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Abstract. A comprehensive understanding and accurate
modelling of the terrestrial carbon cycle are of paramount
importance to improve projections of the global carbon cy-
cle and more accurately gauge its impact on global climate
systems. Land surface models, which have become an im-5

portant component of weather and climate applications, sim-
ulate key aspects of the terrestrial carbon cycle, such as pho-
tosynthesis and respiration. These models rely on parameter-
isations that require careful calibration. In this study we ex-
plore the assimilation of atmospheric CO2 concentration data10

for parameter calibration of the ORganizing Carbon and Hy-
drology In Dynamic EcosystEms (ORCHIDEE) land surface
model using an EnVarDA method, an adjoint-free ensemble-
variational data assimilation method. By circumventing the
challenges associated with developing and maintaining tan-15

gent linear and adjoint models, the EnVarDA method offers
a very promising alternative. Using synthetic observations
generated through a twin experiment, we demonstrate the
ability of EnVarDA to assimilate atmospheric CO2 concen-
trations for model parameter calibration. We then compare20

the results to a VarDA method that uses finite differences to
estimate tangent linear and adjoint models, which reveals that
EnVarDA is superior in terms of computational efficiency, fit
to the observations, and parameter recovery.

1 Introduction 25

Since the link between the increase in atmospheric CO2 con-
centrations and global warming was revealed, understand-
ing the carbon cycle has become essential. This increase is
mainly due to anthropogenic emissions (IPCC, 2023), half
of which are absorbed by oceans and lands. To improve pre- 30

dictions of the carbon cycle and reduce its associated uncer-
tainty in climate projections, it is essential to better under-
stand the mechanisms of the carbon sink, particularly its land
component, which remains the most uncertain aspect of the
global carbon budget (Friedlingstein et al., 2023). 35

Atmospheric CO2 concentration data have long been con-
sidered a rich source of information to understand the global
carbon cycle and characterise the spatio-temporal variation
in natural CO2 fluxes (Kaminski et al., 1999a; Rayner et al.,
1999; Bousquet et al., 2000; Gurney et al., 2002; Peylin 40

et al., 2005, 2013; Chevallier et al., 2014). Given that the
atmosphere is relatively well mixed, the observed concen-
tration gradients (in space and time) can be used to iden-
tify the large-scale characteristics of the underlying surface
fluxes. Indeed, surface fluxes are the primary drivers of these 45

gradients. Studying these data gives us an overall view of
all the components of the carbon cycle. For more than 25
years, atmospheric CO2 inversions have been used to esti-
mate natural CO2 surface fluxes, using atmospheric transport
models and Bayesian inversion frameworks (Kaminski et al., 50
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1999b; Enting, 2002; Chevallier et al., 2005, 2007; Baker
et al., 2006; Rayner et al., 2019; Berchet et al., 2021). At-
mospheric transport models represent the transport of atmo-
spheric tracers, making it possible to simulate the 3D fields
of atmospheric CO2 concentrations based on a CO2 surface5

flux scenario, including all components of the carbon cy-
cle: natural land and ocean fluxes and anthropogenic emis-
sions from fossil fuels and cement. By inverting the atmo-
spheric transport and using the CO2 surface flux scenario as
prior information, atmospheric inversions statistically adjust10

the surface CO2 fluxes, minimising the differences between
observed and modelled concentrations. This statistical opti-
misation generally assumes that the corrections to CO2 sur-
face fluxes are isotropic in time and space. This suggests that
errors in surface fluxes are only correlated in space by the15

distance between points and not by direction. Furthermore,
these errors are not strongly correlated in time. While this
approach has been valuable for understanding the global car-
bon cycle, it only estimates net surface fluxes, with no direct
information on the underlying components (i.e. photosynthe-20

sis uptake, ecosystem respiration release, fire release). Con-
sequently, this approach is also not suitable for making future
projections.

Over the same period, land surface models (LSMs) have
become an important component of Earth system models,25

representing a wide range of interactions between the land
surface and the atmosphere. As their role has expanded, these
models have incorporated an increasing number of complex
processes (Fisher and Koven, 2020) and have come to play
a key role in weather and climate applications. LSMs now30

simulate key aspects of the terrestrial carbon cycle, includ-
ing soil and vegetation dynamics, providing valuable insights
into the main drivers of the land carbon budget and enabling
future projections. Given the complexity and the small-scale
nature of many of these processes, they are represented using35

mechanistic and empirical formulations. To accurately model
these processes, LSMs rely on parameterisations that must
be carefully calibrated to ensure their simulations are con-
sistent with actual observations. One promising approach for
calibrating these parameters is the use of atmospheric CO240

concentration data, which offer a global constraint for large-
scale calibration, serving as an alternative to traditional at-
mospheric inversions (Knorr and Heimann, 1995; Kaminski
et al., 2002, 2012; Rayner et al., 2005; Scholze et al., 2007;
Peylin et al., 2016; Schürmann et al., 2016; Castro-Morales45

et al., 2019; Bacour et al., 2023). This assimilation enables
the calibration of LSM parameters by adjusting the underly-
ing process representations rather than directly modifying the
fluxes themselves. Such an approach also helps to identify
structural errors within the models and enhances our under-50

standing of the various processes involved. Once calibrated
and refined, these models can be applied to generate more
reliable future projections.

There is a long history of using data assimilation frame-
works to calibrate LSM parameters (Rayner, 2010; MacBean55

et al., 2022; Raoult et al., 2024b). Most of the methods used
for parameter calibration are derived from Bayesian formula-
tions of inverse problems and are defined here as variational
data assimilation (VarDA) methods. The VarDA method
is inspired by the four-dimensional variational (4DVar) 60

method, which was originally developed in the field of me-
teorology and Earth sciences (Talagrand and Courtier, 1987;
Courtier et al., 1994; Asch et al., 2016) and has also been
employed in atmospheric inversions to correct surface CO2
fluxes (Chevallier et al., 2005; Basu et al., 2013; Liu et al., 65

2021). This approach is characterised by the definition of
a cost function, which is typically based on a least-squares
criterion. This cost function calculates two terms: (i) an ob-
servation term that computes the difference between obser-
vations and model outputs and (ii) a background term that 70

incorporates prior knowledge of the state. The computation
of both terms is performed in space and time. We define the
VarDA method here, as our focus is not on directly optimis-
ing the prior state. Instead, we concentrate on time-invariant
parameters used in the parameterisation that define the vari- 75

able of interest, such as the net carbon flux. Therefore, while
the observation term of the cost function incorporates time-
distributed observations and model predictions – compar-
ing them across multiple time points – the background term
only compares prior parameter values once, as these val- 80

ues remain constant over time. Furthermore, with the VarDA
method, a single assimilation cycle covering the entire ob-
servation period is used, which differs from the conventional
4DVar framework, which generally uses sequential cycles
with shorter assimilation windows. In order to minimise this 85

cost function, the VarDA method calculates its gradient with
respect to the different parameters to be calibrated. A pre-
cise calculation of the gradient of this cost function requires
the tangent linear and the adjoint models (Plessix, 2006). To
obtain these models, the code must be differentiated. This 90

task can be performed using automatic differentiation soft-
ware (Giering and Kaminski, 2003), but the model code must
be cleaned up, and small modifications must be made to en-
sure differentiation (e.g. the reformulation of minimum and
maximum computations to enable a smooth transition at the 95

edge, Schürmann et al., 2016). For some LSMs, it is possi-
ble to keep the model compliant using automatic differenti-
ation software (Kaminski et al., 2012; Knorr et al., 2025);
however, for complex community models such as ORganiz-
ing Carbon and Hydrology In Dynamic EcosystEms (OR- 100

CHIDEE) or JULES LSMs (Raoult et al., 2016), maintain-
ing the tangent linear and adjoint models is very challenging
due to their continuous evolution. In this case, one approach
to calculating the gradient is to use finite differences to es-
timate the gradient of the cost function in order to use the 105

VarDA method (Santaren et al., 2007; MacBean et al., 2015;
Peylin et al., 2016; Bacour et al., 2019).

Several avenues of research have been explored for param-
eter calibration, including alternative methods to minimise
the cost function and the application of new machine learning 110
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techniques (Raoult et al., 2024a, b). Ensemble methods have
proven effective for the calibration of LSM parameters, such
as the genetic algorithm (GA) (Santaren et al., 2014; Bas-
trikov et al., 2018) or Markov chain Monte Carlo (MCMC)
(Ziehn et al., 2012). These methods require a large number5

of simulations and are primarily used with low-cost compu-
tational models and for on-site applications, as here they are
relatively inexpensive. Parameter calibration in Earth system
models has also been the subject of more intensive research
(Hourdin et al., 2017). It has led to the development of new10

methods – for instance emulator-based methods (Williamson
et al., 2013; Couvreux et al., 2021) – that have been used to
calibrate components of Earth system models (Watson-Parris
et al., 2021; Hourdin et al., 2023), such as ocean and at-
mospheric models (Williamson et al., 2017; Hourdin et al.,15

2021; King et al., 2024). In these methods, the model is
replaced by an emulator – a computationally efficient sta-
tistical model designed to reproduce the behaviour of com-
plex models – to enable numerous simulations and rule out
sets of parameters that are not plausible. These methods are20

gaining in popularity for the calibration of LSM parameters
(Dagon et al., 2020; Baker et al., 2022; McNeall et al., 2024;
Raoult et al., 2024a), but they still require a large ensem-
ble of simulations to build the emulator. More recently, an
ensemble 4DVar method named 4DEnVar, implemented in25

Pinnington et al. (2020) for LSM parameter estimation, has
proved very promising. This method uses a small ensem-
ble to circumvent the necessity for a tangent linear and ad-
joint model. This 4DEnVar method has been used to estimate
JULES LSM crop parameters at a single Nebraskan site (Pin-30

nington et al., 2020) and to calibrate pedotransfer functions
to improve JULES LSM soil moisture predictions over East
Anglia (Pinnington et al., 2021) and the whole of the UK
(Cooper et al., 2021). This method was also successfully used
by Douglas et al. (2025) to calibrate the parameters of a sim-35

ple carbon model in a twin experiment. Although the method
was defined as a 4DEnVar in Pinnington et al. (2020) and
Douglas et al. (2025), we choose to refer to it as EnVarDA
to maintain consistency with the definitions previously pre-
sented.40

The problem addressed in this article is the assimilation
of atmospheric CO2 data to calibrate the parameters of the
ORCHIDEE LSM. For this application, we need to couple
ORCHIDEE with an atmospheric transport model, which, in
our case, is LMDZ, as they are historically linked and rep-45

resent the land and atmospheric components of the Institut
Pierre-Simon-Laplace (IPSL) Earth system model (Boucher
et al., 2020). While tangent linear and adjoint models can be
easily derived for the transport model (Hourdin et al., 2006;
Hourdin and Talagrand, 2006), this is not the case for the50

ORCHIDEE LSM. Although tangent linear or adjoint mod-
els are not required for methods such as GA, MCMC, or
emulator-based approaches, these methods necessitate defin-
ing a large ensemble, making them unfeasible for use in this
study due to the time-consuming nature of model simula-55

tions. The purpose of this article is to present an adjoint-free
data assimilation framework that facilitates the assimilation
of atmospheric CO2 concentrations. We demonstrate the po-
tential of EnVarDA using synthetic observation data accord-
ing to different criteria: (i) the differences between synthetic 60

observations and simulations of atmospheric CO2 concentra-
tions, (ii) the spatial distribution of carbon fluxes and their
subcomponents, and (iii) the recovery of the true parameters
used to generate the synthetic observations. We also compare
the performance of EnVarDA using these criteria with that of 65

VarDA with finite differences. Section 2 presents the meth-
ods, the models, the data, and the experiments. Results are
shown in Sect. 3, with discussions and conclusions in Sects. 4
and 5, respectively.

2 Method 70

2.1 Models and datasets

2.1.1 ORCHIDEE land surface model

ORganizing Carbon and Hydrology In Dynamic EcosystEms
(ORCHIDEE; originally described in Krinner et al., 2005)
is a process-based LSM that simulates the exchange of car- 75

bon, water, and energy between the surface, vegetation, and
the atmosphere. It is composed of different sub-models: a
fast one that calculates photosynthesis, hydrology, and en-
ergy balance every 30 min and a slow one that simulates car-
bon allocation in plant reservoirs, soil carbon dynamics, and 80

litter decomposition every day. In this study, we used OR-
CHIDEE version 2 used in the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) (Boucher et al., 2020; Lurton
et al., 2020). This version contains significant improvements
over the original version described by Krinner et al. (2005). 85

The soil hydrology scheme is based on Richards’ equation
that describes vertical water fluxes for a soil depth of 2 m
discretised into 11 layers (de Rosnay et al., 2002). The ver-
tical discretisation for heat diffusion is identical to that used
for water up to 2 m, extended to 90 m with a zero-flux con- 90

dition at the bottom and with 18 calculation nodes in order
to extrapolate the water content across the entire profile be-
tween 2 and 90 m (Wang et al., 2016). The hydrological and
thermal properties of the soil are determined by soil mois-
ture and texture. The dominant soil texture for each model 95

grid cell is derived from the ZOBLER map (Zobler, 1999)
using a classification system with three categories. The set
of equations governing the soil organic matter (SOM) pools
and their temporal evolution has analytical solutions driven
by litter input and climate conditions, including soil temper- 100

ature and humidity (Lardy et al., 2011).
The carbon fixation scheme follows the approach pre-

sented by Yin and Struik (2009) based on the FvCB model
(Farquhar et al., 1980) for C3 plants and Collatz et al. (1991)
for C4 plants. The ORCHIDEE LSM uses different types 105
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of vegetation grouped into plant functional types (PFTs)
with similar structural characteristics. It distinguishes be-
tween 14 vegetation PFT classes, described in Table A1.
Each grid point in the model is associated with PFT fractions
prescribed using annually varying PFT maps derived from5

ESA’s Climate Change Initiative land cover (LC) products
and an LC-to-PFT cross-walking approach (Poulter et al.,
2015) (see https://orchidas.lsce.ipsl.fr/dev/lccci/, last access:
24 July 2025).

In this study, ORCHIDEE is run offline using 3 h ERA-10

Interim surface weather forcing fields (Dee et al., 2011) over
2000–2001 and aggregated to the spatial resolution of the
LMDZ atmospheric transport model (2.5° latitude× 3.75°
longitude). The carbon pools are brought to equilibrium fol-
lowing the TRENDY protocol (Sitch et al., 2024). This in-15

volves spinning up the model for 200 years, employing an
analytical spin-up for soil carbon pools to bring them to
equilibrium. This process uses a constant CO2 concentra-
tion of 1700, no land-use change (LUC), and recycled ERA-
Interim meteorological data from 1990 to 1999, as these20

are the only years where forcing data are available preced-
ing the assimilation period. This spin-up run is followed by
a transient simulation to account for the effects of distur-
bances, varying global atmospheric CO2 concentration and
LUC from 1800 to 1999, recycling the same meteorological25

data.

2.1.2 LMDZ atmospheric transport model

The atmospheric transport model used in this study is version
3 of the LMDZ general circulation model (GCM) (Hourdin
and Armengaud, 1999). The LMDZ atmospheric model has30

been widely used to model the climate; it was implemented
as the atmospheric component of the IPSL Earth system
model (Dufresne et al., 2013). Its derived transport model
has been used to simulate gas, particle chemistry, and green-
house gas distributions in numerous studies (Peylin et al.,35

2005; Chevallier et al., 2005; Locatelli et al., 2015; Remaud
et al., 2018). The advection is based on the Van Leer scheme
(Van Leer, 1977), the deep convection is parameterised fol-
lowing the scheme of Tiedtke (1989), and turbulent mixing
in the planetary boundary layer is based on a second-order40

local closure formalism (Hourdin and Armengaud, 1999). It
uses a horizontal resolution of 2.5° (latitude)× 3.75° (lon-
gitude) and 19 sigma-pressure layers up to 3 hPa. The cal-
culated winds (u and v) used to drive LMDZ are provided
by ERA-Interim reanalysis meteorological data in order to45

realistically account for the temporal dependence of meteo-
rological events. In this study, we use pre-calculated trans-
port fields, as described in Peylin et al. (2005): they quantify
the sensitivity of atmospheric concentrations at a given at-
mospheric station according to the space–time variability of50

the surface fluxes. The temporal resolution of the concentra-
tion is monthly, taking into account the daily surface fluxes
of each grid cell in the model (as shown in Fig. 1). These

pre-calculated transport fields have proven to be very use-
ful – they considerably reduce computing time, given that 55

the model only needs to be run once. They have been used
to assimilate atmospheric CO2 data in a few data assimila-
tion studies (Peylin et al., 2016; Bacour et al., 2023). Al-
though the version of LMDZ used in this study is outdated,
the main objective of this work is to develop a framework 60

for atmospheric data assimilation that will support future re-
search using an updated version of LMDZ. Therefore, these
pre-calculated transport fields provide a low-cost experiment
to address the methodological and technical challenges that
were previously presented. Nevertheless, it is important to 65

note that the use of these pre-calculated transport fields does
not allow for the evaluation of dynamic feedbacks between
the surface and the atmosphere that may occur due to param-
eter changes. The pre-calculated transport fields were origi-
nally calculated to assimilate atmospheric CO2 concentration 70

data using the NOAA Earth System Laboratory’s collabora-
tive product (GLOBALVIEW-CO2, 2013). They model aver-
age monthly concentrations at 53 stations over the period of
1990–2009. The stations are located at different altitudes and
in different locations on the continents and oceans around the 75

world.

2.1.3 Atmospheric stations

Figure 1 shows the location of the 21 stations selected for
this study. The stations were selected according to their sen-
sitivity to continental fluxes (also shown in Fig. 1) in order 80

to capture the temporal and spatial variations in fluxes over
the continental surface. The selected stations are therefore
mainly located above the land surface. The other stations,
mainly located over the oceans, are less sensitive to conti-
nental fluxes, capturing mainly long-term variations. As we 85

are only assimilating 2 years of concentrations, we choose
not to take them into account. The selected stations also pro-
vide a good overview of most PFTs. However, as we can see
in Fig. 1, two PFTs appear to be less sensitive to the selected
stations: TrBE, which is mainly found in the tropical forests 90

of Amazonia and Central Africa, and BoND, which is mainly
found in Siberia.

2.1.4 Other components of surface CO2 fluxes

Other components contributing to the global surface fluxes
are not optimised in this study: 95

– The oceanic flux component was derived from a neural
network model which estimated the spatial and tempo-
ral variations in CO2 fluxes between the air and the sea
(Peylin et al., 2016).

– The global maps of biomass burning emissions are 100

taken from the Global Fire Emissions Database ver-
sion 3 (Randerson et al., 2013).

https://orchidas.lsce.ipsl.fr/dev/lccci/
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Figure 1. Monthly mean sensitivity map of atmospheric CO2 concentrations to land carbon fluxes at the 21 stations considered over the
2000–2001 period. The average sensitivity map is obtained by deriving, for each atmospheric station and each of the 24 months, the map
of the average daily sensitivity of the atmospheric concentration of CO2 to surface carbon flux (in ppm GtC−1) over the last 6 months and
then calculating the average of the 24 maps. The colour of the pixel indicates the influence of the surface fluxes given by the pixel on the
atmospheric concentration of CO2, depending on the station. Red indicates a very strong influence of surface fluxes. The blue, green, and
violet colours indicate different influences, from strong to weak. White indicates no influence from surface fluxes (see full details of the
stations at https://gml.noaa.gov/dv/site/index.php, last access: 5 June 2025).

– The fossil fuel CO2 emission products used here were
developed by the University of Stuttgart/IER on the ba-
sis of EDGAR v4.2.

All the fluxes used are described in greater detail in previ-
ous studies (Peylin et al., 2016; Bacour et al., 2023) and are5

shown in Fig. A1.

2.2 Data assimilation framework

2.2.1 A Bayesian setup

First, let us define a general Bayesian framework, mainly
following Tarantola (1987, 2005), which accounts for both10

model/observation error and an a priori background error.
Taking the approach of Kennedy and O’Hagan (2001) for an
observational constraint y, let

y =Y + e, (1)

where Y represents the relevant aspect of the observed sys-15

tem, and e represents the error in that observation, often due
to instrument error but including any error in the derivation
of the data product. Let H represent the model operator that
takes the parameter vector x as input. We then assume that
there exists an input x∗ such that20

y =Y + e =H
(
x∗
)
+ η+ e, (2)

where η represents the model error, given an imperfect
model. Here, the model operator output H(x∗) and the ob-
servation y are defined in time and space. All observations
are concatenated into a large vector of observations y in or- 25

der to represent all observations available in a given time
window. The same operation is performed for the output of
operator H(x∗). Note that, given no additional information
about the errors, we assume that (i) e and η are indepen-
dent of Y and H(x), respectively, and (ii) both are random 30

vector quantities following a multivariate normal distribution
with a mean equal to 0 and a covariance matrix 6i such that
e ∼N (0,6e) and η ∼N (0,6η). Furthermore, we assume
that the parameter vector x and the model/observation likeli-
hood y|x both follow Gaussian multivariate distributions: 35

p(y|x)∝ exp
[
−

1
2
(H(x)− y)TR−1(H(x)− y)

]
,

p(x)∝ exp
[
−

1
2
(x− xb)

TB−1 (x− xb)

]
, (3)

where xb represents prior knowledge of the parameter vector,
and B and R are the covariance error matrix for the param-
eter vector and for the model/observation, respectively, such
that R=6η +6e. We seek to find the posterior distribution 40

p(x|y) which quantifies the probability of parameters given
the observations using Bayes’ theorem:

https://gml.noaa.gov/dv/site/index.php
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p(x|y)∝p(y|x)p(x)∝ exp
[
−

1
2
(H(x)− y)TR−1

(H(x)− y)−
1
2
(x− xb)

TB−1(x− xb)

]
. (4)

2.2.2 The VarDA method

Standard VarDA

In this section, we present the VarDA method. Maximising
the probability in Eq. (4) is equivalent to minimising the fol-5

lowing function, usually referred to as the VarDA cost func-
tion:

J (x)=
1
2

(
Nt∑
t

Ht (x)− yt

)T
R−1
t (Ht

(
x)− yt

)
+

1
2
(x− xb)

TB−1 (x− xb) , (5)

where t refers to time steps 0, . . . ,Nt . Since the parameter
must be constant over time, we consider only a single time10

window that includes all observation vectors y (in time and
space). We therefore simplify the initial VarDA cost function
to the compact form

J (x)=
1
2
(H(x)− y)TR−1(H(x)− y)+

1
2
(x− xb)

T

B−1 (x− xb) , (6)

where, for example, the concatenated vector y = (y0,15

y1, . . . , yNt )
T represents all available observations at all

times over the time window. The minimum of Eq. (6) can
be reached iteratively using a descent algorithm that requires
the computation of the gradient of J with respect to the pa-
rameter vector x. In addition, when the model is non-linear,20

it is common to use the quasi-Newton method to optimise the
parameter vector:

xi+1 = xi −
(
∇

2J (xi)
)−1
×∇J (xi) . (7)

The gradient of the cost function,∇J (xi), and the square ma-
trix of partial second derivatives of the cost function (called25

the Hessian matrix), ∇2J (xi), can be calculated as follows:

∇J (xi)=HTR−1 (Hxi − y)+B−1 (xi − xb) ,

∇
2J (xi)=HTR−1H+B−1. (8)

We can update Eq. (7) using Eq. (8):

xi+1 = xi −
[
HTR−1H+B−1

]−1 [
HTR−1 (Hxi − y)

+B−1 (xi − xb)
]
. (9)

Here, the notation H becomes H because it does not rep- 30

resent the use of the direct operator H. Instead, we use the
tangent linear model H and the adjoint model HT . Usually,
these two terms are coded directly, but for complex models,
it is usually very difficult to code and maintain these terms,
especially when the model is subject to many developments 35

(which means that they quickly become obsolete).

Epsilon-based VarDA variant: ε-VarDA

To approximate the tangent linear and adjoint models, we can
use finite differences:

H=
H(x+1x)−H(x)

1x
, (10) 40

where 1x represents a small change in x. This estimate will
not be as accurate as the exact tangent linear and adjoint
models, but it can still help us in our minimisation objec-
tive. The accuracy of the tangent linear and adjoint models is
then completely dependent on the choice of 1x. A selection 45

of1x that is too small may lead to H being insensitive to the
parameter vector; i.e. H(x+1x)−H(x)=H1x ≈ 0. This
leads to the term corresponding to the difference between the
observation and the output’s operator (Hxi − y) becoming
negligible in Eq. (8) and hence resulting in an ineffective 50

minimisation. By contrast, if the choice of 1x is too large,
the result gives inaccurate tangent linear and adjoint models
that lose their local vision around x. This results in a large
loss of information and therefore a much less accurate min-
imisation. In our case, we define ε such that1x = xrange×ε, 55

where xrange = xmax− xmin, and we refer to this method as
ε-VarDA. Due to this approximation, ε-VarDA is therefore
not entirely equivalent to standard VarDA.

2.2.3 The EnVarDA method

From VarDA to EnVarDA 60

We present here an implementation of VarDA that we do not
use in this study but that is important for understanding the
EnVarDA method. This implementation is presented in sev-
eral studies (Courtier et al., 1994; Gilbert and Lemaréchal,
1989; Liu et al., 2008; Bannister, 2016; Pinnington et al., 65

2020) and can be applied when the prior error covariance
matrix B becomes large and difficult to invert. It is possible
to introduce a matrix U and a vector w to ensure that the
VarDA cost function converges as efficiently as possible and
avoids the explicit calculation of the matrix B given by 70

B= UUT (11)

and

xa = xb+Uw, (12)

where xa represents the posterior value of the parameter vec-
tor. Consequently, this changes the J cost function, which is 75

presented in detail in Courtier et al. (1994):
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J (w)=
1
2
(HUw+H(xb)− y)

TR−1 (HUw

+H(xb)− y)+
1
2
wTw, (13)

and its gradient:

∇J (w)= UTHTR−1 (HUw+H(xb)− y)+w. (14)

EnVarDA

The EnVarDA method described in Liu et al. (2008) and Pin-5

nington et al. (2020) incorporates an aspect of the ensem-
ble Kalman filter (EnKF) in order to avoid the calculation of
tangent linear or adjoint models necessary for VarDA. The
EnKF is a Kalman filter but uses a set of N parameter vec-
tors, also known as ensemble members, to estimate the prior10

error covariance matrix B (Evensen, 1994). The perturbation
matrix is defined as:

X′b =
1

√
N − 1

(x1− xb;x2− xb; . . .; xN − xb) , (15)

where the ensemble members xi for i = 1, . . . ,N are gener-
ated according to a multivariate normal distribution using xb15

as the mean and B as the covariance matrix: N (xb,B). It
follows that

B≈ X′BX′TB . (16)

Using the same logic as Eq. (12), we can use the perturbation
matrix as follows:20

xa = xb+X′bw, (17)

wherew is a vector of lengthN . The cost function in Eq. (13)
is updated accordingly:

J (w)=
1
2

(
HX′bw+H(xb)− y

)TR−1 (HX′bw

+H(xb)− y)+
1
2
wTw, (18)

and the gradient in Eq. (14) becomes25

∇J (w)= X′Tb HTR−1 (HX′bw+H(xb)− y
)
+w. (19)

Note that the minimisation problem changes. In both cases,
we try to balance the cost function between the background
term and the observation term, but we no longer aim to find x
such that H(x)≈ y; rather, we now look for w that deter-30

mines the linear combination HX′bw which is equal to the
distance δy such that δy ≈H(x)− y. The HX′b term can be
approximated by applying the H operator to each parameter
vector x present in X′b:

HX′b ≈
1

√
N − 1

(H(x1)−H(xb) ;H(x2)−H(xb) ,

. . .,H(xN )−H(xb)) . (20)35

where each H(xi) is a concatenated vector of extracted sim-
ulations to correspond with all observations available at all
times across the time window. Each coefficient wi of w mul-
tiplies a vector H(xi)−H(xb) present in the approximation
of HX′b, which represents the distance between a member 40

of the ensemble and the prior information. The optimisation
of w is performed so that the linear combination HX′bw con-
verges around δy and taking into account the background
terms. Once optimised, the vector w can be used for another
linear combination X′bw, this time in the input space. This 45

gives xa , the posterior value of the parameter vector, which
can be obtained using Eq. (17). The great advantage of this
method lies in the way the gradient is computed, in particular,
the term X′Tb HT , which is equivalent to (HX′b)T . This equiv-
alence makes it possible to rewrite the gradient by “simply” 50

transposing the matrix HX′b:

∇J (w)=
(
HX′b

)TR−1 (HX′bw+H(xb)− y
)
+w. (21)

Subsequently, tangent linear and adjoint models are no
longer required. The subjective choice here is no longer re-
lated to the choice of ε that estimates the tangent linear and 55

adjoint models but to the number N of ensemble members
used to generate X′b and HX′b. A posterior ensemble can be
obtained as described by Douglas et al. (2025) by calculat-
ing X′a , where

X′a = X′b
(

I+
(
HX′b

)TR−1HX′b
)− 1

2
. (22) 60

2.2.4 Implementation into ORCHIDAS

The ORCHIDEE data assimilation system (ORCHIDAS) is
a system designed to calibrate the parameters of ORCHIDEE
and is developed in Python. It has been used for over 15 years
(MacBean et al., 2022), mainly for studies focusing on the 65

carbon cycle and other terrestrial cycles such as the water
and energy budget, methane, and nitrogen (see the full list of
studies published at https://orchidas.lsce.ipsl.fr/publications.
php, last access: 24 July 2025).

This system has long used VarDA as described in 70

Sect. 2.2.2, but it also allows for the use of several meth-
ods, such as genetic algorithms (Bastrikov et al., 2018) or
history matching (Raoult et al., 2024a). ORCHIDAS facili-
tates the testing of various data assimilation methods while
maintaining a consistent configuration for ORCHIDEE exe- 75

cution. In this study, we implemented the EnVarDA method
as described in the EnVarDA section.

2.3 Experiment design

2.3.1 Twin experiment description

To test the data assimilation methods presented in Sect. 2.2, 80

we conducted a so-called twin experiment to evaluate their
efficiency in calibrating parameters involved in calculating

https://orchidas.lsce.ipsl.fr/publications.php
https://orchidas.lsce.ipsl.fr/publications.php
https://orchidas.lsce.ipsl.fr/publications.php
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net biome productivity (NBP) fluxes in the ORCHIDEE
LSM. This experimental framework reduces the complexi-
ties associated with model–data errors, focusing on the per-
formance of the assimilation methods. The known “true”
parameters, which are the default parameter values of the5

ORCHIDEE model, are used to generate the synthetic ob-
servations. New values of a priori parameters are manually
generated, ensuring physically meaningful values that differ
from the true parameters, both of which are presented in Ta-
ble A2. The assimilation methods are then applied to assess10

how closely they converge toward the known solution (stan-
dard parameter values). The synthetic observations of atmo-
spheric CO2 concentrations from the 21 continental stations
are assimilated simultaneously over a 2-year window (2000–
2001) to monitor spatial and temporal variations in carbon15

fluxes, as shown in Fig. A4. A limited period was chosen for
practical reasons to avoid computationally expensive simula-
tions.

2.3.2 Generation of synthetic observations

To generate synthetic observations for the twin experiment,20

we simulate net biome productivity (NBP) fluxes at the
global scale using the ORCHIDEE LSM with default param-
eter values, referred to as the true parameters (see Table A2).
These NBP fluxes represent the net carbon fluxes of the land
component, calculated as the difference between emission25

fluxes (heterotrophic and autotrophic respiration and distur-
bance fluxes due to land-use change) and sink fluxes (pri-
marily due to photosynthesis). The concentrations given by
the surface fluxes (the simulated NBP fluxes, along with
other fluxes described in Sect. 2.1.4) are transported using30

pre-calculated transport fields of the LMDZ model over the
2000–2001 period. We then extract atmospheric CO2 con-
centrations at 21 continental atmospheric stations, shown
in Fig. 1, which are highly sensitive to continental carbon
fluxes, providing significant constraints on the parameters.35

This process enabled the generation of synthetic observations
of monthly average atmospheric CO2 concentrations at these
21 stations over the 2-year period. It is important to note that
the steps taken here to generate the synthetic observations
are exactly the same as those used to perform the simulation.40

This means that there is at least one solution where the model
can perfectly match the synthetic observation.

2.3.3 Simplified case

First, we focus on a simplified case involving the calibra-
tion of only one PFT-dependent parameter: Vcmax, which45

controls the maximum rate of carboxylation limited by Ru-
BisCO activity at 25 °C. This parameter was chosen because
its impact on the atmospheric CO2 concentration is well un-
derstood – when its value increases, the quantity of carbon
absorbed by photosynthesis increases and atmospheric con-50

centrations decrease and vice versa. The aim of the assimila-

tion is to recover the true values of Vcmax for the 14 PFTs,
resulting in the calibration of 14 parameters. This simplified
case is very useful for performing several tests, allowing for
a better understanding of the behaviour of the different data 55

assimilation methods.

2.3.4 Complex case

To assess the performance of the different approaches in
conditions resembling real cases, we perform another twin
experiment in which we calibrate four PFT-dependent pa- 60

rameters and one global parameter involved in different bio-
geophysical processes. The parameters selected have already
been optimised in previous data assimilation studies using
atmospheric CO2 concentrations (Peylin et al., 2016; Bacour
et al., 2023). In addition to Vcmax, we choose the following: 65

– the PFT-dependent parameter specific leaf area (SLA),
which impacts leaf biomass and hence ecosystem pho-
tosynthetic capacity;

– the global parameter Q10, which controls the thermal
dependence of heterotrophic respiration; 70

– the PFT-dependent parameter mmaint.resp, which defines
the slope of the maintenance respiration coefficient that
controls autotrophic respiration;

– the PFT-dependent parameter LAImax, which controls
the maximum leaf area index for carbon allocation 75

(once the LAI reaches LAImax, no carbon is allocated
to the leaf, which impacts the vegetation biomass and
therefore acts on both photosynthesis and respiration).

A total of 57 (14× 4+ 1) parameters are calibrated. As they
interact within the same modelled processes, the degree of 80

equifinality is significant.

2.3.5 Error covariance matrices

To implement the two data assimilation methods, ε-VarDA
and EnVarDA, we define two error covariance matrices: R
and B. These matrices are configured to be diagonal, as we 85

assimilate synthetic observations, and are common to both
methods to ensure comparable experiments. Their configu-
rations are informed by previous data assimilation studies
using ORCHIDEE and a simplified carbon model (Kuppel
et al., 2012, 2013; Bastrikov et al., 2018; MacBean et al., 90

2016), with Peylin et al. (2016) specifically applying diago-
nal matrices for atmospheric CO2 observations.

R matrix

The R matrix represents the model structural and observa-
tion errors. In our twin experiment setup, we choose to add 95

only very small errors in the synthetic observations to com-
pare both methods in an ideal case. In this context, structural
errors in the ORCHIDEE LSM (i.e. missing processes) and
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in the transport model (i.e. coarse spatial resolution and wind
biases) and measurement errors are discarded. Indeed, since
the synthetic observations are generated by a simulation, as
detailed in Sect. 2.3.2, there exists at least one solution where
all observations can be matched perfectly. For this reason, we5

use a simplified R matrix with the same small diagonal terms
of 0.01 ppm for all stations. The rationale behind this choice
is that, as all stations can be matched perfectly, we do not
want to introduce any spatial or temporal preferences.

B matrix10

The B matrix represents the background errors associated
with prior knowledge of the parameters. We set the error to
30 % of the parameter range for the simple case and 20 % for
the complex case (as we use larger parameter ranges for this
case). The background errors of each parameter can be seen15

in Fig. 3 for the simple case and in Fig. 6 and Table A2 for
the complex case.

2.3.6 Tuning ε for gradient calculation

As explained in Sect. 2.2.2, the choice of ε is essential for
effective ε-VarDA performance. One way to select an appro-20

priate ε is to perform an ε test which calculates the partial
derivative of H for each of the parameters using different ε.
We calculate the partial derivative as follows:

∂H
∂x
=

H(x+1x)−H(x)
1x

, (23)

where ε defines 1x as explained in Sect. 2.2.2. By chang-25

ing ε we change 1x, and we can attempt to find the value
of ε for which the derivative becomes stable. Figure 2 shows
the sensitivity of ε, ranging from 10−8 to 10−2, on the calcu-
lated partial derivative of each Vcmax. We see that the partial
derivative of Vcmax is unstable with an ε below 10−3 for all30

PFTs. Therefore, we need a value of ε greater than 10−3 to
ensure correct gradient calculation with respect to the Vcmax
parameter. Table A3 shows the values of the mean of the par-
tial derivatives for all parameters and PFTs using an ε that
allows for a stable derivative. This also allows us to check35

the consistency of the derivation calculation. For example,
the increase in Vcmax leads to an increase in the photosyn-
thetic capacity and subsequently in the carbon uptake by veg-
etation. This leads to a reduction in atmospheric CO2 con-
centrations. We can see in Table A3 that the values obtained40

for Vcmax are negative, which is the expected response. The
same ε test was carried out for the other four parameters used
in the complex case, and the results are shown in Fig. A2 and
Table A3:

– The partial derivative of SLA diverges with an ε be-45

low 10−3 for all PFTs. SLA has the same impact that
Vcmax has on atmospheric CO2 concentrations, so the
negative mean values obtained are expected.

– The partial derivative of Q10 does not diverge for any
values of ε. As expected, the mean value of its deriva- 50

tion is negative. Increasing Q10 increases the ther-
mal dependence of heterotrophic respiration and con-
sequently reduces it; with less heterotrophic respiration
the atmospheric CO2 concentration decreases.

– The partial derivative of mmaint.resp diverges with dif- 55

ferent ε values depending on the PFT, ranging from
10−5 for PFT TrBE to 10−2 for PFT CropsC4. This may
be due to different distributions and proportions of PFTs
(see Table A1). However, the mean values at 10−2 are
all positive.mmaint.resp has an impact on autotrophic res- 60

piration; increasing this parameter increases vegetation
respiration and therefore the atmospheric CO2 concen-
tration.

– The partial derivative of LAImax diverges with an ε be-
low 10−2 for all PFTs. Determining the sign of the mean 65

values of the partial derivative of this parameter is not
trivial here. LAImax influences vegetation biomass and
therefore photosynthesis and respiration. All PFTs give
negative mean values for their partial derivative; only
the PFT TrBR gives a positive mean value. 70

2.3.7 Defining the impact of the configuration

For both methods, ε-VarDA and EnVarDA, the configuration
used plays an important role in the quality of the minimisa-
tion of the associated cost function and thus the calibration
of the parameter. Whether it is the choice of ε in ε-VarDA 75

or the number of members used to generate the ensemble in
EnVarDA, it is up to the user to make a choice, which can
only be subjective. To assess the impact of these choices, we
launch the twin experiment using different configurations:

– For the simple case, we use five different values of 80

ε for ε-VarDA based on the sensitivity test presented
in Sect. 2.3.6 and five different ensemble sizes in En-
VarDA.

– For the complex case, we use five different ensemble
sizes in EnVarDA and one different value of ε in ε- 85

VarDA.

For the complex case using ε-VarDA, ε is selected relative
to the results in the simple case and Fig. A2. Re-tuning ε for
each parameter requires too many simulations and is there-
fore not feasible for the complex case. 90

For each minimisation, the limited memory Broyden–
Fletcher–Goldfarb–Shanno algorithm with bound constraints
(L-BFGS-B) is used (Byrd et al., 1995). For ε-VarDA, we set
the maximum number of iterations at 40 due to computing
costs. Indeed, each iteration requires Nparam+1 model simu- 95

lations. In each case, a solution is reached after 20 iterations
(subsequent iterations are only minor corrections to the so-
lution obtained). For EnVarDA, no maximum iteration limit
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Figure 2. ε test: spatial and temporal average of the partial derivative of H as a function of ε. The partial derivative of H is calculated
with respect to the parameter Vcmax for each PFT. It is calculated on the concentration space using every station over 2 years. The mean of
the partial derivative is then calculated over space and time in order to visualise the local derivative. The derivative of H is calculated for
several ε.

is chosen, since an iteration does not require further simu-
lation of the model (all required information is contained in
the pre-calculated ensemble). We can therefore wait for the
L-BFGS-B minimiser to converge, i.e. until the gradient be-
comes null.5

3 Results

3.1 Comparing the different configurations

The results in terms of (1) the mean reduction in the root
mean square difference (RMSD) calculated between the
pseudo-observation and the simulation over the 2 years of the10

assimilation window for the 21 atmospheric stations, (2) the
mean absolute differences (MAD) in parameter space, and
(3) the computational demand of each experiment using the
simple case are summarised in Table 1. We see that for the ε-
VarDA method, the best results are obtained with an ε equal15

to 5× 10−2, where the mean RMSD reduction is 82.3 % and
the MAD score is 1.7. The best results for the EnVarDA
method are obtained using an ensemble of 100 members,
where the mean RMSD reduction is 97 % and the MAD score
is 0.3. These two configurations are therefore considered for20

the simple case of the twin experiment in Sect. 3.2.1.
For the complex case, results are presented in Table 2. We

see that the best results for the EnVarDA method are obtained
with an ensemble of 300 members, giving a mean RMSD

Table 1. Mean RMSD reduction score between the synthetic ob-
servations and posterior simulations of the atmospheric CO2 con-
centration at 21 atmospheric stations, the mean absolute differ-
ence (MAD) score computed between the true parameter values
used to generate the synthetic observations and the posterior param-
eters, and the number of simulations used for each configuration of
ε-VarDA and EnVarDA for the simple case.

ε-VarDA ε Mean MAD Number of
RMSD score ORCHIDEE

reduction simulations
needed

10−1 79.7 % 1.84 300
5× 10−2 82.3 % 1.7 300

10−2 75.1 % 2.05 300
5× 10−3 73.1 % 1.91 300

10−3 69.5 % 2.0 300

EnVarDA Ensemble

50 81.1 % 0.44 50
75 91.8 % 0.67 75

100 97.0 % 0.3 100
150 91.0 % 0.34 150
200 96.3 % 0.29 200
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Table 2. Mean RMSD reduction score between synthetic observa-
tions and posterior simulations of the atmospheric CO2 concentra-
tion at 21 atmospheric stations for each configuration of the En-
VarDA method for the complex case.

EnVarDA Ensemble Mean RMSD reduction

100 81 %
200 89.8 %
300 94.4 %
350 94.0 %
400 90.9 %

reduction of 94.4 %. This configuration is considered for the
complex case in Sect. 3.2.2 using the EnVarDA method.

3.2 Comparing ε-VarDA and EnVarDA

3.2.1 Simple case

Figures 3 and 4 compare the results obtained for the ε-VarDA5

and EnVarDA methods using the configurations chosen in
Sect. 3.1. Figure 3 shows that the parameter values obtained
by the EnVarDA method are almost equal to the true parame-
ters used to generate the synthetic observations, with a mean
absolute difference (MAD) score of 0.3. This shows that the10

EnVarDA method is able to almost recover the true parame-
ters. The parameter values obtained by the ε-VarDA method
have a MAD score of 2.05, which reduces the prior MAD
by 30 % but remains far from the true parameter values.
Only the Vcmax values of PFTs TeNC3, TeNE, and TrBE15

are close to the true value of the parameters, whereas PFTs
BoNC3, BoNE, TeBS, TeBE, and TrBR give values that are
between the prior and the true value; the Vcmax values of
other PFTs have either maintained or increased the distance
between the prior and the true values. This shows that the20

ε-VarDA method falls into a local minimum and is there-
fore unable to recover the true parameters. Figure 4 shows
the different RMSD scores between the synthetic observa-
tions and prior/posterior simulations for each of the 21 at-
mospheric stations. The average reduction in RMSD for the25

ε-VarDA method is 82 %, with a mean RMSD of 0.1 ppm.
The largest reduction in RMSD is for the German station,
Schauinsland (SCH) (87 %), and the lowest is for the Aus-
tralian station Cape Grim (CGO) (49.8 %). Comparatively,
the average reduction in RMSD for the EnVarDA method30

reaches 97 %, with a mean RMSD of 0.01 ppm across all sta-
tions. The highest reduction in RMSD is for the Chinese sta-
tion, Waliguan (WLG) (99 %), and the lowest is for the Aus-
tralian station Cape Cleveland (CFA) (92.7 %). We see that
the EnVarDA method outperforms the ε-VarDA method: the35

EnVarDA method has the best fit to the assimilated synthetic
observations and can find the value of the true parameters
used to generate the synthetic observations.

3.2.2 Complex case

For the complex case, Fig. 5 shows the prior/posterior RMSD 40

at each atmospheric station for the EnVarDA method using
an ensemble of 300 members and the ε-VarDA method using
an ε of 5× 10−2 for all parameters. We stop the ε-VarDA
method after 25 iterations, which already represents 1450
model simulations, as it shows no significant improvement 45

in the minimisation of its cost function. We find that En-
VarDA gives a mean reduction in RMSD of 94.3 % across all
stations, with a maximum reduction in RMSD at the South
African station, Cape Point (CPT) (98.8 %), and a minimum
RMSD reduction at the Finland station, Pallas (PAL) (85 %). 50

The ε-VarDA method gives a mean reduction in RMSD of
92.5 % across all stations, with a maximum reduction in
RMSD at the Chinese station, Walinguan (WLG) (96.9 %),
and a minimum RMSD reduction at the Australian station
Cape Grim (CGO) (81.3 %). The average RMSD drops from 55

3.35 to 0.17 ppm after assimilation for EnVarDA and to
0.24 ppm for ε-VarDA. Since the posterior RMSDs obtained
were close, we performed a paired t test (Student, 1908) be-
tween the two posterior RMSDs to determine whether they
were significantly different. We obtained a t value of−2.125 60

between the posterior RMSDs obtained by EnVarDA and ε-
VarDA, with a p value of 0.046. This confirms that the av-
erage posterior RMSD obtained by EnVarDA is significantly
lower than the posterior RMSD obtained by ε-VarDA, with
a confidence level of 95 %. We computed the mean squared 65

difference (MSD) between the synthetic observations con-
catenated across all stations, the prior simulation, and the two
posterior simulations. Following Hodson et al. (2021) and
Geman et al. (1992), we decomposed the MSD into bias and
variance terms, as presented in Appendix A. The prior MSD 70

is 11.49 ppm2 and is reduced to 0.04 ppm2 using the En-
VarDA method and to 0.08 ppm2 using the ε-VarDA method.
The decomposition of the prior MSD indicates a squared bias
of 4.96 ppm2 and an error variance equal to 6.53 ppm2. The
same decomposition for the posterior simulations yields a 75

squared bias of 0.006 ppm2 and an error variance equal to
0.03 ppm2 for the EnVarDA method and a squared bias of
0.002 ppm2 and an error variance equal to 0.07 ppm2 for the
VarDA method. We calculate the MAD score between the
true parameter and the prior/posterior parameters after nor- 80

malising between 0 and 1 (because the parameters do not
have the same units). This normalisation allows us to bound
the MAD score between 0 and 1. The normalised MAD score
between the true parameters and the prior parameters is 0.17.
After assimilation using EnVarDA, a 53 % reduction in this 85

score is obtained, giving a normalised MAD score of 0.08.
The ε-VarDA method gives a reduction in the normalised
MAD of 15 %, giving a normalised MAD score of 0.14. Fig-
ure 6 shows the prior, true, and posterior parameter values
obtained using both methods. For each parameter, we calcu- 90

late the MAD score independently. The EnVarDA method
gives a MAD reduction of 44.7 % for Vcmax, 78.2 % for
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Figure 3. Results in parameter space for the simple case: the prior parameter values are represented by the green triangles, and the posterior
parameter values after optimisation are represented by the purple + symbol for the ε-VarDA method and the red × symbol for the EnVarDA
method. The blue circles represent the true values used to produce the assimilated synthetic observations. The green error bar represents
the prior uncertainty, which is also equal to the standard deviation of the prior ensemble used for EnVarDA. The red error bar represents
the standard deviation of the posterior ensemble obtained by EnVarDA, which can be interpreted as the posterior uncertainty. The mean
absolute difference (MAD) score shown is calculated between the true parameter values used to generate the synthetic observations and the
different parameter values following the same colour code (green score using the prior parameter, purple score using the posterior parameter
of ε-VarDA, and red score using the posterior parameter of EnVarDA).

Figure 4. The root mean squared difference (RMSD) scores between synthetic observations and prior simulations for the simple case for
each of the 21 atmospheric stations are represented by green triangles. The RMSD scores between synthetic observations and posterior
simulations given by the ε-VarDA (EnVarDA) method are represented by the purple + symbol (red × symbol).

SLA, 36.3 % for LAImax, and 54.2 % for mmaint.resp and a re-
duction in the absolute difference (AD) of 98.8 % for Q10.
The ε-VarDA method gives a MAD reduction of 11.3 %
for Vcmax, 32.7 % for SLA, 9.6 % for LAImax, and 4.2 %
for mmaint.resp and a reduction in the AD of 97.5 % for Q10.5

Figure 7 illustrates the spatial disparities in net land car-
bon fluxes between the synthetic fluxes and the prior/poste-
rior estimation of the two methodologies, in addition to their

mean annual global net carbon flux. The EnVarDA method
achieved a mean annual global net flux of −2.62 Gt C yr−1, 10

with a difference of 0.05 Gt C yr−1 compared to the syn-
thetic fluxes. Spatial differences were limited to an abso-
lute maximum of 0.28 g C m−2 d−1, with an absolute mean
of 0.009 g C m−2 d−1. In contrast, the ε-VarDA method pro-
duced a mean annual global net flux of −2.43 Gt C yr−1, 15

with a difference of 0.24 Gt C yr−1 relative to the synthetic
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Figure 5. The root mean squared difference (RMSD) scores between synthetic observations and prior simulations for each of the 21 atmo-
spheric stations for the complex case are represented by green triangles. The RMSD scores between synthetic observations and posterior
simulations given by the ε-VarDA (EnVarDA) method are represented by the purple + symbol (red × symbol).

fluxes. Spatial differences for this method reached an abso-
lute maximum of 0.6 g C m−2 d−1, with an absolute mean
of 0.031 g C m−2 d−1. The Pearson correlation coefficient
between the synthetic NBP and the prior NBP is 0.87 in
time and 0.17 in space. The posterior NBP obtained by5

the EnVarDA method shows a Pearson correlation coeffi-
cient against the synthetic NBP of 0.99 in time and 0.98 in
space. In comparison, the posterior NBP obtained by the ε-
VarDA method has correlation coefficients of 0.98 in time
and 0.84 in space.10

4 Discussion

4.1 Experiments

In Sect. 3.2.1, we found that the EnVarDA method outper-
forms the ε-VarDA method in terms of both RMSD reduc-
tion and MAD score, while requiring a smaller number of15

model simulations for the simple case. The EnVarDA method
reduces the RMSD by 97 % and almost recovers the true pa-
rameters, whereas the ε-VarDA method reduces the RMSD
by 82 % and seems to converge into a local minimum. In
addition, EnVarDA requires 3 times fewer simulations. The20

other configurations presented in Sect. 3.1 show that En-
VarDA using 50 members leads to similar RMSD reduction
to ε-VarDA (see Table 1). However, this EnVarDA configura-
tion still gives a better MAD score of 0.44, giving a reduction
in the prior MAD by 85 % – this shows that the EnVarDA25

method is less influenced by local minima than the ε-VarDA
method. We can also note that using the ε-VarDA method
results in a posterior parameter values that either (i) remain
close to the a priori values or (ii) increase the distance from
the value of the true parameters. The first case can be ex-30

plained by the lower sensitivity of the parameters concerned.
The sensitivity of the Vcmax parameter depends on the as-

sociated PFT. Not all PFTs have the same impact on NBP
fluxes, as they do not have the same spatial distribution or the
same proportion (see Table A1). This is the case for the pa- 35

rameters of PFTs TeBE, BoNS, BoND, CropsC4, and TrNC3,
which have a proportion equal to or less than 3% and are
therefore less influential in global NBP fluxes. The second
case can be explained by self-compensation due to the equi-
finality of the problem. Indeed, as some parameters are not 40

properly calibrated, others compensate and may not converge
towards the true minimum. It may concern the parameter of
PFT NC4. The EnVarDA method seems to be less affected
by these problems and is therefore a promising solution. Fur-
thermore, Fig. 3 shows a significant decrease in the standard 45

deviation of the posterior ensemble. This allows us to iden-
tify which parameters and therefore which PFTs appear more
sensitive. In this case, it seems that the results for the TrNC3
and CropsC4 PFTs are the most uncertain.

In Sect. 3.2.2, we saw that the EnVarDA method is able 50

to calibrate 57 parameters and reduces the mean RMSD by
94.3 %, which is slightly better than the ε-VarDA method,
with a mean RMSD reduction of 92.5 %. It is worth noting
that the mean RMSD reduction may be better in the com-
plex case than in the simple case. This is mainly due to the 55

fact that the a priori error is much larger in the complex
case. Nevertheless, the mean RMSD score remains bigger
than in the simple case (0.17 and 0.24 ppm for the com-
plex case and 0.01 and 0.1 ppm for the simple case for En-
VarDA and ε-VarDA, respectively). Furthermore, the MSD 60

score is better for the EnVarDA method (0.04 ppm2 using the
EnVarDA method and 0.08 ppm2 using the VarDA method),
and the MSD decomposition (Geman et al., 1992; Hodson
et al., 2021) highlights that EnVarDA better reduces the error
variance, whereas the squared bias reduction is slightly bet- 65

ter for the ε-VarDA method. However, squared bias values
below 0.01 ppm2 are negligible. While the mean RSMD re-
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Figure 6. Results in parameter space for the complex case: the prior parameter values are represented by the green triangles, and the posterior
parameter values after optimisation are represented by the purple + symbol for the ε-VarDA method and the red × symbol for the EnVarDA
method. The blue circles represent the values used to produce the assimilated synthetic observations. The green error bar represents the prior
uncertainty, which is also equal to the standard deviation of the prior ensemble used for EnVarDA. The red error bar represents the standard
deviation of the posterior ensemble obtained by EnVarDA, which can be interpreted as the posterior uncertainty. The MAD (or the absolute
differences for Q10) scores shown are calculated for each parameter independently.

duction and MSD scores are similar for the complex case,
the MAD scores in parameter space are different. In fact,
the EnVarDA method is closer to the true parameters by re-
ducing the normalised MAD by 53 %, whereas the ε-VarDA
method remains very close to the a priori position. The poste-5

rior ensemble generated for EnVarDA also shows a reduction
in uncertainty for all parameters. This uncertainty reduction
is not equal for all parameters – a maximum reduction can
be seen for the Q10 parameter (reducing the standard devia-
tion by 94 %) and the lowest for the less sensitive mmaint.resp10

parameter (with a 14 % reduction for the NC4 PFT). Both
methods are capable of recovering the true Q10 parame-
ter since it is the most sensitive parameter. The ε-VarDA
method seems to have difficulties in calibrating the param-
eters mmaint.resp and LAImax, showing reductions in MAD15

scores that are less than 10 %. Considering Fig. A2, we can
see that some PFTs give partial derivatives that do not com-
pletely converge, with an ε of 10−2 (for example, the PFT
CropsC4), so it is likely that ε for these parameters is under-
estimated. Other PFTs seem to give partial derivatives that 20

do completely converge, with an ε of 10−2 (for example, the
PFT TrBE), but remain close to their a priori value, so it
is likely that the sensitivity of these parameters is low. The
other parameters are therefore self-compensating, and this
may partly explain the poorer performance of this method in 25

terms of the MAD score, which is always better for the En-
VarDA method. The self-compensating effect is illustrated in
Fig. 7. The posterior spatial distributions of net carbon flux
obtained from the two methods exhibit notable differences. It
appears that the ε-VarDA method obtains a different spatial 30
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Figure 7. Spatial differences in net land carbon fluxes between synthetic fluxes and the prior/posterior estimate of the two methods alongside
their mean annual global net carbon flux for the complex case. (Negative values are carbon uptakes, and positive values are carbon emissions.)

structure of the net carbon fluxes. Indeed, the carbon fluxes
absent from one region can be reallocated to another, result-
ing in only minor variations in atmospheric CO2 concentra-
tions. We believe that the different spatial structure obtained
by ε-VarDA against the synthetic net carbon flux is likely to5

be explained by the fact that the two PFTs TrBE and BoND
are not well monitored, creating a dipole in the Amazonian
and Siberian regions to compensate for the erroneous car-
bon flux in other regions. It is therefore notable that the En-
VarDA method demonstrates superior performance, as it is10

more aligned with the synthetic net carbon fluxes both spa-
tially and globally compared to the ε-VarDA method. Fig-
ure A3 shows the differences in the spatial distribution of
gross primary production (GPP) between the synthetic fluxes
and the prior/posterior estimate of the two methods, as well15

as their global yearly budget. We can see that GPP obtained
with the EnVarDA method is slightly better than that of the
ε-VarDA method for the global budget and better matches
the spatial distribution of the synthetic flux. The ε-VarDA
method appears to compensate for the lack of change be-20

tween the prior and posterior GPP across most of the North-
ern Hemisphere. However, the EnVarDA method also outper-

forms the ε-VarDA method in terms of computational cost:
the EnVarDA method only needs 300 simulations, whereas
the ε-VarDA method needs 1450, which means a reduction 25

in computing time of almost 5 times. This experiment of cal-
ibrating a large number of parameters represents a more re-
alistic case, even if we consider a very low model/observa-
tion error. The results demonstrate the good performance of
EnVarDA, which, even in a “perfect” model situation, i.e. a 30

model that can perfectly simulate observations, can assimi-
late observations while being less impacted by local minima.
However, this may not be the case when using actual observa-
tions and introducing more complex modelling/observation
errors. The use of EnVarDA here therefore demonstrates its 35

ability to calibrate many parameters with fewer model simu-
lations. In this experiment, one simulation took 11 min on av-
erage (wall time), using 20 CPUs of a computer server (with
an Intel Xeon Gold 5115 processor). Neglecting the other
computational times, using ε-VarDA for the complex case 40

represents more than 265 h of computation compared with
only 55 h for EnVarDA. Such a reduction cannot be ignored,
especially since a simulation in this experiment represents
a short (only 2 years), low-cost model configuration – low
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ORCHIDEE spatial resolution and the use of pre-calculated
LMDZ transport fields.

In this twin experiment, both methods have to deal with
the inherent equifinality of atmospheric concentration assim-
ilation. This equifinality occurs when parameters compen-5

sate for each other, resulting in either an incorrect spatial
distribution of NBP or inaccurate estimates of subcompo-
nents, such as GPP and total ecosystem respiration (TER),
but still allowing for a match with observations. Although
both methods considered in this study successfully recovered10

the global budgets for NBP and GPP, the ε-VarDA method
did not obtain the correct spatial distributions of NBP and
GPP (see Figs. 7 and A3). This is not the case for the En-
VarDA method, which better recovered the true spatial dis-
tributions of NBP and GPP. We believe that this equifinality15

could increase the number of local minima, further disrupt-
ing the performance of the ε-VarDA method. We also believe
that the ensemble nature of the EnVarDA method provides a
more comprehensive view of the parameter space, making
it less sensitive to local minima and therefore to equifinality20

issues.
The poorer performance of the ε-VarDA method is likely

related to inaccurate determination of ε, which results in in-
accurate estimates of the tangent linear and adjoint models.
The EnVarDA method avoids the development and mainte-25

nance of tangent linear and adjoint models and ensures a fully
functional assimilation method that does not require the use
of finite differences. However, the performance of the En-
VarDA method seems dependent on the generated ensemble.
As shown in Table 2, slightly lower performance is observed30

with larger ensembles, indicating that a bigger ensemble does
not necessarily yield better results. This could be due to the
increased dimensionality of the problem, making the iterative
minimisation more challenging. Additionally, we generated a
new ensemble for each experiment, which provides different35

information about the parameter space and can lead to dif-
ferent optimal values. This shows the importance of the prior
ensemble generated. Nevertheless, the reduction in RMSD
remains satisfactory, with a reduction of more than 90 %.
It seems that the subjective choice of the EnVarDA setup,40

i.e. the size and distribution of the ensemble, is less criti-
cal than the subjective choice of ε used in ε-VarDA, which
must be determined independently for each of the parame-
ters and given assimilated data streams (with the associated
number of model simulations). Moreover, like the tangent45

linear and adjoint models, this ε must be re-tuned for a dif-
ferent model as the sensitivity of the parameter can be dif-
ferent. Indeed, other studies using different versions of the
ORCHIDEE LSM used different ε values (Santaren et al.,
2007; Kuppel et al., 2012; Peylin et al., 2016; Bacour et al.,50

2023).
The results obtained here for ε-VarDA are not equivalent

to a standard VarDA method using tangent linear and adjoint
models. Therefore, we can draw no conclusions on the com-
parison between the EnVarDA method and a standard VarDA55

method, as highlighted in Liu et al. (2008). A potential –
but hard to implement – way to improve ε-VarDA may be to
have a dynamic ε that becomes more refined as the methods
converge. Nevertheless, even with the “perfect” ε, we cannot
guarantee that the ε-VarDA method would be less compu- 60

tationally expensive. The assimilation of atmospheric CO2
concentration data using VarDA has been implemented with
a tangent linear model, as in Castro-Morales et al. (2019),
and an adjoint model, as in Scholze et al. (2007). In these
cases, the tangent linear and adjoint models were developed 65

alongside the forward model. However, the ε-VarDA method
was used in experiments where obtaining the tangent linear
or adjoint model proved too difficult, such as in Peylin et al.
(2016) and Bacour et al. (2023). Although ε-VarDA is not
equivalent to standard VarDA, a comparison of EnVarDA 70

with ε-VarDA demonstrates the strong performance of En-
VarDA, making it a promising candidate for this application.

4.2 Challenges and perspectives

This study relies on twin experiments, which eliminate the
complexities associated with model/observation errors and 75

allow us to focus on the performance of two assimilation
methods. This experiment highlights the superiority of the
EnVarDA method in assimilating atmospheric CO2 concen-
tration data. However, the assimilation of real observations is
not straightforward. The use of real data must be followed by 80

characterisation of the model/observation errors. Indeed, the
matrix R must reflect modelling/observation errors at each
site, which would introduce spatial heterogeneity, as each
station may have different modelling errors, mainly struc-
tural errors from both the transport model and the fluxes 85

given by the ORCHIDEE LSM, or measurement problems.
A good characterisation of the matrix R is of paramount
importance, as it can have a considerable impact on the re-
sults obtained. If the model/observation errors are incorrect,
the EnVarDA method can give infeasible posterior parameter 90

values, i.e. outside the imposed parameter boundaries, and
therefore give non-physical parameter values. Furthermore,
even with feasible posterior parameter values, the parameters
obtained may be beyond the assumption of linearity made by
the use of linear combinations in Eq. (18) and therefore do 95

not improve the associated simulation. Nevertheless, several
techniques seem promising for managing these limitations.
The inclusion of a weight factor in the background term, as
is done in Raoult et al. (2016), and a better definition of the
error covariance matrix B may provide a solution. Some of 100

these challenges are not specific to the EnVarDA method and
are common to the VarDA method (Raoult et al., 2024b).
These challenges are therefore the subject of active research
to improve the assimilation of real observational data.

The assimilation of real observations of atmospheric con- 105

centrations may also increase the equifinality mentioned in
Sect. 4.1 for several reasons, such as (i) incorrect initial con-
ditions of the carbon pools, which can impact respiration;
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(ii) wrong estimates of other flux components, such as ocean
or fossil fuel components; and (iii) structural errors in either
the land surface model or the transport model. The issue of
incorrect initial conditions can be addressed by starting the
simulation a couple of years before the assimilation window.5

This allows for the correction of the initial carbon pool and
better accounts for the effects of the new parameter values on
the carbon pool. To handle other components, such as ocean
components, the same assimilation can be repeated using dif-
ferent estimates of the ocean flux. Ideally, an ocean model10

could be included in the optimisation to calibrate both land
and ocean components, as is done in atmospheric inversion.
The advantage of the EnVarDA method is that it only re-
quires forward simulations. Therefore, no code adaptations
are needed, making it easier to use different transport mod-15

els. This should help detect and address structural errors. The
equifinality can also be reduced by assimilating multiple data
streams simultaneously, as is done in Peylin et al. (2016) and
Bacour et al. (2023), to calibrate both GPP and NBP at the
same time.20

This study acts as a proof of concept for the assimilation of
atmospheric CO2 concentration data using adjoint-free meth-
ods. The next steps for the future would be to use real ob-
servations, which come with other technical and scientific
problems (e.g. quantifying the model/observation error). Fu-25

ture studies should focus on the assimilation of more recent
and more spatially distributed atmospheric CO2 concentra-
tion data – e.g. satellite XCO2 products – using EnVarDA. To
do so, a more recent version of LMDZ and/or ORCHIDEE
should be used. Those studies will focus on the processes in-30

volved in the carbon cycle to improve their parameterisation
and/or to detect any missing processes in the model. As the
EnVarDA method only requires forward simulations of the
models, it is easy to change the model (either the LSM or
the atmospheric transport model). Furthermore, the method35

is easy to parallelise as each element of the ensemble is in-
dependent. Once built, no further call of the model is neces-
sary (except in the analysis step), which allows us to explore
different configurations – e.g. in the construction of the er-
ror matrix R or the weighting of background terms, both of40

which play a key role in the assimilation of real observations
– without additional computational cost.

Despite extensive research on the automatic generation of
tangent linear and adjoint models – either using new lan-
guages or differential software – it remains an enormous45

challenge to acquire and maintain tangent linear and ad-
joint models for complex and continuously evolving models.
However, it is still a key priority to understand structural er-
rors, to quantify uncertainties, and to refine future predictions
via parameter calibration. The use of adjoint-free data assim-50

ilation methods such as EnVarDA is therefore an excellent
opportunity, as it can be implemented quickly and requires
no model modification.

Moreover, the EnVarDA method has been used to assimi-
late several types of data using either a simple carbon model55

(Douglas et al., 2025) or more complex LSMs such as the
JULES LSM (Pinnington et al., 2020, 2021; Cooper et al.,
2021). This new application in the ORCHIDEE LSM shows
that this method is model independent. By adding different
observation terms (one term per data flux) to the cost func- 60

tion, the method should be able to perform multi-flux data as-
similation, which would help to reduce the equifinality prob-
lem.

5 Conclusions

We have shown that the EnVarDA method has good poten- 65

tial for calibrating ORCHIDEE parameters by assimilating
atmospheric CO2 concentration data and using the LMDZ
atmospheric transport model. The method was tested on a
so-called twin experiment using two different cases: (1) a
simple case where EnVarDA effectively recovered the true 70

parameter values, whereas the ε-VarDA method, despite re-
ducing the RMSD, failed to recover the true parameters, and
(2) a complex case where both methods achieved up to a
90 % reduction in RMSD, with EnVarDA showing slightly
better performance, including a lower MAD score in parame- 75

ter space, indicating greater efficiency in parameter recovery
and an improved alignment with synthetic net carbon fluxes,
both spatially and globally. Additionally, EnVarDA is com-
putationally less demanding and does not require the devel-
opment or maintenance of tangent linear and adjoint mod- 80

els, facilitating the use of updated model versions without
modification. By successfully applying this method to the
ORCHIDEE model with a pre-calculated LMDZ transport
model, we illustrated its adaptability, making it well suited
for other land surface models, whether coupled with atmo- 85

spheric transport models or not.

Appendix A: Metric calculations

The RMSD and MAD used in these studies are calculated as
follows:

RMSD=

√√√√ 1
Nt

Nt∑
t=0

(
H(x∗)t − yt

)2
, (A1) 90

MAD=
1

nparam

nparam∑
i=0
|x∗i − xtruei |, (A2)

where x∗ can be either xb or xa . The Pearson correlation
coefficients were computed using the NumPy Python li-
brary with the corrcoef function. The paired t tests were
computed using the stats.ttest_rel function from the 95

SciPy library. We use the decomposition of MSD into bias
and variance that was proposed by Geman et al. (1992) and
presented by Hodson et al. (2021):
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e =H(x)− y, (A3)
MSD(e)= E[e], (A4)

MSD(e)=
(
E
[
e2
]
−E[e]2

)
+E[e]2, (A5)

MSD(e)= Var(e)+E[e]2, (A6)

MSD(e)= Var(e)+Bias(e)2. (A7)5

Figure A1. Ocean fluxes, biomass burning carbon fluxes, and fossil emissions (2000–2009).

Table A1. Plant functional types (PFTs) in ORCHIDEE with their abbreviations used in this study and their respective global cover fraction
(with the remaining portion being bar soil).

PFT Abbreviation Proportion

Tropical broadleaf evergreen TrBE 10.3 %
Tropical broadleaf raingreen TrBR 5.92 %
Temperate needleleaf evergreen TeNE 4.51 %
Temperate broadleaf evergreen TeBE 2.31 %
Temperate broadleaf summergreen TeBS 5.09 %
Boreal needleleaf evergreen BoNE 4.72 %
Boreal broadleaf summergreen BoNS 2.29 %
Boreal needleleaf deciduous BoND 2.59 %
Temperate natural grassland (C3) TeNC3 6.43 %
Natural grassland (C4) NC4 8.73 %
Crops (C3) CropsC3 11.4 %
Crops (C4) CropsC4 3.04 %
Tropical natural grassland (C3) TrNC3 1.58 %
Boreal natural grassland (C3) BoNC3 10.6 %
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Figure A2. ε test: spatial and temporal average of the partial derivative as a function of ε. The partial derivative of the H model is calculated
with respect to the parameters used in the complex case for each PFT. It is calculated on the concentration space using every station over
2 years. The mean of the partial derivative is then calculated over space and time in order to visualise the local derivative. The derivative of
H is calculated for several ε.
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Figure A3. Spatial differences in gross primary production (GPP) fluxes between synthetic fluxes and the prior/posterior estimate of the two
methods alongside their mean annual global GPP for the complex case.
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Figure A4. Time series of pseudo-observations (in black) of atmospheric CO2 concentrations at 21 stations over the assimilated period, as
well as the a priori (in green) and a posteriori time series from ε-VarDA (in purple) and EnVarDA (in red) for the complex case.
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Table A2. Prior value of each parameter and their true values (default values in the ORCHIDEE LSM).

Parameters Vcmax SLA LAImax mmaint.resp Q10

Prior Errors True Prior Errors True Prior Errors True Prior Errors True Prior Errors True

PFT Global 0.85 0.16 0.69
TrBE 42 6 45 0.01 0.0046 0.0153 8 1.2 7 0.13 0.012 0.12
TrBR 42 6 45 0.02 0.0074 0.026 6 1 5 0.13 0.012 0.12
TeNE 37 6.4 35 0.01 0.0032 00926 6 1 5 0.12 0.02 0.16
TeBE 37 8 40 0.03 0.006 0.02 4.5 0.8 4 0.12 0.02 0.16
TeBS 54 8 50 0.02 0.0074 0.026 6 1 5 0.12 0.02 0.16
BoNE 42 6 45 0.01 0.0032 0.00926 4 0.6 3.5 0.23 0.02 0.25
BoNS 37 6.4 35 0.02 0.0074 0.026 4.5 0.8 4 0.23 0.02 0.25
BoND 37 6.4 35 0.025 0.0062 0.019 3.2 0.6 3 0.23 0.02 0.25
TeNC3 54 8 50 0.02 0.0074 0.026 2.8 0.4 2.5 0.12 0.02 0.16
NC4 54 8 50 0.02 0.0074 0.026 2.3 0.4 2 0.13 0.012 0.12
CropsC3 62 8.4 60 0.02 0.0074 0.026 6 1 5 0.12 0.02 0.16
CropsC4 62 8.4 60 0.02 0.0074 0.026 6 1 5 0.13 0.012 0.12
TrNC3 54 8 50 0.02 0.0074 0.026 2.8 0.4 2.5 0.13 0.012 0.12
BoNC3 37 8 40 0.02 0.0074 0.026 2.3 0.4 2 0.23 0.02 0.25

Table A3. Spatial and temporal average of the partial derivative for all parameters for each PFT computed using ε, allowing for a stable
derivation. The partial derivative is calculated on the concentration space using every station over 2 years. The mean of the partial derivative
is then calculated over space and time.

Parameters Vcmax SLA LAImax mmaint.resp Q10

ε 10−3 10−3 10−2 10−2 10−3

PFT Global −12.7
TrBE −0.153 −63.7 −0.07 104.7
TrBR −0.042 −38.7 0.03 17.2
TeNE −0.077 −103.3 −0.02 12.1
TeBE −0.06 −15.1 −0.13 11.4
TeBS −0.04 −30.6 −0.06 8.5
BoNE −0.057 −126.2 −0.19 13.8
BoNS −0.065 −44.6 −0.07 5.4
BoND −0.023 −23.6 −5× 10−5 1.5
TeNC3 −0.053 −44.9 −0.43 7.9
NC4 −0.072 −27.0 −0.22 12.0
CropsC3 −0.072 −89.3 −0.15 16.4
CropsC4 −0.023 −18.3 −0.07 3.3
TrNC3 −0.017 −23.0 −0.01 3.1
BoNC3 −0.056 −40.7 −0.28 5.7
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