for
the EDGAR- and UNFCCC-based inventories (Fig. B4c-g/j-n), compared to the lower values from the GAINS-based inventory
(Fig. B4a,b/h,i). The larger increments observed for higher a priori values can most likely be attributed to the definition of
the a priori emission uncertainty, giving the algorithm more freedom in grid cells with high a priori values. Consequently,
emissions that are high but still underestimated are easier to correct than those that are even lower. This might indicate that
our uncertainties for individual grid cells might be generally too small and that our posterior uncertainties, as estimated using
the analytical method, might be significantly underestimated at the national level. The aggregated a posteriori emissions of the
EU-27 countries (Fig, B3e) show a relatively low dependence on the a priori inventory, with differences across cases decreasing

up to 2018. After 2018 differences slightly grow again, which can be attributed to the strongly diverging a priori inventories.
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Figure B3. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, using different
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dark red: E7N, orange: E8 ) represent the a posteriori emissions derived using different a priori emission inventories, which are shown by the
dashed lines in corresponding colors.The vertical grey-gray lines indicate the times when additional observational data from the expansion

of the UK network became available.
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Appendix C: Sensitivity to the a priori emissions-emission uncertainty

In FLEXINVERT+, the a priori emission uncertainty in each grid cell is calculated as a fraction of the corresponding emission
value. We evaluate four different settings with fractions of 30%, 50%, 70%, and 100%, with the inversion results presented in
Fig. Cl1. As the a priori emission uncertainty increases from 30% to 100%, the constraint on the a priori emissions weakens,
allowing the a posteriori emissions to deviate further from their a priori values. Notable, the step from 30% to 50% results
in the largest differences, while the step from 70% to 100% causes only minor differences. Using prior uncertainties of 30%,
30%, and 70% resulted in reduced chi-square values close to 1 (1.12, 0.87, and 0.70, respectively, averaged over all study

ears). By contrast, the value of 0.55 obtained for 100% uncertainty might indicate an overestimation of the a priori errors. In

general, we observe little sensitivity to the a priori emissions in Germany (Fig. C1b) and the UK (Fig. Cla). For France, Italy,
and the aggregated EU-27 emissions, the sensitivity to the a priori uncertainty generally decreases over time, with differences
becoming relatively small after 2014.

Furthermore, we test various minimum emission uncertainty values to allow the algorithm to adjust emissions in grid cells
with very small a priori values. The seven minimum values tested are 5 x 10714, 1 x 1073, 5 x 10713, 1 x 10712, 5 x 10712,
1x107!, and 5 x 10 kg m~2 h~!, with the corresponding uncertainty distribution illustrated in Figure C2. Figure C3
shows the respective inversion results for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. For
the smaller minimum emission uncertainties between 5 x 107'% and 1 x 107'2kg m~2 h™! (red, blue, green, and purple),
the inversion results remain very similar. However, as the minimum emission uncertainty further increases, the a posteriori
emissions deviate more significantly from the a priori values. Similar to the previous tests, the inversion results are very stable
for the UK and Germany, while the sensitivity in France decreases notably from 2012 to 2021. In contrast, Italy’s a posteriori
emissions exhibit relatively large differences in some years (including after 2014), likely due to limited observational coverage
in southern Italy. These differences are particularly evident for the highest tested value of 5 x 10" kg m~2 h~! (brewnlight
orange). In case of the aggregated EU-27 a posteriori emissions, the highest tested value of 5 x 10~ kg m~2 h~! also leads
to considerably higher interannual variability compared to the other tested values.

To further investigate how the minimum a priori uncertainty affects the inversion, we also show the 2012 European inversion
increments for the same seven values in Fig. C4, since we observe the biggest differences in this year. Consistent with Fig. C3,
increments are similar for minimum values between 5 x 107* and 1 x 107'2kg m~2 h~'. However, as the minimum a priori
uncertainty further increases, the emission increment patterns begin to change. The increments become less localized and
spread over larger areas, especially apparent in France. This shift occurs because the a priori uncertainty becomes similar
across most grid cells (see Figure C2), compelling the algorithm to distribute increments more evenly. For poorly observed
areas, such as regions around the Black Sea, the large a priori uncertainties result in excessively strong positive increments.
This behavior contrasts with well-covered areas such as Germany or the UK, where almost no differences are observed until the
minimum value reaches 5x 10~ kg m~2 h~! (g), at which point the results become noisy in the whole domain, indicating that
the inversion becomes poorly constrained. At this point the inversion problem becomes rather ill-posed, producing widespread

artifacts.
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Appendix D: Sensitivity to the spatial correlation of the a priori emission uncertainty

FLEXINVERT+ uses an exponential decay function to account for spatial emission uncertainty correlations. We test various
spatial scale lengths of 50, 100, 250, 500, 1000 km, as well as a configuration without any spatial correlation. Figure D1
presents the emission time series for these tests. As the correlation length increases, the observational information influences a
larger number of emission grid cells, causing the aggregated a posteriori emissions to deviate more from their a priori values.
With high correlation lengths, the algorithm’s ability to capture the spatial variability of the emissions is limited. Conversely, if
the correlation length is very small, there will be insufficient observational constraint on the emissions. As a consequence, the
number of grid cells with substantial inversion increments increases with growing correlation length (see Fig. D2, increments
averaged over the study period). At the same time, the modeled error reduction substantially increases (see Fig. D3, error

reduction shown for the year 2012). However, this is-selely-due-to-the-muchlargerapriori-uncertainties;and-thus-should not
be interpreted as an indication fer-of a superior inversion quality. It reflects the broader spatial distribution of observational

information rather than an actual improvement in the ability of the inversion to constrain emissions. Our findings align closely
with Thompson et al. (2011), who observed a similar error reduction trend when testing correlation lengths between 50 and

2000 km in a European N5O inversion. Qur tests further show that in the absence of spatial correlation, the inversions can

—2 S—l

ield substantial negative emissions at the grid-cell level (down to —21 . Such values are unphysical and indicate

that the problem is poorly constrained. In contrast, imposing large correlation lengths of 500 and 1000 km slightly reduces

the agreement between observed and posterior mole fractions (see Table S9 and S10), as the imposed correlation limits the
inversion’s ability to resolve regional emission patterns. Across all investigated regions (Fig. D1), we observe that after 2012,

m

inversion results become less sensitive to the choice of correlation length, especially in Germany (Fig. D1b) and the UK
(Fig. D1a), where error reduction is highest (Fig. D3) and inversion results show remarkable stability. In France (Fig. D1c) and
Italy (Fig. D1d), the error reduction is smaller and a posteriori emissions remain generally more sensitive to the correlation
length. For the aggregated EU-27 emissions (Fig. D1e), results are highly sensitive to the chosen spatial correlation length,
though they also stabilize after 2012. Notably, results for correlation lengths of 50, 100, and 250 km are relatively close, while

values of 500 km, 1000 km, and no correlation show great deviations in case of the aggregated EU-27 emissions.
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Figure D1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different
spatial scale lengths for the a priori emission uncertainty correlation. The colored solid lines (blue: 50km, green: 100 km, purple: 250 km,
orange: 500 km, light orange: 1000 km, and red: no correlation) represent the a posteriori emissions derived using the different settings and
the gray dashed line shows the a priori emissions. The vertical grey-gray lines indicate the times when additional observational data from the

expansion of the UK network became available.
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Figure D3. Error reduction for the year 2012, shown for different spatial scale lengths for the a priori emission uncertainty correlation: (a)

no correlation, (b) 50 km, (c) 100 km, (d) 250 km, (e) 500 km, and (f) 1000 km
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Appendix E: Sensitivity to the observation datasets

We perform tests using subsets of the global observation dataset: (1) the entire global dataset, (2) the global dataset excluding
mountain stations, (3) the global dataset selecting night observations (00:00-06:00) at mountain stations and afternoon
observations (12:00-18:00) at other sites, (4) the global dataset using exclusively high-frequency surface observations, (5)

the European dataset, a subset of the global dataset in

Sect 2.1), (6) the European dataset excluding mountain stations, (7) the European dataset selecting night observations at
mountain stations and afternoon observations at other sites, and (8) the European dataset using exclusively high-frequency
surface observations. Figure E1 presents the emission time series using these datasets.

For the UK, Germany, France and Italy, the choice between the global and European datasets has a small impact on the
inversion results; however, for the aggregated EU-27 emissions, differences can be pronounced. This indicates that distant

observations b

in-less-well-eovered-areas-have little influence on emissions in countries that are well observed, but can affect emissions in
areas that are less well covered. Excluding observations from mountain stations (Fig. E1, red lines) has a minimal impact on
the UK emissions (Fig. Ela) and also shows a limited effect in France (Fig. Elc) after 2008. In Germany (Fig. E1b) and the
EU-27 (Fig. Ele) the exclusion of mountain stations can lead to notable differences in certain years, while for Italian emissions
(Fig. E1d), the impact can be substantial, such as in 2016. Figure E2 shows the 2016 inversion increments, illustrating how
the exclusion of the mountain stations (Fig. E2b,f) such as JFJ, ZSF, and MENCMN, leads to large positive increments in
Switzerland and nearby areas (including North Italy), as the observational coverage of this region is drastically reduced.
We assume that the limited observational coverage causes the region to be influenced by the high emission increments
in southwestern Germany. Selecting only afternoon/night observations (Fig. E1, green lines) generally results in posterior
emissions closer to the prior values due to reduced number of available observations. Similarly, the inversion increments (Fig.
E2c,g) are attenuated, however, the patterns of emission increments remain rather similar. Excluding flask measurements and
data from moving platforms affects early study years (e.g. emissions the UK in Fig. Ela, purple lines), but as the observational
coverage with on-line measurement stations increases, the impact of these additional measurements becomes negligible.
Similar to the other sensitivity tests, we observe that the sensitivity to the used datasets decreases over the study period,
however, 2016 and 2017 stand out as exceptions, likely due to the exceptionally high emissions in southwestern Germany

during these years.
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Figure E1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different
subsets of the observation dataset. The colored lines (solid blue: the full global dataset, solid red: the global dataset excluding mountain
stations, solid green: the global dataset selecting night observations at mountain stations and afternoon observations at other sites, solid
purple: the global dataset using exclusively high-frequency surface observations, dotted blue: the European dataset, a subset of the global
dataset focused on observations in and around Europe, dotted red: the European dataset excluding mountain stations, dotted green: the
European dataset selecting night observations at mountain stations and afternoon observations at other sites, dotted purple: the European
dataset using exclusively high-frequency surface observations) represent the a posteriori emissions derived using the different settings and
the gray dashed line shows the a priori emissions. The vertical grey-gray lines indicate the times when additional observational data from the

expansion of the UK network became available.
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Figure E2. Inversions-Inversion increments (a posteriori - a priori) averaged-overfor the study-period-(2005-262Hyear 2016, shown for

different observation datasets: (a) the full global dataset, (b) the global dataset excluding mountain stations, (c) the global dataset selecting
night/afternoon observations, (d) the global dataset using exclusively high-frequency surface observations, (e) the European dataset, a subset
of the global dataset focused on observations in and around Europe, (f) the European dataset excluding mountain stations, (g) the European

dataset selecting night/afternoon observations (h) the European dataset using exclusively high-frequency surface observations.
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Appendix F: Sensitivity to the observation uncertainty

We explore multiple configurations for the observation uncertainty, testing constant values of 0.02, 0.04, 0.06, 0.08, and 0.1
ppt. Additionally, we use two approaches where we (i) base the observation error on the RMSE between a priori modeled
and observed values, averaged by station, and (ii) estimate the model error from the standard deviation of the a posteriori
error distribution at each station, using initial inversion runs. Figure F1 presents the emission time series of these tests. As
observation uncertainty increases, the observational constraint weakens, causing the a posteriori emissions to follow more
closely their a priori values. The two approaches that account for spatial variability in the model uncertainty generally fall
within the range of constant-error settings, although they show a slightly different pattern for some periods. The inversion
results show very low sensitivity to the observation uncertainty in the UK and Germany, especially after 2012 when results

are extremely stable. For France, Italy, and the EU-27, the sensitivity to the observation uncertainty also declines after 2012.

The reduced chi-squared values averaged over the study period were 3.65. 1.50, 0.87, 0.57, and 0.41 for assumed observation
errors of 0.02, 0.04, 0.06, 0.08, and 0.10 ppt, respectively. These results suggest that an observation error of about 0.06 ppt
provides the most consistent fit, while 0.02 ppt underestimates and 0.10 ppt overestimates the uncertainties. Note at this point
that the smallest error setting of 0.02 ppt (red) —which-istikely-an—underestimation—of-the-actual-uncertainty—shows the

greatest deviation from the other tests. The chi-squared values related to the spatial varying uncertainties were 0.80 (standard

deviation, a posteriori distribution), and 0.31 (RMSE, a priori distribution). Indeed, using the RMSE of the a priori distribution

1s expected to be an overestimation, as it also reflects systematic mismatches and biases in the a priori emissions rather than
urely observational and transport model uncertainty.
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Figure F1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various
observation error settings. The colored solid lines (red: 0.02 ppt, orange: 0.04 ppt, light orange: 0.06 ppt, light blue: 0.08 ppt, blue: 0.1 ppt,
light green: standard deviation of the a posteriori distribution, green: RMSE between a priori modeled and observed values) represent the a
posteriori emissions derived using the different settings and the gray dashed line shows the a priori emissions. The vertical grey-gray lines

indicate the times when additional observational data from the expansion of the UK network became available.
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Appendix G: Sensitivity to the baseline optimization

FLEXINVERT+ includes an option for baseline optimization, where spatially aggregated contributions are adjusted on a
coarse grid. We test different coarse grid resolutions by dividing the global field into 8, 4, and 2 latitude bands, with
northern boundaries at [-60°, -30°, -15°, 0°, 15°, 30°, 60°, 90°], [-30°,0°,30°,90°], and [0°,90°], respectively. In addition,
we run inversions where the entire global field is optimized with a single scalar. Figure G1 presents the emission time
series for these tests. For all regions studied, we find that optimizing the baseline using 2, 4, or 8 latitudinal bands has
minimal impact on the results. However, optimizing the entire field in a single global grid cell results in significantly higher
a posteriori emissions, particularly before 2012, especially evident for the EU-27 emissions (Fig. Gle). This trend is also
evident in the inversion increments (Fig. G2), where the positive increments are larger, and the negative increments are less
pronounced when optimizing the whole field (Fig. G2a). These results can be linked to the large inter-hemispheric gradient in
atmospheric SFg mole fractions. Potential biases in the modeled SF¢ mole fraction fields likely differ between the Southern
and Northern Hemispheres, making a single optimization factor insufficient to represent both regions accurately. However, as
the observational coverage increases, the sensitivity to the spatial resolution of the baseline drastically decreases and inversion
results become extremely stable for all tested regions.

We also test different temporal baseline optimization intervals of 15, 30, 45, and 60 days, with inversion results shown in
Fig. G3. The a posteriori emissions are only minimally sensitive to the choice of the temporal interval between 15 and 60 days.
Although small differences occasionally appear in certain years and regions, the overall inversion results remain highly stable.

Furthermore, we test various baseline uncertainty values set to 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.01, 0.1,
and 1 ppt and run an inversion without any baseline optimization. The resulting a posteriori emission time series are shown
in Fig. G4. The baseline optimization consistently reduces the a posteriori emissions across all regions, indicating that the
optimization tends to shift the a posteriori baseline to higher values. At a baseline uncertainty of 0.0001 ppt, the changes in a
posteriori emissions are minimal. However, increasing the uncertainty to 0.0003 ppt produces a notable decrease in emissions.

Further increases in the uncertainty continue to lower the a posteriori emissions, though the effect diminishes with each step,

converging toward stable results between 0.01 and 0.1 ppt. Increasing the baseline uncertainty up to 0.01 ppt also improves

the bias between a posteriori modeled and observed mole fractions while higher uncertainties yield the same results (see Table
S11-S13). Figure G5 presents the inversion increments for uncertainty values between 0.0001 ppt and 0.01 ppt, as well as

for the case without optimization. Consistent with Fig. G4, we observe a decrease in increments with increasing baseline
uncertainty. As observed in other sensitivity studies, the sensitivity to baseline optimization decreases significantly over the

course of the study period, with results stabilizing toward the end for all tested regions.
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Figure G1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various
spatial resolutions of aggregated baseline contributions for the baseline optimization. The colored solid lines represent the a posteriori
emissions derived when optimizing the baseline, regarding the different spatial resolutions (red: the whole global field, orange: 2 latitudunal
bands, light blue: 4 latitudunal bands, and blue: 8 latitudunal bands). The gray dashed line shows the a priori emissions. The vertical grey

gray lines indicate the times when additional observational data from the expansion of the UK network became available.
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Figure G3. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different
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represent the a posteriori emissions. The gray dashed line shows the a priori emissions. The vertical grey-gray lines indicate the times when
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Appendix H: Sensitivity to the emission grid

We utilize emission grids with varying cell sizes, created by aggregating cells with low emission contributions based on
emission sensitivities and a priori emissions (see details in Thompson and Stohl, 2014). The tested grids include configurations
with 588, 744, 1,992, 2,781, 4,248, 5,370, and 7,229 grid cells, each remaining constant over time. Additionally, we explore
three dynamic setups where the grid configuration adjusts annually, with the number of cells ranging from (i) 2,781 to 5,916, (ii)
3,645 to 6,599, and (iii) 4,151 to 7,229. Figure H1 illustrates the emission grid with (a) the highest and (b) the lowest number
of grid cells, while Fig. H2 displays the inversion results for all tested grid configurations. The inversion results demonstrate
minimal sensitivity to the number of grid cells within the tested range, with only minor differences observed in isolated years

and regions.
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Figure H2. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various
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data from the expansion of the UK network became available.
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Appendix I: Sensitivity to the whole inversion ensemble

Fig. I1 shows the results of all performed inversions, displaying the full set of a posteriori emissions alongside the average
across all sensitivity tests. Our results show that sensitivity to the various inversion settings decreases significantly after 2012,
aligning with the expansion of the British observation network. This trend is particularly evident in the UK and Germany,
where the results become highly stable across all sensitivity tests. Even under unfavorable settings that lead to outliers during

periods of limited observational coverage, results remain stable towards the end of the study period.
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Figure I1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. The eolored
solid gray lines represent the inversion results of all sensitivity tests and the solid black lines represent the average a posteriori emissions
across all performed tests.The vertical grey-dashed gray lines indicate the times when additional observational data from the expansion of
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Appendix J: Selection of parameter ranges

730

735

+695+H-51+4+28374+242554+58Based on the insights from our sensitivity tests, we defined the final parameter ranges

740 for the inversion ensemble. Compared to the broader ranges explored in the sensitivity tests, these final ranges are narrowed to
exclude (i) unlikely values that could lead to extreme or problematic results and (ii) parameters to which the inversion showed

negligible sensitivity.

745

uneertainty(-0e-13-1-0e-+H-kem—2h—Land standard deviation 0.1, Within this range, the inversion yields reasonable
results and reduced chi-squared values close to one (see Appendix C).

750 - (ii) Minimal a priori emission value: We adopt a normal distribution with mean 5 x 10"'3kg m~2 h~! and standard
deviation 1 x 10~ 13kg m~2 h—!. Values above this range lead to less localized inversion increments that spread over
larger areas. This could potentially introduce biases in regions with sparse observational constraints (see Appendix C).

— (iii) Spatial correlation of the-a priori emission uncertainty: (50-256)We adopt a normal distribution with mean

250 km and standard deviation 100 km. This choice represents our best estimate of a compromise between sufficient]

755 constraining emissions and maintaining the inversion’s ability to resolve regional emission patterns (see Appendix D).

- (iv) Observation uncertainty:

760
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765

770
‘We adopt a normal distribution
with mean 0.06 ppt and standard deviation 0.01 ppt. Uncertainties within this range yield stable inversion results, while
reduced chi-squared values remain close to one (see Appendix F).

775 — (v) Baseline optimization: We optimize the baseline in eight latitudinal bands, which improves performance compared
to using a single global factor. The baseline uncertainty is set to 0.1 ppt to avoid underestimation, as smaller values
especially < 0.01 ppt) can introduce biases. Inversion results were largely insensitive to the choice of baseline
optimization time window, for which we therefore adopted a value of 30 6-771++1e-13225 6078 GAINSGlobal:
high-frequency surface station 0-74-3-4e 8-0-032-E8FEuropenight/afternoon—seleetion 0-60-8-7¢
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— (vi) Emission grid: We employ an emission grid of 558 cells, since the sensitivity tests indicated negligible dependence

of the results on the grid within the tested configurations (see Appendix H).

800 — (vii) A priori and observational datasets: For these inputs, we sample randomly from the datasets described in Sect. 2.3
and Sect. 2.1, as there were no objective reasons to restrict their parameter space.
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. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA
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