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Abstract 23 

We present the collective evaluation of the regional scale models that took part in the fourth edition of the Air Quality Model 24 

Evaluation International Initiative (AQMEII). The activity consists of the evaluation and intercomparison of regional scale air quality 25 

models run over North American (NA) and European (EU) domains for 2016 (NA) and 2010 (EU). The focus of the paper is ozone 26 

dry deposition. Dry deposition is among the most important processes of removal of chemical compounds from the atmosphere 27 

and an important contributor to the overall chemical budget of the latter. Furthermore ozone dry deposition is very important as 28 

it can be severely detrimental to vegetation physiology. The collective evaluation begins with an operational evaluation, namely a 29 

direct comparison of model-simulated predictions with monitoring data aiming at assessing model performance (Dennis et al., 30 

2010). Following the AQMEII protocol and Dennis et al. (2010), we also perform a probabilistic evaluation in the form of ensemble 31 

analyses and an introductory diagnostic evaluation. The latter, analyses the role of dry deposition in comparison with dynamic and 32 

radiative processes and land-use/land-cover types (LULC), in determining surface ozone variability. Important differences are found 33 

across dry deposition results when the same LULC is considered. Furthermore, we found that models use very different LULC masks, 34 

thus introducing an additional level of diversity in the model results.  The study stresses that, as for other kinds of prior and 35 

problem-defining information (emissions, topography or land-water masks), the choice of a LULC mask should not be at modeller’s 36 

discretion. Furthermore, LULC should be considered as a variable to be evaluated in any future model intercomparison, unless set 37 

as common input information. The differences in LULC selection can have a substantial impact on model results, making the task 38 

of evaluating dry deposition modules across different regional-scale models very difficult. 39 

 40 
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 43 

1. Introduction 44 

This paper presents the results of the operational and probabilistic evaluation of the 45 

regional scale models taking part in the Air Quality Model Evaluation International Initiative phase 46 

4 (AQMEII-4) activity. As presented in Galmarini et al. (2021), the AQMEII-4 focus is dry deposition 47 

process modelling within regional scale models (AQMEII-4-Activity 1) as well as standalone dry 48 

deposition modules (AQMEII-4-Activity 2) as detailed in Clifton et al. (2023).  49 

As traditionally done in past editions of the AQMEII activity (Solazzo et al. 2012a, Im et al., 50 

2014, Solazzo et al. 2017a), and in agreement with the protocol described by Dennis et al. (2010), 51 

prior to any detailed analysis of specific process modelling (diagnostic evaluation), a thorough 52 

analysis of the overall performance of the model must be conducted via operational and 53 

probabilistic evaluation. The scope of such an approach is to verify the positioning of the models 54 

participating in AQMEII with respect to observations or any other model simulating the case study 55 

or against a multi-model ensemble (Galmarini et al. 2013). Such an analysis has the scope of 56 

assisting the interpretation of any other detailed (diagnostic) result in this paper or other 57 

contribution to the special issue and understanding how the different processes contribute to the 58 

model spread. Examples of this approach can be found in Solazzo et al. (2012a and b), Vautard et 59 

al. (2012), Im et al. (2015, 2018), Giordano et al. (2015), Brunner et al. (2015), and Kioutsioukis et 60 

al. (2016). The operational evaluation also provides important context for the interpretation of 61 

diagnostic results – for example, the contrast in diagnostic comparisons between models with 62 

higher and lower evaluation performance helps to identify specific processes which may 63 

contribute to the differences (an example of this approach appears in Makar et al. (2025), this 64 

issue, for sulphur and nitrogen dry deposition, and Vivanco et al. (2018)). 65 

Since the operational and probabilistic analysis is instrumental to the interpretation of 66 

ozone dry deposition-related results (the focus of the fourth edition of AQMEII), we shall 67 

concentrate on the variables that are directly or indirectly connected to description of dry 68 

deposition processes within the models, namely: atmospheric concentrations, land-use/land-69 

cover (LULC) masks and meteorology. A detailed diagnostic analysis of modelled ozone dry 70 

deposition can be found in Hogrefe et al. (2025, this issue).  71 

mailto:Stefano.galmarini@ec.europa.eu
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2. Models, domains, and years of consideration 72 

The setup of the AQMEII-4 Activity 1 is detailed in Galmarini et al. (2021). In essence, the 73 

activity consists of running regional scale models on the North American (NA) and European (EU) 74 

domains for the years (2010, 2016) and (2009, 2010) respectively. The motivations behind the 75 

selection of these for years are given in Galmarini et al. (2021). The models that took part in 76 

AQMEII-4 are listed in Table 1, where details on the institutions in charge and the cases simulated 77 

are also provided. These models and in particular their dry deposition schemes are described more 78 

in detail in Galmarini et al. (2021, this issue), Makar et al. (2025, this issue) and Hogrefe et al. (2023 79 

and 2025, this issue).  Note that simulations took place with harmonized input emissions fields 80 

(Galmarini et al., 2021, this issue); all models started with the same anthropogenic, lightning NOx, 81 

and forest fire emissions inventory for North America and Europe, respectively (Galmarini et al., 82 

2021), while biogenic emissions and other natural sources of emissions such those of sea-salt 83 

particles were carried out as part of internal model processing and should be considered “part of 84 

the model” in the analysis that follows. 85 

The analysis described here will only focus on two year-long simulations: 2016 for the NA 86 

case and 2010 for the EU case in the interest of synthesis. The following aspects will be considered 87 

in detail in this paper: 88 

● Analysis of space and/or time averaged ozone concentrations  89 

● Analysis of seasonal, diurnal, and spatial variations of ozone (and to a lesser extent nitric 90 

oxide, and nitrogen dioxide concentrations, in order to assist in the ozone analysis). 91 

● Ensemble analysis of modelled ozone concentrations 92 

● The role of variability in effective fluxes for specific pathways in determining the variability 93 

of ozone dry deposition flux over different LULC types 94 

● The role of variability in wind speed, mixed layer height, dry deposition, and radiation in 95 

determining the variability of ozone concentrations at the surface. 96 

Model values will be evaluated against ozone and precursor concentrations collected by 97 

regional operational networks during the year in consideration. More specifically, for North 98 

America the monitoring network databases employed included: the U.S. Environmental Protection 99 

Agency’s Air Quality System (AQS; https://aqs.epa.gov/aqsweb/airdata/download_files.html), the 100 

Canadian National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-101 

climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html), 102 

and the Canadian National Atmospheric Chemistry database (https://www.canada.ca/en/environment-103 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
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climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-104 

database.html). For the European case the monitoring network databases employed include: the 105 

European Monitoring and Evaluation Programme (EMEP; https://www.emep.int/), and the 106 

European Air Quality Database (AIRBASE;  https://eeadmz1-cws-wp-air02-107 

dev.azurewebsites.net/download-data/). The databases provide measurements in ppb for the NA 108 

case and μg/m3 for the EU case. We opted for sticking to the original units avoid a conversion of 109 

one into the other to preserve the integrity of datasets and avoid the instruction of uncertainties 110 

that would penalise the quality of one or the other.  111 

Given the continental dimension of the two regional domains simulated under AQMEII-4, the 112 

latter have been divided into sub-regional domains for analysis. These group portions of the 113 

network that share common features such as atmospheric circulation and possible sources of 114 

ozone precursors, and also provide continuity with past AQMEII model evaluation phases (Solazzo 115 

et al. 2012a and b).  116 

Figure 1 shows the sub-regions selected within the two modelling domains, the corresponding 117 

sampling sites and the yearly average measured ozone (a and b). As noted by Solazzo et al (2012a), 118 

from the distributions of the pollutants, it is easy to identify the reason for those specific division 119 

in subdomains. In North America, a longitudinal divide is present between western (R1), central 120 

(R2) and eastern parts of the continent while the latter also requires a latitudinal division in two 121 

smaller subdomains (R3 and R4) due to the different kind of precursors’ distributions and 122 

consequent ozone formation potentials. In Europe, the spatial distribution of emitters is different 123 

from North America and shows greater spatial density. There exist areas that require specific 124 

attention being almost decoupled from the rest of the continental air shed. These are typically the 125 

Iberian Peninsula and southern Mediterranean basin (R4), the Po Valley (R3) and Eastern Europe 126 

(R2). These NA and EU analysis sub regions were first defined in Solazzo et al (2012a), though with 127 

less detail and have been used in subsequent AQMEII analyses (e.g., Hogrefe et al., 2018) with 128 

different subdivisions but with the same goal of identifying regions with more homogeneous 129 

chemical potentials. For the sake of synthesis and in the absence of direct measurement of ozone 130 

dry deposition, this paper will concentrate exclusively on the model performance with respect to 131 

ozone concentrations with a few references to nitrogen oxides to give a more comprehensive 132 

sense of the quality of the performance of the individual models and the ensemble. 133 

 134 

https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.emep.int/
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3. Operational evaluation 135 

3.1 Ozone and nitrogen oxides surface air concentrations 136 

3.1.1 NA case 137 

The model performances at continental level and for the whole year are presented in 138 

Figure 2-6. For the two continents, the Root Mean Square Error (RMSE) and Mean Bias (MB) are 139 

computed from hourly ozone values for the entire year and are shown for each model in Figure 2-140 

3 North America, and Figure 4, Figure 5 for Europe. Figure 6 shows the spatially averaged results 141 

presented in Figures 2 through 5 as box plot diagrams. In general, RMSE for the NA case (and in 142 

particular, for two models, namely NA7 (WRF-Chem (UPM)) and NA8 (WRF-Chem (NCAR)) appears 143 

to be larger than the EU case. Note that, since ozone values are reported in ppb over NA and 144 

ug/m3 over EU, the range of the colour scales over both continents has been set such that the 145 

same colours represent the same absolute errors (note the difference in the numerical values for 146 

the colour bars for these figures), to account for unit differences and allow for a visual comparison 147 

between continents. Most differences from the observations are found in the eastern and south-148 

eastern parts of the NA domain. As from Figure 2-5, three groups of behaviours can be 149 

distinguished for the NA case. Relative to the rest of the models, NA1, NA2, NA3 and NA5 150 

(respectively WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Ops)) 151 

show low RMSE values and comparable behaviours. NA4 (GEM-MACH (Zhang)) and NA6 (WRF-152 

Chem (RIFS)) show slightly higher errors in the mid to east coast part of the domain whereas NA7 153 

(WRF-Chem (UPM)) and NA8 (WRF-Chem (NCAR)) show markedly higher errors in the mid to 154 

eastern part of the domain and along the west coast. Looking at the biases (Figure 3), the analysis 155 

presented above is confirmed with some nuances though. In fact, we can see that the grouping 156 

can be more refined. A first group is made of the two EPA models NA1 and NA2 (WRF/CMAQ 157 

(M3Dry) and WRF/CMAQ (STAGE)) with a widespread overestimation across the continent. NA3 158 

and NA5 (GEM-MACH (Base) and GEM-MACH (Ops)) produce the smallest biases of the group (see 159 

also Figure 3) and with a clearer West-East regional separation compared to NA1 and NA2. Finally, 160 

NA4, NA6, NA7 and NA8 (GEM-MACH (Zhang), WRF-Chem (RIFS), WRF-Chem (UPM), WRF-Chem 161 

(NCAR)) have larger biases, with NA8 having the largest mean bias (MB) of all (Figure 4). This 162 

analysis helps to distinguish the impacts of different dry deposition modules from the impacts of 163 

differences in other aspects of the model on simulated ozone. For example, WRF/CMAQ (M3Dry) 164 

and WRF/CMAQ (STAGE) differ only in their dry deposition modules, and the differences between 165 

these two simulations are generally smaller than their differences relative to the GEM-MACH and 166 
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WRF-Chem simulations. On the other hand, the dry deposition scheme has an important effect 167 

when we look at NA4 (GEM-MACH (Zhang)) vs. NA3 (GEM-MACH (Base)). These two models share 168 

the same regional scale system but use a different dry deposition scheme. The effect of the dry 169 

deposition schemes on the ozone concentration is quite remarkable. Recent work emphasizes a 170 

substantial effect of the magnitude of dry deposition velocity on ozone concentration (e.g. Baublitz 171 

et al. 2020; Wong et al., 2019; Clifton et al., 2020b). The results are consistent with those in Clifton 172 

et al. (2023) where the individual dry deposition module performances were evaluated (see 173 

discussion below). Therein larger differences were shown existing between the Zhang and Base 174 

schemes used in GEM-MACH than between the M3Dry and STAGE schemes used in CMAQ. 175 

Comparing NA3 (GEM-MACH (Base)) to NA5 (GEM-MACH (Ops)) reveals the impacts of model 176 

configuration and science option choices other than dry deposition, since both simulations use the 177 

Wesely scheme but differ in a number of other modelling aspects, as described in more detail in 178 

Makar et al. (2025). The relatively low MB for models NA3 and NA5 reflect the use of a similar 179 

deposition velocity algorithm, while differences between these two models reflect the use of 180 

process representations in NA3 which are absent in NA5 (for canopy vertical turbulence different 181 

approaches for canopy vertical mixing and photolysis (Makar et al., 2017), feedbacks between 182 

chemistry and meteorology (Makar et al., 2015a,b), vehicle-induced turbulence (Makar et al., 183 

2021) and satellite derived leaf area index (Zhang et al., 2020), while NA5 makes use of a simplified 184 

means of adding surface emissions in the model which assumes that fresh emissions are evenly 185 

mixed into the first two model layers)..   The effects of model configuration choices are also evident 186 

in the results of the three remaining models (WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem 187 

(NCAR)) that share the same dry deposition model and overall model code but utilize different 188 

configuration options. These simulations show a consistent overestimation that cannot be 189 

attributed clearly to one factor (see also Figure 3). The three implementations are also with 190 

respect to three different WRF-Chem version numbers (3.9.1, 4.0.3 and 4.1.2 respectively); 191 

versions 3.9.1 and 4.0.3 use the Grell and Devenyi (2002) cumulus parameterization, version 4.1.2 192 

uses the Grell and Freitas (2014) parameterization. Furthermore, both WRF-Chem (RIFS) and WRF-193 

Chem (UCAR) employ the same gas–phase mechanism  (Emmons et al., 2010), while that of WRF-194 

Chem (UPM) differs from the other two models.  The relatively minor differences between WRF-195 

Chem (UPM) and WRF-Chem (UCAR) shown in Figure 6a, may thus reflect differences in the gas-196 

phase chemistry, with the former’s mechanism resulting in slightly lower positive bias levels.  197 

Knote et al. (2015) conducted a comparison of the two gas-phase mechanisms (CBMZ and 198 

MOZART4) within the same modelling framework, and showed that two mechanisms to have 199 
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biases opposing in both magnitude and sign over North America). The larger differences (same 200 

figure) with the RIFS implementation reflecting differing cloud amounts and hence differing 201 

photolysis rates within the two implementations. The large overestimation of ozone by the WRF-202 

Chem (UCAR) configuration may thus be linked to the underestimated precipitation in this model 203 

reported elsewhere (e.g. Makar et al. 2025), which also implies smaller cloud amounts and 204 

stronger solar radiation.    205 

 206 

3.1.2 EU case 207 

In Figures 4 and 5, RMSE and MB in Europe are presented, respectively. The errors have 208 

more a hot-spot character that is mainly evident in the southern part of the domain and therein 209 

at well-recognized critical regions like the Po Valley in the north of Italy, Greece and the Iberian 210 

Peninsula. This result is confirmed in the MB plots that also show EU3 (LOTOS/EUROS) as the best-211 

performing model of the four though in many cases underestimating ozone concentration levels. 212 

EU2 shows worse RMSE scores than the other three models in particular over Germany, Poland, 213 

and Hungary, and scores the highest median RMSE value (Figure 6b). As for the rest of the domain, 214 

smaller RMSE values can be noticed throughout the region for all models. EU1 (WRF/Chem (RIFS)) 215 

and EU4 (WRF/CMAQ (STAGE)) show comparatively larger errors, especially in the southern and 216 

northern parts of the domain respectively. This behaviour of EU1, EU2 and EU4 may be associated 217 

with the prediction of NO2 and NO concentration (see later discussion). 218 

In this case, a model implementation/user effect can be an element of consideration since 219 

the EU4 is the same model that is used by EPA in the NA case (NA2), but in this instance run by the 220 

University of Hertfordshire. In the implementation of EU4, the primary differences lie in the 221 

meteorological model and the MEGAN biogenic emissions input. These variations in 222 

meteorological drivers and biogenic emissions can introduce differences, potentially contributing 223 

to the observed model biases when compared to other implementations of the same model.  224 

However, it should also be noted that the CMAQ simulations in North American (models NA1, NA2, 225 

Figure 3) also show positive biases, particularly along the US eastern seaboard.  Some of these 226 

biases may be attributable to the need for physical process representation for forest canopy 227 

shading and turbulence (see Makar et al., 2017, which intercompares multiple models), and has 228 

been found more recently to improve the performance of the CMAQ model (Campbell et al., 2021, 229 

Wang et al., 2025).    Many of the regions with the highest ozone biases in models EU1, EU2 and 230 
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EU4 correspond to areas with high forest canopy and leaf area index values, as does the eastern 231 

seaboard of the USA and Canada, and the negative biases in EU1 and EU4 for NO and NO2 are 232 

consistent with the absence of the more realistic reduction in thermal diffusivity coefficients and 233 

photolysis rates expected under forest canopies (Makar et al., 2017); the performance of these 234 

models may be improved through the inclusion of forest canopy processes. .    235 

From the analysis of NO, NO2 and O3 Normalised Root Mean Square Error vs Normalised 236 

Mean Bias in the soccer plots of Figure S1 in the Supplementary Material (SM, from now on) for 237 

the two continents, we note that the two precursors to ozone show an error smaller than 15% for 238 

all models except two. For the NA case, the ozone soccer plots confirm the grouping of the results 239 

qualitatively derived from the regional analysis of Figure 2. Figure 6 shows that GEM-MACH 240 

models NA3 and NA5 have ozone bias values closest to zero, followed by CMAQ (NA1 and NA2), 241 

while CMAQ has the lowest RMSE values, closely followed by the GEM-MACH NA3 and NA5 242 

implementations.    Four models show small error (<15%), two with medium (>15% and <20%) and 243 

two with high (>20%).  The ozone goal plots for the EU (Figure S1) show a statistical tendency to 244 

produce smaller errors than the NA case and in particular more coherence between the errors for 245 

ozone and its precursors. 246 

The Taylor diagram depicted in Figure S2 in the SM also evaluates the correlation between 247 

simulated and observed ozone values. The results show a higher correlation of model predictions 248 

with observations in the EU case while the other statistical parameters in the diagram confirm 249 

what has been presented in the other plots. The multi model ensemble (MME) is also presented 250 

for the two cases, showing in both instances an improved performance with respect to the 251 

individual model simulations. 252 

 253 

3.1.3 Diurnal and seasonal variability 254 

Figure 7 shows a comparison of observed and modelled seasonal and diurnal cycles for 255 

North America for ozone, NO and NO2. These cycles were constructed by averaging the underlying 256 

raw hourly data available for the entire year over a given month-of-year or hour-of-day, 257 

respectively. At the monthly level, the figure clearly shows that for ozone in NA, almost all models 258 

over-estimate the concentration during summer. The multi-model mean fails to reproduce the 259 

ozone maximum in April by overshooting by approximately 3 ppb and presenting a maximum in 260 

June. This result is driven by 4 out of 8 models (NA4 (GEM-MACH (Zhang)), NA6 (WRF-Chem (RIFS)), 261 
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NA7 (WRF-Chem (UPM)) and NA8(WRF-Chem (NCAR))). Although slightly overestimating the 262 

concentration, two models (NA3 (GEM-MACH (Base)), and NA5 (GEM-MACH (Ops))) manage to 263 

reproduce very accurately the seasonal evolution. NA1 and NA2 (WRF/CMAQ (M3Dry) and 264 

WRF/CMAQ (STAGE)) capture the trend and seasonality and just slightly overestimate the ozone 265 

peak value.  266 

The tendency for overestimating ozone concentration and underestimating NO is also clear 267 

from Figure 7 (for NA) and Figure 8(for EU). Figure 7’s diurnal variation panels (right hand column) 268 

in particular show that the models NA3 and NA5 have the closest values to observations for O3, 269 

NO and NO2, though all models underestimate the NOx totals.  This is especially evident for NO 270 

and NO2 in the mid-day hours (10 to 18 local time), when the simulated NO and NO2 values are 271 

the closest in the ensemble to the observations. The monthly variation panels (Figure 7 left 272 

column) show that the relative impact of the NOx underestimates is smaller in the summer than 273 

in the winter, and models NA3 and NA5 have the closest NO values to observations and slightly 274 

overestimate NO2 in the summer.  Model NA3 includes a forest canopy parameterization (Makar et al., 275 

2017), which takes into account reduced vertical coefficients of thermal diffusivity and photolysis levels 276 

below the forest canopy – these in turn reduce turbulent mixing (resulting in higher NOx concentrations 277 

from surface sources, and also shift the chemical regime from ozone production to ozone destruction by 278 

NOx titration below the forest canopy).  Model NA3 also includes the effects of vehicle-induced 279 

turbulence on NOx emissions from vehicles (Makar et al., 2021), an effect which results in more 280 

efficient dispersion of these emissions out of the surface layer.  Model NA5 assumes the area 281 

emissions of NOx are evenly and instantaneously distributed over the first two vertical levels of 282 

the model rather than incorporating these emissions as a flux boundary condition on the diffusion 283 

equation.  As noted above, Models NA3 and NA5 include process representation which can 284 

enhance the vertical transport of freshly emitted NOx out of the lowest model layer; at least some 285 

of superior performance may be related to this faster dispersion. The ozone dry deposition velocity 286 

used in NA3 and NA5 versus that of NA4 is also a driver for the differences between these models, 287 

as noted in Clifton et al. (2023), which noted that NA3 and NA5 shared a scheme which significantly 288 

overestimated ozone dry deposition velocities relative to observations in the summer while 289 

providing reasonable estimates during the winter, while the Zhang scheme, used in NA4, showed 290 

little seasonal variation (tending to be flat over time, with overestimates during winter, 291 

underestimates during summer).  It is of note that the models that reproduce the seasonal 292 

evolution of ozone most accurately during summer when the rest of the models struggle, have the 293 

dry deposition schemes with the largest positive biases in summertime ozone dry deposition 294 
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velocity and the greatest seasonal amplitude (Clifton et al. 2023). This implies (1) that the factors 295 

affecting the ozone concentrations have a strong seasonal dependence (models NA4 versus NA3 296 

and NA5), (2) and that while one means of helping achieve that seasonal dependence is through 297 

an overestimation of the ozone dry deposition velocity relative to observations (models NA3 and 298 

NA5), (3) other seasonally dependent process improvements than dry deposition velocity are 299 

required to better simulate ozone (given that the other models considered here which incorporate 300 

more accurate ozone dry deposition schemes, relative to the observations in Clifton et al. (2023) 301 

also have high positive biases in parts of NA and EU (Figure 3 and Figure 5).   As noted above, 302 

process representation of forest canopy shading and turbulence is one such such possible means 303 

of model performance improvement1.  The other consideration worth examining is the 304 

interdependence between model cloud cover and surface photolysis rates, given the variation 305 

between NA WRF-Chem models NA6, NA7, and NA8, where the largest differences in ozone 306 

positive bias correspond to the use of differing cloud parameterizations. 307 

For NO and NO2, the models show seasonal cycles which differ between the models (Figure 308 

7, Figure 8, left-hand columns) versus the observations and between the NA and EU observations.  309 

Observed NA ozone peaks in April (month 4, Figure 7 upper left panel), while observed EU ozone 310 

peak in July (month 7, Figure 8 upper left panel).  As noted above, models NA1, NA2, NA3, and 311 

NA5 all capture the NA O3 seasonality (CMAQ and Base and Ops GEM-MACH configurations) while 312 

the WRF-Chem models predict a late summer peak, similar to observations in EU.  All models tend 313 

to overestimate compared to observed ozone concentrations (exceptions:  NA3 and NA5 in April 314 

and May, Figure 7, EU2 and EU3 from November to April).  All models underestimate wintertime 315 

NOx (though NA models NA1, NA2, NA3, NA5, and NA7 have close NO2 performance to 316 

observations from July through October, Figure 7), and EU3 NO values closely match observations, 317 

while EU2 NO2 is biased high relative to observations.  All NA models have significant (factor of 318 

two or more) negative biases in NO, and the largest seasonal NO2 negative biases in winter.  As a 319 

consequence, all NA models strongly underestimate the amplitude of the observed seasonal cycle. 320 

 
1 We note that subsequent investigation at ECCC of the GEM-MACH dry deposition algorithm described in Makar et 

al. (2018), following the results published in Clifton et al (2023) identified two key errors added to the code in the 
version subsequent to the code version used in Makar et al (2017).  Specifically, the cuticle resistance formula 
(Makar et al, 2018 equation S.8, Clifton et al (2023) equation (42) made use of Zhang et al (2002) dry cuticle 
resistance coefficients (rcuti, rlu) which should not have been scaled by inverse leaf area index, and made use of 
Zhang et al (2002) coefficients for the lower canopy resistance (Makar et al, 2018 equation (S.2), Clifton et al 2023 
equation (44) which did not include the required scaling of the coefficients by (LAI^0.25)/(u*)^2.  Subsequent to 
these corrections, a much closer fit to the observations in Clifton et al. (2023) was achieved.  (K. Toyota, A. 
Robichaud, personal communication, 2024). 
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Potential factors which might drive an underestimate of wintertime NOx include underestimates 321 

in the emissions of NOx from combustion sources such as wintertime home heating from fossil or 322 

wood fuels (van der Gon, 2015), underestimates of atmospheric stability (i.e. if the simulated 323 

atmosphere is more unstable than the actual atmosphere, NOx emissions may build up to higher 324 

concentrations in the model than is observed), and the potential for HONO cycling in the presence 325 

of snow on surface leading to longer lifetimes of NOx (Michaud et al., 2015).”   Figure 8 also shows, 326 

not unexpectedly,  that the models with the smallest NO and NO2 biases (EU2 (WRF-Chem (UPM)) 327 

and EU3 (LOTOS/EUROS)) do quite well for O3, NO and NO2), and the EU NO and NO2 biases for 328 

these models are in general much smaller than the NA model biases.  At the diurnal level (Figure 329 

7, Figure 8 right panels) the results are consistent with what is found at the seasonal level in terms 330 

of over- or underestimations. At the diurnal level, EU2 outperforms the others showing a good 331 

capacity of catching the average time evolution of the three pollutants. 332 

The monthly averaged ozone, NO and NO2 concentrations breakdown at the sub regional 333 

level are presented in Figures S3 and S4 for NA and EU, respectively. From Figure S3 one can 334 

conclude that the major contribution to the domain-wide estimation presented earlier is 335 

essentially coming from regions R2, R3 and R4 (i.e. the eastern part of the domain) whereas all 336 

model results in R1 are rather similar and in agreement with the measurements throughout the 337 

year with some models overestimating cold seasons but by a lesser extent than in the other 338 

regions. The summertime ozone overestimation over the Eastern U.S. for NA1 and NA2 339 

(WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE)) is consistent with the findings of Appel et al. 340 

(2021).  It is also worth noting that all of the NA models (Figure 9) overestimate O3 in the period 341 

from July through September in regions R2, R3, R4; an observed effect largely absent in the EU 342 

models (Figure 10). We also note that the time series of observed O3 for North America shows 343 

April peaks for regions R2, R3 and R4, while R1 peaks in June.  One possible cause for the observed 344 

early spring peak in the latter regions is the transport of upper Tropospheric O3 downwind of the 345 

western cordillera, a process which is known to be at its maximum in the springtime (Pendlebury 346 

et al., 2018).  From figure S4, referring to the EU case, we see that EU1 and EU4 underestimated 347 

NO and NO2, whereas EU2 largely overestimates for all European sub-regions. Such model 348 

performances can explain the ozone biases as they affect ozone titration at night.  This effect is 349 

apparently exacerbated in the Po Valley area, which is known for high NOx emission levels. The 350 

observational sites in the Scandinavian Peninsula are mainly from the EMEP network which is 351 
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representative of the remote background whereas the AirBase network rural background sites are 352 

more prone to local sources of pollution. 353 

These regional differences will be instrumental to the analysis of dry deposition processes. 354 

The same behaviour observed in sub regions is found at both the seasonal and hourly level. From 355 

Figure 10 we can see the situation in Europe, which lacks the large positive biases in the NA 356 

simulations.  357 

 358 

3.1.4 Summary of the analysis 359 

One overall conclusion from the comparisons with observations for NO, NO2 and O3 is that:  360 

• the models which most closely match NO and NO2 (EU2, EU3) also have the best performance 361 

for O3,  362 

• that those models with negative biases for NO and NO2 also have positive biases for O3, and 363 

that the magnitude of the NOx negative biases is inversely proportional to the magnitude of 364 

the O3 positive biases, for all models.   365 

• The relative magnitude of the “freshly emitted” component of NOx (i.e. NO) tends to be 366 

underestimated, with the exception of model EU3 (LOTOS/EUROS).   367 

These results all point towards excessive vertical mixing of fresh NO emissions up from the lowest 368 

model layer as a root cause of the model biases in the other models.  The reasons for this 369 

conclusion are:  370 

(1) the relative fraction of NOx that is NO will be highest in air dominated by fresh emissions;  371 

(2) the relationship between positive ozone biases and negative NO biases indicates that the ozone 372 

biases are due to insufficient NO titration;  373 

(3) the effect is exacerbated in winter in all NA models and some EU models - a time when the 374 

atmosphere tends to be more stable, and photolysis rates in the northern hemisphere are low, 375 

both conditions which favour NOx titration.     376 

A secondary cause may be missing NO emissions in the wintertime, though this seems less likely 377 

due to the relatively high confidence in mobile emissions and stack emissions, which dominate the 378 

NOx emissions totals, and the relatively good performance of EU3 relative to the other EU models 379 

when making use of the same emissions inventory.   380 
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 381 

3.2 Ozone dry deposition fluxes 382 

We start our examination of O3 dry deposition fluxes with the direct comparison of the 383 

effective and total fluxes calculated by the models. Effective flux is a convenient way of examining 384 

the contribution of the resistances of various pathways towards bulk dry deposition, taking into 385 

account that variability is not only due to these resistances but also surface ozone concentrations 386 

(Galmarini et al., 2021). The definition of effective fluxes is analogous to the definition of effective 387 

conductances (Paulot et al., 2018; Clifton et al., 2020b). Specifically, by definition, the sum of the 388 

effective fluxes equals the total ozone dry deposition flux, and this equality is used in the 389 

subsequent analysis. Within AQMEII-4, the relevant effective conductances were defined a priori 390 

and every participating modelling group was requested to determine the combination of all 391 

relevant resistances accounted for in their systems, necessary to produce the effective 392 

conductances requested. The definitions of the effective conductances, the dry deposition 393 

modelling approaches and the detailed formulation of effective fluxes for each model are 394 

presented in Galmarini et al. (2021, this issue). Because effective conductances and ozone 395 

concentrations can co-vary on daily timescales, it was important to archive high-frequency 396 

effective fluxes; for this same reason, conclusions about drivers of variations in effective fluxes 397 

may be distinct from those regarding effective conductances. The analysis of effective and total 398 

fluxes is performed only for the grid cells in which all models share the same LULC (for details on 399 

the common LULC classifications see Galmarini et al. (2021, this issue)). By restricting the analysis 400 

to locations sharing the same characteristics of land use across models, we reduce the impact of 401 

LULC variability on the resulting analysis, thus allowing us to compare only the response of models 402 

to the different dry deposition schemes employed for a given LULC. We present model results at 403 

grid cells that are covered by at least 85% of respectively, Evergreen Needleleaf Forest (NA: 1544 404 

cells, EU: 2531 cells), and Planted-Cultivated (NA: 6130 cells, EU: 6108 cells). In addition, we also 405 

define an ‘Ozone Receptor’ case that corresponds to the grid cells where ozone is monitored at 406 

the surface in the two continents (NA 1551 cells, EU 1656) independently from the underlying 407 

LULC type, which can therefore be different from model to model. In the SM the Deciduous 408 

Broadleaf Forest (581 cells), Mixed Forest (705 cells) are also presented for NA case only for the 409 

sake of synthesis. 410 

An important finding is obtained by simply imposing the data the selection criterion 411 

described above. As can be noted, for the same continent the models share relatively few grid 412 
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cells with the same dominant LULC. This is a clear indication of the fact that individual LULC masks, 413 

employed in the models, were obtained from substantially different sources (Table 1).  Such 414 

results raise a significant issue: is it acceptable that the characterisation of the land surface differs 415 

so much? In principle LULC masks adopted by the AQMEII 4 models should be very comparable, 416 

especially when sources of this information with a high degree of spatial resolution are now 417 

available. More discussion may be found in Section 5 and in our companion paper (Hogrefe et al., 418 

2025, this issue).  419 

 Figures S5 and S6 show seasonal cycles of the total ozone dry deposition flux and its 420 

decomposition into the three different effective fluxes. The pathways represented by these 421 

effective fluxes are (1) lower canopy and soil conductances combined in one factor (LCAN+SOIL) 422 

since some models did not distinguish these two terms, (2) cuticular conductance (CUT) and (3) 423 

stomatal conductance (ST). 424 

 The following features can be appreciated across the model results: 425 

● The magnitude peak of the ozone flux varies considerably from model to model in some 426 

cases (NA8) being almost twice that of others (NA4) for the monthly average. 427 

● Typically, the flux is highest during summer and lowest during winter. In some cases, some 428 

fluxes show nearly constant values throughout the summer season (NA2, NA3, NA5 and 429 

NA7). In others, there is a stronger midsummer peak (NA1, NA4, NA6) in July or August. 430 

NA8 shows a double peak shape. Given the dry deposition scheme is the same in NA8 as 431 

NA7 and NA6, this suggests this double peak is either meteorologically driven, or ozone 432 

driven. 433 

● In the EU case more homogeneity appears between EU1 and EU2 behaviours while EU4 434 

shows a slightly different performance at this macro level analysis at least.  435 

The breakdown of the contributions of the specific pathways to the total ozone flux does not 436 

appear to identify any common behaviour either across models, or within the same LULC type nor 437 

across time.  It is particularly notable that the relative contributions of the different pathways vary 438 

between models, (e.g., compare the relative magnitude of stomatal flux in NA1 and NA2, Figure 439 

S5(a)). Some models employing the same dry deposition algorithm nevertheless have different 440 

contributions associated with the different pathways (see NA3 versus NA5, which have the same 441 

dry deposition algorithm, yet the soil term dominates in NA3 and the cuticle term dominates in 442 

NA5).  The difference in soil versus cuticle terms dominating in NA3 and NA5 likely reflects 443 
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differences in meteorology between these two model implementations; as noted above, NA3 444 

includes feedbacks between meteorology and chemistry, in turn resulting in differences in the 445 

meteorological terms controlling these two deposition pathways..  446 

We note that an exception to the explanation presented above is for the “planted-447 

cultivated” LULC, where ST and LCAN+SOIL tend to dominate the flux.  There is also a clear summer 448 

maximum in ST across models (Figure S5e), but the exact seasonality of ST differs significantly 449 

between models. LCAN+SOIL tends to have a bi-modal seasonality for this LULC type – with minima 450 

during winter and during times of maximum ST. CUT tends to be low – with NA1 and NA2 451 

suggesting slightly higher values – with weak but noticeable seasonality with a broad growing 452 

season peak. To a certain extent, this pattern in seasonal variation in the different pathways and 453 

their contribution to the total flux also shows up for deciduous forests (Figure S5c), but less so for 454 

CMAQ than for the other models. In general, stomatal flux tends to drive seasonality in the ozone 455 

flux, as Clifton et al. (2023) found for ozone dry deposition velocity at the individual flux sites, but 456 

sometimes there a seasonal contribution in non-stomatal flux. The models also all differ in the 457 

relative contributions of LCAN+SOIL, CUT, and ST, as also found by Clifton et al. (2023). For 458 

example, cuticular flux is very low in some models (e.g., WRF Chem) but a dominant contributor 459 

(about 1/3 except over crops) in NA1 and NA2. Perhaps the primary conclusion is that model 460 

behaviour can be grouped around the model type. In fact, clear similarities can be found among 461 

NA3 and NA5 (GEM-MACH (Base) and GEM-MACH (Ops) for several land-use types), as well as 462 

NA6, NA7 and NA8 (WRF-Chem (RIFS), (UPM) and (NCAR) respectively). In the EU case, EU1 and 463 

EU2 (both WRF-CHEM) have comparable yearly characteristics, while EU4 (WRF/CMAQ (STAGE) 464 

used by the University of Hertfordshire) shares a similar breakdown with NA2 (WRF/CMAQ 465 

(STAGE) run by the USA-EPA). 466 

Although relevant for operational evaluation, the analysis in Figures S5 and S6 does not 467 

easily reveal the significance of dry deposition processes and pathways in determining ozone 468 

variability across models. Toward this end, hierarchical and variation partitions are considered in 469 

Section 5.  470 

 471 

4. Probabilistic evaluation 472 

The ensemble analysis described in this section aims to identify the models that contribute 473 

to an improved ensemble result and the best combination of models that improves the ensemble 474 
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skill. Such analysis is part of the probabilistic evaluation described in Dennis et al. (2010) and 475 

constitutes one of the four pillars of evaluation defined therein and adopted in the overall AQMEII 476 

activity. In past phases of AQMEII, ensemble analysis was also presented as an integral part of the 477 

model evaluation (Solazzo et al. 2012a, Solazzo et al. 2012b, Galmarini et al. 2013, Kioutsioukis 478 

and Galmarini, 2014, Im et al. 2015, Solazzo et al. 2013, Kioutsioukis, et al. 2016, Solazzo et al. 479 

2017b, Galmarini et al., 2018). The ensemble mean of the model results has already been 480 

presented in the operational analysis. However, identifying which and how many models 481 

contribute to improved ensemble results is another question to be addressed in this context. The 482 

analysis uses ozone mean concentration measured at the monitoring sites as reference and 483 

techniques based on model combination to determine the optimal results as described in earlier 484 

studies (Solazzo et al. 2012a, Solazzo et al. 2012b, Solazzo et al. 2013, Galmarini et al 2013, 485 

Kioutsioukis and Galmarini 2014, Kioutsioukis, et al. 2016, Galmarini et al., 2018).  486 

The skill of an ensemble increases if we combine accurate and diverse models (Kioutsioukis 487 

and Galmarini, 2014). As shown by Solazzo et al. (2012a) the skill normally reaches a maximum for 488 

an ensemble composed of less than half of the available models and then deteriorates when more 489 

models are added until reaching an asymptotic value. Given m available models, several 490 

combinations of model results in groups of n ≤ m can be produced. In this analysis, we aim at 491 

identifying the minimum number of models that produce the optimal result and which are the 492 

models that produce the highest ensemble skill. We therefore consider all ensembles obtained by 493 

combinations of members in each group constructed from the m models (i.e., a total of 494 

 ∑ (
𝑚
𝑛

)𝑚
𝑛=1   ensembles where (

𝑚
𝑛

) represents the combination of n models out of a total of m 495 

available). For each combination, we calculate the RMSE with respect to the measured values and 496 

identify the ensemble with the least error. Note that these ensembles cover the full range of 497 

possible combinations from first-order (one model ensemble) to mth order (m = 8 models for NA 498 

case and m = 4 models for EU). To avoid the exclusion of yet meaningful results and at the same 499 

time to study how the variety of models analysed combines toward those, we also present the 500 

results of ensembles with RMSE within 10% of the optimal one. Lastly, we determine the 501 

frequency with which each model is selected as part of an optimal ensemble. 502 

In Table 2 the results from NA are presented. The analysis of the 255 ensembles obtained 503 

by combining the models in groups of 1, 2, 3 through 8, gives a RMSE ranging from 3.77 to 11.89 504 

ppb. The results from Solazzo et al. (2012a) are confirmed in this study, therefore in the Table 2 505 

we will present only results up to order 4 (i.e. four members in the ensembles) in the NA case, 506 
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since for higher orders the results only deteriorate. The ensembles with the least error are 507 

obtained from the average of two and three models results (i.e. a 2nd and 3rd order ensemble, blue 508 

columns). The models that contribute to these two optimal ensembles are WRF/CMAQ (STAGE) 509 

and GEM-MACH (Ops) for order 2 and WRF/CMAQ (STAGE), GEM-MACH (Base) and GEM-MACH 510 

(ops) for order 3. The second-best ensembles (yellow columns) are also of order 2 and 3 and are 511 

composed of GEM-MACH (Base) and GEM-MACH (Ops) results, and WRF/CMAQ (M3Dry), GEM-512 

MACH (Base) and GEM-MACH (Ops), respectively. In particular, it is worth noting that (a) order 513 

one features two of the models most present in the ensembles and their individual result is still 514 

within 10% of the best higher order ensembles (b) WRF-CMAQ and GEM-MACH are the most 515 

frequent contributors, (c) WRF-Chem versions (RIFS, UPM, NCAR) are never contributing to any 516 

ensemble set. We note that both WRF/CMAQ  and GEM-MACH (Base and Ops) are used for 517 

operational air-quality forecasting in the USA and Canada, respectively, and hence (1)  they are 518 

frequently evaluated against monitoring data under the principle that new model versions must 519 

improve the forecast before replacing old model versions, (2) the ongoing evaluation process will 520 

tend to select model configurations with the best performance with respect to ozone 521 

concentrations,  (3) this ongoing evaluation process is for the model as a whole, while individual 522 

processes tend to be evaluated based on other data, and are incorporated into the base code, (4) 523 

this process can result in the adoption of processes with compensating errors (c.f. Makar et al. 524 

2014, and note the contrast between dry deposition velocity performance for NA3, NA5 here 525 

versus the dry deposition velocity performance in Clifton et al., 2023).  As new data such as the 526 

dry deposition observations of Clifton et al. (2023) become available, compensating errors come 527 

to light, allowing for corrections and updates to the model codes to be carried out. 528 

The EU ensemble (Table 3) has 4 models, which generates 15 ensembles with RMSEs 529 

ranging from 7.51 to 14.59 μg/m3. Four out of the 15 combinations of 2nd, 3rd and 4th order have 530 

errors within 10% (yellow column) of the optimal combination generated from LOTOS/EUROS and 531 

WRF-Chem (RIFS) for the second order (blue column). No 1st order ensemble has a RMSE smaller 532 

than the 2nd order best ensemble, meaning that no individual model run on the EU case performs 533 

better than the combination of the two shown in the 2nd order grouping. LOTOS/EUROS is present 534 

in all the ensembles created but yet alone is not doing better than when its results are averaged 535 

with those of WRF/CMAQ (STAGE). The latter, operated by the University of Hertfordshire for this 536 

case study, is present 80% of the time as a contributor to the second- and third-best ensembles. 537 

We note that LOTOS/EUROS, like the GEM-MACH and WRF/CMAQ models in NA, provides 538 
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operational forecasts of O3, NO2, and PM10, and hence will likely benefit from ongoing evaluation 539 

and selection of process representation that gives the most accurate model results.   Since the 540 

results of all orders are shown in Table 3 we can see that the conclusion of Solazzo et al. (2012a) 541 

is confirmed to the extent that a combination of half of the available members tends to 542 

outperform any single model or larger ensemble of results. It should be clear that the number of 543 

models is only an indication to the extent to which the combination of specific models allows one 544 

to produce the best results with a reduced number of ensemble members. 545 

 546 

5. Variance analysis of ozone fluxes and the role of conductances, turbulence, radiation and 547 

wind speed to ozone variability on common LULC types 548 

 549 

At this stage of the analysis it is important to determine the overall role of dry deposition 550 

and other relevant factors in determining the variability of ozone concentrations at the surface. 551 

Having established which grid cells are representing the same LULC characterisation (Section 3.2), 552 

we proceed with the analysis of dry deposition data by identifying a set of parameters that are 553 

expected to be relevant in the characterisation of the ozone flux, namely: 554 

● Lower canopy and soil effective flux (LCAN+SOIL) combined as one factor,  555 

● Cuticular effective flux (CUT) 556 

● Stomatal effective flux (ST) 557 

●  558 

We also identify the factors that are expected to be relevant in the determination of ozone 559 

concentration variability at the surface, namely: 560 

● Boundary layer height,  561 

● Solar radiation,  562 

● Wind speed,    563 

● Dry deposition velocities. 564 

 565 

Chemical transformation is a dominant factor in creating ozone variability together with the 566 

abundance of ozone precursors. However, it is challenging to represent the influence of these 567 

factors through a specific variable, although solar radiation can be viewed as a proxy of 568 
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photochemical activity. We note that air temperature can also have a significant influence on 569 

photochemical formation of ozone, but air temperature will also influence the dry deposition 570 

pathways; the two influences would be difficult to differentiate.  Although the analysis will be 571 

performed over all the months of the analysed years, the main focus will be around the summer 572 

months, when the ozone production and mixing ratios are normally at maximum levels, and when 573 

models are performing the worst, at least over NA. 574 

 575 

 576 

 577 

5.1 Relative relevance of pathway fluxes in ozone flux variability 578 

Variation partitioning of a single response variable (Y, e.g. total O3 flux, or O3 579 

concentration) is based on the adjusted R2 in a regression framework (Peres-Neto et al., 2006; Lai 580 

et al., 2022). For example, the variation partitioning of O3 flux between three sets of predictors 581 

(X1: LCAN+SOIL, X2: CUT, X3: ST) can be achieved through the estimation of the fractions 582 

(represented here by the dummy variables: a, b, c, d, e, f, and g) based on one (Xi), two (Xi, Xj) or 583 

three (Xi, Xj, Xk) variables (Figure S7): 584 

(1)   fractions based on one variable:  585 

[𝑎 + 𝑑 + 𝑓 + 𝑔] = 𝑅𝑌|𝑋1
2  

[𝑏 + 𝑑 + 𝑒 + 𝑔] = 𝑅𝑌|𝑋2
2  

[𝑐 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|𝑋3
2  

 

(1a) 

 586 

(2)   fractions based on two variables:  587 

[𝑎 + 𝑏 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋2)
2  

[𝑎 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋3)
2  

[𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋2,𝑋3)
2  

 

(1b) 

 588 

(3)   fraction based on all three predictor variables:  589 
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[𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋2,𝑋3)
2  (1c) 

 590 

Y in equations 1 (a,b,c) is the predictor variable in this case ozone deposition flux. From the above 591 

expressions, we can estimate the sole and shared contributions of each predictor. For example, 592 

the sole and shared fraction of variation explained by X1 are respectively:  593 

𝑠𝑜𝑙𝑒 = [𝑎] = [𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] − [𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] 

𝑠ℎ𝑎𝑟𝑒𝑑 = [𝑑/2 + 𝑓/2 + 𝑔/3] 

(2a) 

(2b) 

 594 

where (similarly for the other fractions): 595 

[𝑑] = [𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] − [𝑐 + 𝑒 + 𝑓 + 𝑔] − [𝑎] − [𝑏]  596 

 The analysis proceeds by carrying out multiple regressions for the equations 1(a) through 597 

1(c); the values of the left-hand side terms that minimize the differences between left and right-598 

hand sides of the equations are then compared - these provide the relative contribution of the 599 

component terms towards the net correlation coefficient between the ozone flux and the three 600 

predictors. 601 

For the sake of synthesis in the main paper, we shall present results of the variance 602 

decomposition analysis for the two most relevant LULC cases (evergreen needle leaf forest and 603 

ozone receptors). The analysis for all other LULC types selected and listed in Section 3.2, is 604 

presented in the Supplement. 605 

Figure 11 presents the contribution to the ozone dry deposition flux variability of the three 606 

effective fluxes (total or ‘sole’ plus ‘shared’: first and third column of plots in each figure) and their 607 

decomposition into ‘sole’ and ‘shared’ fractions (second and fourth column panels) for all months 608 

of 2016 and for the eight models participating in the NA case study for shared cells covered by at 609 

least 85% evergreen needle leaf forests. 610 

Considering the first and third columns of Figure 11 (where the sum of Eqs. 2a and 2b is 611 

presented) we note that for all models the fractional contributions to ozone flux variance add up 612 

to 1 as expected. For the summer period, we can see that the models can be divided into three 613 

main groups. The first group is where stomatal effective fluxes dominate in defining the ozone flux  614 

variability (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE)), a second group where the dominant 615 
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pathway to ozone flux variability is through the cuticular effective flux (GEM-MACH (Base), GEM-616 

MACH (Ops) and GEM-MACH (Zhang)) and a third group where the main factor is the combined 617 

soil and lower canopy effective flux combined (WRF-Chem (RIFS), WRF-Chem (UPM), WRF-Chem 618 

(NCAR)). This constitutes a significant result that is also in line with those obtained by Clifton et al. 619 

(2023), but extends their finding.  For example, Clifton et al. (2023) show that different models 620 

have very different relative partitioning across effective conductances at individual sites.  Our 621 

result here suggests that spatial variability in the ozone flux across the same LULC type is mainly 622 

determined by different flux pathways. Given the fact that the grid cells selected were dominated 623 

by the same land-use type, differences between the three groups can be attributed to substantial 624 

differences in the dry deposition modules, concentration gradients, and meteorology. In the 625 

winter and autumn months, the contribution to ozone flux variability is equally distributed across 626 

the three pathways for all models for this LULC type.  We also note that the seasonal cycle of the 627 

“sole” terms varies as a function of model.  The stomatal conductance term dominates the CMAQ 628 

implementations (NA1, NA2) in the summertime, while for the GEM-MACH implementations 629 

(NA3, NA4, NA5), summertime seasonality is mostly driven by the soil + lower canopy term, while 630 

for WRF-Chem implementations (NA6, NA7, NA8), stomatal and soil+lower canopy terms both 631 

have a weak maximum in the summer. 632 

In Figure 11 the results of the decomposition obtained according to equation (2) are 633 

independently presented (columns 2 and 4). For the sake of presenting the results in a clearer way, 634 

the contributions to the variation obtained from equation 2b, are plotted after changing their sign 635 

to better distinguish them from the others; but the total sum of the negative and positive values 636 

should be 1. This more detailed analysis allows us to verify the previous one with additional details. 637 

For example, the predominance of stomatal flux in WRF-CMAQ at the warm season is due to the 638 

sole contribution of stomatal flux whereas at the other seasons the shared contributions 639 

dominate. For GEM-MACH, the importance of the cuticular flux seen earlier arises from its shared 640 

contributions except GEM-MACH (Zhang) where its sole fraction appears equally high throughout 641 

the year. Five process representation differences between NA3 and NA5 have been summarized 642 

above – one of these is different driving meteorology, which may influence differences between 643 

these two models in Figure 11. .   We note that the WRF-Chem models are also being used in 644 

feedback mode and have less variation than the GEM-MACH case, potentially indicating a smaller 645 

impact of differing model parameterizations on the feedback portions of the WRF-Chem code.  646 
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Last, for WRF-Chem, the shared contribution of soil and canopy flux is important all year, but its 647 

sole contribution becomes equally high in the warm season. 648 

Figure 12a shows the same analysis for the EU continent where the picture differs from 649 

NA, indicating very different meteorological condition between the two regions.  This is not 650 

unexpected, in that EU meteorology is strongly influenced by the ocean circulation of the Gulf 651 

Stream, while the NA meteorology is over a broad region that has a much broader range of 652 

conditions in a “continental” climate.  In two of the three models (WRF-Chem), the importance of 653 

soil-lower canopy and stomatal effective fluxes in the warm season (mid spring through October) 654 

is due to their shared fractions while the sole contribution of the cuticular effective flux in winter 655 

drives the variation of the total O3 flux. The seasonality of the EU stomatal component is shared 656 

with that of NA6, while the EU soil components have a greater degree of seasonality compared to 657 

the NA WRF-Chem models.   The other model -- EU4 (WRF/CMAQ (STAGE)) -- shows a more even 658 

distribution of the stomatal contribution across the year, and a more equal distribution across the 659 

three pathways during the year. EU3 is not presented since no data were delivered for effective 660 

conductances.  661 

From the figures S8-S10 one can deduce that the rest of the land covers (Deciduous 662 

Broadleaf Forest, Mixed Forest, Planted-Cultivated) still exhibit a dominance of stomatal effective 663 

flux during the summer. These LULCs all have a significant deciduous component, and the 664 

summertime dominance is in part due to the wintertime absence of foliage in the more northerly 665 

parts of the model domains.  Depending on the model, cuticular and soil are at times the second 666 

contributor to variability of ozone flux.  667 

The category ‘Ozone Receptor’ groups the results at grid cells containing an ozone sampling 668 

location regardless of the land cover adopted by individual models (Figure 12b for EU and 13 for 669 

NA). It is interesting to note that the Ozone Receptors case shows a remarkable consistency across 670 

models in terms of the contribution of the different effective fluxes and their variability in time, a 671 

behaviour not seen when performing this analysis for grid cells dominated by specific LULC types. 672 

This can be appreciated from Figure 12 where the evergreen needle-leaf forest case (12a) is 673 

presented side-by-side with the ozone receptor case (12b) for the EU domain. There is some 674 

disagreement for the EU about the stomatal flux contribution during winter (zero or low) and on 675 

the exact partitioning during warm months, but generally all the models show substantial 676 

contributions from the stomatal flux, though disagreeing on the exact non-stomatal partitioning. 677 

The consistency for the Ozone Receptors case is also visible across the continents (Figure 13 for 678 
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the NA case) where the contribution has a remarkable resemblance across models for seasonality 679 

and the partitioning of the ozone flux variance across the effective fluxes, compared to individual 680 

land use type values. For the NA case, models suggest moderate to strong contributions for 681 

LCAN+SOIL during winter, yet small to moderate contributions during summer; the contribution 682 

of cuticular effective flux tends to be constant and moderate throughout the year, with three 683 

models (WRF-CHEM) suggesting smaller contributions in winter; with stomatal effective flux 684 

making up the difference, roughly a third of the total, but sometimes as low as 10% or as high as 685 

50%.  686 

This result calls for some important considerations: 687 

1- The remarkable consistency and similarity found among the model results at the ozone 688 

receptor locations could be due to the lack of dominance of any specific LULC type at this subset 689 

of grid cells considered. This would be in agreement with the fact that the locations have 690 

presumably been chosen for air quality monitoring activities and by-design are intended to be 691 

neutral to any prevailing process such as the removal of pollutants from the atmosphere by dry 692 

deposition processes, thus extending the spatial representativity of the monitoring locations.   693 

2- The variance decomposition into contributions of both sole fluxes and shared fluxes 694 

(columns 2 and 4 of Figure 13 and column 2 in Figure 12b) does not show the same agreement 695 

found for the total fluxes (columns 1 and 3 of Figure 13 and column 1 of Figure 12b). This indicates 696 

that every dry deposition model maintains a peculiarity in its behaviour for individual land use 697 

types. This specificity is lost in the results when the ozone monitoring station are considered.  This 698 

suggests that while the monitoring station locations show the models perform in a similar fashion 699 

for mixtures of LULC types, the model performance for individual land use types (represented by 700 

a much smaller number of stations) may differ significantly.  Given that model performance is 701 

judged using observation station values, this may indicate that dry deposition algorithms have 702 

been inadvertently tuned towards providing similar results in the regions where mixtures of LULC 703 

values are present - but require single LULC type stations for the evaluation of individual LULC 704 

performance.  We note that this tuning is not intentional, but a product of the purpose for which 705 

monitoring stations have been set up (e.g. human health impacts, and hence closer to human 706 

habitations than remote locations which may have a single LULC) and the availability of 707 

infrastructure (roads, electrical power) for station operations.  This result underscores the 708 

importance of land-use specific dry deposition sites such as those used in point model dry 709 

deposition velocity analysis in Clifton et al. (2023, this issue) when evaluating dry deposition 710 
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algorithms, and suggests that subsets of monitoring network stations located in single LULC types 711 

should be identified (or constructed if none are available) in order to further improve model 712 

performance within those LULC types. The result is that the dry deposition algorithms are 713 

achieving similar results for dry deposition flux relative to observations – but sometimes via very 714 

different pathways, especially across different LULCs. This is in line with suggestions from recent 715 

work examining a single model (Silva and Heald, 2018), a review paper on modelling ozone dry 716 

deposition (Clifton et al., 2020a), and the results of the single-point modelling AQMEII Activity 2 717 

paper (Clifton et al., 2023).  These findings and the above analysis illustrate  718 

• a strong need to generate observational datasets which focus on specific dry deposition 719 

components for model evaluation (e.g., as suggested by Clifton et al. 2020a),  720 

• the need for dry deposition velocity observation to evaluate dry deposition algorithm 721 

performance  722 

• the need for monitoring network locations that represent specific LULCs, to improve model 723 

performance in regions where one LULC dominates.  724 

The current evaluation practice with mixed LULC monitoring stations used for dry 725 

deposition algorithm evaluation prevents progress in algorithm improvement in specific LULCs, 726 

and allows for LULC-specific compensating errors to be missed in dry deposition algorithm 727 

development.  728 

3- If (1) and (2) can be confirmed one should consider comparing dry deposition results 729 

obtained at operational monitoring sites with care – the net results of the comparison may be that 730 

the regional models and possibly their dry deposition fluxes agree – on average, for regions with 731 

multiple land-use types - but the agreement is the result of regional model evaluation procedures 732 

as opposed to mechanistic dry deposition velocity algorithm evaluation that is LULC-specific. 733 

Furthermore, this may give an appearance of agreement among regional models that may be 734 

illusory, since in grid cells with shared dominant LULC types more disagreement has been 735 

demonstrated in the above analysis. An important implication of this finding is the need to evaluate 736 

regional models using both single-land-use and multiple-land-use type stations in the future, and for 737 

representation in single-land-use type locations to be a consideration in monitoring network design. 738 

 739 

5.2 Non-linear contributions of other factors to the ozone concentration variance 740 
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The analysis of the non-linear contributions to the ozone variance has been conducted by 741 

introducing other factors considered to be relevant in influencing ozone variability at the surface 742 

level, namely: boundary layer height, solar radiation, wind speed, and dry deposition velocity. In 743 

a way, this analysis allows us to determine the role of dry deposition in relation to other factors 744 

influencing the variation of ozone concentrations at the Evergreen Needleleaf Forest cells and 745 

therefore estimate its relevance as a driver of ozone variance in a regional scale model. Figure 14 746 

presents the analysis for the NA case while Figure 15 shows results for the EU case. 747 

From Figure 14 we firstly note that the selected components have a very relevant role in 748 

the determination of the surface ozone variance as, overall, they account on average for 60 to 80% 749 

of ozone variance. The remaining portion can be attributed to variations in emissions and chemical 750 

reactions that cannot easily be represented by a specific variable, or to other factors not 751 

considered in this analysis. Throughout the 8 models participating in the NA case study, we can 752 

note the dominance of solar radiation followed by PBL height and dry deposition velocity whereas 753 

wind speed seems to be relevant throughout the year only for three of the eight (WRF/CMAQ 754 

(M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Zhang)).  We note that correlation does not 755 

necessarily imply causation - the wind speed dependence effects noted here may reflect model 756 

dependence on the friction velocity, which can be expressed as a function of the wind speed, 757 

logarithmic profile, and surface roughness.  The contribution of wind speed across models is very 758 

scattered in time though contributing on average for 30% of the resolved variability. In some 759 

models it appears to be among the dominant factors in winter more than in summer (WRF/CMAQ 760 

(M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Zhang), WRF-Chem (RIFS), WRF-Chem (UPM)). While 761 

WRF-Chem (UPM) uses the CBMZ mechanism (see Makar et al., 2025, this issue), the dry 762 

deposition implementation for CBMZ accounts only for 4 seasons, while the other two WRF-Chem 763 

models (RIFS and NCAR) employ the MOZART chemical mechanism, for which the dry deposition 764 

algorithm has tabulated entries on a monthly basis which are used in dry deposition.  That is, the 765 

WRF-Chem dry deposition implementations which are linked to different gas-phase mechanisms 766 

have differing degrees of seasonal resolution.   767 

We note that the differences noted above for NA3 versus NA5 include different LAI 768 

information (with different sources and seasonal dependence).     769 

It appears that in North America a seasonality in the contribution of the various components is 770 

more evident. The differences between GEM-MACH (Base) and GEM-MACH (Ops) can be 771 

attributed at least partially to the meteorology change associated with feedbacks, but also may 772 
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partially result in the differing seasonality in LAI inputs. The no-feedback model (GEM-MACH 773 

(Ops)) has less ozone variability associated with wind speed, and more with solar radiation, 774 

compared to the feedback model GEM-MACH (Base); feedbacks exacerbate meteorological 775 

variability.  GEM-MACH (Base) versus GEM-MACH (Zhang) shows how much the dry deposition 776 

scheme can affect the variability, via the feedbacks: GEM-MACH (Base) and GEM-MACH (Zhang) 777 

are otherwise identical models. This quantifies the impact of feedbacks on meteorology and hence 778 

dry deposition velocity variance.  WRF-Chem is also a  feedback model as well, and the impact of 779 

the feedbacks is showing up as differences in the relative importance of meteorology versus ozone 780 

dry deposition velocity itself between the different implementations.  781 

In EU we see from Figure 15a that the contributions have a greater degree of scatter than 782 

for NA. WRF-Chem (UPM) and WRF/Chem (RIFS) share an important contribution of dry deposition 783 

velocity in February and of PBL in April, November and December. Interesting is the fact that across 784 

the year the components account for a smaller portion of the total variance (<50%) than in the NA 785 

case. This could be due to drastically different conditions and the dominance emissions variability 786 

(and consequently chemistry) on the ozone variability. Each of the models are using different 787 

driving meteorology, but the variation in observed conditions across EU may be less than across 788 

NA, as noted above. The March case of WRF-Chem (RIFS) is particularly interesting where the PBL 789 

height, solar radiation, wind speed and dry deposition velocity contribute to less than 5% of the 790 

ozone variance.  Another difference between the NA and EU case studies is the contribution of dry 791 

deposition compared to the other processes in determining ozone variability. In NA, dry deposition 792 

velocity contributes 10 to 25% to ozone variability during summer and 10 to 50% during winter. In 793 

the EU, however, the summer contribution is much lower and in February two models out of four 794 

show a 70% contribution.  795 

All these results clearly point toward a relevance of dry deposition in determining ozone 796 

variability and concentrations at the surface and yet they also show that important differences are 797 

present in the process description in individual models that can greatly influence the outcome.  798 

When the same analysis is performed at the O3 Receptor cells, we can clearly demonstrate 799 

hypothesis (1) and possibly (2) presented in the previous section. Figures 16 for the NA case and 800 

15b for the EU case show the results for the O3 receptor cells. The eight models in the NA case 801 

clearly show that at those grid cells the contribution of dry deposition velocity to ozone variability 802 

is generally much smaller compared to the results for grid cells with specific common LULC types, 803 

for example with respect to Evergreen Needle-leaf Forests. Despite this general trend, NA1, NA2, 804 
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NA3 and NA5 (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Ops) 805 

respectively) still show that during winter, dry deposition can be a significant contributor to ozone 806 

concentration variability at receptor locations. This result also confirms the hypothesis made at 807 

(3) in the previous section; the operational ozone monitoring sites are not suitable for the analysis 808 

of dry deposition results for specific LULC classes. A similar conclusion can be drawn for the EU 809 

case (Figure 15b) which is presented back-to-back with the evergreen needle-leaf forest case. To 810 

corroborate the last statement, Figure 17 shows a comparison of the fraction of the entire NA 811 

common domain (excluding grid cells dominated by water, i.e. water fraction > 0.5) covered by 812 

each LU type to the LU distribution of all grid cells corresponding to O3 receptor locations (EU 813 

results are shown as Figure S11 in the SM). As can be noted, existing O3 receptor locations are 814 

characterised mainly by Planted/Cultivated, Shrub land and urban LULC with a 10% coverage of 815 

deciduous broadleaf forest (Figure 17b).  At these locations all models appear to have the same 816 

distribution of the main LULC type apart from Shrubland (NA3, 4 and 5 20% more abundant) and 817 

Planted/Cultivated (same models 10 % less abundant). However, the distribution of LULC from the 818 

overall NA common model domain (Figure 17a) demonstrates that the current receptor site LULC 819 

poorly represent the relative amount of land use occurring throughout the domain, with, for 820 

example, much higher Evergreen Needleleaf and Grassland fractions, and much lower urban land 821 

use LULC in the all-domain data of Figure 17a compared to the observing station values of Figure 822 

17b. 823 

 In this respect, it is important also to note that in spite of the formal differences among 824 

dry deposition modules (Galmarini et al., 2021), in conditions of uniform LU characteristics and 825 

dominance of urban and Planted/Cultivated LULC types, the models tend to produce comparable 826 

results in terms of contributors to ozone variability. This result further underlines the importance 827 

of a correct and uniform characterization of the both the input LULC data and the extent to which 828 

monitoring station data reflect LULC across the domain, both of which are driving factors in 829 

determining the differences among dry deposition modules.  830 

 831 

6. Conclusions 832 

An operational evaluation has been conducted on the models that took part to the AQMEII-833 

4 activity (Galmarini et al., 2021). A total of 12 models were analysed, 8 of which were run over 834 

the North American continental air quality simulation of the year 2016 and the rest were run over 835 
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Europe for the year 2010. The scope of the evaluation is to determine the level of agreement of 836 

the models against available measurements and how they compare with one another. This is 837 

normally referred to as operational evaluation and according to Dennis et al, (2010) is the first 838 

necessary step prior to any more detailed evaluation or inter-comparison of model results. The 839 

focus of the fourth phase of AQMEII is the analysis of the performance of dry deposition schemes 840 

in regional scale models, therefore the operational evaluation has been performed having that 841 

goal in mind. Ozone dry deposition, in particular, is the focus of this analysis. Ozone average annual 842 

concentration errors ranged between 10 and 30% in NA and between 10 and 15% in EU except for 843 

one model (35% error). Errors for NO and NO2 were on the order of 5-10% and 10-15% respectively 844 

in NA and 15% for both pollutants in EU. The sub regional analysis confirmed these findings, 845 

considering the expected sub regional variability related to different emission patterns. The 846 

models can be distinctively grouped by performance with WRF/CMAQ (M3Dry), WRF/CMAQ 847 

(STAGE), GEM-MACH (Base) and GEM-MACH(Ops) showing a better overall capacity of predicting 848 

ozone concentrations in NA followed by GEM-MACH (Zhang) and WRF-Chem (RIFS), while WRF-849 

Chem (RIFS) and WRF-Chem (NCAR) show larger errors throughout the year and the domain. In 850 

the EU case LOTOS/EUROS outperforms the two WRF-Chem versions (RIFS and UPM) and 851 

WRF/CMAQ (STAGE). This result is also very evident from the probabilistic analysis where all 852 

combinations of possible ensembles were calculated and reflect the results of the operational 853 

evaluation.  854 

As far as the dry deposition is concerned, a diagnostic evaluation was performed aiming at 855 

analysing the variance contribution of the different pathways to the variance of the overall ozone 856 

dry deposition fluxes. All cells covered with at least 85% of the same land-use types were 857 

considered in this analysis. Across grid cells containing mostly needleleaf forests over NA, the main 858 

example used in our study, the analysis shows the mixed response of the various dry deposition 859 

schemes adopted in the regional scale models; one group of models  shows a prevailing 860 

contribution of the stomatal effective flux in determining spatial ozone flux variability, one shows 861 

the three pathways contribute rather equally, and the last group of models for which the lower 862 

canopy and soil effective flux is the prevailing contributor. Thus, models are simulating very 863 

different drivers of ozone flux variability in space, even for the same land use type. The 864 

contribution to ozone variability of wind speed, dry deposition velocity, solar radiation and 865 

boundary layer height was also investigated.  866 
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When the above-mentioned analysis was also performed for all grid cells where ozone 867 

monitors were present regardless of the LULC type, a remarkable result was found. Regardless of 868 

the EU or NA case considered, all the differences among models found for specific LULC types 869 

largely disappeared, showing a more uniform behaviour across models. This aspect was 870 

demonstrated to be attributable to a minor contribution of dry deposition at those sites in 871 

determining the ozone variability when compared with other factors. Other factors contributing 872 

to this behaviour are the presence of predominant LULC types for which dry deposition is relatively 873 

low and the uniform distribution of those types and other LULC types across the models at the 874 

observation station locations.  875 

This result allows us to present important conclusions. The first conclusion is that the 876 

evaluation of dry deposition processes should not be conducted only at operational ozone 877 

monitoring sites. The latter’s characteristics are selected on other considerations aside from dry 878 

deposition. They appear unsuitable for dry deposition algorithm evaluation. An analysis of dry 879 

deposition modelling at these sites may produce an illusory agreement among models that could 880 

be completely misleading and misrepresentative. Therefore, specific sites with a predominance of 881 

LULCs which induce high dry deposition should be selected among existing monitoring stations, or 882 

added to existing monitoring networks, for dry deposition-focused model evaluation.  883 

The second conclusion is a recurring theme throughout AQMEII-4 regional modelling 884 

studies to date (e.g., Hogrefe et al, 2025, Makar et al., 2025), namely the necessity for a 885 

harmonisation of LULC data across regional scale air quality models, as a large diversity in the 886 

characterization of the surface is still present among all models, and this diversity has a significant 887 

impact on model performance. Considering the existence of detailed information in space and 888 

time on LULC (e.g., Copernicus Land Monitoring services, USGS, LandSat, etc.), we find the lack of 889 

agreement between models on the input land use data anachronistic and of great concern. Any 890 

interpretation of the behaviour of dry deposition schemes will be impaired by the lack of 891 

agreement of LULC masks and will inevitably include an inherent uncertainty difficult to quantify. 892 

The present situation is comparable to the one where models use different topographies or terrain 893 

elevations to the extent of including (excluding) specific reliefs or mountain ranges in (from) the 894 

domain. If there is an ambition to improve the performance of regional scale models in terms of 895 

dry deposition processes (effectively a sink in the concentration budget), the selection of up-to-896 

date and common LULC data is a fundamental and necessary prerequisite. Considering the 897 

advances in the characterisation of land surface at very high spatial and temporal resolutions 898 
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(metre scale), such effort cannot be further delayed and should be taken on prior to any new 899 

model evaluation or intercomparison of dry deposition processes. 900 
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Table 1: Institutions in charge and the models used in AQMEII-4 case studies.  1185 

Abbreviation Modeling System 

(dep. scheme) 

Domain Modeling Group Dry deposition 

Scheme 

LU for Dry deposition Scheme 

NA1 (10700) WRF/CMAQ (M3Dry) NA U.S. EPA M3Dry MODIS 

NA2 (10701) WRF/CMAQ (STAGE) NA U.S. EPA STAGE AQMEII-4 (mapped from MODIS) 

NA3 (10703) GEM-MACH (Base) NA Environment and Climate 

Change Canada 

Wesely Robichaud (Robichaud et al. 2020) 

NA4 (10704) GEM-MACH (Zhang) NA Environment and Climate 

Change Canada 

Zhang Zhang et al. (2003) 

NA5 (10705) GEM-MACH (Ops) NA Environment and Climate 

Change Canada 

Wesely Robichaud (Robichaud et al. 2020) 

NA6 (10702) WRF-Chem (RIFS) NA Research Center for 

Sustainability (RIFS) 

Wesely USGS24 

NA7 (10708) WRF-Chem (UPM) NA Technical University of 

Madrid (UPM) 

Wesely USGS24 

NA8 (10709) WRF-Chem (NCAR) NA National Center for 

Atmospheric Research / 

Yonsei University 

Wesely USGS24 

EU1 (10702) WRF-Chem (RIFS) EU Research Center for 

Sustainability (RIFS) 

Wesely  CORINE 33  

EU2 (10708) WRF-Chem (UPM) EU Technical University of 

Madrid (UPM) 

Wesely USGS24 

EU3 (10707) LOTOS/EUROS  EU TNO DEPAC Mapped from Coordination of Information on 

the Environment (CORINE) land cover as 

described in Manders-Groot et al. (2023)  

EU4 (10710) WRF/CMAQ (STAGE) EU University of Hertfordshire STAGE MODIS + extended urban 
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Table 2: NA case. For all available combinations of models ( 
𝑚
𝑛

  ) analysed, the table presents those that produce the minimum errors (blue 1193 

columns) as well as all other combinations that fall within 10% of that minimum error (yellow and orange columns). The minimum RMSE of 3.77 1194 

ppb is achieved by the second order  (( 
8
2

  ) , all combinations of 2 models out of 8) combination of WRF/CMAQ (STAGE) and GEM-MACH (Ops) as 1195 

well as the third order (( 
8
3

  ) , all combinations of 3 models out of 8) combination of  WRF/CMAQ (STAGE), GEM-MACH (Base), and GEM-MACH 1196 

(Ops). The combinations with the lowest and second lowest RMSE are shown as RMSE values bold/underlined and underlined respectively. The 1197 

frequency column shows the number of times each model was part of an ensemble weighted by the number of ensembles considered. 1198 

MODEL Model code Frequency (%) 

Order of Model Combination 

1 2 3 4 

WRF/CMAQ (M3Dry) NA1 (10700) 36.4    X    X X X  

WRF/CMAQ (STAGE) NA2 (10701) 54.5   X  X  X X  X X 

GEM-MACH (Base) NA3 (10703) 63.6  X   X X X  X X X 

GEM-MACH (Zhang) NA4 (10704)             

GEM-MACH (Ops) NA5 (10705) 81.8 X  X X  X X X X X X 

WRF-Chem (RIFS) NA6 (10702) 9.1           X 

WRF-Chem (UPM) NA7 (10708)             

WRF-Chem (NCAR) NA8 (10709)             

RMSE (ppb)   3.90 3.95 3.77 3.86 4.02 3.83 3.77 4.04 3.83 3.93 4.10 

 1199 

Table 3: Same as Table 2a for the EU case 1200 

MODEL Model code Freq. (%) 

Order of Model Combination 

2 3 4 

WRF-Chem (RIFS) EU1 (10702) 60 X  X  X 

WRF-Chem (UPM) EU2 (10708) 40    X X 

LOTOS/EUROS  EU3 (10707) 100 X X X X X 

WRF/CMAQ (STAGE) EU4 (10710) 80  X X X X 

RMSE (ugm-3)   7.51 8.15 7.92 8.11 8.17 

 1201 
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 1202 

Figure 1: Annual average of ozone at all available monitoring stations in North America for 2016 (top 1203 

panela) [ppb] and Europe for 2010 (bottom panelb) [μg m-3]. The rectangular areas represent the four 1204 

selected sub-regions (R1, R2, R3, R4). 1205 
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 1206 

 1207 

Figure 2: Individual model ozone RMSE calculated over the whole year (2016) over NA. From NA1 through 1208 

NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH 1209 

(Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb. 1210 

 1211 

 1212 

 1213 

 1214 
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 1216 

 1217 
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 1218 

 1219 

 1220 

 1221 

 1222 

Figure 3: Individual model ozone MB calculated over the whole year (2016) over NA. From NA1 through 1223 

NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH 1224 

(Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb. 1225 

 1226 

  1227 
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 1228 

 1229 

Figure 4: Individual model ozone RMSE calculated over the whole year (2010) over EU. From EU1 through 1230 

EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in μg/m3. Colour 1231 

bars are set to twice the range used in Figure 2 to allow for a visual comparison across continents, 1232 

accounting for the conversion factor of 1.96 between the different units. 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 
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 1242 

 1243 

Figure 5: Individual model ozone MB calculated over the whole year (2010) over EU. From EU1 through 1244 

EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in μg/m3. Colour 1245 

bars are set to twice the range used in Figure 2b to allow for a visual comparison across continents, 1246 

accounting for the conversion factor of 1.96 between the different units. 1247 

 1248 

 1249 
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 1253 
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 1255 

 1256 

 1257 

Figure 6: Individual model ozone MB (top panels) and RMSE (bottom panels) calculated over the whole 1258 

year over NA (left panelsa) and EU (right panelsb). NA case units: ppb, EU: μg/m3 1259 

 1260 

 1261 

 1262 

  1263 
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 1264 

 1265 

Figure 7: Average monthly (left panels) and diurnal (right panels) cycles of ozone, NO, and NO2 [ppb] for 1266 

the 2016 NA case study. Thin coloured lines (solid, dashed, dotted): models; red dots: observations; black 1267 

line: multi-model mean.   1268 
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 1269 

 1270 

Figure 8: Average monthly (left panels) and diurnal (right panels) cycles of ozone, NO, and NO2 [μg m-3] for 1271 

the 2010 EU case study. Thin coloured lines: models; red dots: observations; black line: multi-model mean.  1272 

  1273 
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 1274 

 1275 

 1276 

Figure 9: Monthly average cycles of O3 concentrations in [ppb] as calculated in sub-regions R1-R4 over the 1277 

NA domain. Thin coloured lines (solid, dashed, dotted): models; red dots: observations; black line: multi-1278 

model mean. 1279 

 1280 

 1281 

 1282 

 1283 

 1284 

 1285 

 1286 
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 1287 

 1288 

 1289 

Figure 10: Monthly average cycles of O3 concentrations in [μg m-3] as calculated in sub-regions R1-R4 over 1290 

the EU domains. Thin coloured lines: models; red dots: observations; black line: multi-model median. 1291 

  1292 
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 1293 

Figure 11: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Panels in 1st 1294 

and 3rd column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total 1295 

effect) of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and 1296 

(3) stomatal effective flux. Panels in 2nd and 4th column: Split of the individual importance of the effective 1297 

fluxes into sole and shared contributions. The shared effects are displayed with negative numbers. For the 1298 

sake of making the pictures easier to read, the explicit names of the modelling systems are reported in the 1299 

figure.  1300 

  1301 
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 1302 

 1303 

Figure 12: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Panels in 1st 1304 

column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total effect) 1305 

of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and (3) 1306 

stomatal effective flux. Panels in 2nd column: Split of the individual importance of the effective fluxes into 1307 

sole and shared contributions. The shared effects are displayed with negative numbers. For the sake of 1308 

making the pictures easier to read, the explicit names of the modelling systems are reported in the figure. 1309 

(b) Same as a) but at the location of ozone receptors in EU (1551 shared cells). 1310 

  1311 
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 1312 

 1313 

Figure 13: Same as 11 but at the location of ozone Receptors in NA (1551 shared cells). 1314 

  1315 



 

55 
 

Figure 14: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Variance 1316 

partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of 1317 

wind speed, PBL height, solar radiation, and dry deposition velocity. For the sake of making the pictures 1318 

easier to read, the explicit names of the modelling systems are reported in the figure. 1319 

 1320 



 

56 
 

 1321 

 1322 

Figure 15: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Variance 1323 

partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of 1324 

wind speed, PBL height, solar radiation, and dry deposition velocity. For the sake of making the pictures 1325 

easier to read, the explicit names of the modeling systems are reported in the figure. (b) Same as a) but at 1326 

the location of the ozone receptors in EU (1551 shared cells). 1327 
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 1329 

 1330 

Figure 16: Same as 14 but at the location of ozone receptors in NA (1551 shared cells).  1331 

  1332 
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 1333 

 (a) 1334 

 1335 

 1336 

 1337 

 1338 

 1339 
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 1342 

 1343 

 1344 

(b) 1345 

 1346 

 1347 

Figure 17: (a) Fraction of entire NA common domain (excl. grid cells dominated by water, i.e. water 1348 

fraction > 0.5) covered by each LU type. (b) Fraction of all grid cells corresponding to O3 receptor 1349 

locations covered by each LU type. 1350 
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