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Abstract.

We determine European emissions of sulfur
:::::
Sulfur hexafluoride (SF6)

::
is

:
a
::::::
highly

:::::
potent

:::
and

:::::::::
long-lived

:::::::::
greenhouse

:::
gas

::::::
whose

::::::::::
atmospheric

::::::::::::
concentrations

:::
are

:::::::::
increasing

:::
due

::
to

::::::
human

:::::::::
emissions.

::
In

::::
this

:::::
study,

:::
we

::::::::
determine

::::::::
European

::::
SF6::::::::

emissions
:
from

2005 to 2021 using a large ensemble of atmospheric inversions. To assess uncertainty, we systematically vary key inversion

parameters across 986 sensitivity tests and apply a Monte Carlo approach to randomly combine these parameters in 1,0035

additional inversions. Our analysis focuses on high-emitting countries with robust observational coverage — UK, Germany,

France, and Italy — while also examining aggregated EU-27 emissions.

SF6 emissions declined across all studied regions except Italy, largely attributed to EU F-gas regulations (2006, 2014),

however, national reports underestimated emissions: (i) UK emissions dropped from 65 (±13
::
68

::::::
(47-77) t yr−1 in 2008 to 20

(±6
::
19

::::::
(15-26) t yr−1 in 2018, aligning with the reports from 2018 onward; (ii) French emissions fell from 88 (±37

::
78

:::::::
(51-117)10

t yr−1 (2005) to 51 (±28
::
35

::::::
(19-54) t yr−1 (2021), exceeding reports by 73

::
88%; (iii) Italian emissions fluctuated (31–67

:::::
25-48

t yr−1), surpassing reports by 88
:::
107%; (iv) German emissions declined from 166 (±41

:::
182

::::::::
(155-251) t yr−1 (2005) to 95

(±11
::
97

:::::::
(88-104) t yr−1 (2021), aligning reasonably well with reports; (v) EU-27 emissions decreased from 484 (±213

:::
403

:::::::
(335-501) t yr−1 (2005) to 255 (±58

:::
225

:::::::
(191-260) t yr−1 (2021), exceeding reports by 40

::
20%. A substantial drop from 2017

to 2018 mirrored the trend in southern Germany, suggesting regional actions were taken as the 2014 EU regulation took effect.15

Our sensitivity tests highlight the crucial role of dense monitoring networks in improving inversion reliability. The UK

system expansions (2012, 2014) significantly enhanced result robustness, demonstrating the importance of comprehensive

observational networks in refining emission estimates.
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1

Sulfur hexafluoride (SF6) is a fluorinated gas (F-gas), which has the highest global warming potential (GWP) of all known20

greenhouse gases (GHG), with current estimates of 18,400, 24,700, and 29,800 for 20-, 100-, and 500-year time horizons,

respectively (WMO, 2022). Even more concerning, estimates of its atmospheric lifetime range between 850 and 1,280 years

(WMO, 2022), implying that SF6 from past, present, and future anthropogenic emissions will accumulate in the atmosphere

and will warm the climate for thousands of years.

::::
Since

:::
the

::::
late

:::::
1990s,

::::::
global

:::
SF6::::

mole
::::::::
fractions

::::
have

::::::
almost

::::::
tripled,

::::
from

:::
4.2

:::
ppt

::
in

::::
1998

::
to

::::
11.4

:::
ppt

::
in

::::
2023

:::::::::::::::
(Lan et al., 2024b)25

:
,
::::
while

::::::
global

::::::::::
atmospheric

::::::
growth

::::
rates

::::
have

:::::
more

:::
than

::::::::
doubled,

::::
from

::::
0.20

:
t
::::
yr−1

::
in

::::
1998

::
to

::::
0.41

:
t
::::
yr−1

::
in

:::::
2023

:::::::::::::::
(Lan et al., 2024b)

:
.
::::::::
Radiative

::::::
forcing

::::::::
increased

:::::
from

:::
2.4

::
in

:::::
1998

::
to

:::
6.2

::::
mW

::::
m−2

:::
in

:::::
2022.

::
If

:::
the

::::::
current

::::::
global

:::::::
emission

:::::
trend

:::::::::
continues,

::::
SF6

:::::::
radiative

::::::
forcing

:::::
could

:::::::
increase

:::
up

::
to

::
70

::::
mW

::::
m−2

:::
by

:::
the

:::
end

::
of

:::
the

:::::::
century

:::::::::::::
(Hu et al., 2023)

:
.

Due to its high stability, SF6 is used mainly as an insulator for electric equipment in the power industry (e.g. IEEE,

2012; Koch et al., 2018; Cui et al., 2024), with emissions occurring during equipment leakage, failures, maintenance, and30

decommissioning. It is also used in the metal industry as a blanketing gas (e.g. Maiss and Brenninkmeijer, 1998), as a cover

gas in magnesium production and processing (Bartos et al., 2007; Ottinger et al., 2015), for semiconductor manufacturing for

equipment cleaning and plasma etching (e.g. Cheng et al., 2013), and in the past it was even used to fill sports shoes (Pedersen,

2000) and car tires (Schwaab, 2000). In the 1990s, especially in Western Europe, SF6 was used to fill double-glazed windows

(e.g. Schwarz, 2005), which still represents a substantial European emission source (United Nations Framework Convention35

on Climate Change, 2023).

Since the late 1990s, global SF6 mole fractions have almost tripled, from 4.2 ppt in 1998 to 11.4 ppt in 2023 (Lan et al., 2024b)

, while global atmospheric growth rates have more than doubled, from 0.20 t yr−1 in 1998 to 0.41 t yr−1 in 2023 (Lan et al., 2024b)

. Radiative forcing increased from 2.4 in 1998 to 6.2 mW m−2 in 2022. If the current global emission trend continues, SF6

radiative forcing could increase up to 70 mW m−2 by the end of the century (Hu et al., 2023).40

SF6 was regulated under the Kyoto Protocol, where it is listed as one of the six categories of major GHGs (United Nations

Framework Convention on Climate Change, 1997). To meet the Kyoto Protocol’s targets, the EU passed regulation No.

842/2006 (EU, 2006), setting rules for the containment, recovery, use, and reporting of fluorinated gases. It banned the use

of SF6 in vehicle tires (starting in 2007) and in large-scale magnesium die-casting (starting in 2008), as well as in soundproof

windows and footwear. The EU’s 2014 regulation (No.517/2014, EU, 2014) further restricted SF6 use, requiring leak detection45

systems for electrical switchgear by 2017 and banning it from recycling magnesium alloys by 2018. The new 2024 F-gas

regulation mandates the phase-out of F-gases in medium-voltage switchgear by 2030, high-voltage switchgear by 2032, and

prohibits SF6 use for switchgear maintenance by 2035, unless reclaimed or recycled (EU, 2024).

A key aspect of the Kyoto Protocol was the implementation of a robust system for monitoring GHG emissions, requiring

Annex-I countries (industrialized countries) to submit annual reports to the United Nations Framework Convention on Climate50

Change (UNFCCC), including SF6. These reports are almost exclusively calculated by so-called bottom-up methods, where

statistical data on economic production and consumption are combined with source-specific emission factors to estimate
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national emissions. The Emissions Database for Global Atmospheric Research (EDGAR) and the Greenhouse Gas and Air

Pollution Interactions and Synergies (GAINS) model also provide bottom-up inventories of SF6 emissions. However, due to

inherent uncertainties associated with bottom-up methods, there is a strong demand for independent verification (e.g. Weiss55

et al., 2021), which can be achieved through top-down approaches, such as inverse modeling (e.g. Leip et al., 2017). In an

inversion approach, atmospheric observations are used together with an atmospheric transport model to optimize the emissions.

Several inversion studies have investigated SF6 emissions, however, limited research has specifically focused on the European

continent. The global inversion study by Rigby et al. (2010) estimated total European SF6 emissions from 2004 to 2008,

distinguishing between emissions from reporting and non-reporting countries. Ganesan et al. (2014) estimated SF6 emissions60

for 2012 in well-monitored countries, including Germany, France, and the UK. Their estimates indicated higher emissions than

those officially reported to the UNFCCC. Brunner et al. (2017) used four independent inverse models to estimate European SF6

emissions in 2011. Their results were 47% higher than the UNFCCC reports, with Germany identified as the largest emitter.

Simmonds et al. (2020) used three different inversion systems to estimate total SF6 emissions from western Europe between

2013 and 2018, with one of the systems extending its analysis to cover 2007-2018. Their calculated emissions ranged from65

comparable to significantly higher than the reported values. Their work also suggested substantial SF6 emissions in southwest

Germany. In the UK’s annual report to the UNFCCC, Manning et al. (2022) presented inversion results for SF6 emissions in

both the UK and northwest Europe, revealing a downward trend in both regions. The global inversion study by Vojta et al.

(2024) provided an annual SF6 time series for the aggregated EU-27 emissions, between 2005 and 2021. They found a decline

in SF6 emissions, with a significant drop in 2018, which they attributed to the impact of the EU’s 2014 F-gas regulation.70

While recent studies have employed regional high-resolution inversions to constrain SF6 emissions in China (An et al.,

2024) and the U.S. (Hu et al., 2023), there is no recent high-resolution regional study examining the trend of SF6 emissions

in Europe. This research endeavors to bridge a significant gap in our understanding of European SF6 emissions. We adopt

the methodology established by Vojta et al. (2024), adapting it for a high resolution (0.25x0.25◦) inversion covering all of

Europe. Utilizing the same datasets, we quantify SF6 emissions across the continent for the period 2005 to 2021. While75

Vojta et al. (2024) primarily investigated the influence of different a priori inventories, this study delves deeper by conducting a

comprehensive sensitivity and uncertainty analysis. We systematically examine the impact of a wide range of parameters on our

inversion results, enabling a more robust quantification of overall uncertainties and a thorough investigation of the sensitivity

to individual inversion components.

2 Methods80

2.1 Measurement data

In this study, we utilize the same global observational dataset as employed by Vojta et al. (2024), where a detailed description

is available. Therefore, we only provide a brief overview here. The dataset is based on globally distributed atmospheric

observations of SF6 dry-air mole fractions collected between 2005 and 2021. It includes continuous on-line measurements,

instantaneous flask sample data from surface stations, and observations from mobile platforms. The measurements were85
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contributed by various independent organizations such as the National Oceanic and Atmospheric Administration (NOAA)

and the Advanced Global Atmospheric Gases Experiment (AGAGE) international network. Continuous surface measurements

were averaged over 3-hour intervals and all observations were standardized to the SIO-2005 calibration scale (for more details

see Vojta et al., 2024). It is noteworthy that the number of available European on-line monitoring stations increased over the

study period. While at the beginning only 5 such stations were available (Bialystok: BIK, Jungfraujoch: JFJ, Mace Head:90

MHD, Zeppelin: ZEP, Zugspitze-Schneefernerhaus: ZSF), the monitoring network in Western Europe significantly expanded

with the addition of UK observations from Ridge Hill (RGL) and Tacolneston Tall Tower (TAC) in 2012 and further from

Bilsdale (BSD) and Heathfield (HFD) in 2014.
::::::
Figure

::
S1

::::::::
provides

::
an

::::::::
overview

::
of

::
all

:::
the

:::::::::::
ground-based

::::::::::::
measurements

::::::::
globally,

::::
while

::::::
Fig. 1

:::::
shows

:::
the

:::::::
stations

::
in

:::::::
Europe.

To determine the influence of data selection criteria on our results, we created eight different subsets. 1) We used the entire95

global dataset (presented in Vojta et al., 2024), and 2) we selected a subset comprising only stations located in and around

Europe (
::::::
created

:
a
:::::::::
European

:::::
subset

:::
by

::::::::
excluding

::::::
on-line

:::::::
stations

:::::::
outside

::::::
Europe

::::::
(BRW,

:::::
CGO,

:::::
COI,

:::::
GSN,

:::::
HAT,

::::
IZO,

::::::
MLO,

:::::
NWR,

:::::
RPB,

::::::
SMO,

::::
SPO,

::::::
SUM,

:::::
THD;

:
see Fig.

:::
S1)

:::::
while

::::::::
retaining

:::
the

::::::::
European

::::
sites1

::::
(BIK,

::::::
BRM,

:::::
BSD,

::::::
CMN,

:::::
HFD,

::::
JFJ,

:::::
MHD,

:::::
RGL,

:::::
TAC,

:::::
ZEP,

:::
and

:::::
ZSF;

:::
see

::::
Fig. 1). For each of these two

::::
Note

::::
that

:::
the

:::::::
stations

:::::
SUM

::
in

:::::::::
Greenland

:::
and

::::
IZO

:::
in

:::::::
Tenerife

:::
are

::::::::::::
geographically

:::::::
closest

::
to

:::
the

::::::::
European

:::::::::
inversion

:::::::
domain.

:::
For

:::::
these

::::::
global

::::
and

::::::::
European

:
datasets, we further100

refined the selection by: a) retaining only night observations (00:00 - 06:00) at mountain stations and afternoon observations

(12:00 - 18:00) at all other sites for continuous monitoring stations; b) creating a data subset that excludes mountain stations,

and c) generating a subset that omits low-frequency measurements and data from moving platforms, retaining only high-

frequency surface observations.
:::::::
Table S1

:::::::
provides

:::
the

:::::::
number

::
of

:::::::::::
observations

::::
used

:::::
from

::::
each

::::::
dataset

:::
for

::::
each

:::::
year,

:::::::
whereas

::::::
Tab. S2

:::::
shows

:::
the

::::::::::
availability

::
of

::::::
online

:::::::::::
measurements

::::::
within

:::
and

:::::::
outside

:::::::
Europe.105

2.2 Emission sensitivities

We use the Lagrangian particle dispersion model (LPDM) FLEXPART 10.4 (Pisso et al., 2019) in backward mode to simulate

the atmospheric transport of SF6, tracing its movement from the measurement locations back to the emission sources. We

neglect loss processes, given that SF6 is almost inert up to the middle stratosphere. For every observation, we release 50,000

virtual particles continuously over a 3-hour interval from the measurement site, tracking their trajectories backward in time for110

50 days. The average time spent by these particles in a given emission grid cell determines the sensitivity of the observation to

emissions from that specific grid cell. These simulated emission sensitivities form the basis for the atmospheric inversion. We

run FLEXPART on a European domain (15 ◦W-40 ◦E, 30 ◦N-72 ◦N) with an output resolution of 0.25 ◦× 0.25 ◦ and on a global

domain with an output resolution of 1.0 ◦×1.0 ◦, both with 18 vertical layers of 0.1, 0.5, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 20, 25,

30, 40, and 50 km above ground level (agl) interface heights. The emission sensitivities were calculated solely for the lowest115

layer, ranging from 0 to 100 meters agl, where almost all emissions occur. We utilize hourly ECMWF ERA52 wind fields

1
::
We

:::::
initially

:::
still

:::
kept

:::
the

:::::
globally

::::::::
distributed

:::
flask

:::::::::
measurements

:::
and

:::::::::
observations

:::
from

:::::
moving

:::::::
platforms

::
to

:::::
improve

:::
the

:::::
baseline

:::::::::
optimization

2ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, providing comprehensive

global climate and weather data from January 1940 to the present.
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Figure 1. Locations of the observation stations in and around Europe. Stations with continuous surface measurements (BIK, BSD, BRM,

::::
BSD, CMN, HFD, JFJ, MHD, RGL, TAC, ZEP, ZSF) are represented with red triangles, while surface flask measurements (BAL, BSC, CIB,

HPB, HUN, LMP,
::::
MHD,

:
OBN, OXK, MHD, PAL, STM, TAC, WIS, ZEP) are shown with black dots.

(Hersbach et al., 2018) to drive the FLEXPART simulations. Specifically, we use 0.25 ◦× 0.25 ◦ resolution wind fields for the

European domain and 0.5 ◦× 0.5 ◦ wind fields for the global domain, both with 137 vertical levels. Figure 2 shows the simulated

annual averaged emission sensitivities for the years (a) 2005 and (b) 2018. In 2018, Europe - particularly northwestern Europe

- shows significantly higher emission sensitivities compared to 2005. This increase is largely due to the expansion of the120

observation network in the UK. As a result, northwestern Europe, including major emitters such as Germany, France, and

the UK, became well-monitored, suggesting that substantial improvements in emission estimates through the inversion can be

expected over time.

2.2.1 Baseline

Using the emission sensitivities simulated by FLEXPART, we can link the mole fractions at the receptor to emissions occurring125

within 50 days of the backward tracking. However, emissions preceding the 50-day period can not directly be captured with

these backward simulations. Nevertheless, they still have to be considered when comparing the modeled mole fraction values

with the observations. Therefore, all these emission contributions are aggregated in a so-called baseline which must be added

to the modeled emission contributions. We apply a Global-Distribution-Based (GDB) method (Vojta et al., 2022) to calculate

the baseline, directly from a 3D global mole fraction field. For this, the endpoints of the FLEXPART back-trajectories, are used130

to determine an observation’s sensitivity to the mole fractions at the end of the 50-day simulation period. These sensitivities

are simply obtained by dividing the number of trajectories ending in a specific grid cell by the total number of trajectories

calculated, as loss processes are omitted. We then multiply the sensitivities with globally 3D gridded SF6 mole fractions at the

time of particle termination and integrate the product over the entire globe. As for the 3D SF6 field, we employed the data set

5



Figure 2. Simulated emission sensitivities for the years 2005 and 2018 in Europe. The displayed values represent the annual sum of

FLEXPART calculations. As a result, sites with frequent online observations carry more weight than those relying on flask measurements or

observations from mobile platforms.
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created by Vojta et al. (2024). Finally, the contributions from emissions occurring during the 50-day FLEXPART simulation135

period but outside of the European domain are added to the baseline. For a more detailed description of the GDB method and

the simulation of the mole fraction fields please see Vojta et al. (2022) and Vojta et al. (2024).

2.3 A priori emissions

We create seven different European SF6 a priori emission fields with 0.25×0.25◦ resolution for our inversion domain and for

the period 2005 to 2021 that are based on three different bottom-up sources: GAINS, the annual national emission reports to140

the UNFCCC, and the bottom-up estimates from EDGAR.

– GAINS: We created two a priori emission fields based on the GAINS inventory
:::::::::::::::::::::::::::::::
(Purohit and Höglund-Isaksson, 2017)

, which is detailed in Vojta et al. (2024).
:::
The

::::::::
inventory

::
is

:::::::
available

::
at
::::
0.5◦

:::::::::
resolution

:::::::
globally

:::
and

::
at
::::
0.1◦

:::::::::
resolution

:::
for

:
a
::::::::
European

::::::
subset

:::::::
covering

:::
the

::::::
EU-27,

:::::::
Iceland,

::::::::
Norway,

::::::::::
Switzerland,

::::
and

:::
the

::::
UK. For the first field , we started with a

global inventory at a resolution of
::::
(GS),

:::
we

:::::::::
re-gridded

:::
the

::::::
global 0.5◦ and regridded these data to a finer resolution of145

::::::::
inventory

::
to 0.25◦ for

::::
over the European domain (GS), using

::
by

:
interpolation. For the second field

:::::::
(GS-HR), we used

a high-resolution emission dataset available at 0.1×0.1◦ for the EU-27, Iceland, Norway, Switzerland, and the UK. We

also regridded this dataset
::
the

:::::::::::::::
higher-resolution

::::::::
European

:::::::
dataset,

:::::::::
aggregated

::
it to 0.25◦,

:
and combined it with the first

dataset(GS-HR)
:::::
global

:::::::
dataset.

:::::
While

::::
both

:::::
fields

::::
thus

:::::
share

:::
the

:::::
same

:::::::::
resolution

::::::
(0.25◦

::::
over

:::::::
Europe),

::::
the

::::::::::
information

::::::
content

::::::
differs:

::::
GS

::
is

::::::::::
interpolated

::::
from

:::::::
coarser

::::
data,

:::::::
whereas

:::::::
GS-HR

::::::
retains

:::::
detail

:::::
from

:::
the

:::::::
original

:::::::::::::
high-resolution150

::::::::
European

::::::::
inventory.

– Reports to the UNFCCC: We utilize the total national SF6 emissions reported annually to the UNFCCC (United Nations

Framework Convention on Climate Change, 2023) and distribute these emissions within each country’s borders on a

0.25◦×0.25◦ grid, based on two different proxy datasets: (1) gridded population density (CIESIN, 2018) (UP), or (2)

nightlight remote sensing data (Elvidge et al., 2021) (UN). 3155

– EDGAR: We use the newly updated, 0.1◦×0.1◦-gridded annual SF6 emission inventory EDGARv8.0 (EDGAR, 2023;

Crippa et al., 2023) and regrid it to 0.25◦×0.25◦ resolution (E8). In addition, we also utilize the national annual total

emissions provided by the previous version EDGARv7.0 (EDGAR, 2022; Crippa et al., 2021), and distribute those totals

according to (1) gridded population density (CIESIN, 2018) (E7P) or (2) night light remote sensing (Elvidge et al., 2021)

(E7N).160

To account for contributions from emissions occurring during the 50-day FLEXPART simulation period but outside the

European domain, we utilize the global a priori emission fields generated by Vojta et al. (2024). These fields were calculated

using the same methodology as our European a priori fields but at a coarser resolution of 1.0×1.0◦. Note that this approach

results in a single global coarse GAINS inventory.

3Emissions of non-Annex I countries, that fall within our inversion domain but are not further investigated, were estimated proportionally to their national

electricity generation as described in Vojta et al. (2024).
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Figure 3. Seven a priori emission fields, shown as an average over the study period 2005-2021: (a) GS (GAINS), (b) GS_HR (GAINS high

resolution), (c) UP (UNFCCC reports - population density distribution), (d) UN (UNFCCC reports - night light remote sensing distribution),

(e) E8 (EDGARv8), (f) E7P (EDGARv7 - population density distribution), and (g) E7N (EDGARv7 - night light remote sensing distribution).

The table in the bottom right corner provides an overview of the ensemble.

Figure 3 shows the seven generated European a priori emission fields averaged across the study period from 2005 to 2021.165

Overall, these emission fields display a relatively similar spatial pattern, especially when compared to the significantly larger

differences observed in the global patterns of the bottom-up SF6 inventories (see Vojta et al., 2024). All European inventories

show high SF6 emissions in central Europe, with Germany being the largest emitter. Notably, a priori emissions are particularly

high in western Germany, especially in the area around Cologne. The EDGAR and UNFCCC inventories also highlight

substantial emissions in Berlin, which are less prominent in the GAINS inventories. In France, the UNFCCC and EDGAR170

inventories concentrate emissions in the Paris region, whereas GAINS indicates more dispersed emissions. For the UK, all

inventories show the highest emissions in London, with elevated values also occurring in other large cities such as Liverpool,

Manchester, and Birmingham. In Italy, the EDGAR inventories estimate higher a priori emissions compared to those from

GAINS and UNFCCC. Substantial emissions occur also in the Moscow region, particularly for the EDGAR- and GAINS-

based inventories. A detailed discussion on the differences among the a priori inventories and their influence on inversion175

results are provided in Appendix B.

2.4 Inversion method

We use the Bayesian inversion framework FLEXINVERT+ to find an optimized estimate for European SF6 emissions based

on a priori emissions (Sect. 2.3), atmospheric observations (Sect. 2.1), and atmospheric transport (Sect. 2.2). The framework

minimizes the cost function J:180
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J(x) =
1

2
(x− xp)

TB−1(x− xp)+
1

2
(Hx−y)TR−1(Hx−y), (1)

where x and xp represent the state vector and its a priori values, respectively; y represents the mole fraction enhancements

with respect to the baseline, H represents the atmospheric transport operator, B is the a priori error covariance matrix, and R is

the observation error covariance matrix. From a Bayesian point of view, J represents the negative logarithm of the a posteriori

probability distribution, derived using Bayes’ theorem (e.g., Tarantola, 2005). The minimum of the cost function, therefore,185

defines the maximum of the a posteriori probability distribution, and provides the most probable emission estimate (a posteriori

emissions). The analytic solution to minimize J, reads:

x̂= xp +G(y−Hxp) (2)

with the defined gain matrix G:

G=BHT (HBHT +R)−1 (3)190

The a posteriori emission error covariance matrix, B̂, can also be derived analytically using:

B̂=B−GHB (4)

:::
For

::::
SF6,

::::::
positive

::::::
fluxes

::
are

::::::::
expected

::::
over

::::
land,

:::
but

:::
the

::::::::
inversion

:::
may

::::
still

::::
yield

:::::::
negative

:
a
:::::::::
posteriori

:::::
values

::
in

:::::
some

:::
grid

:::::
cells.

::
To

::::::
correct

::::
this,

:::
we

:::::
apply

:::
the

::::::::
truncated

::::::::
Gaussian

:::::::
method

::
of

::::::::::::::
(Thacker, 2007),

::::::
which

:::::::
enforces

::::::::::::
non-negativity

:::
as

::
an

:::::::::
inequality

::::::::
constraint.

::::
The

:::::::
adjusted

:::::
fluxes

:::
x̂′

:::
are

::::::::
calculated

::
as

:
195

x̂′ = x̂+ B̂PT
(
PB̂P

T
)−1

(c−Px̂) ,
:::::::::::::::::::::::::::::::

(5)

:::::
where

::̂
x

::
is

::
the

:::::::
original

::
a

::::::::
posteriori

::::::::
estimate,

::
B̂

:::
the

:
a
::::::::
posteriori

:::::
error

:::::::::
covariance

::::::
matrix,

::
P

:::
the

:::::::
operator

::::::::::
identifying

:::::::::
violations,

:::
and

:
c
:::
the

:::::::::
constraint

::::::
vector.

A detailed description of the inversion framework FLEXINVERT+ is provided by Thompson and Stohl (2014), and its

application to SF6 in Vojta et al. (2024).
::::::::
Although

:::
we

::::
also

:::
use

::::::::::
observations

:::::
from

::::::
outside

:::
the

:::::::::
European

::::::
domain

::::
and

:::::::
perform200

::::::::::
FLEXPART

::::::::::
simulations

:::::::
globally

:::::
(with

:
a
:::::::::

European
:::::
nest),

:::
the

:::::::::
inversions

:::
are

::::::::
regional;

::::
that

::
is,

:::::::::
emissions

:::
are

::::::::
optimized

:::::
only

:::::
within

:::::::
Europe. Following the inversion process, national emission totals are calculated by aggregating the a posteriori emissions

within the respective grid cells of the corresponding country, employing a national identifier grid (CIESIN, 2018).

2.5 Inversion sensitivity studies

A key challenge in inverse modeling is accurately determining the uncertainties of the optimized emissions. Traditionally,205

the uncertainties in inversion-derived emissions are based on Gaussian error statistics within a Bayesian framework, often

relying on a single inversion setup. However, many aspects of the inversion process are based on assumptions and expert
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judgments. One example is the error covariance matrix used for the a priori emissions. Both the magnitude of this uncertainty

as well as its spatiotemporal correlation are usually not available from the bottom-up inventories, and the assumption of

a Gaussian distribution is not always well justified. Several studies (e.g., Bergamaschi et al., 2015; Brunner et al., 2017;210

Chevallier et al., 2019; Locatelli et al., 2013) have demonstrated that the range of emissions derived from different inversion

configurations can be significantly larger than the uncertainties calculated by individual inversions. Therefore, in this study, we

examine the sensitivity of the inversion results to various inversion settings. Initially, we define 58 distinct inversion settings by

systematically varying key parameters, starting from a reference inversion. These settings
::
For

:::
the

::::::::
reference

::::::::
inversion,

:::::::::
parameter

::::::
choices

:::::
were

::::::::
informed

::
by

::
a

:::
set

::
of

::::::::::
preliminary

::::
runs,

:::
in

:::::
which

:::
we

::::::::
evaluated

::::::::::
chi-squared

::::::::
statistics,

::::
and

:::
by

:::::
values

::::::::
reported

::
in215

:::::::
previous

:::::::
studies.

:::
The

:::::::
settings

:::
of

:::
the

:::::::::
sensitivity

::::
tests

:
are applied to each of the 17 years in the study period (2005–2021),

resulting in a total of 986 inversions (58 × 17). Our sensitivity tests include:

– a priori emissions: We use 7 different a priori emissions
:::::::
emission

:
fields based on the inventories of GAINS, the

UNFCCC reports and EDGAR (see Sect.2.3).

– a priori emission uncertainties: In each grid cell, the a priori emission uncertainty is calculated as a fraction of its220

respective emission value. We test 4 different settings with fractions of 30%, 50%, 70%, and 100%. Furthermore,

different minimum absolute values for the emission uncertainty are tested, controlling the freedom of the algorithm

to adjust emissions in grid cells with small a priori values. The seven minimum values tested are 5× 10−14, 1× 10−13,

5× 10−13, 1× 10−12, 5× 10−12, 1× 10−11, and 5× 10−11 kg m−2 h−1.

– spatial a priori emission uncertainty correlations: FLEXINVERT+ uses an exponential decay function to account for225

spatial emission uncertainty correlations. We test different spatial scale lengths of 50, 100, 250, 500, 1000 km, as well as

a setup with no spatial correlation.

– observation datasets: We test all of the eight observation subsets described in Sect.2.1.

– observation uncertainties: FLEXINVERT+ assumes a diagonal observation error covariance ,
::::::
matrix4 and we test

different configurations of this uncertainty. The observation uncertainty includes the transport model error projected into230

the observation space, which is assumed to be the dominant part. Initially, we test constant values of 0.02, 0.04, 0.06,

0.08, and 0.1 ppt. However, it is likely that the model error varies both spatially and temporally. To account for the spatial

dependencies, uncertainty estimates are often based on model residuals (the difference between observed and simulated

mole fractions) at the measurement stations (e.g. Stohl et al., 2009; Henne et al., 2016). Therefore, we also test two

different approaches: (i) using the RMSE between prior modeled and observed values, averaged per station, to determine235

the observation error, and (ii) estimating the model error from the standard deviation of the a posteriori error distribution

4
::::::
Omitting

::
the

:::::::::
off-diagonal

::::::
elements

::
of

:::
the

::::::::
observation

:::
error

::::::::
covariance

:::::
matrix

::::
could

:::::::
potentially

::::
lead

::
to

::
an

:::::::::::
underestimation

::
of

::
the

::::
total

::::::::
observation

:::::::
uncertainty,

:::::::
resulting

:
in
::

an
:::::::::::

over-weighting
::
of

::::::::
observations.

::::
This

::::
could

:::::::
especially

::
be

::::::
relevant

::
for

::::::::::
high-frequency

:::::::::
observations,

:::::
driving

:::::
results

:::::
further

::::
away

:::
from

:::
the

:
a
::::
priori

:::::::
emissions.

:::::::
However,

::
we

:::::
reduce

:::
this

:::
risk

::
by

:::::::
averaging

:::
the

::::::::
observations

:::
and

::
by

:::::::
verifying

:::::
through

::::::::
chi-squared

::::::
statistics

:::
that

:::
the

::::::
assumed

::::::::
uncertainties

:::::
remain

:::::::
consistent

:::
with

::
the

::::
data.
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through a series of initial inversion runs. In idealized experiments, it has been demonstrated that incorporating temporally

varying, flow-dependent uncertainty can enhance the accuracy of emission estimates (Steiner et al., 2024). This transport

model ensemble approach, however, requires a lot of resources and lies beyond the scope of our study.

– baseline optimization: FLEXINVERT+ includes an option for baseline optimization, where spatially aggregated contributions240

are optimized on a coarse grid. Firstly, we test different resolutions for the coarse grid, where the global field is divided

into 8, 4, and 2 latitude bands, with northern edges at [-60◦, -30◦, -15◦, 0◦, 15◦, 30◦, 60◦, 90◦], [-30◦, 0◦, 30◦, 90◦],

[0◦, 90◦], respectively. We also run inversions where we optimize the global field at once
:::
one

::::::
scaling

:::::
factor

::::
for

:::
the

:::::
whole

:::::
global

:::::
field. Additionally, we tried different temporal baseline optimization intervals of 15, 30, 45 and 60 days.

Furthermore, we test various baseline uncertainty values set to 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.01, 0.1,245

and 1 ppt, and run an inversion without any baseline optimization.

– emission grid: We use emission grids with varying cell sizes, determined by aggregating cells with low emission

contributions based on emission sensitivities and a priori emissions (for further details, see Thompson and Stohl, 2014).

We test grid configurations with 588, 744, 1,992, 2,781, 4,248, 5,370, and 7,229 cells, each configuration kept constant

over time. Additionally, we implement three dynamic setups where the grid configuration changes each year, with the250

number of cells ranging from (i) 2,781 to 5,916, (ii) 3,645 to 6,599, and (iii) 4,151 to 7,229.

The set-up of the reference inversion and an overview of all tested inversion configurations are listed in Tab. 1.

2.6 Inversion uncertainties

While the sensitivity studies give
::::::
provide

:
insight into how different parameter settings influence the inversion results,

:::
the

overall uncertainties of the inversion are determined by all these parameters simultaneously. Therefore, in order to quantify the255

uncertainties of the inversion results
::::::::
accurately

::::::::
quantify

::
the

::::::::
inversion

:::::::::::
uncertainties,

:
one must apply random variations of these

parameters. However, testing all possible combinations is infeasible due to the vast number of permutations. To address this, we

employ a Monte Carlo method (e.g. Metropolis et al., 1953) to randomly select and combine inversion parameters, generating

an additional
:::::::::
59-member

::::::::
ensemble

:
(1,003 inversions

:
). Since the uncertainty distribution of the input parameters is not known,

parameters are sampled either continuously from a uniform distribution within a defined range
::::::
normal

:::::::::
distribution

:
or discretely260

from a set of predetermined values.
:::
The

::::::
Monte

:::::
Carlo

::::::::
sampling

::
of

:::
the

:::::::::
parameter

:::::
space

::
is

:::::::::
performed

:::::::::::
independently

:::
for

:::::
each

::::::::
parameter.

::::
The

::::
final

::::::::
selection

::
of

:::::::::
parameter

::::::
ranges

:::
for

::::::::
ensemble

:::::::::::
construction

::
is

:::::
based

:::
on

:::
the

::::::
results

::
of

:::
our

:::::::::
sensitivity

:::::
tests.

A detailed overview of the ensemble configuration is provided in Table ??. Please note that for this approach, we excluded

parameters to which the inversion showed negligible sensitivity, as they were unlikely to significantly impact the uncertainty.

Based on the sensitivity tests, we further refined our parameter settings by narrowing the ranges for the a priori emission265

uncertainty, the spatial a priori uncertainty correlation length, and observation uncertainty (see Table
::
S3,

::::
and

:::
the

:::::::
choices

:::
are

::::::::
discussed

::
in

::::::::
Appendix

::
J.

:::
To

:::::
assess

:::
the

:::::::::::::::
representativeness

::
of

::::
our

::::::::
ensemble

:::
and

:::
the

:::::::::
robustness

::
of

::::
our

:::::::
findings,

:::
we

::::::::::
constructed

::::
three

:::::::::
additional

::::::::::
independent

::::::
Monte

:::::
Carlo

::::::::
ensembles

:::::
using

:::
the

:::::
same

:::::::::
parameter

::::::
ranges:

::
(i)

:::::::
another

::::::::::
59-member

::::::::
ensemble

::::
with

:::::::
different

:::::::::
parameters

::::::::
compared

::
to

:::
the

:::::
initial

::::::::
ensemble

:::::
(E59,

:::
see

::::
Tab. ??). All inversions employed an emission grid of 558 cells,
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Table 1. Reference inversion set-up and overview of all inversion configurations used in the sensitivity tests

Inversion aspect Reference set-up Tested configuration Number of testsa

A priori emissions inventory GS GS, GS-HR, UP, UN, E8, E7P, E7N 6 (+1)

A priori emissions uncertainty [%] 50 30, 50, 70, 100 3 (+1)

Minimal a priori emission value [kg m−2 h−1] 1× 10−13 5× 10−14, 1× 10−13, 5× 10−13,

1× 10−12, 5× 10−12, 1× 10−11,

5× 10−11

6 (+1)

A priori uncertainty decorrelation distance [km] 250 no correlation, 50, 100, 250, 500, 1000 5 (+1)

Observation dataset Global Global

Global: excluding mountain stations,

Global: night/afternoon selection,

Global: high-frequency surface stations,

Europe

Europe: excluding mountain stations,

Europe: night/afternoon selection,

Europe: high-frequency surface stations

7 (+1)

Observation uncertainty [ppt]
0.6

:::
0.06

0.02, 0.04, 0.06, 0.08, 0.1,

standard deviation (a posteriori distribution),

RMSE (a priori distribution)

6 (+1)

Baseline optimization: grid resolutions [#]

Baseline optimization: temporal window [days]

Baseline optimization: uncertainty [ppt]

4

30

0.1

1, 2, 4, 8

15, 30, 45, 60

no optimization, 0.0001, 0.0003, 0.0005,

0.0007, 0.0009, 0.001, 0.01, 0.1, 1

3 (+1)

3 (+1)

9 (+1)

number of gridcells [#] 3,645−6,599 588; 744; 1,992; 2,781; 4,248; 5,370; 7,229;

2,781−5,916; 3,645−6,599; 4,151−7,229

9 (+1)

a (+1) represents the reference inversion setup, which adds one test to the total number for each parameter. However, as the reference inversion is only

conducted once, it is only counted once in the overall number of tests.

and the baseline was optimized in 8 latitudinal bands, using a time window of
:::
S4),

:::
(ii)

:::
an

::::::::
ensemble

::::
with

:::
half

:::
the

:::::::
original

::::
size270

:
(30 days and a baseline uncertainty of 0.1 ppt

::::::::
members,

::::
E30,

:::
see

::::::::
Tab. S5),

:::
and

::::
(iii)

::
an

::::::::
ensemble

::::
with

::::::
double

:::
the

:::::::
original

::::
size

::::
(118

::::::::
members,

:::::
E118,

:::
see

::::::::
Tab. S6).

::::
The

:::::
results

::
of
:::::
these

:::::::::
ensembles

::::
were

::::
then

::::::::
evaluated

::::::
against

:::::
those

::
of

:::
the

:::::::
original

::::::::
ensemble.

3 Results and discussion

3.1 Inversion increments, error reduction, and a posteriori emission distribution

Figure 4 presents (a) the inversion increments (a posteriori minus a priori), (b) the relative error reduction, calculated for each275

grid cell based on the a priori and a posteriori emission uncertainties as 1− a posteriori uncertainty
a priori uncertainty , (c) the a posteriori emission

distribution, and (d) the a posteriori emissions uncertainty (as calculated using Eq. 4). The results are shown for the reference

inversion settings, averaged over the years 2005–2021. Strongly negative increments (Fig. 4a) are found in northern Germany,

particularly around Cologne, where a priori emissions are very high (see also Fig. 3). The inversion further reveals large

positive increments in southwestern Germany. Other positive increments are evident in France, Italy, the UK, and Russia,280

whereas negative increments are observed in Switzerland, parts of Scotland, and Israel.
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Consistent with the distribution of emission sensitivities (Fig. 2), the largest error reductions (Fig. 4b) are concentrated in

central Europe, particularly in well-monitored countries such as the UK, Germany, and Switzerland. Additional areas with

notable error reduction include northwestern France and northernmost Italy, Moscow and Israel. Notice that the elevated error

reductions in Moscow and Israel are likely a consequence of the relatively high a priori uncertainties in these regions, which285

give the algorithm more flexibility to adjust emissions. However, since these areas are poorly covered by the observation

network, the a posteriori emissions may still be considered unreliable despite the notable error reduction.

Figure 4c reveals particularly high emissions in southwestern Germany, aligning with the findings of Simmonds et al. (2018),

who also reported an emission maximum in this region. We also obtain elevated emissions in southern UK, northern and

southeastern France, and northern Italy. A posteriori emissions are also high in Moscow and Israel, which, however, show290

large a posteriori uncertainties, despite the notable uncertainty reductions there (Fig. 4d). As discussed in the Appendix B,

the Russian a posteriori emissions are highly sensitive to the choice of a priori emissions, leading to unstable results. In the

following sections, we therefore focus on the high-emitting European countries with better observational coverage: the UK,

Germany, France, and Italy.

:::::::
Table S7

::::
and

::::::
Fig. S3

::::::::::
demonstrate

:::
the

::::::::
statistical

::::::::::::
improvements

::
at
:::
all

:::::::::
continuous

::::::
surface

::::::::
stations,

::::
with

:::
the

::::
sites

:::::
TAC,

:::::
HFD,295

:::::
RGL,

:::
and

::::
BSD

::::::::
showing

::
the

::::::
largest

:::::::::::::
improvements,

::::::
thereby

::::::::::
highlighting

:::
the

::::::::::
importance

::
of

:::
the

:::
UK

:::::::
network

:::::::::
expansion.

:

3.2 Results of the sensitivity tests

The results of all performed sensitivity tests are detailed in the Appendix, organized according to various aspects of the

inversion process to assess the sensitivity of the results to each specific setting. Generally, the sensitivities to the different tested

settings vary between different years and regions, however, there is one common feature: The better a region is monitored by300

the observation network, the smaller is the sensitivity to the inversion setting. This is especially apparent in the well-monitored

countries like Germany and the UK, where the inversion results are extremely stable across all tested cases (Fig. I1).

In our spectrum of sensitivity tests, inversion results were most sensitive to changes in the spatial correlation length of the

a priori emission uncertainty (Fig. D1) and to changes in the baseline uncertainty (Fig. G4). The results were also sensitive to

the magnitude of the a priori emission uncertainties (Fig. C1/ C3) and observation errors (Fig. F1), with greater sensitivity in305

poorly monitored areas and minimal sensitivity in well-monitored regions. Additionally, the inversion results were moderately

sensitive to the choice of the observation dataset (Fig. E1). Furthermore, our tests suggest that optimizing the baseline across

two or more latitudinal bands can lead to substantial differences compared to optimizing the global field with a single scalar

(Fig. G1). In contrast, changing the temporal interval for baseline optimization, ranging between 15 and 60 days, had almost no

impact on the results (Fig. G3). Also, changing the number of optimized emission grid cells had minimal impact on the results310

when considering national or European emission totals (Fig. H2). This finding is particularly noteworthy, as computational

time is heavily influenced by the number of inversion grid cells.
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Figure 4. (a) Emission increments from the inversion (a posteriori - a priori), (b) relative error reduction, (c) a posteriori emission distribution,

and (d) a posteriori uncertainty obtained for our reference inversion and averaged over all years of the study period 2005-2021.

3.3 A posteriori emissions
:::::::
emission

:
ensemble

Building on the sensitivity tests, we employed a Monte Carlo ensemble presented in Tab. ??
::
S3

:
and calculated the a posteriori

emissions for all different settings. The ensemble mean (Fig. 5a) closely resembles the a posteriori emissions of the reference315

inversion (Fig. 5b), with the largest differences observed in Moscow and Israel, and generally more pronounced discrepancies
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Figure 5. A posteriori emissions: (a) ensemble mean, calculated as the average of all a posteriori emissions from the Monte Carlo ensemble

over the study period (2005–2021), and (b) difference between the ensemble mean a posteriori emissions and the a posteriori emissions

obtained from the reference inversion.

in larger cities. Note that the ensemble spread (Fig.??
:::
S2) results in significantly larger uncertainties than the analytically

derived uncertainties from the reference inversion (Fig. 4d), which likely fail to capture the full extent of the actual uncertainty.

3.4 Regional emissions
::::::::
emission time series

For the regional emission time series, the inversion results of all members of the Monte Carlo ensemble are shown in Fig. ??320

and
:::
S4

:::
and

::::
final

::::::
results

:::
are

::::::::
presented

:
in Tab. ??. Our final results

:::
S8,

:::::
which

:
are defined as ensemble averages across the full

set of inversions, with a 2-σ
::::::::::
2.5th–97.5th

::::::::
percentile

:
uncertainty range for each year.

::::::::
Doubling

::
or

:::::::
halving

:::
the

::::::::
ensemble

::::
size

::::::
yielded

:::::::::
consistent

:::::::
posterior

:::::::
results,

:::::::::
suggesting

:::
that

::::
the

::::::::
ensemble

::
is

:::::::::
sufficiently

:::::
large

::
to

::::::::
represent

:::
the

:::::::::
prescribed

::::::::::
uncertainty

::::::::::
distributions

::::
(see

:::
Fig.

::::
S5).

:

Figure 6 shows the a posteriori SF6 emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy,325

and (e) the EU-27. In the UK, SF6 emissions declined from 41 (± 13
::
38

::::::
(31-46) t yr−1 in 2005 to 20 (±6

::
19

::::::
(15-26) t yr−1

by 2021 (Fig. 6a: black solid line), with a substantial drop from 65 (±13
::
68

:::::::
(47-77) t yr−1 in 2008 to 20 (±6

::
19

::::::
(15-26) t

yr−1 in 2018, corresponding to an average annual decrease of -3
:::
-3.2

:
t yr−1. The substantial decrease in emissions observed

after 2008 is likely a result of the 2006 EU F-gas regulations, with most bans coming into effect in 2008. Although inversion

results exceed the reported values (dashed red line) by an average of 50
::
69% between 2005 and 2017, they align closely330

from 2018 onward. While our results are slightly higher than those
::
the

:::::::::
estimates of Ganesan et al. (2014) in 2012, they

agree within the uncertainties with the estimates of Brunner et al. (2017) in 2011. Our results
:::
and

::::::::::::::::::
Brunner et al. (2017)

::
in
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Figure 6. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. The solid black lines

represent the average a posteriori emissions across all performed inversions, and a 2-σ uncertainty
:::::
shaded

::::
areas

::::::
indicate

:::
the

::::::::::
2.5th–97.5th

:::::::
percentile range for each yearis indicated by gray shading. The red dashed line indicates the UNFCCC reported emissions, while results from

previous studies are shown with colored markers. The vertical grey
:::

gray lines indicate the times when additional observational data from the

expansion of the UK network became available. 16



:::::
2011,

::::
they are in excellent agreement with the results of Manning et al. (2022) for the whole study period, particularly from

2012 onward, when uncertainties also become significantly smaller. We find equally good agreements when comparing with

the a posteriori emissions for northwestern Europe from Manning et al. (2022) (Fig. ??
::
S6). These good agreements are a335

particularly noteworthy result, as the inversion system used by Manning et al. (2022) differs significantly from ours. Their

approach employs the InTEM inversion technique (Manning et al., 2011, 2021), with a priori emissions uniformly distributed

across the country, large a priori emission uncertainties, and inversion intervals of 1 and 3 months (Fig. 6, InTEM 1mth, InTEM

3mth).

In Germany, our results show a decline in emissions from 166 (±41
:::
182

::::::::
(155-251) t yr−1 in 2005 to 91 (±28

::
86

:::::::
(66-109)340

t yr−1 in 2013. Afterwards, emissions increased significantly, peaking at 205 (±42) t yr−1
:::
199

:::::::::
(172-241) in 2017. This was

followed by a sharp drop to 105 (±15
:::
109

:::::::
(97-125) t yr−1 in 2018, after which emissions stabilized. Over the entire study

period, emissions decreased from 166 (±41
:::
182

::::::::
(155-251) t yr−1 in 2005 to 95 (±11

::
97

:::::::
(88-104) t yr−1 in 2021. Overall, the

German a posteriori emissions align well with the values reported to the UNFCCC, however, the inversion results reveal distinct

emission trends during specific time periods that are not reflected in the reported data. Our results for Germany agree well with345

three of the four inversions performed in Brunner et al. (2017), but give much lower emissions than those estimated by Ganesan

et al. (2014). However, their high estimates were likely a result of the use of excessive German a priori emissions (∼650 t yr−1),

which were based on the EDGAR v4.2 inventory. Although their German a posteriori emissions were substantially lower than

their a priori values, the inversion likely could not fully correct the huge bias present in this version of the EDGAR inventory.

As mentioned in Sect. 3.1, the inversion reveals notable regional differences between southern and northern Germany, with350

significant negative increments in the North and substantial positive increments in the South, especially in the Southwest

(Fig. 7a). To further investigate these regional variations, we examine the annual emission trends separately for the North

(Fig. 7b) and the South (Fig.
:
7c), with the division between the two regions at 51◦N. In the north, SF6 emissions decreased

substantially, from 76
:::
112 (±27

::::::
79-152) t yr−1 in 2005 to 25

::
27 (±5

:::::
22-33) t yr−1 by 2021.

::::
Note

:::
that

::::
this

:::::::
decrease

::
in

:::::::::
emissions

:
is
::::::::::
comparable

::
to

:::
the

::::::::
reduction

::::::::
observed

::
in

:::
the

::::
UK. In contrast, the southern emission trend follows a similar pattern to that of355

Germany as a whole, including a peak of 180
:::
166 (±49

:::::::
125-205) t yr−1 in 2017, followed by a sharp decline to 93 (±14

::::::
97-110)

t yr−1 in 2018.

In France, a posteriori emissions declined from 88 (±37
::
78

:::::::
(51-117) t yr−1 in 2005 to 51 (±28

::
35

::::::
(19-54) t yr−1 in 2021, with

an average annual decrease of -1
::::
-1.2 t yr−1. This decline, however, remains within the uncertainty range, which is particularly

large at the beginning of the study period and decreases after 2014. Our results exceed the reported values throughout the whole360

study period by 73
::
88% on average, while they are in good agreement with the

:::::::::::::::::
Ganesan et al. (2014),

::::
and

:::
the

:::::
lower estimates

of Brunner et al. (2017)and Ganesan et al. (2014).

For Italy, our inversion results exhibit large uncertainties in certain years, likely due to limited observational constraint in the

central and southern regions. Over the study period, annual a posteriori emissions do not show a clear trend, varying between

31 and 67
::
25

::::
and

::
48

:
t yr−1; however, they exceed the values reported to the UNFCCC by 88

:::
107% on average. Our results are365

within the range of estimates calculated in Brunner et al. (2017), which show a comparable level of uncertainty.

17



Figure 7. Inversion increments from the reference inversion averaged over the period 2005-2021, with the dashed line indicating our

separation of northern and southern Germany (a). Annual emission time series for (b) northern Germany (>51◦N) and (c) southern Germany

(<51◦N). The solid black lines represent the average a posteriori emissions across all performed inversions, and a 2-σ uncertainty
:::::
shaded

::::
areas

::::::
indicate

::
the

::::::::::
2.5th–97.5th

::::::::
percentile range for each yearis indicated by colored shading.

For the aggregated emissions of the EU-27 countries, our results show a decrease in a posteriori emissions from

484 (±213
:::
403

::::::::
(335-501) t yr−1 in 2005 to 255 (±58

:::
225

::::::::
(191-260) t yr−1 in 2021, with a substantial emission drop from

469 (±144
:::
396

:::::::
(311-490) t yr−1 in 2018 to 291 (±62

::::
2017

::
to

::::
256

::::::::
(216-303) t yr−1 in 2017.

:::::
2018. While until 2017 our results

are on average 40
::
28% higher than the reported values, they align well with the reports from 2018 onward. Our results are370

very similar to the recent estimates of the global SF6 inversion study of Vojta et al. (2024) .
::::
after

:::::
2012. This is not surprising,

as we use the same dataset, atmospheric transport model, and inversion framework. In specific years
::::::
Before

::::
2012, our values

slightly deviate
:::
are

::::::
slightly

::::::
higher

:
from those in Vojta et al. (2024), which we attribute to the improved resolution of our

study
:
,
:::
the

:::::::
baseline

:::::::::::
optimization

::
in
::

8
:::::::::
latitudinal

::::::
bands,

:
and the definition of our a posteriori emissions as averages over a

large inversion ensemble. Our uncertainty intervals, defined as the 2-σ
:::::::::::
2.5th–97.5th

::::::::
percentile

:
uncertainty range across the375

performed inversions, are much wider than those reported in Vojta et al. (2024). Their uncertainty intervals, in contrast, were

based on the minimum and maximum uncertainty limits across inversion results using only six different a priori emission

inventories.

Note that the temporal pattern of EU-27 a posteriori emissions closely resembles the German pattern after 2012, as Germany

is the largest European SF6 emitter. The high emissions in Southern Germany (Fig. 7c), in particular, seem to have a large380

influence on the total EU-27 emission variations. We interpret the decline in SF6 emissions as a consequence of the EU F-gas

regulations introduced in 2006 (EU, 2006) and 2014 (EU, 2014). As suggested by Vojta et al. (2024), the sharp drop in EU-27

emissions from 2017 to 2018 might indicate an immediate effect of the 2014 regulation, which mandated that new electrical

18



switchgear be put into service starting in 2017 and banned the use of SF6 in recycling magnesium die-casting alloys from 2018.

It seems that strong actions were taken particularly in south Germany when the 2014 regulation came into effect.385

The vertical solid
:::::
dashed

:
gray lines in Fig

:
. 6 indicate the times when additional observational data from the expansion of

the UK network became available (RGL: March 2012, TAC July 2012, HFD: January 2014, BSD: February 2014). Consistent

with our sensitivity studies, we observe that the additional observations noticeably reduce emission uncertainties in the UK.

Similarly, this effect is observed in Germany, particularly in the north (see Fig. 7). However, the large southern emissions in

2016 and 2017 led to elevated uncertainties, primarily due to the use of different observational datasets (see Sect.
::::::::
Appendix E),390

making them an exception to this trend. Our tests cover a broad range of key inversion settings; however, additional factors

such as alternative atmospheric transport models, wind field data, or inversion frameworks could lead to further deviations from

our results. Nevertheless, the excellent agreement of the emissions in the UK and northwestern Europe (Fig.
:
6a and Fig. ??

::
S6)

with those reported by Manning et al. (2022), particularly after the network expansion, suggests
:::::
might

:::::::
suggest that, with a

dense monitoring network, inversion results remain stable even when these factors change.395

4 Conclusions

In this study, we estimated European SF6 emissions from 2005 to 2021, focusing on the largest emitters - the United Kingdom,

Germany, France, Italy - and the aggregated EU-27 emissions. We conducted an extensive ensemble of 987 inversions to test

the sensitivity of the results to various settings within the inversion framework. Building on this, we performed an additional

1003 inversions, using Monte Carlo methods to randomly select and combine inversion parameters, allowing us to quantify the400

uncertainties in the inversion results. The key findings of our study are as follows:

– We observe a decline in SF6 emissions across most of the studied countries, as well as in the aggregated EU-27 emissions,

over the period from 2005 to 2021. We interpret these declining emissions as a direct consequence of the EU F-gas

regulations in 2006 and 2014. While our results are consistent with previous inversion studies, they indicate clearly that

European countries generally underreport their SF6 emissions to the UNFCCC.405

– In the UK, SF6 emissions decreased from 41 (±13
::
38

::::::
(31-46) t yr−1 in 2005 to 20 (±6

::
19

::::::
(15-26) t yr−1 by 2021, with

a considerable decrease from 65 (±13
::
68

::::::
(47-77) t yr−1 in 2008 to 20 (±6

::
19

::::::
(15-26) t yr−1 in 2018, corresponding to

an average annual decrease of -3
:::
-3.2

:
t yr−1. While the inversion results are, on average, 50

::
69% higher than the values

reported to UNFCCC prior to 2018, they align closely for the most recent investigated years, 2018–2021.

– Germany is the largest SF6 emitter in Europe. Over the study period, emissions decreased from 166 (±41
:::
182

::::::::
(155-251)410

t yr−1 in 2005 to 95 (±11
::
97

:::::::
(88-104) t yr−1 in 2021, aligning relatively well with UNFCCC-reported values. Our

results suggest that emission inventories overestimate emissions in northern Germany and underestimate emissions in

southern Germany (division at 51◦N). Emissions in northern Germany declined from 76
:::
112 (±27

:::::
79-152) t yr−1 in 2005

to 25
::
27 (±5

::::
22-33) t yr−1 in 2021, while emissions in southern Germany showed a distinct peak of 180

:::
166 (±49

:::::::
125-205)

t yr−1 in 2017, followed by a sharp decline to 93 (±14
:::::
97-110) t yr−1 in 2018.415
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– In France, a posteriori emissions decreased from 88 (±37
::
78

:::::::
(51-117) t yr−1 in 2005 to 51 (±28

::
35

::::::
(19-54) t yr−1 in

2021, on average exceeding the reported values by 73
::
88%.

– In Italy, annual a posteriori emissions show no clear trend, varying between 31 and 67
::
25

:::
and

:::
48 t yr−1 throughout the

study period, On average, emissions exceeded the reported UNFCCC values by 88
:::
107%.

– For the aggregated emissions of the EU-27 countries, our results show a decrease in a posteriori emissions from420

484 (±213
:::
403

::::::::
(335-501) t yr−1 in 2005 to 255 (±58

:::
225

::::::::
(191-260) t yr−1 in 2021, with a substantial emission drop

from 469 (±144
:::
396

::::::::
(311-490) t yr−1 in 2017 to 291 (±62

:::
256

::::::::
(216-303) t yr−1 in 2018. On average, our results are

40
::
28% higher than the reported values before 2018, however, after the drop in 2018, they align better with the reported

values from 2018 to 2021. As noted by Vojta et al. (2024), this drop is likely a direct result of the 2014 regulation, which

mandated that new electrical switchgear containing SF6 be put into service starting in 2017 and prohibited the use of SF6425

in recycling magnesium die-casting alloys from 2018. Additionally, we notice that the drop closely mirrors the decline in

emissions in southern Germany over the same period, suggesting that strong actions were likely taken there when these

regulations came into force.

– Our large ensemble of sensitivity tests shows that as the observational coverage in a region increases, the inversion results

become less sensitive to the various a priori settings that are subject to uncertainty. This becomes especially apparent430

in countries like Germany and the UK, where the inversion results stabilize substantially following the expansion of

the British observation network. The good agreement of emissions in the UK and northwest Europe after 2014 with

Manning et al. (2022) further suggests that factors not tested in this study - such as alternative atmospheric transport

models, meteorological data driving the models, or different inversion frameworks - become less significant when a

dense monitoring system is in place. It also demonstrates the considerable potential of inverse modeling to provide435

reliable emission estimates and underscores the importance of extending the existing network (e.g. Weiss et al., 2021;

Leip et al., 2017).

In addition, our sensitivity tests, described in detail in the Appendix, reveal the following:

– Inversion results demonstrate high sensitivity to the choice of spatial correlation length for the a priori emission

uncertainty, ranging from 0 to 1000 km. While the optimal correlation length depends on the specific problem, a440

range of 50 and
:::::
around

:
250 km appears to produce relatively stable results

::
be

::
a
::::
good

:::::::::::
compromise

:::::::
between

:::::::::
providing

:::::::
sufficient

:::::::::
constraint

:::
on

:::::::::
emissions

::::
and

::::::::::
maintaining

:::
the

::::::::::
inversion’s

::::::
ability

::
to
:::::::

resolve
:::::::
regional

::::::::
emission

::::::::
patterns. In

contrast, correlation lengths of 500 km, 1000 km, or the absence of correlation led to substantial differences. When

emission uncertainties are assumed to be entirely uncorrelated, the inverse problem becomes relatively ill-determined.

However, excessively large correlation lengths prevent the inversion’s ability to capture regional emission patterns.445

– Inversion results were also significantly influenced by the choice of baseline uncertainty, particularly within the range of

0 to 0.0003 ppt. Although increasing the uncertainty further led to additional changes, the effect gradually diminished,
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stabilizing between 0.01 and 0.1 ppt. We recommend ensuring the baseline uncertainty is not underestimated, as this can

significantly impact the results.

– Optimizing the baseline using two or more latitudinal bands most likely yields better results than optimizing the entire450

field with a single scalar. Therefore, we recommend optimizing the baseline in at least two latitudinal bands, particularly

for species such as SF6, which exhibit a strong latitudinal gradient and large interhemispheric differences. In contrast,

the choice of temporal interval for baseline optimization (ranging from 15 to 60 days) had minimal impact on the results.

– The number of optimized emission grid cells, ranging from 588 to 7,229, had minimal impact on the obtained national

total emissions. Given that the computational time for an inversion is strongly influenced by the number of grid cells455

optimized, we recommend conducting prior sensitivity tests related to the grid configuration. This approach could help

conserve significant computational resources using a coarser grid where appropriate.

– Results were sensitive to variations in both a priori emission uncertainties and observation errors, with greater sensitivity

in poorly monitored areas and minimal impact in well-monitored regions. We recommend conducting sensitivity tests

on these uncertainties to improve the accuracy of uncertainty estimates in inversion results.460

– Inversion results showed moderate sensitivity to the choice of the observation dataset and a priori emission fields. Again,

we suggest using multiple a priori emission datasets and observational datasets to improve the reliability of uncertainty

estimates in the inversion results.

Our study indicates that regulations, such as those implemented by the EU for F-gases, can have a significant positive impact

on regional GHG emissions. It will be interesting to observe how the EU’s new 2024 F-gas regulation will further reduce465

European SF6 emissions in the future. Considering the substantial regional emission reductions observed, Europe could serve

as a role-model for effectively reducing SF6 emissions. Similar regulations would be crucial in other regions for mitigating

global SF6 emissions (Vojta et al., 2024; An et al., 2024). Furthermore, expanding observation networks - similar to the

dense British network - should be a top priority, as this would greatly reduce uncertainties in top-down emission estimates

derived from inverse modeling. These improved estimates could then be incorporated into national reports, as already done by470

Switzerland, the UK, and Australia (e.g. Rypdal et al., 2005; Leip et al., 2017), substantially enhancing our understanding of

GHG emissions.

. The FLEXINVERT+ code (described by Thompson and Stohl, 2014), along with configuration files, is provided at https://doi.org/10.25365/

phaidra.648. The FLEXPART 10.4 source code (described by Pisso et al., 2019) is accessible at https://doi.org/10.5281/zenodo.3542278.

FLEXPART 8-CTM-1.1 and its user guide can be freely downloaded from https://doi.org/10.5281/zenodo.1249190 (Henne et al., 2018).475

Daily global SF6 mole fraction fields from the re-analysis (2005–2021) are available at https://doi.org/10.25365/phaidra.489.

All links and references to the atmospheric mole fractions used in this study are detailed in Vojta et al. (2024) and are repeated

here for convenience: AGAGE data: https://data.ess-dive.lbl.gov/view/doi%3A10.15485%2F1909711 (Prinn et al., 2023); Heathfield Tall
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Tower data: https://catalogue.ceda.ac.uk/uuid/df502fe4715c4177ab5e4e367a99316b (Arnold et al., 2019); Bilsdale Tall Tower data: https:

//catalogue.ceda.ac.uk/uuid/d2090552c8fe4c16a2fd7d616adc2d9f (O’Doherty et al., 2019); Zeppelin mountain data: https://ebas-data.nilu.480

no/Pages/DataSetList.aspx?key=4548F59E3CBD48E0A505E8968BD268EB (2005-2010 EBAS, 2024); NOAA/GML Chromatograph for

Atmospheric Trace Species (CATS) program: https://doi.org/10.7289/V5X0659V (all stations, hourly data, Dutton and Hall, 2023); Monte

Cimone, Cape Ochiishi, Izaña, Ridge Hill, Zugspitze-Schneefernerhaus: https://doi.org/10.50849/WDCGG_SF6_ALL_2022 (di Sarra et al.,

2022); Atmospheric SF6 Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network:

https://doi.org/10.15138/p646-pa37 (Lan et al., 2024a); NOAA Global Greenhouse Gas Reference Network provided flask-air PFP sample485

measurements of SF6 at Tall Towers and other Continental Sites https://doi.org/10.15138/5R14-K382 (Andrews et al., 2022); Atmospheric

Sulfur Hexafluoride Dry Air Mole Fractions from the NOAA GML Carbon Cycle Aircraft Vertical Profile Network https://doi.org/10.

15138/39HR-9N34: (McKain et al., 2022); NOAA ObsPACK SF6 data: https://doi.org/10.15138/g3ks7p (NOAA Carbon Cycle Group

ObsPack Team, 2018); IAGOS-CARIBIC Aircraft measurements: https://zenodo.org/records/10495039 (Schuck and Obersteiner, 2024);

NOAA/ESRL/GMD/HATS Trace Gas Measurements from Airborne Platforms: https://gml.noaa.gov/aftp/data/hats/airborne/ (Elkins et al.,490

2020); NOAA Atmospheric Carbon and Transport - America aircraft measurements: https://doi.org/10.3334/ORNLDAAC/1575 (Sweeney

et al., 2018). For the observations at BIK (Popa et al., 2010), BRM (Rust et al., 2022), GSN (Kim et al., 2012), and HAT (Saikawa et al.,

2012) we refer to E. Popa <epopa2@yahoo.com>, S. Reimann <stefan.reimann@empa.ch>, S. Park <sparky@knu.ac.kr>, and T. Saito

<saito.takuya@nies.go.jp>, respectivley.

. MV, AP, and AS designed the study. MV performed the FLEXPART, and FLEXINVERT+ simulations and made the figures. RT helped495

with the FLEXINVERT+ setup and simulation issues. KS, SO, DY, JP, JA, and XL provided atmospheric observation data. PP provided
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Appendix A: Evaluation of inversion setup sensitivities

This Appendix presents the results from various inversion setups, organized by specific aspects of the inversion process to

examine the sensitivity of results to each setting. We display emission time series for four major emitting countries: the UK,

Germany, France, and Italy, as well as for the aggregated EU-27 emissions. Where relevant, we include a priori or a posteriori545

emission maps, as well as inversion increments (a posteriori - a priori), either averaged over the entire study period or focused

on specific years or countries. Additionally, we provide error reduction information for one particular case to provide further

insight. The reference inversion is indicated by a black frame around the respective inversion maps or by a thick line in the

case of emission time series.
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Appendix B: Sensitivity to the a priori emissions550

We employ seven different a priori emission fields derived from the GAINS inventories, UNFCCC reports, and EDGAR data

(see Sect. 2.3 and Fig. 3). Figure B1 shows the inversion increments averaged throughout the entire study period when using

different a priori inventories. While in some regions the increments vary in magnitude, they show a very similar pattern across

all cases. We see negative increments in northern Germany, especially in the area around Cologne, where a priori emissions

tend to be very high. The UNFCCC- and EDGAR-based inversions also show strong negative increments in Berlin, where555

the a priori estimates are high. All tests show large positive increments in southwest Germany, positive increases in France,

Italy, and the UK, and negative increments in Switzerland. Notice that the EDGAR-based inventories E7P and E8 show negative

increments in the area of Moscow, in contrast to the other inventories. For a more detailed analysis, Fig. B2 presents the a priori

(a–g) and a posteriori (h–n) emissions in the Moscow region, averaged over the study period 2005-2021. While the a priori

emissions exhibit significant differences, the a posteriori emissions show better agreement. However, substantial uncertainties560

persist due to the use of different a priori inventories, even after the correction from the inversion.

Figure
:
B3 presents the a posteriori emission time series for the UK, Germany, France, Italy, and the EU-27 based on different

a priori emission inventories. In the UK (Fig. B3a), differences in the a posteriori emissions due to different a priori inventories

are relatively large in the early years of the study period, but decrease significantly toward the end, particularly after 2011, when

the British observation network was expanded. Similarly, the differences in the French a posteriori SF6 emissions (Fig.
:
B3c)565

decrease over the study period; however, this is less evident than for the UK. In Germany (Fig. B3b), the sensitivity to different

inventories remains relatively low throughout the study period. This is particularly noteworthy toward the end of the period,

when a priori inventories show considerable differences, indicating substantial improvements from the optimization. In Italy

(Fig. B3d), a priori emissions from the different inventories are quite similar until 2017, leading to relatively closely aligned

a posteriori emissions. However, toward the end of the time series, the a priori estimates start to diverge, resulting in larger570

differences in the corresponding a posteriori emissions, especially in 2021.
:::
This

::::::::::
divergence

::
is

:::::
likely

::::::
related

::
to

:::
the

::::
fact

::::
that

:::::
Monte

:::::::
Cimone

::::::::
provided

::::::::::
observations

::::
only

::::
until

:::::
2017,

::::
after

::::::
which

:::::::::
constraints

::
on

::::::
Italian

::::::::
emissions

:::::
were

::::::::::
substantially

::::::::
reduced.

A closer examination of the year 2021 reveals significantly higher a priori emissions and positive increments close to Milan for

the EDGAR- and UNFCCC-based inventories (Fig. B4c-g/j-n), compared to the lower values from the GAINS-based inventory

(Fig. B4a,b/h,i). The larger increments observed for higher a priori values can most likely be attributed to the definition of575

the a priori emission uncertainty, giving the algorithm more freedom in grid cells with high a priori values. Consequently,

emissions that are high but still underestimated are easier to correct than those that are even lower. This might indicate that

our uncertainties for individual grid cells might be generally too small and that our posterior uncertainties, as estimated using

the analytical method, might be significantly underestimated at the national level. The aggregated a posteriori emissions of the

EU-27 countries (Fig.
:
B3e) show a relatively low dependence on the a priori inventory, with differences across cases decreasing580

up to 2018. After 2018 differences slightly grow again, which can be attributed to the strongly diverging a priori inventories.
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Figure B1. Inversions
:::::::
Inversion

:
increments (a posteriori - a priori) averaged over the entire study period (2005-2021), shown for different a

priori emission inventories: (a) GS, (b) GS_HR, (c) UP, (d) UN, (e) E7P, (f) E7N, (g) E8.
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Figure B2. Moscow region: a priori emissions (left) and a posteriori emissions averaged over the entire study period (2005-2021) using

different inventories: (a)/(h) GS, (b)/(i) GS_HR, (c)/(j) UP, (d)/(k) UN, (e)/(l) E7P, (f)/(m) E7N, (g)/(n) E8.
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Figure B3. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, using different

a priori emissions inventories. The colored solid lines (light blue: GS, dark blue: GS_HR, light green: UP, dark green: UN, light red: E7P,

dark red: E7N, orange: E8 ) represent the a posteriori emissions derived using different a priori emission inventories, which are shown by the

dashed lines in corresponding colors.The vertical grey
:::
gray

:
lines indicate the times when additional observational data from the expansion

of the UK network became available.
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Figure B4. A priori emissions (left-hand side) and emission increments (right-hand side) in Italy for the year 2021, shown for different a

priori emission inventories: (a)/(h) GS, (b)/(i) GS_HR, (c)/(j) UP, (d)/(k) UN, (e)/(l) E7P, (f)/(m) E7N, (g)/(n) E8.
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Appendix C: Sensitivity to the a priori emissions
::::::::
emission uncertainty

In FLEXINVERT+, the a priori emission uncertainty in each grid cell is calculated as a fraction of the corresponding emission

value. We evaluate four different settings with fractions of 30%, 50%, 70%, and 100%, with the inversion results presented in

Fig. C1. As the a priori emission uncertainty increases from 30% to 100%, the constraint on the a priori emissions weakens,585

allowing the a posteriori emissions to deviate further from their a priori values. Notable, the step from 30% to 50% results

in the largest differences, while the step from 70% to 100% causes only minor differences.
:::::
Using

::::
prior

:::::::::::
uncertainties

::
of

:::::
30%,

::::
50%,

::::
and

::::
70%

:::::::
resulted

::
in
:::::::

reduced
:::::::::

chi-square
::::::

values
:::::
close

::
to

::
1
:::::
(1.12,

:::::
0.87,

::::
and

::::
0.70,

:::::::::::
respectively,

::::::::
averaged

::::
over

:::
all

:::::
study

:::::
years).

:::
By

::::::::
contrast,

:::
the

::::
value

:::
of

::::
0.55

:::::::
obtained

:::
for

:::::
100%

::::::::::
uncertainty

:::::
might

:::::::
indicate

::
an

::::::::::::
overestimation

:::
of

::
the

::
a
:::::
priori

::::::
errors. In

general, we observe little sensitivity to the a priori emissions in Germany (Fig. C1b) and the UK (Fig. C1a). For France, Italy,590

and the aggregated EU-27 emissions, the sensitivity to the a priori uncertainty generally decreases over time, with differences

becoming relatively small after 2014.

Furthermore, we test various minimum emission uncertainty values to allow the algorithm to adjust emissions in grid cells

with very small a priori values. The seven minimum values tested are 5×10−14, 1×10−13, 5×10−13, 1×10−12, 5×10−12,

1× 10−11, and 5× 10−11 kg m−2 h−1, with the corresponding uncertainty distribution illustrated in Figure C2. Figure C3595

shows the respective inversion results for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. For

the smaller minimum emission uncertainties between 5× 10−14 and 1× 10−12 kg m−2 h−1 (red, blue, green, and purple),

the inversion results remain very similar. However, as the minimum emission uncertainty further increases, the a posteriori

emissions deviate more significantly from the a priori values. Similar to the previous tests, the inversion results are very stable

for the UK and Germany, while the sensitivity in France decreases notably from 2012 to 2021. In contrast, Italy’s a posteriori600

emissions exhibit relatively large differences in some years (including after 2014), likely due to limited observational coverage

in southern Italy. These differences are particularly evident for the highest tested value of 5× 10−11 kg m−2 h−1 (brown
::::
light

:::::
orange). In case of the aggregated EU-27 a posteriori emissions, the highest tested value of 5× 10−11 kg m−2 h−1 also leads

to considerably higher interannual variability compared to the other tested values.

To further investigate how the minimum a priori uncertainty affects the inversion, we also show the 2012 European inversion605

increments for the same seven values in Fig. C4, since we observe the biggest differences in this year. Consistent with Fig. C3,

increments are similar for minimum values between 5×10−14 and 1×10−12 kg m−2 h−1. However, as the minimum a priori

uncertainty further increases, the emission increment patterns begin to change. The increments become less localized and

spread over larger areas, especially apparent in France. This shift occurs because the a priori uncertainty becomes similar

across most grid cells (see Figure C2), compelling the algorithm to distribute increments more evenly. For poorly observed610

areas, such as regions around the Black Sea, the large a priori uncertainties result in excessively strong positive increments.

This behavior contrasts with well-covered areas such as Germany or the UK, where almost no differences are observed until the

minimum value reaches 5×10−11 kg m−2 h−1 (g), at which point the results become noisy in the whole domain, indicating that

the inversion becomes poorly constrained. At this point the inversion problem becomes rather ill-posed, producing widespread

artifacts.615
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Figure C1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, using differnt

settings of a priori emissions uncertainties, defined as a fraction of the corresponding emission value in each grid cell. The colored solid lines

(red: 30%, orange: 50%, light blue: 70%, and blue: 100% of the respective emission value) represent the a posteriori emissions derived using

the different settings and the gray dashed line shows the a priori emissions. The vertical grey
:::
gray

:
lines indicate the times when additional

observational data from the expansion of the UK network became available.31



Figure C2. A priori emission uncertainties averaged over the entire study period (2005-2021), shown for different tested minimal a priori

emission uncertainty values (a) 5×10−14 kg m−2 h−1, (b) 1×10−13 kg m−2 h−1, (c) 5×10−13 kg m−2 h−1, (d) 1×10−12 kg m−2 h−1,

(e) 5× 10−12 kg m−2 h−1, (f) 1× 10−11 kg m−2 h−1, and (g) 5× 10−11 kg m−2 h−1).
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Figure C3. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different

minimal a priori emission uncertainty values. The colored solid lines (dark blue: 5× 10−14, blue: 1× 10−13 , green: 5× 10−13, purple:

1× 10−12, red: 5× 10−12, orange: 1× 10−11, and light orange: 5× 10−11 kg m−2 h−1) represent the a posteriori emissions derived using

the different settings and the gray dashed line shows the a priori emissions.
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Figure C4. Inversions
::::::
Inversion

:
increments (a posteriori - a priori) for the year 2012, shown for different tested minimal a priori emission

uncertainty values (a) 5× 10−14 kg m−2 h−1, (b) 1× 10−13 kg m−2 h−1, (c) 5× 10−13 kg m−2 h−1, (d) 1× 10−12 kg m−2 h−1, (e) 5×

10−12 kg m−2 h−1, (f) 1× 10−11 kg m−2 h−1, and (g) 5× 10−11 kg m−2 h−1).
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Appendix D: Sensitivity to the spatial correlation of the a priori emission uncertainty

FLEXINVERT+ uses an exponential decay function to account for spatial emission uncertainty correlations. We test various

spatial scale lengths of 50, 100, 250, 500, 1000 km, as well as a configuration without any spatial correlation. Figure D1

presents the emission time series for these tests. As the correlation length increases, the observational information influences a

larger number of emission grid cells, causing the aggregated a posteriori emissions to deviate more from their a priori values.620

With high correlation lengths, the algorithm’s ability to capture the spatial variability of the emissions is limited. Conversely, if

the correlation length is very small, there will be insufficient observational constraint on the emissions. As a consequence, the

number of grid cells with substantial inversion increments increases with growing correlation length (see Fig. D2, increments

averaged over the study period). At the same time, the modeled error reduction substantially increases (see Fig. D3, error

reduction shown for the year 2012). However, this is solely due to the much larger a priori uncertainties, and thus should not625

be interpreted as an indication for
::
of

:
a superior inversion quality.

:
It
:::::::
reflects

:::
the

::::::
broader

::::::
spatial

::::::::::
distribution

::
of

::::::::::::
observational

:::::::::
information

::::::
rather

::::
than

::
an

:::::
actual

:::::::::::
improvement

::
in

:::
the

::::::
ability

::
of

:::
the

::::::::
inversion

::
to

::::::::
constrain

:::::::::
emissions. Our findings align closely

with Thompson et al. (2011), who observed a similar error reduction trend when testing correlation lengths between 50 and

2000 km in a European N2O inversion.
:::
Our

::::
tests

::::::
further

:::::
show

::::
that

::
in

:::
the

:::::::
absence

:::
of

::::::
spatial

:::::::::
correlation,

:::
the

:::::::::
inversions

::::
can

::::
yield

:::::::::
substantial

:::::::
negative

:::::::::
emissions

::
at

:::
the

:::::::
grid-cell

::::
level

::::::
(down

::
to

::::
–21

:::::::::::
pg m−2 s−1).

:::::
Such

:::::
values

:::
are

:::::::::
unphysical

::::
and

:::::::
indicate630

:::
that

:::
the

:::::::
problem

::
is
::::::

poorly
:::::::::::
constrained.

::
In

:::::::
contrast,

:::::::::
imposing

::::
large

:::::::::
correlation

:::::::
lengths

::
of

::::
500

:::
and

:::::
1000

:::
km

:::::::
slightly

:::::::
reduces

::
the

:::::::::
agreement

::::::::
between

::::::::
observed

:::
and

::::::::
posterior

:::::
mole

:::::::
fractions

::::
(see

:::::
Table

:::
S9

:::
and

:::::
S10),

:::
as

:::
the

:::::::
imposed

:::::::::
correlation

::::::
limits

:::
the

:::::::::
inversion’s

:::::
ability

::
to
:::::::
resolve

:::::::
regional

:::::::
emission

::::::::
patterns. Across all investigated regions (Fig. D1), we observe that after 2012,

inversion results become less sensitive to the choice of correlation length, especially in Germany (Fig. D1b) and the UK

(Fig. D1a), where error reduction is highest (Fig. D3) and inversion results show remarkable stability. In France (Fig. D1c) and635

Italy (Fig. D1d), the error reduction is smaller and a posteriori emissions remain generally more sensitive to the correlation

length. For the aggregated EU-27 emissions (Fig. D1e), results are highly sensitive to the chosen spatial correlation length,

though they also stabilize after 2012. Notably, results for correlation lengths of 50, 100, and 250 km are relatively close, while

values of 500 km, 1000 km, and no correlation show great deviations in case of the aggregated EU-27 emissions.
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Figure D1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different

spatial scale lengths for the a priori emission uncertainty correlation. The colored solid lines (blue: 50km, green: 100 km, purple: 250 km,

orange: 500 km, light orange: 1000 km, and red: no correlation) represent the a posteriori emissions derived using the different settings and

the gray dashed line shows the a priori emissions. The vertical grey
:::
gray lines indicate the times when additional observational data from the

expansion of the UK network became available.
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Figure D2. Inversions
::::::
Inversion

:
increments (a posteriori - a priori) averaged over the study period (2005-2021), shown for different spatial

scale lengths for the a priori emission uncertainty correlation: (a) no correlation, (b) 50 km, (c) 100 km, (d) 250 km, (e) 500 km, and (f) 1000

km
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Figure D3. Error reduction for the year 2012, shown for different spatial scale lengths for the a priori emission uncertainty correlation: (a)

no correlation, (b) 50 km, (c) 100 km, (d) 250 km, (e) 500 km, and (f) 1000 km
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Appendix E: Sensitivity to the observation datasets640

We perform tests using subsets of the global observation dataset: (1) the entire global dataset, (2) the global dataset excluding

mountain stations, (3) the global dataset selecting night observations (00:00–06:00) at mountain stations and afternoon

observations (12:00–18:00) at other sites, (4) the global dataset using exclusively high-frequency surface observations, (5)

the European dataset, a subset of the global dataset including solely the observations in and around Europe (see Fig.;1
:::
(see

::::::
Sect 2.1), (6) the European dataset excluding mountain stations, (7) the European dataset selecting night observations at645

mountain stations and afternoon observations at other sites, and (8) the European dataset using exclusively high-frequency

surface observations. Figure E1 presents the emission time series using these datasets.

For the UK, Germany, France and Italy, the choice between the global and European datasets has a small impact on the

inversion results; however, for the aggregated EU-27 emissions, differences can be pronounced. This indicates that distant

observations barely constrain the emissions in relatively well-observed countries , but they still help to constrain emissions650

in less well-covered areas
:::
have

:::::
little

::::::::
influence

::
on

:::::::::
emissions

::
in

::::::::
countries

::::
that

:::
are

::::
well

::::::::
observed,

:::
but

::::
can

:::::
affect

:::::::::
emissions

::
in

::::
areas

::::
that

:::
are

:::
less

::::
well

:::::::
covered. Excluding observations from mountain stations (Fig. E1, red lines) has a minimal impact on

the UK emissions (Fig. E1a) and also shows a limited effect in France (Fig. E1c) after 2008. In Germany (Fig. E1b) and the

EU-27 (Fig. E1e) the exclusion of mountain stations can lead to notable differences in certain years, while for Italian emissions

(Fig. E1d), the impact can be substantial, such as in 2016. Figure E2 shows the 2016 inversion increments, illustrating how655

the exclusion of the mountain stations (Fig. E2b,f) such as JFJ, ZSF, and MCN
:::::
CMN, leads to large positive increments in

Switzerland and nearby areas (including North Italy), as the observational coverage of this region is drastically reduced.

We assume that the limited observational coverage causes the region to be influenced by the high emission increments

in southwestern Germany. Selecting only afternoon/night observations (Fig. E1, green lines) generally results in posterior

emissions closer to the prior values due to reduced number of available observations. Similarly, the inversion increments (Fig.660

E2c,g) are attenuated, however, the patterns of emission increments remain rather similar. Excluding flask measurements and

data from moving platforms affects early study years (e.g. emissions the UK in Fig. E1a, purple lines), but as the observational

coverage with on-line measurement stations increases, the impact of these additional measurements becomes negligible.

Similar to the other sensitivity tests, we observe that the sensitivity to the used datasets decreases over the study period,

however, 2016 and 2017 stand out as exceptions, likely due to the exceptionally high emissions in southwestern Germany665

during these years.
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Figure E1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different

subsets of the observation dataset. The colored lines (solid blue: the full global dataset, solid red: the global dataset excluding mountain

stations, solid green: the global dataset selecting night observations at mountain stations and afternoon observations at other sites, solid

purple: the global dataset using exclusively high-frequency surface observations, dotted blue: the European dataset, a subset of the global

dataset focused on observations in and around Europe, dotted red: the European dataset excluding mountain stations, dotted green: the

European dataset selecting night observations at mountain stations and afternoon observations at other sites, dotted purple: the European

dataset using exclusively high-frequency surface observations) represent the a posteriori emissions derived using the different settings and

the gray dashed line shows the a priori emissions. The vertical grey
:::
gray lines indicate the times when additional observational data from the

expansion of the UK network became available.
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Figure E2. Inversions
:::::::
Inversion increments (a posteriori - a priori) averaged over

::
for the study period (2005-2021)

:::
year

::::
2016, shown for

different observation datasets: (a) the full global dataset, (b) the global dataset excluding mountain stations, (c) the global dataset selecting

night/afternoon observations, (d) the global dataset using exclusively high-frequency surface observations, (e) the European dataset, a subset

of the global dataset focused on observations in and around Europe, (f) the European dataset excluding mountain stations, (g) the European

dataset selecting night/afternoon observations (h) the European dataset using exclusively high-frequency surface observations.
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Appendix F: Sensitivity to the observation uncertainty

We explore multiple configurations for the observation uncertainty, testing constant values of 0.02, 0.04, 0.06, 0.08, and 0.1

ppt. Additionally, we use two approaches where we (i) base the observation error on the RMSE between a priori modeled

and observed values, averaged by station, and (ii) estimate the model error from the standard deviation of the a posteriori670

error distribution at each station, using initial inversion runs. Figure F1 presents the emission time series of these tests. As

observation uncertainty increases, the observational constraint weakens, causing the a posteriori emissions to follow more

closely their a priori values. The two approaches that account for spatial variability in the model uncertainty generally fall

within the range of constant-error settings, although they show a slightly different pattern for some periods. The inversion

results show very low sensitivity to the observation uncertainty in the UK and Germany, especially after 2012 when results675

are extremely stable. For France, Italy, and the EU-27, the sensitivity to the observation uncertainty also declines after 2012.

:::
The

:::::::
reduced

::::::::::
chi-squared

:::::
values

::::::::
averaged

::::
over

:::
the

:::::
study

::::::
period

::::
were

:::::
3.65,

::::
1.50,

:::::
0.87,

::::
0.57,

::::
and

::::
0.41

::
for

::::::::
assumed

::::::::::
observation

:::::
errors

::
of

:::::
0.02,

::::
0.04,

:::::
0.06,

:::::
0.08,

:::
and

::::
0.10

::::
ppt,

::::::::::
respectively.

::::::
These

::::::
results

::::::
suggest

::::
that

:::
an

:::::::::
observation

:::::
error

::
of

:::::
about

:::::
0.06

:::
ppt

:::::::
provides

:::
the

::::
most

:::::::::
consistent

::
fit,

:::::
while

::::
0.02

::::
ppt

::::::::::::
underestimates

:::
and

:::::
0.10

:::
ppt

:::::::::::
overestimates

:::
the

:::::::::::
uncertainties.

:
Note at this point

that the smallest error setting of 0.02 ppt (red) - which is likely an underestimation of the actual uncertainty - shows the680

greatest deviation from the other tests.
::::
The

:::::::::
chi-squared

::::::
values

::::::
related

::
to

:::
the

::::::
spatial

::::::
varying

:::::::::::
uncertainties

:::::
were

::::
0.80

::::::::
(standard

::::::::
deviation,

:
a
::::::::
posteriori

:::::::::::
distribution),

::::
and

::::
0.31

:::::::
(RMSE,

:
a
:::::
priori

:::::::::::
distribution).

::::::
Indeed,

:::::
using

:::
the

::::::
RMSE

::
of

:::
the

:
a
:::::
priori

::::::::::
distribution

:
is
::::::::
expected

::
to

:::
be

::
an

:::::::::::::
overestimation,

::
as

::
it
::::
also

::::::
reflects

:::::::::
systematic

::::::::::
mismatches

::::
and

:::::
biases

::
in
:::
the

::
a
:::::
priori

::::::::
emissions

::::::
rather

::::
than

:::::
purely

:::::::::::
observational

::::
and

:::::::
transport

::::::
model

::::::::::
uncertainty.
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Figure F1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various

observation error settings. The colored solid lines (red: 0.02 ppt, orange: 0.04 ppt, light orange: 0.06 ppt, light blue: 0.08 ppt, blue: 0.1 ppt,

light green: standard deviation of the a posteriori distribution, green: RMSE between a priori modeled and observed values) represent the a

posteriori emissions derived using the different settings and the gray dashed line shows the a priori emissions. The vertical grey
:::
gray lines

indicate the times when additional observational data from the expansion of the UK network became available.
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Appendix G: Sensitivity to the baseline optimization685

FLEXINVERT+ includes an option for baseline optimization, where spatially aggregated contributions are adjusted on a

coarse grid. We test different coarse grid resolutions by dividing the global field into 8, 4, and 2 latitude bands, with

northern boundaries at [-60◦, -30◦, -15◦, 0◦, 15◦, 30◦, 60◦, 90◦], [-30◦,0◦,30◦,90◦], and [0◦,90◦], respectively. In addition,

we run inversions where the entire global field is optimized with a single scalar. Figure G1 presents the emission time

series for these tests. For all regions studied, we find that optimizing the baseline using 2, 4, or 8 latitudinal bands has690

minimal impact on the results. However, optimizing the entire field in a single global grid cell results in significantly higher

a posteriori emissions, particularly before 2012, especially evident for the EU-27 emissions (Fig. G1e). This trend is also

evident in the inversion increments (Fig. G2), where the positive increments are larger, and the negative increments are less

pronounced when optimizing the whole field (Fig. G2a). These results can be linked to the large inter-hemispheric gradient in

atmospheric SF6 mole fractions. Potential biases in the modeled SF6 mole fraction fields likely differ between the Southern695

and Northern Hemispheres, making a single optimization factor insufficient to represent both regions accurately. However, as

the observational coverage increases, the sensitivity to the spatial resolution of the baseline drastically decreases and inversion

results become extremely stable for all tested regions.

We also test different temporal baseline optimization intervals of 15, 30, 45, and 60 days, with inversion results shown in

Fig. G3. The a posteriori emissions are only minimally sensitive to the choice of the temporal interval between 15 and 60 days.700

Although small differences occasionally appear in certain years and regions, the overall inversion results remain highly stable.

Furthermore, we test various baseline uncertainty values set to 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.01, 0.1,

and 1 ppt and run an inversion without any baseline optimization. The resulting a posteriori emission time series are shown

in Fig. G4. The baseline optimization consistently reduces the a posteriori emissions across all regions, indicating that the

optimization tends to shift the a posteriori baseline to higher values. At a baseline uncertainty of 0.0001 ppt, the changes in a705

posteriori emissions are minimal. However, increasing the uncertainty to 0.0003 ppt produces a notable decrease in emissions.

Further increases in the uncertainty continue to lower the a posteriori emissions, though the effect diminishes with each step,

converging toward stable results between 0.01 and 0.1 ppt.
::::::::
Increasing

:::
the

:::::::
baseline

::::::::::
uncertainty

::
up

:::
to

::::
0.01

:::
ppt

::::
also

::::::::
improves

::
the

::::
bias

:::::::
between

::
a

::::::::
posteriori

:::::::
modeled

::::
and

:::::::
observed

:::::
mole

:::::::
fractions

:::::
while

::::::
higher

::::::::::
uncertainties

:::::
yield

:::
the

::::
same

::::::
results

::::
(see

:::::
Table

::::::::
S11-S13).

:
Figure G5 presents the inversion increments for uncertainty values between 0.0001 ppt and 0.01 ppt, as well as710

for the case without optimization. Consistent with Fig. G4, we observe a decrease in increments with increasing baseline

uncertainty. As observed in other sensitivity studies, the sensitivity to baseline optimization decreases significantly over the

course of the study period, with results stabilizing toward the end for all tested regions.
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Figure G1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various

spatial resolutions of aggregated baseline contributions for the baseline optimization. The colored solid lines represent the a posteriori

emissions derived when optimizing the baseline, regarding the different spatial resolutions (red: the whole global field, orange: 2 latitudunal

bands, light blue: 4 latitudunal bands, and blue: 8 latitudunal bands). The gray dashed line shows the a priori emissions. The vertical grey

:::
gray

:
lines indicate the times when additional observational data from the expansion of the UK network became available.
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Figure G2. Inversions
:::::::
Inversion increments (a posteriori - a priori) averaged over the study period (2005-2021), shown for various spatial

resolutions of aggregated baseline contributions for the baseline optimization: (a) the whole field, (b) 2 latitudinal bands, (c) 4 latitudinal

bands, and (d) 8 latitudinal bands
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Figure G3. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing different

temporal baseline optimization intervals. The colored solid lines (pink: 15 days, orange: 30 days, light green: 45 days, and green: 60 days)

represent the a posteriori emissions. The gray dashed line shows the a priori emissions. The vertical grey
:::
gray

:
lines indicate the times when

additional observational data from the expansion of the UK network became available.
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Figure G4. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing baseline

uncertainty values. The colored solid lines represent the a posteriori emissions (dark red: no optimization , red: 0.0001 ppt, dark orange:

0.0003 ppt, orange: 0.0005 ppt, light orange: 0.0007 ppt, light green 0.0009 ppt, green 0.001 ppt, dark green 0.01 ppt, light blue 0.1 ppt, and

blue: 1 ppt). These tests refer to a baseline optimization using 4 latitudinal bands and a 30-day temporal time window. The gray dashed line

shows the a priori emissions. The vertical grey
:::
gray lines indicate the times when additional observational data from the expansion of the

UK network became available.
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Figure G5. Inversions
::::::
Inversion

:
increments (a posteriori - a priori) averaged over the study period (2005-2021), shown for various baseline

uncertainty values: (a) no optimization, (b) 0.0001 ppt (c) 0.0003 ppt, and (d) 0.0005 ppt, (e) 0.0007 ppt, (f) 0.0009 ppt, (g) 0.001 ppt, (h)

0.01 ppt

49



Figure H1. European inversion grid with variable cell sizes, featuring configurations of (a) 7,229 and (b) 588 grid cells

Appendix H: Sensitivity to the emission grid

We utilize emission grids with varying cell sizes, created by aggregating cells with low emission contributions based on715

emission sensitivities and a priori emissions (see details in Thompson and Stohl, 2014). The tested grids include configurations

with 588, 744, 1,992, 2,781, 4,248, 5,370, and 7,229 grid cells, each remaining constant over time. Additionally, we explore

three dynamic setups where the grid configuration adjusts annually, with the number of cells ranging from (i) 2,781 to 5,916, (ii)

3,645 to 6,599, and (iii) 4,151 to 7,229. Figure H1 illustrates the emission grid with (a) the highest and (b) the lowest number

of grid cells, while Fig. H2 displays the inversion results for all tested grid configurations. The inversion results demonstrate720

minimal sensitivity to the number of grid cells within the tested range, with only minor differences observed in isolated years

and regions.

50



Figure H2. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27, testing various

emission grid configurations. The colored solid lines represent the a posteriori emissions (dark red: 588, red: 744 ppt, dark orange: 1,992,

orange: 2,781, light orange: 4,248, light blue 5,370, blue 7229, light green: 2,781 - 5,916, green 3,645 - 6,599, and dark green: 4,151-7,229

grid cells). The gray dashed line shows the a priori emissions. The vertical grey
:::
gray

:
lines indicate the times when additional observational

data from the expansion of the UK network became available.
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Appendix I: Sensitivity to the whole inversion ensemble

Fig.
:
I1 shows the results of all performed inversions, displaying the full set of a posteriori emissions alongside the average

across all sensitivity tests. Our results show that sensitivity to the various inversion settings decreases significantly after 2012,725

aligning with the expansion of the British observation network. This trend is particularly evident in the UK and Germany,

where the results become highly stable across all sensitivity tests. Even under unfavorable settings that lead to outliers during

periods of limited observational coverage, results remain stable towards the end of the study period.
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Figure I1. Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. The colored

::::
solid

:::
gray

:
lines represent the inversion results of all sensitivity tests and the solid black lines represent the average a posteriori emissions

across all performed tests.The vertical grey
:::::
dashed

::::
gray lines indicate the times when additional observational data from the expansion of

the UK network became available. The vertical grey lines indicate the times when additional observational data from the expansion of the

UK network became available.
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Appendix J:
::::::::
Selection

::
of

::::::::::
parameter

::::::
ranges

A posteriori emission values for the United Kingdom, Germany, France, Italy, and the EU-27 for the period 2005 to 2021. The730

values present the average over the entire Monte Carlo inversion ensemble with 2-σ uncertainty ranges. year United Kingdom

t yr−1Germany t yr−1France t yr−1Italy t yr−1EU-27 t yr−12005 41 ± 13 166 ± 41 88 ± 37 31 ± 12 484 ± 2132006 60 ± 11

157 ± 15 70 ± 30 36 ± 17 350 ± 692007 46 ± 18 162 ± 35 58 ± 47 43 ± 36 342 ± 882008 65 ± 13 121 ± 57 112 ± 49 46

± 17 370 ± 1192009 47 ± 16 135 ± 28 48 ± 24 54 ± 25 358 ± 1052010 42 ± 13 119 ± 20 58 ± 25 67 ± 33 368 ± 972011

37 ± 29 99 ± 39 59 ± 32 42 ± 13 308 ± 692012 53 ± 10 112 ± 26 93 ± 42 65 ± 44 363 ± 872013 31 ± 11 91 ± 28 98 ± 36735

59 ± 32 332 ± 952014 37 ± 9 142 ± 17 83 ± 34 33 ± 7 364 ± 662015 33 ± 8 137 ± 13 65 ± 22 55 ± 33 351 ± 962016 33

± 6 153 ± 38 94 ± 19 49 ± 26 390 ± 942017 27 ± 6 205 ± 42 67 ± 27 64 ± 48 469 ± 1442018 20 ± 6 105 ± 15 61 ± 21

39 ± 15 291 ± 622019 17 ± 6 118 ± 11 64 ± 33 42 ± 21 308 ± 752020 18 ± 5 118 ± 22 64 ± 17 35 ± 19 357 ± 942021 20

± 6 95 ± 11 51 ± 28 37 ± 24 255 ± 58
:::::
Based

:::
on

:::
the

::::::
insights

:::::
from

:::
our

:::::::::
sensitivity

::::
tests,

:::
we

::::::
defined

:::
the

::::
final

:::::::::
parameter

::::::
ranges

::
for

:::
the

::::::::
inversion

:::::::::
ensemble.

::::::::
Compared

:::
to

::
the

:::::::
broader

::::::
ranges

:::::::
explored

::
in

:::
the

:::::::::
sensitivity

::::
tests,

:::::
these

::::
final

::::::
ranges

:::
are

::::::::
narrowed

::
to740

::::::
exclude

:::
(i)

:::::::
unlikely

:::::
values

::::
that

:::::
could

:::
lead

::
to
:::::::
extreme

:::
or

::::::::::
problematic

:::::
results

::::
and

:::
(ii)

:::::::::
parameters

::
to

:::::
which

:::
the

::::::::
inversion

:::::::
showed

::::::::
negligible

:::::::::
sensitivity.

:

Inversion settings generated using Monte Carlo methods. Parameters are sampled either continuously from a uniform

distribution within specified ranges or discretely from predefined values, as indicated in the table header. All inversions employ

an emission grid configuration of 558 cells, and the baseline is optimized in 8 latitudinal bands with a temporal window of 30745

days and a baseline uncertainty of 0.1 ppt. Identifier A priori emission uncertainty(

–
::
(i)

::
A

::::::
priori

::::::::
emission

:::::::::::
uncertainty:

:::
We

:::::
adopt

::
a

::::::
normal

::::::::::
distribution

::::
with

:::::
mean 0.5 -1.0) Minimum a priori emission

uncertainty(1.0e-13-1.0e-11) kgm−2h−1
:::
and

::::::::
standard

::::::::
deviation

:::
0.1.

::::::
Within

::::
this

:::::
range,

:::
the

::::::::
inversion

::::::
yields

:::::::::
reasonable

:::::
results

::::
and

::::::
reduced

::::::::::
chi-squared

::::::
values

::::
close

::
to
::::
one

::::
(see

::::::::
Appendix

:::
C).

–
::
(ii)

::::::::
Minimal

::
a
::::::
priori

:::::::
emission

::::::
value:

::
We

:::::
adopt

::
a
::::::
normal

::::::::::
distribution

::::
with

:::::
mean

:::::::::::::::::::
5× 10−13kg m−2 h−1

:::
and

::::::::
standard750

:::::::
deviation

::::::::::::::::::::
1× 10−13kg m−2 h−1.

::::::
Values

:::::
above

::::
this

:::::
range

::::
lead

::
to

::::
less

::::::::
localized

::::::::
inversion

:::::::::
increments

::::
that

::::::
spread

::::
over

:::::
larger

:::::
areas.

::::
This

:::::
could

:::::::::
potentially

::::::::
introduce

:::::
biases

::
in

:::::::
regions

::::
with

:::::
sparse

:::::::::::
observational

::::::::::
constraints

:::
(see

:::::::::
Appendix

:::
C).

–
:::
(iii)

:
Spatial correlation of the a priori emission uncertainty

:
: (50-250)

:::
We

:::::
adopt

::
a
::::::
normal

::::::::::
distribution

:::::
with

:::::
mean

:::
250

:::
km

::::
and

:::::::
standard

::::::::
deviation

:::
100

::::
km.

::::
This

::::::
choice

:::::::::
represents

:::
our

::::
best

:::::::
estimate

::
of

::
a

::::::::::
compromise

:::::::
between

::::::::::
sufficiently

::::::::::
constraining

::::::::
emissions

::::
and

::::::::::
maintaining

:::
the

:::::::::
inversion’s

:::::
ability

:::
to

::::::
resolve

:::::::
regional

:::::::
emission

:::::::
patterns

::::
(see

::::::::
Appendix

:::
D).

:
755

–
:::
(iv)

:
Observation uncertainty

:
: (0.03-0.1)A priori emission inventoriesall 7 inventories (see Sect. 2.3)Observation

datasetall 8 datasets (see Sect. 2.5) 0 0.94 8.8e-12 207 0.051 UN Europe: night/afternoon selection 1 0.63 1.1e-12

108 0.035 E7N Global 2 0.84 7.3e-12 55 0.045 E7N Europe: night/afternoon selection 3 0.96 5.7e-12 230 0.044 GS_HR

Global: high-frequency surface stations 4 0.64 9.2e-12 244 0.030 GS_HR Global 5 0.96 8.7e-12 110 0.051 E7N Global

6 0.71 9.3e-12 158 0.043 GS_HR Europe 7 0.87 2.3e-12 123 0.080 E7P Europe: night/afternoon selection 8 0.81 1.9e-12760

160 0.071 UP Global: night/afternoon selection 9 0.51 1.5e-12 136 0.047 E7N Global 10 0.65 6.9e-12 55 0.065 E7P
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Global: high-frequency surface stations 11 0.83 6.3e-12 78 0.066 E7P Global: night/afternoon selection 12 0.76 3.1e-12

128 0.047 UN Global: excluding mountain stations 13 0.71 4.3e-12 220 0.072 E7N Europe: high-frequency surface

stations 14 0.55 3.4e-12 98 0.054 E7P Global 15 0.67 6.3e-12 116 0.037 UP Europe: high-frequency surface stations 16

0.54 3.0e-12 63 0.078 GAINS Europe: night/afternoon selection 17 0.77 3.5e-12 68 0.072 UP Europe: night/afternoon765

selection 18 0.81 9.8e-12 237 0.061 E8 Global 19 0.70 5.5e-12 87 0.076 E8 Europe: excluding mountain stations 20

0.93 9.9e-12 131 0.047 GS_HR Global: high-frequency surface stations 21 0.73 1.2e-12 100 0.042 GAINS Global:

excluding mountain stations 22 0.99 1.4e-12 62 0.055 GAINS Global: excluding mountain stations 23 0.86 6.7e-12

221 0.077 E7N Europe: high-frequency surface stations 24 0.76 9.1e-12 221 0.047 E7P Europe: excluding mountain

stations 25 0.97 1.6e-13 232 0.064 E8 Global: night/afternoon selection 26 0.79 3.2e-12 231 0.062 GS_HR Europe:770

high-frequency surface stations 27 0.82 2.9e-12 78 0.041 E8 Europe: excluding mountain stations 28 0.51 8.3e-12 75

0.065 E7P Europe 29 0.75 3.0e-12 228 0.069 UN Global: high-frequency surface stations
:::
We

:::::
adopt

:
a
::::::
normal

::::::::::
distribution

::::
with

::::
mean

::::
0.06

::::
ppt

:::
and

:::::::
standard

::::::::
deviation

::::
0.01

::::
ppt.

:::::::::::
Uncertainties

::::::
within

:::
this

:::::
range

::::
yield

::::::
stable

::::::::
inversion

::::::
results,

:::::
while

::::::
reduced

::::::::::
chi-squared

::::::
values

::::::
remain

::::
close

::
to
::::
one

::::
(see

::::::::
Appendix

:::
F).

–
::
(v)

::::::::
Baseline

::::::::::::
optimization:

:::
We

::::::::
optimize

::
the

::::::::
baseline

::
in

::::
eight

:::::::::
latitudinal

:::::
bands,

::::::
which

::::::::
improves

::::::::::
performance

:::::::::
compared775

::
to

:::::
using

:
a
::::::
single

:::::
global

::::::
factor.

::::
The

:::::::
baseline

::::::::::
uncertainty

::
is

:::
set

::
to

:::
0.1

::::
ppt

::
to

:::::
avoid

::::::::::::::
underestimation,

::
as

:::::::
smaller

::::::
values

:::::::::
(especially

::::::
< 0.01

::::
ppt)

::::
can

:::::::::
introduce

::::::
biases.

::::::::
Inversion

:::::::
results

::::
were

:::::::
largely

:::::::::
insensitive

:::
to

:::
the

:::::::
choice

::
of

::::::::
baseline

::::::::::
optimization

:::::
time

:::::::
window,

:::
for

::::::
which

:::
we

::::::::
therefore

:::::::
adopted

::
a
:::::
value

:::
of

:
30 0.77 1.1e-13 225 0.078 GAINS Global:

high-frequency surface stations 31 0.74 3.4e-12 118 0.032 E8 Europe: night/afternoon selection 32 0.60 8.7e-12 232

0.064 GAINS Europe: high-frequency surface stations 33 0.83 4.1e-12 100 0.067 E7N Europe: excluding mountain780

stations 34 0.97 7.3e-12 237 0.075 E8 Europe 35 0.56 9.2e-12 169 0.045 GS_HR Europe: high-frequency surface

stations 36 0.90 3.0e-12 154 0.074 E7P Europe: night/afternoon selection 37 0.78 3.6e-12 98 0.041 E7P Global 38 0.64

6.8e-13 103 0.059 GS_HR Global: excluding mountain stations 39 0.71 5.6e-12 145 0.054 UP Europe: night/afternoon

selection 40 0.56 9.8e-12 219 0.074 E8 Global: excluding mountain stations 41 0.79 6.2e-12 210 0.031 E7P Europe:

excluding mountain stations 42 0.58 8.0e-12 72 0.076 GAINS Global: excluding mountain stations 43 0.52 1.0e-12 206785

0.070 E7P Global 44 0.93 4.7e-12 64 0.045 E8 Global: excluding mountain stations 45 0.75 9.0e-12 100 0.049 GAINS

Europe: night/afternoon selection 46 0.81 7.8e-12 124 0.079 GAINS Europe 47 0.54 8.7e-12 52 0.062 E7N Europe:

high-frequency surface stations 48 0.79 2.0e-13 148 0.050 E7P Europe: high-frequency surface stations 49 0.56 1.9e-12

160 0.065 E7N Europe: high-frequency surface stations 50 0.75 4.4e-12 134 0.037 UN Global: high-frequency surface

stations 51 0.57 5.6e-12 197 0.035 E7P Europe: excluding mountain stations 52 0.76 8.3e-12 75 0.059 UN Global:790

high-frequency surface stations 53 0.58 4.7e-12 82 0.072 E8 Europe: high-frequency surface stations 54 0.87 5.8e-12

55 0.067 GAINS Global: high-frequency surface stations 55 0.62 3.0e-12 221 0.044 GAINS Global: night/afternoon

selection 56 0.88 7.4e-12 76 0.045 UP Europe: high-frequency surface stations 57 0.52 7.2e-13 232 0.049 GAINS

Europe: night/afternoon selection 58 0.81 2.9e-12 96 0.057 UP Global: night/afternoon selection
::::
days

:::
(see

:::::::::
Appendix

:::
G).
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–
:::
(vi)

::::::::
Emission

:::::
grid:

:::
We

::::::
employ

:::
an

:::::::
emission

::::
grid

::
of

::::
558

::::
cells,

:::::
since

:::
the

:::::::::
sensitivity

::::
tests

:::::::
indicated

:::::::::
negligible

::::::::::
dependence

::
of

:::
the

:::::
results

:::
on

:::
the

:::
grid

::::::
within

:::
the

:::::
tested

::::::::::::
configurations

::::
(see

::::::::
Appendix

:::
H).

:

Ensemble uncertainty, presented as the 2σ uncertainty across all a posteriori emissions of the Monte Carlo ensemble at

each grid cell

–
:::
(vii)

::
A
::::::
priori

:::
and

::::::::::::
observational

::::::::
datasets:

::
For

:::::
these

::::::
inputs,

::
we

::::::
sample

:::::::::
randomly

::::
from

:::
the

::::::
datasets

:::::::::
described

:
in
:::::
Sect.

:::
2.3800

:::
and

::::
Sect.

::::
2.1,

::
as

::::
there

:::::
were

::
no

::::::::
objective

:::::::
reasons

::
to

::::::
restrict

::::
their

::::::::
parameter

::::::
space.

Annual emission time series for (a) the United Kingdom, (b) Germany, (c) France, (d) Italy, and (e) the EU-27. The colored

lines represent all inversion results using the Monte Carlo-based settings. The solid black lines represent the average a posteriori

emissions across all performed inversions,

Annual emission time series for northwest Europe. The solid black lines represent the average a posteriori emissions across805

all performed inversions, with with a 2-σ uncertainty range for each year for each year. The blue and black squares represent

the results from Manning et al. (2022) using the InTEM model with inversion time frames set to 3- and 1-months, respectively
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. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA

or the U.S. Department of Commerce.810
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