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Abstract

We present the collective evaluation of the regional scale models that took part in the fourth edition of the Air Quality Model
Evaluation International Initiative (AQMEII). The activity consists of the evaluation and intercomparison of regional scale air quality
models run over North American (NA) and European (EU) domains for 2016 (NA) and 2010 (EU). The focus of the paper is ozone
dry deposition. Dry deposition is among the most important processes of removal of chemical compounds from the atmosphere
and an important contributor to the overall chemical budget of the latter. Furthermore ozone dry deposition is very important as
it can be severely detrimental to vegetation physiology. The collective evaluation begins with an operational evaluation, namely a
direct comparison of model-simulated predictions with monitoring data aiming at assessing model performance (Dennis et al.,
2010). Following the AQMEII protocol and Dennis et al. (2010), we also perform a probabilistic evaluation in the form of ensemble
analyses and an introductory diagnostic evaluation. The latter, analyses the role of dry deposition in comparison with dynamic and
radiative processes and land-use/land-cover types (LULC), in determining surface ozone variability. Important differences are found
across dry deposition results when the same LULC is considered. Furthermore, we found that models use very different LULC masks,
thus introducing an additional level of diversity in the model results. The study stresses that, as for other kinds of prior and
problem-defining information (emissions, topography or land-water masks), the choice of a LULC mask should not be at modeller’s
discretion. Furthermore, LULC should be considered as a variable to be evaluated in any future model intercomparison, unless set
as common input information. The differences in LULC selection can have a substantial impact on model results, making the task

of evaluating dry deposition modules across different regional-scale models very difficult.
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1. Introduction

This paper presents the results of the operational and probabilistic evaluation of the
regional scale models taking part in the Air Quality Model Evaluation International Initiative phase
4 (AQMEII-4) activity. As presented in Galmarini et al. (2021), the AQMEII-4 focus is dry deposition
process modelling within regional scale models (AQMEII-4-Activity 1) as well as standalone dry

deposition modules (AQMEII-4-Activity 2) as detailed in Clifton et al. (2023).

As traditionally done in past editions of the AQMEII activity (Solazzo et al. 2012a, Im et al.,
2014, Solazzo et al. 2017a), and in agreement with the protocol described by Dennis et al. (2010),
prior to any detailed analysis of specific process modelling (diagnostic evaluation), a thorough
analysis of the overall performance of the model must be conducted via operational and
probabilistic evaluation. The scope of such an approach is to verify the positioning of the models
participating in AQMEIIl with respect to observations or any other model simulating the case study
or against a multi-model ensemble (Galmarini et al. 2013). Such an analysis has the scope of
assisting the interpretation of any other detailed (diagnostic) result in this paper or other
contribution to the special issue and understanding how the different processes contribute to the
model spread. Examples of this approach can be found in Solazzo et al. (2012a and b), Vautard et
al. (2012), Im et al. (2015, 2018), Giordano et al. (2015), Brunner et al. (2015), and Kioutsioukis et
al. (2016). The operational evaluation also provides important context for the interpretation of
diagnostic results — for example, the contrast in diagnostic comparisons between models with
higher and lower evaluation performance helps to identify specific processes which may
contribute to the differences (an example of this approach appears in Makar et al. (2025), this

issue, for sulphur and nitrogen dry deposition, and Vivanco et al. (2018)).

Since the operational and probabilistic analysis is instrumental to the interpretation of
ozone dry deposition-related results (the focus of the fourth edition of AQMEII), we shall
concentrate on the variables that are directly or indirectly connected to description of dry
deposition processes within the models, namely: atmospheric concentrations, land-use/land-
cover (LULC) masks and meteorology. A detailed diagnostic analysis of modelled ozone dry

deposition can be found in Hogrefe et al. (2025, this issue).
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2. Models, domains, and years of consideration

The setup of the AQMEII-4 Activity 1 is detailed in Galmarini et al. (2021). In essence, the
activity consists of running regional scale models on the North American (NA) and European (EU)
domains for the years (2010, 2016) and (2009, 2010) respectively. The motivations behind the
selection of these for years are given in Galmarini et al. (2021). The models that took part in
AQMEII-4 are listed in Table 1, where details on the institutions in charge and the cases simulated
are also provided. These models and in particular their dry deposition schemes are described more
in detail in Galmarini et al. (2021, this issue), Makar et al. (2025, this issue) and Hogrefe et al. (2023
and 2025, this issue). Note that simulations took place with harmonized input emissions fields
(Galmarini et al., 2021, this issue); all models started with the same anthropogenic, lightning NOx,
and forest fire emissions inventory for North America and Europe, respectively (Galmarini et al.,
2021), while biogenic emissions and other natural sources of emissions such those of sea-salt
particles were carried out as part of internal model processing and should be considered “part of

the model” in the analysis that follows.

The analysis described here will only focus on two year-long simulations: 2016 for the NA
case and 2010 for the EU case in the interest of synthesis. The following aspects will be considered

in detail in this paper:

e Analysis of space and/or time averaged ozone concentrations
® Analysis of seasonal, diurnal, and spatial variations of ozone (and to a lesser extent nitric
oxide, and nitrogen dioxide concentrations, in order to assist in the ozone analysis).
e Ensemble analysis of modelled ozone concentrations
e The role of variability in effective fluxes for specific pathways in determining the variability
of ozone dry deposition flux over different LULC types
e The role of variability in wind speed, mixed layer height, dry deposition, and radiation in
determining the variability of ozone concentrations at the surface.
Model values will be evaluated against ozone and precursor concentrations collected by
regional operational networks during the year in consideration. More specifically, for North
America the monitoring network databases employed included: the U.S. Environmental Protection

Agency’s Air Quality System (AQS; https://aqgs.epa.gov/agsweb/airdata/download files.html), the

Canadian National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-

climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html),

and the Canadian National Atmospheric Chemistry database (https://www.canada.ca/en/environment-
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climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-

database.html). For the European case the monitoring network databases employed include: the

European Monitoring and Evaluation Programme (EMEP; https://www.emep.int/), and the

European Air Quality Database (AIRBASE; https://eeadmz1-cws-wp-air02-
dev.azurewebsites.net/download-data/). The databases provide measurements in ppb for the NA
case and pug/m?3for the EU case. We opted for sticking to the original units avoid a conversion of
one into the other to preserve the integrity of datasets and avoid the instruction of uncertainties

that would penalise the quality of one or the other.

Given the continental dimension of the two regional domains simulated under AQMEII-4, the
latter have been divided into sub-regional domains for analysis. These group portions of the
network that share common features such as atmospheric circulation and possible sources of
ozone precursors, and also provide continuity with past AQMEII model evaluation phases (Solazzo

et al. 2012a and b).

Figure 1 shows the sub-regions selected within the two modelling domains, the corresponding
sampling sites and the yearly average measured ozone (a and b). As noted by Solazzo et al (2012a),
from the distributions of the pollutants, it is easy to identify the reason for those specific division
in subdomains. In North America, a longitudinal divide is present between western (R1), central
(R2) and eastern parts of the continent while the latter also requires a latitudinal division in two
smaller subdomains (R3 and R4) due to the different kind of precursors’ distributions and
consequent ozone formation potentials. In Europe, the spatial distribution of emitters is different
from North America and shows greater spatial density. There exist areas that require specific
attention being almost decoupled from the rest of the continental air shed. These are typically the
Iberian Peninsula and southern Mediterranean basin (R4), the Po Valley (R3) and Eastern Europe
(R2). These NA and EU analysis sub regions were first defined in Solazzo et al (2012a), though with
less detail and have been used in subsequent AQMEII analyses (e.g., Hogrefe et al., 2018) with
different subdivisions but with the same goal of identifying regions with more homogeneous
chemical potentials. For the sake of synthesis and in the absence of direct measurement of ozone
dry deposition, this paper will concentrate exclusively on the model performance with respect to
ozone concentrations with a few references to nitrogen oxides to give a more comprehensive

sense of the quality of the performance of the individual models and the ensemble.
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3. Operational evaluation
3.1 Ozone and nitrogen oxides surface air concentrations
3.1.1 NA case

The model performances at continental level and for the whole year are presented in
Figure 2-6. For the two continents, the Root Mean Square Error (RMSE) and Mean Bias (MB) are
computed from hourly ozone values for the entire year and are shown for each model in Figure 2-
3 North America, and Figure 4, Figure 5 for Europe. Figure 6 shows the spatially averaged results
presented in Figures 2 through 5 as box plot diagrams. In general, RMSE for the NA case (and in
particular, for two models, namely NA7 (WRF-Chem (UPM)) and NA8 (WRF-Chem (NCAR)) appears
to be larger than the EU case. Note that, since ozone values are reported in ppb over NA and
ug/m3 over EU, the range of the colour scales over both continents has been set such that the
same colours represent the same absolute errors (note the difference in the numerical values for
the colour bars for these figures), to account for unit differences and allow for a visual comparison
between continents. Most differences from the observations are found in the eastern and south-
eastern parts of the NA domain. As from Figure 2-5, three groups of behaviours can be
distinguished for the NA case. Relative to the rest of the models, NA1, NA2, NA3 and NA5
(respectively WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Ops))
show low RMSE values and comparable behaviours. NA4 (GEM-MACH (Zhang)) and NA6 (WRF-
Chem (RIFS)) show slightly higher errors in the mid to east coast part of the domain whereas NA7
(WRF-Chem (UPM)) and NA8 (WRF-Chem (NCAR)) show markedly higher errors in the mid to
eastern part of the domain and along the west coast. Looking at the biases (Figure 3), the analysis
presented above is confirmed with some nuances though. In fact, we can see that the grouping
can be more refined. A first group is made of the two EPA models NA1 and NA2 (WRF/CMAQ
(M3Dry) and WRF/CMAQ (STAGE)) with a widespread overestimation across the continent. NA3
and NA5 (GEM-MACH (Base) and GEM-MACH (Ops)) produce the smallest biases of the group (see
also Figure 3) and with a clearer West-East regional separation compared to NA1 and NA2. Finally,
NA4, NA6, NA7 and NA8 (GEM-MACH (Zhang), WRF-Chem (RIFS), WRF-Chem (UPM), WRF-Chem
(NCAR)) have larger biases, with NA8 having the largest mean bias (MB) of all (Figure 4). This
analysis helps to distinguish the impacts of different dry deposition modules from the impacts of
differences in other aspects of the model on simulated ozone. For example, WRF/CMAQ (M3Dry)
and WRF/CMAQ (STAGE) differ only in their dry deposition modules, and the differences between

these two simulations are generally smaller than their differences relative to the GEM-MACH and
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WRF-Chem simulations. On the other hand, the dry deposition scheme has an important effect
when we look at NA4 (GEM-MACH (Zhang)) vs. NA3 (GEM-MACH (Base)). These two models share
the same regional scale system but use a different dry deposition scheme. The effect of the dry
deposition schemes on the ozone concentration is quite remarkable. Recent work emphasizes a
substantial effect of the magnitude of dry deposition velocity on ozone concentration (e.g. Baublitz
et al. 2020; Wong et al., 2019; Clifton et al., 2020b). The results are consistent with those in Clifton
et al. (2023) where the individual dry deposition module performances were evaluated (see
discussion below). Therein larger differences were shown existing between the Zhang and Base
schemes used in GEM-MACH than between the M3Dry and STAGE schemes used in CMAQ.
Comparing NA3 (GEM-MACH (Base)) to NA5 (GEM-MACH (Ops)) reveals the impacts of model
configuration and science option choices other than dry deposition, since both simulations use the
Wesely scheme but differ in a number of other modelling aspects, as described in more detail in
Makar et al. (2025). The relatively low MB for models NA3 and NAS5 reflect the use of a similar
deposition velocity algorithm, while differences between these two models reflect the use of
process representations in NA3 which are absent in NA5 (for canopy vertical turbulence different
approaches for canopy vertical mixing and photolysis (Makar et al., 2017), feedbacks between
chemistry and meteorology (Makar et al.,, 2015a,b), vehicle-induced turbulence (Makar et al.,
2021) and satellite derived leaf area index (Zhang et al., 2020), while NA5 makes use of a simplified
means of adding surface emissions in the model which assumes that fresh emissions are evenly
mixed into the first two model layers).. The effects of model configuration choices are also evident
in the results of the three remaining models (WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem
(NCAR)) that share the same dry deposition model and overall model code but utilize different
configuration options. These simulations show a consistent overestimation that cannot be
attributed clearly to one factor (see also Figure 3). The three implementations are also with
respect to three different WRF-Chem version numbers (3.9.1, 4.0.3 and 4.1.2 respectively);
versions 3.9.1 and 4.0.3 use the Grell and Devenyi (2002) cumulus parameterization, version 4.1.2
uses the Grell and Freitas (2014) parameterization. Furthermore, both WRF-Chem (RIFS) and WRF-
Chem (UCAR) employ the same gas—phase mechanism (Emmons et al., 2010), while that of WRF-
Chem (UPM) differs from the other two models. The relatively minor differences between WRF-
Chem (UPM) and WRF-Chem (UCAR) shown in Figure 6a, may thus reflect differences in the gas-
phase chemistry, with the former’s mechanism resulting in slightly lower positive bias levels.
Knote et al. (2015) conducted a comparison of the two gas-phase mechanisms (CBMZ and

MOZART4) within the same modelling framework, and showed that two mechanisms to have

6
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biases opposing in both magnitude and sign over North America). The larger differences (same
figure) with the RIFS implementation reflecting differing cloud amounts and hence differing
photolysis rates within the two implementations. The large overestimation of ozone by the WRF-
Chem (UCAR) configuration may thus be linked to the underestimated precipitation in this model
reported elsewhere (e.g. Makar et al. 2025), which also implies smaller cloud amounts and

stronger solar radiation.

3.1.2 EU case

In Figures 4 and 5, RMSE and MB in Europe are presented, respectively. The errors have
more a hot-spot character that is mainly evident in the southern part of the domain and therein
at well-recognized critical regions like the Po Valley in the north of Italy, Greece and the Iberian
Peninsula. This result is confirmed in the MB plots that also show EU3 (LOTOS/EUROQS) as the best-
performing model of the four though in many cases underestimating ozone concentration levels.
EU2 shows worse RMSE scores than the other three models in particular over Germany, Poland,
and Hungary, and scores the highest median RMSE value (Figure 6b). As for the rest of the domain,
smaller RMSE values can be noticed throughout the region for all models. EU1 (WRF/Chem (RIFS))
and EU4 (WRF/CMAQ (STAGE)) show comparatively larger errors, especially in the southern and
northern parts of the domain respectively. This behaviour of EU1, EU2 and EU4 may be associated

with the prediction of NO2 and NO concentration (see later discussion).

In this case, a model implementation/user effect can be an element of consideration since
the EU4 is the same model that is used by EPA in the NA case (NA2), but in this instance run by the
University of Hertfordshire. In the implementation of EU4, the primary differences lie in the
meteorological model and the MEGAN biogenic emissions input. These variations in
meteorological drivers and biogenic emissions can introduce differences, potentially contributing
to the observed model biases when compared to other implementations of the same model.
However, it should also be noted that the CMAQ simulations in North American (models NA1, NA2,
Figure 3) also show positive biases, particularly along the US eastern seaboard. Some of these
biases may be attributable to the need for physical process representation for forest canopy
shading and turbulence (see Makar et al., 2017, which intercompares multiple models), and has
been found more recently to improve the performance of the CMAQ model (Campbell et al., 2021,

Wang et al,, 2025). Many of the regions with the highest ozone biases in models EU1, EU2 and
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EU4 correspond to areas with high forest canopy and leaf area index values, as does the eastern
seaboard of the USA and Canada, and the negative biases in EU1 and EU4 for NO and NO2 are
consistent with the absence of the more realistic reduction in thermal diffusivity coefficients and
photolysis rates expected under forest canopies (Makar et al., 2017); the performance of these

models may be improved through the inclusion of forest canopy processes. .

From the analysis of NO, NO; and Os Normalised Root Mean Square Error vs Normalised
Mean Bias in the soccer plots of Figure S1 in the Supplementary Material (SM, from now on) for
the two continents, we note that the two precursors to ozone show an error smaller than 15% for
all models except two. For the NA case, the ozone soccer plots confirm the grouping of the results
qualitatively derived from the regional analysis of Figure 2. Figure 6 shows that GEM-MACH
models NA3 and NA5 have ozone bias values closest to zero, followed by CMAQ (NA1 and NA2),
while CMAQ has the lowest RMSE values, closely followed by the GEM-MACH NA3 and NA5
implementations. Four models show small error (<15%), two with medium (>15% and <20%) and
two with high (>20%). The ozone goal plots for the EU (Figure S1) show a statistical tendency to
produce smaller errors than the NA case and in particular more coherence between the errors for

ozone and its precursors.

The Taylor diagram depicted in Figure S2 in the SM also evaluates the correlation between
simulated and observed ozone values. The results show a higher correlation of model predictions
with observations in the EU case while the other statistical parameters in the diagram confirm
what has been presented in the other plots. The multi model ensemble (MME) is also presented
for the two cases, showing in both instances an improved performance with respect to the

individual model simulations.

3.1.3 Diurnal and seasonal variability

Figure 7 shows a comparison of observed and modelled seasonal and diurnal cycles for
North America for ozone, NO and NO2. These cycles were constructed by averaging the underlying
raw hourly data available for the entire year over a given month-of-year or hour-of-day,
respectively. At the monthly level, the figure clearly shows that for ozone in NA, almost all models
over-estimate the concentration during summer. The multi-model mean fails to reproduce the
ozone maximum in April by overshooting by approximately 3 ppb and presenting a maximum in

June. This result is driven by 4 out of 8 models (NA4 (GEM-MACH (Zhang)), NA6 (WRF-Chem (RIFS)),
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NA7 (WRF-Chem (UPM)) and NA8(WRF-Chem (NCAR))). Although slightly overestimating the
concentration, two models (NA3 (GEM-MACH (Base)), and NA5 (GEM-MACH (Ops))) manage to
reproduce very accurately the seasonal evolution. NA1 and NA2 (WRF/CMAQ (M3Dry) and
WRF/CMAQ (STAGE)) capture the trend and seasonality and just slightly overestimate the ozone

peak value.

The tendency for overestimating ozone concentration and underestimating NO is also clear
from Figure 7 (for NA) and Figure 8(for EU). Figure 7’s diurnal variation panels (right hand column)
in particular show that the models NA3 and NA5 have the closest values to observations for O3,
NO and NOy, though all models underestimate the NOy totals. This is especially evident for NO
and NO; in the mid-day hours (10 to 18 local time), when the simulated NO and NO; values are
the closest in the ensemble to the observations. The monthly variation panels (Figure 7 left
column) show that the relative impact of the NOx underestimates is smaller in the summer than
in the winter, and models NA3 and NAS5 have the closest NO values to observations and slightly
overestimate NO; in the summer. Model NA3 includes a forest canopy parameterization (Makar et al.,
2017), which takes into account reduced vertical coefficients of thermal diffusivity and photolysis levels
below the forest canopy — these in turn reduce turbulent mixing (resulting in higher NOx concentrations
from surface sources, and also shift the chemical regime from ozone production to ozone destruction by
NOx titration below the forest canopy). Model NA3 also includes the effects of vehicle-induced
turbulence on NOx emissions from vehicles (Makar et al., 2021), an effect which results in more
efficient dispersion of these emissions out of the surface layer. Model NA5 assumes the area
emissions of NOx are evenly and instantaneously distributed over the first two vertical levels of
the model rather than incorporating these emissions as a flux boundary condition on the diffusion
equation. As noted above, Models NA3 and NAS5 include process representation which can
enhance the vertical transport of freshly emitted NOx out of the lowest model layer; at least some
of superior performance may be related to this faster dispersion. The ozone dry deposition velocity
used in NA3 and NAS versus that of NA4 is also a driver for the differences between these models,
as noted in Clifton et al. (2023), which noted that NA3 and NAS5 shared a scheme which significantly
overestimated ozone dry deposition velocities relative to observations in the summer while
providing reasonable estimates during the winter, while the Zhang scheme, used in NA4, showed
little seasonal variation (tending to be flat over time, with overestimates during winter,
underestimates during summer). It is of note that the models that reproduce the seasonal
evolution of ozone most accurately during summer when the rest of the models struggle, have the

dry deposition schemes with the largest positive biases in summertime ozone dry deposition
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velocity and the greatest seasonal amplitude (Clifton et al. 2023). This implies (1) that the factors
affecting the ozone concentrations have a strong seasonal dependence (models NA4 versus NA3
and NA5), (2) and that while one means of helping achieve that seasonal dependence is through
an overestimation of the ozone dry deposition velocity relative to observations (models NA3 and
NAS), (3) other seasonally dependent process improvements than dry deposition velocity are
required to better simulate ozone (given that the other models considered here which incorporate
more accurate ozone dry deposition schemes, relative to the observations in Clifton et al. (2023)
also have high positive biases in parts of NA and EU (Figure 3 and Figure 5). As noted above,
process representation of forest canopy shading and turbulence is one such such possible means
of model performance improvement!. The other consideration worth examining is the
interdependence between model cloud cover and surface photolysis rates, given the variation
between NA WRF-Chem models NA6, NA7, and NA8, where the largest differences in ozone

positive bias correspond to the use of differing cloud parameterizations.

For NO and NO;, the models show seasonal cycles which differ between the models (Figure
7, Figure 8, left-hand columns) versus the observations and between the NA and EU observations.
Observed NA ozone peaks in April (month 4, Figure 7 upper left panel), while observed EU ozone
peak in July (month 7, Figure 8 upper left panel). As noted above, models NA1, NA2, NA3, and
NAS all capture the NA Os seasonality (CMAQ and Base and Ops GEM-MACH configurations) while
the WRF-Chem models predict a late summer peak, similar to observations in EU. All models tend
to overestimate compared to observed ozone concentrations (exceptions: NA3 and NA5 in April
and May, Figure 7, EU2 and EU3 from November to April). All models underestimate wintertime
NOx (though NA models NA1, NA2, NA3, NA5, and NA7 have close NO; performance to
observations from July through October, Figure 7), and EU3 NO values closely match observations,
while EU2 NO; is biased high relative to observations. All NA models have significant (factor of
two or more) negative biases in NO, and the largest seasonal NO2 negative biases in winter. As a

consequence, all NA models strongly underestimate the amplitude of the observed seasonal cycle.

! We note that subsequent investigation at ECCC of the GEM-MACH dry deposition algorithm described in Makar et
al. (2018), following the results published in Clifton et al (2023) identified two key errors added to the code in the
version subsequent to the code version used in Makar et al (2017). Specifically, the cuticle resistance formula
(Makar et al, 2018 equation S.8, Clifton et al (2023) equation (42) made use of Zhang et al (2002) dry cuticle
resistance coefficients (rcuti, rlu) which should not have been scaled by inverse leaf area index, and made use of
Zhang et al (2002) coefficients for the lower canopy resistance (Makar et al, 2018 equation (S.2), Clifton et al 2023
equation (44) which did not include the required scaling of the coefficients by (LAI*0.25)/(u*)”2. Subsequent to
these corrections, a much closer fit to the observations in Clifton et al. (2023) was achieved. (K. Toyota, A.
Robichaud, personal communication, 2024).
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Potential factors which might drive an underestimate of wintertime NOx include underestimates
in the emissions of NOx from combustion sources such as wintertime home heating from fossil or
wood fuels (van der Gon, 2015), underestimates of atmospheric stability (i.e. if the simulated
atmosphere is more unstable than the actual atmosphere, NOx emissions may build up to higher
concentrations in the model than is observed), and the potential for HONO cycling in the presence
of snow on surface leading to longer lifetimes of NOx (Michaud et al., 2015).” Figure 8 also shows,
not unexpectedly, that the models with the smallest NO and NO; biases (EU2 (WRF-Chem (UPM))
and EU3 (LOTOS/EURQS)) do quite well for O3, NO and NO3), and the EU NO and NO; biases for
these models are in general much smaller than the NA model biases. At the diurnal level (Figure
7, Figure 8 right panels) the results are consistent with what is found at the seasonal level in terms
of over- or underestimations. At the diurnal level, EU2 outperforms the others showing a good

capacity of catching the average time evolution of the three pollutants.

The monthly averaged ozone, NO and NO; concentrations breakdown at the sub regional
level are presented in Figures S3 and S4 for NA and EU, respectively. From Figure S3 one can
conclude that the major contribution to the domain-wide estimation presented earlier is
essentially coming from regions R2, R3 and R4 (i.e. the eastern part of the domain) whereas all
model results in R1 are rather similar and in agreement with the measurements throughout the
year with some models overestimating cold seasons but by a lesser extent than in the other
regions. The summertime ozone overestimation over the Eastern U.S. for NA1 and NA2
(WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE)) is consistent with the findings of Appel et al.
(2021). It is also worth noting that all of the NA models (Figure 9) overestimate Os in the period
from July through September in regions R2, R3, R4; an observed effect largely absent in the EU
models (Figure 10). We also note that the time series of observed O3 for North America shows
April peaks for regions R2, R3 and R4, while R1 peaks in June. One possible cause for the observed
early spring peak in the latter regions is the transport of upper Tropospheric O3 downwind of the
western cordillera, a process which is known to be at its maximum in the springtime (Pendlebury
et al., 2018). From figure S4, referring to the EU case, we see that EU1 and EU4 underestimated
NO and NO2, whereas EU2 largely overestimates for all European sub-regions. Such model
performances can explain the ozone biases as they affect ozone titration at night. This effect is
apparently exacerbated in the Po Valley area, which is known for high NOyx emission levels. The

observational sites in the Scandinavian Peninsula are mainly from the EMEP network which is
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representative of the remote background whereas the AirBase network rural background sites are

more prone to local sources of pollution.

These regional differences will be instrumental to the analysis of dry deposition processes.
The same behaviour observed in sub regions is found at both the seasonal and hourly level. From
Figure 10 we can see the situation in Europe, which lacks the large positive biases in the NA

simulations.

3.1.4 Summary of the analysis
One overall conclusion from the comparisons with observations for NO, NO; and Os is that:

e the models which most closely match NO and NO; (EU2, EU3) also have the best performance
for O3,

e that those models with negative biases for NO and NO; also have positive biases for O3, and
that the magnitude of the NOy negative biases is inversely proportional to the magnitude of
the Os positive biases, for all models.

e The relative magnitude of the “freshly emitted” component of NOy (i.e. NO) tends to be

underestimated, with the exception of model EU3 (LOTOS/EUROS).

These results all point towards excessive vertical mixing of fresh NO emissions up from the lowest
model layer as a root cause of the model biases in the other models. The reasons for this

conclusion are:
(1) the relative fraction of NOx that is NO will be highest in air dominated by fresh emissions;

(2) the relationship between positive ozone biases and negative NO biases indicates that the ozone

biases are due to insufficient NO titration;

(3) the effect is exacerbated in winter in all NA models and some EU models - a time when the
atmosphere tends to be more stable, and photolysis rates in the northern hemisphere are low,

both conditions which favour NOy titration.

A secondary cause may be missing NO emissions in the wintertime, though this seems less likely
due to the relatively high confidence in mobile emissions and stack emissions, which dominate the
NOyx emissions totals, and the relatively good performance of EU3 relative to the other EU models

when making use of the same emissions inventory.
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3.2 Ozone dry deposition fluxes

We start our examination of Os dry deposition fluxes with the direct comparison of the
effective and total fluxes calculated by the models. Effective flux is a convenient way of examining
the contribution of the resistances of various pathways towards bulk dry deposition, taking into
account that variability is not only due to these resistances but also surface ozone concentrations
(Galmarini et al., 2021). The definition of effective fluxes is analogous to the definition of effective
conductances (Paulot et al., 2018; Clifton et al., 2020b). Specifically, by definition, the sum of the
effective fluxes equals the total ozone dry deposition flux, and this equality is used in the
subsequent analysis. Within AQMEII-4, the relevant effective conductances were defined a priori
and every participating modelling group was requested to determine the combination of all
relevant resistances accounted for in their systems, necessary to produce the effective
conductances requested. The definitions of the effective conductances, the dry deposition
modelling approaches and the detailed formulation of effective fluxes for each model are
presented in Galmarini et al. (2021, this issue). Because effective conductances and ozone
concentrations can co-vary on daily timescales, it was important to archive high-frequency
effective fluxes; for this same reason, conclusions about drivers of variations in effective fluxes
may be distinct from those regarding effective conductances. The analysis of effective and total
fluxes is performed only for the grid cells in which all models share the same LULC (for details on
the common LULC classifications see Galmarini et al. (2021, this issue)). By restricting the analysis
to locations sharing the same characteristics of land use across models, we reduce the impact of
LULC variability on the resulting analysis, thus allowing us to compare only the response of models
to the different dry deposition schemes employed for a given LULC. We present model results at
grid cells that are covered by at least 85% of respectively, Evergreen Needleleaf Forest (NA: 1544
cells, EU: 2531 cells), and Planted-Cultivated (NA: 6130 cells, EU: 6108 cells). In addition, we also
define an ‘Ozone Receptor’ case that corresponds to the grid cells where ozone is monitored at
the surface in the two continents (NA 1551 cells, EU 1656) independently from the underlying
LULC type, which can therefore be different from model to model. In the SM the Deciduous
Broadleaf Forest (581 cells), Mixed Forest (705 cells) are also presented for NA case only for the

sake of synthesis.

An important finding is obtained by simply imposing the data the selection criterion

described above. As can be noted, for the same continent the models share relatively few grid
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cells with the same dominant LULC. This is a clear indication of the fact that individual LULC masks,
employed in the models, were obtained from substantially different sources (Table 1). Such
results raise a significant issue: is it acceptable that the characterisation of the land surface differs
so much? In principle LULC masks adopted by the AQMEIl 4 models should be very comparable,
especially when sources of this information with a high degree of spatial resolution are now
available. More discussion may be found in Section 5 and in our companion paper (Hogrefe et al.,

2025, this issue).

Figures S5 and S6 show seasonal cycles of the total ozone dry deposition flux and its
decomposition into the three different effective fluxes. The pathways represented by these
effective fluxes are (1) lower canopy and soil conductances combined in one factor (LCAN+SOIL)
since some models did not distinguish these two terms, (2) cuticular conductance (CUT) and (3)

stomatal conductance (ST).
The following features can be appreciated across the model results:

e The magnitude peak of the ozone flux varies considerably from model to model in some
cases (NA8) being almost twice that of others (NA4) for the monthly average.

o Typically, the flux is highest during summer and lowest during winter. In some cases, some
fluxes show nearly constant values throughout the summer season (NA2, NA3, NA5 and
NA7). In others, there is a stronger midsummer peak (NA1, NA4, NA6) in July or August.
NA8 shows a double peak shape. Given the dry deposition scheme is the same in NA8 as
NA7 and NAG6, this suggests this double peak is either meteorologically driven, or ozone
driven.

e In the EU case more homogeneity appears between EU1 and EU2 behaviours while EU4

shows a slightly different performance at this macro level analysis at least.

The breakdown of the contributions of the specific pathways to the total ozone flux does not
appear to identify any common behaviour either across models, or within the same LULC type nor
across time. Itis particularly notable that the relative contributions of the different pathways vary
between models, (e.g., compare the relative magnitude of stomatal flux in NA1 and NA2, Figure
S5(a)). Some models employing the same dry deposition algorithm nevertheless have different
contributions associated with the different pathways (see NA3 versus NA5, which have the same
dry deposition algorithm, yet the soil term dominates in NA3 and the cuticle term dominates in

NA5). The difference in soil versus cuticle terms dominating in NA3 and NAS5 likely reflects
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differences in meteorology between these two model implementations; as noted above, NA3
includes feedbacks between meteorology and chemistry, in turn resulting in differences in the

meteorological terms controlling these two deposition pathways..

We note that an exception to the explanation presented above is for the “planted-
cultivated” LULC, where ST and LCAN+SOIL tend to dominate the flux. Thereis also a clear summer
maximum in ST across models (Figure S5e), but the exact seasonality of ST differs significantly
between models. LCAN+SOIL tends to have a bi-modal seasonality for this LULC type —with minima
during winter and during times of maximum ST. CUT tends to be low — with NA1 and NA2
suggesting slightly higher values — with weak but noticeable seasonality with a broad growing
season peak. To a certain extent, this pattern in seasonal variation in the different pathways and
their contribution to the total flux also shows up for deciduous forests (Figure S5c), but less so for
CMAQ than for the other models. In general, stomatal flux tends to drive seasonality in the ozone
flux, as Clifton et al. (2023) found for ozone dry deposition velocity at the individual flux sites, but
sometimes there a seasonal contribution in non-stomatal flux. The models also all differ in the
relative contributions of LCAN+SOIL, CUT, and ST, as also found by Clifton et al. (2023). For
example, cuticular flux is very low in some models (e.g., WRF Chem) but a dominant contributor
(about 1/3 except over crops) in NA1 and NA2. Perhaps the primary conclusion is that model
behaviour can be grouped around the model type. In fact, clear similarities can be found among
NA3 and NA5 (GEM-MACH (Base) and GEM-MACH (Ops) for several land-use types), as well as
NA6, NA7 and NA8 (WRF-Chem (RIFS), (UPM) and (NCAR) respectively). In the EU case, EU1 and
EU2 (both WRF-CHEM) have comparable yearly characteristics, while EU4 (WRF/CMAQ (STAGE)
used by the University of Hertfordshire) shares a similar breakdown with NA2 (WRF/CMAQ
(STAGE) run by the USA-EPA).

Although relevant for operational evaluation, the analysis in Figures S5 and S6 does not
easily reveal the significance of dry deposition processes and pathways in determining ozone
variability across models. Toward this end, hierarchical and variation partitions are considered in

Section 5.

4. Probabilistic evaluation

The ensemble analysis described in this section aims to identify the models that contribute

to an improved ensemble result and the best combination of models that improves the ensemble

15



475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

skill. Such analysis is part of the probabilistic evaluation described in Dennis et al. (2010) and
constitutes one of the four pillars of evaluation defined therein and adopted in the overall AQMEII
activity. In past phases of AQMEII, ensemble analysis was also presented as an integral part of the
model evaluation (Solazzo et al. 2012a, Solazzo et al. 2012b, Galmarini et al. 2013, Kioutsioukis
and Galmarini, 2014, Im et al. 2015, Solazzo et al. 2013, Kioutsioukis, et al. 2016, Solazzo et al.
2017b, Galmarini et al., 2018). The ensemble mean of the model results has already been
presented in the operational analysis. However, identifying which and how many models
contribute to improved ensemble results is another question to be addressed in this context. The
analysis uses ozone mean concentration measured at the monitoring sites as reference and
techniques based on model combination to determine the optimal results as described in earlier
studies (Solazzo et al. 2012a, Solazzo et al. 2012b, Solazzo et al. 2013, Galmarini et al 2013,

Kioutsioukis and Galmarini 2014, Kioutsioukis, et al. 2016, Galmarini et al., 2018).

The skill of an ensemble increases if we combine accurate and diverse models (Kioutsioukis
and Galmarini, 2014). As shown by Solazzo et al. (2012a) the skill normally reaches a maximum for
an ensemble composed of less than half of the available models and then deteriorates when more
models are added until reaching an asymptotic value. Given m available models, several
combinations of model results in groups of n £ m can be produced. In this analysis, we aim at
identifying the minimum number of models that produce the optimal result and which are the
models that produce the highest ensemble skill. We therefore consider all ensembles obtained by
combinations of members in each group constructed from the m models (i.e., a total of

m m N
el (n) ensembles where (n) represents the combination of n models out of a total of m

available). For each combination, we calculate the RMSE with respect to the measured values and
identify the ensemble with the least error. Note that these ensembles cover the full range of
possible combinations from first-order (one model ensemble) to m® order (m = 8 models for NA
case and m = 4 models for EU). To avoid the exclusion of yet meaningful results and at the same
time to study how the variety of models analysed combines toward those, we also present the
results of ensembles with RMSE within 10% of the optimal one. Lastly, we determine the

frequency with which each model is selected as part of an optimal ensemble.

In Table 2 the results from NA are presented. The analysis of the 255 ensembles obtained
by combining the models in groups of 1, 2, 3 through 8, gives a RMSE ranging from 3.77 to 11.89
ppb. The results from Solazzo et al. (2012a) are confirmed in this study, therefore in the Table 2

we will present only results up to order 4 (i.e. four members in the ensembles) in the NA case,
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since for higher orders the results only deteriorate. The ensembles with the least error are
obtained from the average of two and three models results (i.e. a 2" and 3" order ensemble, blue
columns). The models that contribute to these two optimal ensembles are WRF/CMAQ (STAGE)
and GEM-MACH (Ops) for order 2 and WRF/CMAQ (STAGE), GEM-MACH (Base) and GEM-MACH
(ops) for order 3. The second-best ensembles (yellow columns) are also of order 2 and 3 and are
composed of GEM-MACH (Base) and GEM-MACH (Ops) results, and WRF/CMAQ (M3Dry), GEM-
MACH (Base) and GEM-MACH (Ops), respectively. In particular, it is worth noting that (a) order
one features two of the models most present in the ensembles and their individual result is still
within 10% of the best higher order ensembles (b) WRF-CMAQ and GEM-MACH are the most
frequent contributors, (c) WRF-Chem versions (RIFS, UPM, NCAR) are never contributing to any
ensemble set. We note that both WRF/CMAQ and GEM-MACH (Base and Ops) are used for
operational air-quality forecasting in the USA and Canada, respectively, and hence (1) they are
frequently evaluated against monitoring data under the principle that new model versions must
improve the forecast before replacing old model versions, (2) the ongoing evaluation process will
tend to select model configurations with the best performance with respect to ozone
concentrations, (3) this ongoing evaluation process is for the model as a whole, while individual
processes tend to be evaluated based on other data, and are incorporated into the base code, (4)
this process can result in the adoption of processes with compensating errors (c.f. Makar et al.
2014, and note the contrast between dry deposition velocity performance for NA3, NAS here
versus the dry deposition velocity performance in Clifton et al., 2023). As new data such as the
dry deposition observations of Clifton et al. (2023) become available, compensating errors come

to light, allowing for corrections and updates to the model codes to be carried out.

The EU ensemble (Table 3) has 4 models, which generates 15 ensembles with RMSEs
ranging from 7.51 to 14.59 pg/m?3. Four out of the 15 combinations of 2"9, 3" and 4" order have
errors within 10% (yellow column) of the optimal combination generated from LOTOS/EUROS and
WRF-Chem (RIFS) for the second order (blue column). No 15t order ensemble has a RMSE smaller
than the 2" order best ensemble, meaning that no individual model run on the EU case performs
better than the combination of the two shown in the 2" order grouping. LOTOS/EUROS is present
in all the ensembles created but yet alone is not doing better than when its results are averaged
with those of WRF/CMAQ (STAGE). The latter, operated by the University of Hertfordshire for this
case study, is present 80% of the time as a contributor to the second- and third-best ensembles.

We note that LOTOS/EURQOS, like the GEM-MACH and WRF/CMAQ models in NA, provides
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operational forecasts of O3, NO;, and PM1o, and hence will likely benefit from ongoing evaluation
and selection of process representation that gives the most accurate model results. Since the
results of all orders are shown in Table 3 we can see that the conclusion of Solazzo et al. (2012a)
is confirmed to the extent that a combination of half of the available members tends to
outperform any single model or larger ensemble of results. It should be clear that the number of
models is only an indication to the extent to which the combination of specific models allows one

to produce the best results with a reduced number of ensemble members.

5. Variance analysis of ozone fluxes and the role of conductances, turbulence, radiation and

wind speed to ozone variability on common LULC types

At this stage of the analysis it is important to determine the overall role of dry deposition
and other relevant factors in determining the variability of ozone concentrations at the surface.
Having established which grid cells are representing the same LULC characterisation (Section 3.2),
we proceed with the analysis of dry deposition data by identifying a set of parameters that are

expected to be relevant in the characterisation of the ozone flux, namely:

e Lower canopy and soil effective flux (LCAN+SOIL) combined as one factor,
e Cuticular effective flux (CUT)
e Stomatal effective flux (ST)
[ J
We also identify the factors that are expected to be relevant in the determination of ozone

concentration variability at the surface, namely:

e Boundary layer height,
e Solar radiation,
e Wind speed,

e Dry deposition velocities.
Chemical transformation is a dominant factor in creating ozone variability together with the
abundance of ozone precursors. However, it is challenging to represent the influence of these

factors through a specific variable, although solar radiation can be viewed as a proxy of
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photochemical activity. We note that air temperature can also have a significant influence on
photochemical formation of ozone, but air temperature will also influence the dry deposition
pathways; the two influences would be difficult to differentiate. Although the analysis will be
performed over all the months of the analysed years, the main focus will be around the summer
months, when the ozone production and mixing ratios are normally at maximum levels, and when

models are performing the worst, at least over NA.

5.1 Relative relevance of pathway fluxes in ozone flux variability

Variation partitioning of a single response variable (Y, e.g. total Oz flux, or O3
concentration) is based on the adjusted R? in a regression framework (Peres-Neto et al., 2006; Lai
et al., 2022). For example, the variation partitioning of O3 flux between three sets of predictors
(X1: LCAN+SOIL, X2: CUT, X3: ST) can be achieved through the estimation of the fractions
(represented here by the dummy variables: a, b, ¢, d, e, f, and g) based on one (Xi), two (X, X;) or

three (Xi, X;, Xx) variables (Figure S7):
(1) fractions based on one variable:
[a+d+f+g] :R1%|X1
[b+d+e+ gl =Ryx, (1a)

[C+e+f+g]:R12/|X3

(2) fractions based on two variables:
[a+c+d+e+f+g]l=Rxixs (1b)

[b+c+d+e+f+gl=Rjxaxs

(3) fraction based on all three predictor variables:
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[a +b+c+d+e+ f + g] = R}2’|(X1,X2,X3) (1C)

Y in equations 1 (a,b,c) is the predictor variable in this case ozone deposition flux. From the above
expressions, we can estimate the sole and shared contributions of each predictor. For example,

the sole and shared fraction of variation explained by X1 are respectively:

sole=[al=[a+b+c+d+e+f+gl—-[b+c+d+e+f+g] (2a)

shared = [d/2 + /2 + g/3] (2b)

where (similarly for the other fractions):
[d]=[la+b+c+d+e+f+g]l—[c+e+f+g]—I[a]—[b]

The analysis proceeds by carrying out multiple regressions for the equations 1(a) through
1(c); the values of the left-hand side terms that minimize the differences between left and right-
hand sides of the equations are then compared - these provide the relative contribution of the
component terms towards the net correlation coefficient between the ozone flux and the three

predictors.

For the sake of synthesis in the main paper, we shall present results of the variance
decomposition analysis for the two most relevant LULC cases (evergreen needle leaf forest and
ozone receptors). The analysis for all other LULC types selected and listed in Section 3.2, is

presented in the Supplement.

Figure 11 presents the contribution to the ozone dry deposition flux variability of the three
effective fluxes (total or ‘sole’ plus ‘shared’: first and third column of plots in each figure) and their
decomposition into ‘sole’ and ‘shared’ fractions (second and fourth column panels) for all months
of 2016 and for the eight models participating in the NA case study for shared cells covered by at

least 85% evergreen needle leaf forests.

Considering the first and third columns of Figure 11 (where the sum of Egs. 2a and 2b is
presented) we note that for all models the fractional contributions to ozone flux variance add up
to 1 as expected. For the summer period, we can see that the models can be divided into three
main groups. The first group is where stomatal effective fluxes dominate in defining the ozone flux

variability (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE)), a second group where the dominant
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pathway to ozone flux variability is through the cuticular effective flux (GEM-MACH (Base), GEM-
MACH (Ops) and GEM-MACH (Zhang)) and a third group where the main factor is the combined
soil and lower canopy effective flux combined (WRF-Chem (RIFS), WRF-Chem (UPM), WRF-Chem
(NCAR)). This constitutes a significant result that is also in line with those obtained by Clifton et al.
(2023), but extends their finding. For example, Clifton et al. (2023) show that different models
have very different relative partitioning across effective conductances at individual sites. Our
result here suggests that spatial variability in the ozone flux across the same LULC type is mainly
determined by different flux pathways. Given the fact that the grid cells selected were dominated
by the same land-use type, differences between the three groups can be attributed to substantial
differences in the dry deposition modules, concentration gradients, and meteorology. In the
winter and autumn months, the contribution to ozone flux variability is equally distributed across
the three pathways for all models for this LULC type. We also note that the seasonal cycle of the
“sole” terms varies as a function of model. The stomatal conductance term dominates the CMAQ
implementations (NA1, NA2) in the summertime, while for the GEM-MACH implementations
(NA3, NA4, NA5), summertime seasonality is mostly driven by the soil + lower canopy term, while
for WRF-Chem implementations (NA6, NA7, NA8), stomatal and soil+lower canopy terms both

have a weak maximum in the summer.

In Figure 11 the results of the decomposition obtained according to equation (2) are
independently presented (columns 2 and 4). For the sake of presenting the results in a clearer way,
the contributions to the variation obtained from equation 2b, are plotted after changing their sign
to better distinguish them from the others; but the total sum of the negative and positive values
should be 1. This more detailed analysis allows us to verify the previous one with additional details.
For example, the predominance of stomatal flux in WRF-CMAQ at the warm season is due to the
sole contribution of stomatal flux whereas at the other seasons the shared contributions
dominate. For GEM-MACH, the importance of the cuticular flux seen earlier arises from its shared
contributions except GEM-MACH (Zhang) where its sole fraction appears equally high throughout
the year. Five process representation differences between NA3 and NA5 have been summarized
above — one of these is different driving meteorology, which may influence differences between
these two models in Figure 11. . We note that the WRF-Chem models are also being used in
feedback mode and have less variation than the GEM-MACH case, potentially indicating a smaller

impact of differing model parameterizations on the feedback portions of the WRF-Chem code.
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Last, for WRF-Chem, the shared contribution of soil and canopy flux is important all year, but its

sole contribution becomes equally high in the warm season.

Figure 12a shows the same analysis for the EU continent where the picture differs from
NA, indicating very different meteorological condition between the two regions. This is not
unexpected, in that EU meteorology is strongly influenced by the ocean circulation of the Gulf
Stream, while the NA meteorology is over a broad region that has a much broader range of
conditions in a “continental” climate. In two of the three models (WRF-Chem), the importance of
soil-lower canopy and stomatal effective fluxes in the warm season (mid spring through October)
is due to their shared fractions while the sole contribution of the cuticular effective flux in winter
drives the variation of the total Os flux. The seasonality of the EU stomatal component is shared
with that of NA6, while the EU soil components have a greater degree of seasonality compared to
the NA WRF-Chem models. The other model -- EU4 (WRF/CMAQ (STAGE)) -- shows a more even
distribution of the stomatal contribution across the year, and a more equal distribution across the
three pathways during the year. EU3 is not presented since no data were delivered for effective

conductances.

From the figures S8-S10 one can deduce that the rest of the land covers (Deciduous
Broadleaf Forest, Mixed Forest, Planted-Cultivated) still exhibit a dominance of stomatal effective
flux during the summer. These LULCs all have a significant deciduous component, and the
summertime dominance is in part due to the wintertime absence of foliage in the more northerly
parts of the model domains. Depending on the model, cuticular and soil are at times the second

contributor to variability of ozone flux.

The category ‘Ozone Receptor’ groups the results at grid cells containing an ozone sampling
location regardless of the land cover adopted by individual models (Figure 12b for EU and 13 for
NA). Itis interesting to note that the Ozone Receptors case shows a remarkable consistency across
models in terms of the contribution of the different effective fluxes and their variability in time, a
behaviour not seen when performing this analysis for grid cells dominated by specific LULC types.
This can be appreciated from Figure 12 where the evergreen needle-leaf forest case (12a) is
presented side-by-side with the ozone receptor case (12b) for the EU domain. There is some
disagreement for the EU about the stomatal flux contribution during winter (zero or low) and on
the exact partitioning during warm months, but generally all the models show substantial
contributions from the stomatal flux, though disagreeing on the exact non-stomatal partitioning.

The consistency for the Ozone Receptors case is also visible across the continents (Figure 13 for
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the NA case) where the contribution has a remarkable resemblance across models for seasonality
and the partitioning of the ozone flux variance across the effective fluxes, compared to individual
land use type values. For the NA case, models suggest moderate to strong contributions for
LCAN+SOIL during winter, yet small to moderate contributions during summer; the contribution
of cuticular effective flux tends to be constant and moderate throughout the year, with three
models (WRF-CHEM) suggesting smaller contributions in winter; with stomatal effective flux
making up the difference, roughly a third of the total, but sometimes as low as 10% or as high as

50%.
This result calls for some important considerations:

1- The remarkable consistency and similarity found among the model results at the ozone
receptor locations could be due to the lack of dominance of any specific LULC type at this subset
of grid cells considered. This would be in agreement with the fact that the locations have
presumably been chosen for air quality monitoring activities and by-design are intended to be
neutral to any prevailing process such as the removal of pollutants from the atmosphere by dry

deposition processes, thus extending the spatial representativity of the monitoring locations.

2- The variance decomposition into contributions of both sole fluxes and shared fluxes
(columns 2 and 4 of Figure 13 and column 2 in Figure 12b) does not show the same agreement
found for the total fluxes (columns 1 and 3 of Figure 13 and column 1 of Figure 12b). This indicates
that every dry deposition model maintains a peculiarity in its behaviour for individual land use
types. This specificity is lost in the results when the ozone monitoring station are considered. This
suggests that while the monitoring station locations show the models perform in a similar fashion
for mixtures of LULC types, the model performance for individual land use types (represented by
a much smaller number of stations) may differ significantly. Given that model performance is
judged using observation station values, this may indicate that dry deposition algorithms have
been inadvertently tuned towards providing similar results in the regions where mixtures of LULC
values are present - but require single LULC type stations for the evaluation of individual LULC
performance. We note that this tuning is not intentional, but a product of the purpose for which
monitoring stations have been set up (e.g. human health impacts, and hence closer to human
habitations than remote locations which may have a single LULC) and the availability of
infrastructure (roads, electrical power) for station operations. This result underscores the
importance of land-use specific dry deposition sites such as those used in point model dry

deposition velocity analysis in Clifton et al. (2023, this issue) when evaluating dry deposition
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algorithms, and suggests that subsets of monitoring network stations located in single LULC types
should be identified (or constructed if none are available) in order to further improve model
performance within those LULC types. The result is that the dry deposition algorithms are
achieving similar results for dry deposition flux relative to observations — but sometimes via very
different pathways, especially across different LULCs. This is in line with suggestions from recent
work examining a single model (Silva and Heald, 2018), a review paper on modelling ozone dry
deposition (Clifton et al., 2020a), and the results of the single-point modelling AQMEII Activity 2

paper (Clifton et al., 2023). These findings and the above analysis illustrate

e a strong need to generate observational datasets which focus on specific dry deposition
components for model evaluation (e.g., as suggested by Clifton et al. 2020a),

e the need for dry deposition velocity observation to evaluate dry deposition algorithm
performance

e the need for monitoring network locations that represent specific LULCs, to improve model

performance in regions where one LULC dominates.

The current evaluation practice with mixed LULC monitoring stations used for dry
deposition algorithm evaluation prevents progress in algorithm improvement in specific LULCs,
and allows for LULC-specific compensating errors to be missed in dry deposition algorithm

development.

3- If (1) and (2) can be confirmed one should consider comparing dry deposition results
obtained at operational monitoring sites with care — the net results of the comparison may be that
the regional models and possibly their dry deposition fluxes agree — on average, for regions with
multiple land-use types - but the agreement is the result of regional model evaluation procedures
as opposed to mechanistic dry deposition velocity algorithm evaluation that is LULC-specific.
Furthermore, this may give an appearance of agreement among regional models that may be
illusory, since in grid cells with shared dominant LULC types more disagreement has been
demonstrated in the above analysis. An important implication of this finding is the need to evaluate
regional models using both single-land-use and multiple-land-use type stations in the future, and for

representation in single-land-use type locations to be a consideration in monitoring network design.

5.2 Non-linear contributions of other factors to the ozone concentration variance
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The analysis of the non-linear contributions to the ozone variance has been conducted by
introducing other factors considered to be relevant in influencing ozone variability at the surface
level, namely: boundary layer height, solar radiation, wind speed, and dry deposition velocity. In
a way, this analysis allows us to determine the role of dry deposition in relation to other factors
influencing the variation of ozone concentrations at the Evergreen Needleleaf Forest cells and
therefore estimate its relevance as a driver of ozone variance in a regional scale model. Figure 14

presents the analysis for the NA case while Figure 15 shows results for the EU case.

From Figure 14 we firstly note that the selected components have a very relevant role in
the determination of the surface ozone variance as, overall, they account on average for 60 to 80%
of ozone variance. The remaining portion can be attributed to variations in emissions and chemical
reactions that cannot easily be represented by a specific variable, or to other factors not
considered in this analysis. Throughout the 8 models participating in the NA case study, we can
note the dominance of solar radiation followed by PBL height and dry deposition velocity whereas
wind speed seems to be relevant throughout the year only for three of the eight (WRF/CMAQ
(M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Zhang)). We note that correlation does not
necessarily imply causation - the wind speed dependence effects noted here may reflect model
dependence on the friction velocity, which can be expressed as a function of the wind speed,
logarithmic profile, and surface roughness. The contribution of wind speed across models is very
scattered in time though contributing on average for 30% of the resolved variability. In some
models it appears to be among the dominant factors in winter more than in summer (WRF/CMAQ
(M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Zhang), WRF-Chem (RIFS), WRF-Chem (UPM)). While
WRF-Chem (UPM) uses the CBMZ mechanism (see Makar et al., 2025, this issue), the dry
deposition implementation for CBMZ accounts only for 4 seasons, while the other two WRF-Chem
models (RIFS and NCAR) employ the MOZART chemical mechanism, for which the dry deposition
algorithm has tabulated entries on a monthly basis which are used in dry deposition. That is, the
WREF-Chem dry deposition implementations which are linked to different gas-phase mechanisms

have differing degrees of seasonal resolution.

We note that the differences noted above for NA3 versus NA5 include different LAl

information (with different sources and seasonal dependence).

It appears that in North America a seasonality in the contribution of the various components is
more evident. The differences between GEM-MACH (Base) and GEM-MACH (Ops) can be

attributed at least partially to the meteorology change associated with feedbacks, but also may
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partially result in the differing seasonality in LAl inputs. The no-feedback model (GEM-MACH
(Ops)) has less ozone variability associated with wind speed, and more with solar radiation,
compared to the feedback model GEM-MACH (Base); feedbacks exacerbate meteorological
variability. GEM-MACH (Base) versus GEM-MACH (Zhang) shows how much the dry deposition
scheme can affect the variability, via the feedbacks: GEM-MACH (Base) and GEM-MACH (Zhang)
are otherwise identical models. This quantifies the impact of feedbacks on meteorology and hence
dry deposition velocity variance. WRF-Chem is also a feedback model as well, and the impact of
the feedbacks is showing up as differences in the relative importance of meteorology versus ozone

dry deposition velocity itself between the different implementations.

In EU we see from Figure 15a that the contributions have a greater degree of scatter than
for NA. WRF-Chem (UPM) and WRF/Chem (RIFS) share an important contribution of dry deposition
velocity in February and of PBL in April, November and December. Interesting is the fact that across
the year the components account for a smaller portion of the total variance (<50%) than in the NA
case. This could be due to drastically different conditions and the dominance emissions variability
(and consequently chemistry) on the ozone variability. Each of the models are using different
driving meteorology, but the variation in observed conditions across EU may be less than across
NA, as noted above. The March case of WRF-Chem (RIFS) is particularly interesting where the PBL
height, solar radiation, wind speed and dry deposition velocity contribute to less than 5% of the
ozone variance. Another difference between the NA and EU case studies is the contribution of dry
deposition compared to the other processes in determining ozone variability. In NA, dry deposition
velocity contributes 10 to 25% to ozone variability during summer and 10 to 50% during winter. In
the EU, however, the summer contribution is much lower and in February two models out of four

show a 70% contribution.

All these results clearly point toward a relevance of dry deposition in determining ozone
variability and concentrations at the surface and yet they also show that important differences are

present in the process description in individual models that can greatly influence the outcome.

When the same analysis is performed at the O3 Receptor cells, we can clearly demonstrate
hypothesis (1) and possibly (2) presented in the previous section. Figures 16 for the NA case and
15b for the EU case show the results for the O3 receptor cells. The eight models in the NA case
clearly show that at those grid cells the contribution of dry deposition velocity to ozone variability
is generally much smaller compared to the results for grid cells with specific common LULC types,

for example with respect to Evergreen Needle-leaf Forests. Despite this general trend, NA1, NA2,
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NA3 and NAS5 (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Ops)
respectively) still show that during winter, dry deposition can be a significant contributor to ozone
concentration variability at receptor locations. This result also confirms the hypothesis made at
(3) in the previous section; the operational ozone monitoring sites are not suitable for the analysis
of dry deposition results for specific LULC classes. A similar conclusion can be drawn for the EU
case (Figure 15b) which is presented back-to-back with the evergreen needle-leaf forest case. To
corroborate the last statement, Figure 17 shows a comparison of the fraction of the entire NA
common domain (excluding grid cells dominated by water, i.e. water fraction > 0.5) covered by
each LU type to the LU distribution of all grid cells corresponding to O3 receptor locations (EU
results are shown as Figure S11 in the SM). As can be noted, existing O3 receptor locations are
characterised mainly by Planted/Cultivated, Shrub land and urban LULC with a 10% coverage of
deciduous broadleaf forest (Figure 17b). At these locations all models appear to have the same
distribution of the main LULC type apart from Shrubland (NA3, 4 and 5 20% more abundant) and
Planted/Cultivated (same models 10 % less abundant). However, the distribution of LULC from the
overall NA common model domain (Figure 17a) demonstrates that the current receptor site LULC
poorly represent the relative amount of land use occurring throughout the domain, with, for
example, much higher Evergreen Needleleaf and Grassland fractions, and much lower urban land
use LULC in the all-domain data of Figure 17a compared to the observing station values of Figure

17b.

In this respect, it is important also to note that in spite of the formal differences among
dry deposition modules (Galmarini et al., 2021), in conditions of uniform LU characteristics and
dominance of urban and Planted/Cultivated LULC types, the models tend to produce comparable
results in terms of contributors to ozone variability. This result further underlines the importance
of a correct and uniform characterization of the both the input LULC data and the extent to which
monitoring station data reflect LULC across the domain, both of which are driving factors in

determining the differences among dry deposition modules.

6. Conclusions

An operational evaluation has been conducted on the models that took part to the AQMEII-
4 activity (Galmarini et al., 2021). A total of 12 models were analysed, 8 of which were run over

the North American continental air quality simulation of the year 2016 and the rest were run over

27



836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

Europe for the year 2010. The scope of the evaluation is to determine the level of agreement of
the models against available measurements and how they compare with one another. This is
normally referred to as operational evaluation and according to Dennis et al, (2010) is the first
necessary step prior to any more detailed evaluation or inter-comparison of model results. The
focus of the fourth phase of AQMEII is the analysis of the performance of dry deposition schemes
in regional scale models, therefore the operational evaluation has been performed having that
goal in mind. Ozone dry deposition, in particular, is the focus of this analysis. Ozone average annual
concentration errors ranged between 10 and 30% in NA and between 10 and 15% in EU except for
one model (35% error). Errors for NO and NO, were on the order of 5-10% and 10-15% respectively
in NA and 15% for both pollutants in EU. The sub regional analysis confirmed these findings,
considering the expected sub regional variability related to different emission patterns. The
models can be distinctively grouped by performance with WRF/CMAQ (M3Dry), WRF/CMAQ
(STAGE), GEM-MACH (Base) and GEM-MACH(Ops) showing a better overall capacity of predicting
ozone concentrations in NA followed by GEM-MACH (Zhang) and WRF-Chem (RIFS), while WRF-
Chem (RIFS) and WRF-Chem (NCAR) show larger errors throughout the year and the domain. In
the EU case LOTOS/EUROS outperforms the two WRF-Chem versions (RIFS and UPM) and
WRF/CMAQ (STAGE). This result is also very evident from the probabilistic analysis where all
combinations of possible ensembles were calculated and reflect the results of the operational

evaluation.

As far as the dry deposition is concerned, a diagnostic evaluation was performed aiming at
analysing the variance contribution of the different pathways to the variance of the overall ozone
dry deposition fluxes. All cells covered with at least 85% of the same land-use types were
considered in this analysis. Across grid cells containing mostly needleleaf forests over NA, the main
example used in our study, the analysis shows the mixed response of the various dry deposition
schemes adopted in the regional scale models; one group of models shows a prevailing
contribution of the stomatal effective flux in determining spatial ozone flux variability, one shows
the three pathways contribute rather equally, and the last group of models for which the lower
canopy and soil effective flux is the prevailing contributor. Thus, models are simulating very
different drivers of ozone flux variability in space, even for the same land use type. The
contribution to ozone variability of wind speed, dry deposition velocity, solar radiation and

boundary layer height was also investigated.
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When the above-mentioned analysis was also performed for all grid cells where ozone
monitors were present regardless of the LULC type, a remarkable result was found. Regardless of
the EU or NA case considered, all the differences among models found for specific LULC types
largely disappeared, showing a more uniform behaviour across models. This aspect was
demonstrated to be attributable to a minor contribution of dry deposition at those sites in
determining the ozone variability when compared with other factors. Other factors contributing
to this behaviour are the presence of predominant LULC types for which dry deposition is relatively
low and the uniform distribution of those types and other LULC types across the models at the

observation station locations.

This result allows us to present important conclusions. The first conclusion is that the
evaluation of dry deposition processes should not be conducted only at operational ozone
monitoring sites. The latter’s characteristics are selected on other considerations aside from dry
deposition. They appear unsuitable for dry deposition algorithm evaluation. An analysis of dry
deposition modelling at these sites may produce an illusory agreement among models that could
be completely misleading and misrepresentative. Therefore, specific sites with a predominance of
LULCs which induce high dry deposition should be selected among existing monitoring stations, or

added to existing monitoring networks, for dry deposition-focused model evaluation.

The second conclusion is a recurring theme throughout AQMEII-4 regional modelling
studies to date (e.g., Hogrefe et al, 2025, Makar et al., 2025), namely the necessity for a
harmonisation of LULC data across regional scale air quality models, as a large diversity in the
characterization of the surface is still present among all models, and this diversity has a significant
impact on model performance. Considering the existence of detailed information in space and
time on LULC (e.g., Copernicus Land Monitoring services, USGS, LandSat, etc.), we find the lack of
agreement between models on the input land use data anachronistic and of great concern. Any
interpretation of the behaviour of dry deposition schemes will be impaired by the lack of
agreement of LULC masks and will inevitably include an inherent uncertainty difficult to quantify.
The present situation is comparable to the one where models use different topographies or terrain
elevations to the extent of including (excluding) specific reliefs or mountain ranges in (from) the
domain. If there is an ambition to improve the performance of regional scale models in terms of
dry deposition processes (effectively a sink in the concentration budget), the selection of up-to-
date and common LULC data is a fundamental and necessary prerequisite. Considering the

advances in the characterisation of land surface at very high spatial and temporal resolutions
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(metre scale), such effort cannot be further delayed and should be taken on prior to any new

model evaluation or intercomparison of dry deposition processes.
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1185 Table 1: Institutions in charge and the models used in AQMEII-4 case studies.

Abbreviation Modeling System Domain Modeling Group Dry deposition | LU for Dry deposition Scheme
Scheme
(dep. scheme)
NA1 (10700) WRF/CMAQ (M3Dry) NA U.S. EPA M3Dry MODIS
NA2 (10701) WRF/CMAQ (STAGE) NA U.S. EPA STAGE AQMEII-4 (mapped from MODIS)
NA3 (10703) GEM-MACH (Base) NA Environment and Climate | Wesely Robichaud (Robichaud et al. 2020)
Change Canada
NA4 (10704) GEM-MACH (Zhang) NA Environment and Climate | Zhang Zhang et al. (2003)
Change Canada
NAS (10705) GEM-MACH (Ops) NA Environment and Climate | Wesely Robichaud (Robichaud et al. 2020)
Change Canada
NA6 (10702) WRF-Chem (RIFS) NA Research Center  for | Wesely USGS24
Sustainability (RIFS)
NA7 (10708) WRF-Chem (UPM) NA Technical University of | Wesely USGS24
Madrid (UPM)
NA8 (10709) WRF-Chem (NCAR) NA National Center for | Wesely USGS24
Atmospheric Research /
Yonsei University
EU1 (10702) WRF-Chem (RIFS) EU Research Center  for | Wesely CORINE 33
Sustainability (RIFS)
EU2 (10708) WRF-Chem (UPM) EU Technical University of | Wesely USGS24
Madrid (UPM)
EU3 (10707) LOTOS/EUROS EU TNO DEPAC Mapped from Coordination of Information on
the Environment (CORINE) land cover as
described in Manders-Groot et al. (2023)
EU4 (10710) WRF/CMAQ (STAGE) EU University of Hertfordshire | STAGE MODIS + extended urban
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1193 Table 2: NA case. For all available combinations of models (T:ll ) analysed, the table presents those that produce the minimum errors (blue
1194 columns) as well as all other combinations that fall within 10% of that minimum error (yellow and orange columns). The minimum RMSE of 3.77
1195 ppb is achieved by the second order (( g ) , all combinations of 2 models out of 8) combination of WRF/CMAQ (STAGE) and GEM-MACH (Ops) as
1196 well as the third order (( g ) , all combinations of 3 models out of 8) combination of WRF/CMAQ (STAGE), GEM-MACH (Base), and GEM-MACH
1197 (Ops). The combinations with the second lowest RMSE are shown in the dark gray. The frequency column shows the number of times each model
1198 was part of an ensemble weighted by the number of ensembles considered.
Order of Model Combination
MODEL Model code Frequency (%)
1 2 3 4
WRF/CMAQ (M3Dry) NA1 (10700) 36.4 X X X X
WRF/CMAQ (STAGE) NA2 (10701) 54.5 X X X X X X
GEM-MACH (Base) NA3 (10703) 63.6 X X X X X X X
GEM-MACH (Zhang) NA4 (10704)
GEM-MACH (Ops) NAS (10705) 31.8 X X X X X X X |X X
\WRF-Chem (RIFS) NA6 (10702) 9.1 X
WRF-Chem (UPM) NA7 (10708)
WRF-Chem (NCAR) NAS8 (10709)
RMSE (ppb) 3.90 3.95 | 3.77 | 3.86 | 4.02 | 3.83 | 3.77 | 4.04 | 3.83 | 3.93 | 4.10
1199
1200 Table 3: Same as Table 2a for the EU case
Order of Model Combination
MODEL Model code Freq. (%)
2 3 4
WRF-Chem (RIFS) EU1 (10702) 60 X X X
WRF-Chem (UPM) EU2 (10708) 40 X X
LOTOS/EUROS EU3 (10707) 100 X X X X X
WRF/CMAQ (STAGE) EU4 (10710) 30 X X X X
RMSE (ugm-3) 7.51 8.15 7.92 8.11 | 8.17
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Figure 1: Annual average of ozone at all available monitoring stations in North America for 2016 (top

panela) [ppb] and Europe for 2010 (bottom panelb) [ug m3]._ The rectangular areas represent the four

selected sub-regions (R1, R2, R3, R4).
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1208  Figure 2: Individual model ozone RMSE calculated over the whole year (2016) over NA. From NA1 through
1209  NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH
1210  (Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb.
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1223 Figure 3: Individual model ozone MB calculated over the whole year (2016) over NA. From NA1 through
1224  NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH
1225 (Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb.
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1230  Figure 4: Individual model ozone RMSE calculated over the whole year (2010) over EU. From EU1 through
1231  EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ,(STAGE). Units are in ug/m3. Colour
1232 bars are set to twice the range used in Figure 2 to allow for a visual comparison across continents,

1233  accounting for the conversion factor of 1.96 between the different units.
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1243
1244  Figure 5: Individual model ozone MB calculated over the whole year (2010) over EU. From EU1 through
1245  EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ,(STAGE). Units are in ug/m3. Colour
1246  bars are set to twice the range used in Figure 2b to allow for a visual comparison across continents,
1247  accounting for the conversion factor of 1.96 between the different units.
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1258  Figure 6: Individual model ozone MB (top panels) and RMSE (bottom panels) calculated over the whole

1259  vyear over NA (left panelsa) and EU (right panelsb). NA case units: ppb, EU: ug/m?3
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Figure 7: Average monthly (left panels) and diurnal (right panels) cycles of ozone, NO, and NO2 [ppb] for

the 2016 NA case study. Thin coloured lines (solid, dashed, dotted): models; red dots: observations; black

line: multi-model mean.
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the 2010 EU case study. Thin coloured lines: models; red dots: observations; black line: multi-model mean.
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Figure 9: Monthly average cycles of O3 concentrations in [ppb] as calculated in sub-regions R1-R4 over the

NA domain. Thin coloured lines_(solid, dashed, dotted): models; red dots: observations; black line: multi-

model mean.
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Figure 11: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Panels in 1%
and 3™ column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total
effect) of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and
(3) stomatal effective flux. Panels in 2"¢ and 4™ column: Split of the individual importance of the effective
fluxes into sole and shared contributions. The shared effects are displayed with negative numbers. For the
sake of making the pictures easier to read, the explicit names of the modelling systems are reported in the

figure.
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1304  Figure 12: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Panels in 1°
1305  column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total effect)
1306  of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and (3)
1307  stomatal effective flux. Panels in 2" column: Split of the individual importance of the effective fluxes into
1308  sole and shared contributions. The shared effects are displayed with negative numbers. For the sake of
1309  making the pictures easier to read, the explicit names of the modelling systems are reported in the figure.

1310  (b) Same as a) but at the location of ozone receptors in EU (1551 shared cells).
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Figure 13: Same as 11 but at the location of ozone Receptors in NA (1551 shared cells).
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Figure 14: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Variance

partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of

wind speed, PBL height, solar radiation, and dry deposition velocity. For the sake of making the pictures

easier to read, the explicit names of the modelling systems are reported in the figure.
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Figure 15: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Variance
partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of
wind speed, PBL height, solar radiation, and dry deposition velocity. For the sake of making the pictures
easier to read, the explicit names of the modeling systems are reported in the figure. (b) Same as a) but at

the location of the ozone receptors in EU (1551 shared cells).
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Figure 16: Same as 14 but at the location of ozone receptors in NA (1551 shared cells).
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Figure 17: (a) Fraction of entire NA common domain (excl. grid cells dominated by water, i.e. water
fraction > 0.5) covered by each LU type. (b) Fraction of all grid cells corresponding to O3 receptor
locations covered by each LU type.
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