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Abstract.

A comprehensive understanding and an accurate modelling of the terrestrial carbon cycle, are of paramount importance to
improve projections of the global carbon cycle and more accurately gauge its impact on global climate systems. Land Surface
Models, which have become an important component of weather and climate applications, simulate key aspects of the terrestrial
carbon cycle such as photosynthesis and respiration. These models rely on parameterisations that require careful calibration. In
this study we explore the assimilation of atmospheric CO5 concentration data for parameter calibration of the ORCHIDEE Land
Surface Model using a 4BEnaVarEnVarDA, an adjoint-free ensemble-variational data assimilation method. By circumventing
the challenges associated with developing and maintaining tangent linear and adjoint models, the 4BDEnVar-EnVarDA method
offers a very promising alternative. Using synthetic observations generated through a twin experiment, we demonstrate the
ability of the 4DEnrVar-EnVarDA to assimilate atmospheric CO2 concentrations for model parameter calibration. We then
compare the results to a 4DVar-VarDA method that uses finite differences to estimate tangent linear and adjoint models,
which reveal that the 4DEnVar-EnVarDA is superior in terms of computational efficiency and fit to the observations as well as

parameter recovery.

1 Introduction

Since the link between the increase in atmospheric COy concentration and global warming was revealed, understanding the
carbon cycle has become essential. This increase is mainly due to anthropogenic emissions (IPCC, 2023), half of which are
absorbed by oceans and lands. To improve predictions of the carbon cycle and reduce its associated uncertainty in climate
projections, it is essential to better understand the mechanism of the carbon sink, particularly its land component, which
remains the most uncertain aspect of the global carbon budget (Friedlingstein et al., 2023).

Atmospheric CO- concentration data have long been considered a rich source of information to understand the global carbon

cycle and characterise the spatio-temporal variation of natural CO, fluxes (Kaminski et al., 1999a; Rayner et al., 1999; Bousquet
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et al., 2000; Gurney et al., 2002; Peylin et al., 2005, 2013; Chevallier et al., 2014). Given that the atmosphere is relatively well
mixed, the observed concentration gradients (in space and time) can be used to identify the large-scale characteristics of the
underlying surface fluxes. Indeed this surface fluxes are the primary drivers of these gradients. Studying these data gives us an
overall view of all the components of the carbon cycle. For more than 25 years, atmospheric CO4 inversions have been used to
estimate natural CO4 surface fluxes, using atmospheric transport models and Bayesian inversion frameworks (Kaminski et al.,
1999b; Enting, 2002; Chevallier et al., 2005, 2007; Baker et al., 2006; Rayner et al., 2019; Berchet et al., 2021). Atmospheric
transport models represent the transport of atmospheric tracers, making it possible to simulate the 3D fields of atmospheric
CO, concentration based on a CO, surface flux scenario, including all components of the carbon cycle: natural land and ocean
fluxes, and anthropogenic emissions from fossil fuels and cement. By inverting the atmospheric transport and using the CO2
surface flux scenario as prior information, atmospheric inversions statistically adjust the surface CO2 fluxes, minimising the
differences between observed and modelled concentrations. This statistical optimisation generally assumes that the corrections
to CO, surface fluxes are isotropic in time and space. This suggests that errors in surface fluxes are only correlated in space by
distance between points, and not by direction. Furthermore, these errors are not strongly correlated in time. While this approach
has been valuable for understanding the global carbon cycle, it only estimates the net surface fluxes, with no direct information
on the underlying components (i.e., photosynthesis uptake, ecosystem respiration release, fire release, etc.). Consequently, this
approach is also not suitable to make future projections.

Over the same period, land surface models (LSMs) have become an important component of Earth system models, repre-
senting a wide range of interactions between the land surface and the atmosphere. As their role has expanded, these models
have incorporated an increasing number of complex processes (Fisher and Koven, 2020), and have come to play a key role in
weather and climate applications. LSMs now simulate key aspects of the terrestrial carbon cycle, including soils and vegetation
dynamics, providing valuable insights into the main drivers of the land carbon budget and enabling future projections. Given
the complexity and the small-scale nature of many of these processes, they are represented using mechanistic and empirical
formulations. To accurately model these processes, LSMs rely on parametrisations that must be carefully calibrated to ensure
their simulations are consistent with actual observations. One promising approach for calibrating these parameters is the use
of atmospheric CO5 concentration data, which offers a global constraint for large-scale calibration, serving as an alternative
to traditional atmospheric inversions (Knorr and Heimann, 1995; Kaminski et al., 2002, 2012; Rayner et al., 2005; Scholze
et al., 2007; Peylin et al., 2016; Schiirmann et al., 2016; Castro-Morales et al., 2019; Bacour et al., 2023). This assimilation en-
ables the calibration of LSM parameters by adjusting the underlying process representations rather than directly modifying the
fluxes themselves. Such an approach also helps to identify structural errors within the models and enhances our understanding
of the various processes involved. Once calibrated and refined, these models can be applied to generate more reliable future
projections.

There is a long history of using data assimilation frameworks to calibrate LSM parameters (Rayner, 2010; MacBean et al.,

2022; Raoult et al., 2024b).

moere-speetfically;-Most of the methods used for parameter calibration are derived from Bayesian formulations of inverse
roblems and defined here as variational data assimilation (VarDA) methods. The VarDA method is inspired by the four-
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dimensional variational (4DVar) method—This-methed-, which was originally developed in the field of meteorology and Earth

sciences (Talagrand and Courtier, 1987; Courtier et al., 1994; Asch et al., 2016) and also employed in atmospheric inversions

3

to correct the initial-state-of the-mode e e-robustan veffictent(Talae 3 - .
- ' ining surface COy fluxes (Chevallier et al., 2005; Basu et al.. 2013; Liu et al., 2021). This
approach is characterised by the definition of a cost functiontwhieh-is—usuatty-, which is typically based on a least-square
eriterion)-least-squares criterion. This cost function calculates two terms: (i) an observation term that computes the difference
between observations and model outputsdistributed-in-space-and-time-as-wett-as-, and (ii) a background term that aceountsfor
incorporates prior knowledge of the parametersstate. The computation of both terms is performed in space and time, We define
here the VarDA method, as our focus is not on directly optimizing the prior state. Instead, we concentrate on time-invariant
parameters used in the parameterisation that defines the variable of interest, such as the Net Carbon Flux. Therefore, while the
observation term of the cost function incorporates time-distributed observations and model predictions - comparing them across
multiple time points - the background term only compares prior parameter values once, as these values remain constant over
time, Furthermore, with the VarDA method, a single assimilation cycle covering the entire observation period is used, which
differs from the conventional 4DVar framework. which generally uses sequential cycles with shorter assimilation windows. In

order to minimise this cost function, the 4BVar-VarDA method calculates its gradient with respect to the different parameters

to be calibrated. A precise calculation of the gradient of this cost function requires the tangent linear and the adjoint model
(Plessix, 2006). To obtain these models, the code must be differentiated. This task can be performed using automatic differen-
tiation software (Giering and Kaminski, 2003), but the model code must be cleaned up and small modifications made to ensure
differentiation (e.g. the reformulation of minimum and maximum computations to enable a smooth transition at the edge,
Schiirmann et al. (2016)). For some LSMs, it is possible to keep the model compliant using automatic differentiation software
(Kaminski et al., 2012; Knorr et al., 2024), however, for complex community models such as ORCHIDEE or JULES LSMs
(Raoult et al., 2016), maintaining the tangent linear and adjoint models is very challenging due to their continuous evolution.
In this case, one approach to calculating the gradient is to use finite differences to estimate the gradient of the cost function in
order to use the 4BVar-VarDA method (Santaren et al., 2007; MacBean et al., 2015; Peylin et al., 2016; Bacour et al., 2019).
Several avenues of research have been explored for parameter calibration, including alternative methods to minimise the
cost function and the application of new machine learning techniques (Raoult et al., 2024a, b). Ensemble methods have proven
effective for the calibration of LSM parameters, such as Genetic Algorithm (GA) (Santaren et al., 2014; Bastrikov et al.,
2018) or Markov chain Monte Carlo (MCMC) (Ziehn et al., 2012). These methods require a large number of simulations and
are primarily used with low-cost computational models and for on-site applications, as here they are relatively inexpensive.
Parameter calibration in Earth system models has also been the subject of more intensive research (Hourdin et al., 2017). It has
led to the development of new methods - emulator-based methods (Williamson et al., 2013; Couvreux et al., 2021) for instance
- that have been used to calibrate components of Earth system models (Watson-Parris et al., 2021; Hourdin et al., 2023) such as
ocean and atmospheric model (Williamson et al., 2017; Hourdin et al., 2021; King et al., 2024). In these methods, the model is
replaced by an emulator - a computationally efficient statistical model designed to reproduce the behaviour of complex models

- to enable numerous simulations and rule out sets of parameters that are not plausible. These methods are gaining in popularity
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for the calibration of LSM parameters (Dagon et al., 2020; Baker et al., 2022; McNeall et al., 2024; Raoult et al., 2024a) but
they still require a large ensemble of simulations to build the emulator. More recently, an ensemble 4DVar method named
4DEnVar implemented in Pinnington et al. (2020) for LSM parameter estimation has proved very promising. This method uses
a small ensemble to circumvent the necessity for a tangent linear and adjoint model. This 4DEnVar method has been used
to estimate JULES LSM crop parameters at a single Nebraskan site (Pinnington et al., 2020) and to calibrate pedotransfer
functions to improve JULES LSM soil moisture predictions over East Anglia (Pinnington et al., 2021) and the whole of the
UK (Cooper et al., 2021). This method was also successfully used by Douglas et al. (2025) to calibrate the parameters of a

simple carbon model in a twin experiment. Although the method was defined as an 4DEnVar in Pinnington et al. (2020) and
Douglas et al. (2025), we choose to refer to it as EnVarDA to maintain consistency with the definitions previously presented.

The problem addressed in this article is the assimilation of atmospheric CO- data to calibrate the parameters of the OR-
CHIDEE LSM. For this application, we need to couple ORCHIDEE with an atmospheric transport model, which, in our case,
is LMDZ, as they are historically linked and represent the land and atmospheric components of the IPSL (Institut Pierre-
Simon-Laplace) Earth system model (Boucher et al., 2020). While tangent linear and adjoint models can be easily derived for
the transport model (Hourdin et al., 2006; Hourdin and Talagrand, 2006), this is not the case for the ORCHIDEE LSM. Al-
though tangent linear or adjoint models are not required for methods such as GA, MCMC, or emulator-based approaches , these
methods necessitate defining a large ensemble, making them unfeasible for use in this study due to the time-consuming nature
of model simulations. The purpose of this article is to present an adjoint-free data assimilation framework that facilitates the
assimilation of atmospheric CO2 concentrations. We demonstrate the potential of 4BEnVar-EnVarDA using synthetic observa-
tion data according to different criteria: i) the differences between synthetic observation and simulation of atmospheric CO2
concentration, ii) the spatial distribution of carbon flux as well as their subcomponent, and iii) the recovery of the true param-
eters used to generate the synthetic observation. We also compare the performance of 4BDEnVar-EnVarDA using these criteria
with that of 4DVar-VarDA with finite differences Section 2 presents the methods, the models, the data and the experiments.

Results are shown in Section 3, with discussions and conclusions in Sections 4 and 5, respectively.

2 Method
2.1 Models and datasets
2.1.1 ORCHIDEE land surface model

ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms; originally described in Krinner et al. (2005)) is a
process-based LSM that simulates the exchange of carbon, water and energy between the surface, vegetation, and the atmo-
sphere. It is composed of different sub-models: a fast one that calculates photosynthesis, hydrology and energy balance every
30 minutes; and a slow one that simulates carbon allocation in plant reservoirs, soil carbon dynamics and litter decomposi-
tion every day. In this study, we used the ORCHIDEE version 2 used in the Coupled Model Intercomparison Project Phase 6

(CMIP6) (Boucher et al., 2020; Lurton et al., 2020). This version contains significant improvements over the original version
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described by Krinner et al. (2005). The soil hydrology scheme is based on Richards’ equation that describes vertical water
fluxes for a soil depth of 2 m discretised into 11 layers (de Rosnay et al., 2002). The vertical discretisation for heat diffusion
is identical to that used for water up to 2 m extended to 90 m with a zero flux condition at the bottom and with 18 calculation
nodes in order to extrapolate the water content across the entire profile between 2 m and 90 m (Wang et al., 2016). The hy-
drological and thermal properties of the soil are determined by soil moisture and texture. The dominant soil texture for each
model grid cell is derived from the ZOBLER map (Zobler, 1999) using a classification system comprising 3 categories. The
set of equations governing the Soil Organic Matter (SOM) pools and their temporal evolution have analytical solution driven
by litter input and climate conditions, including soil temperature and humidity (Lardy et al., 2011).

The carbon fixation scheme follows the approach presented by Yin and Struik (2009) based on the FvCB model (Farquhar
et al., 1980) for C3 plants and Collatz et al. (1991) for C4 plants. The ORCHIDEE LSM uses different types of vegetation
grouped into Plant Functional Types (PFT) with similar structural characteristics. It distinguishes 14 vegetation PFT classes de-
scribed in Table A1. Each grid point in the model is associated with PFT fractions prescribed using annually varying PFT maps
derived from ESA’s Climate Change Initiative land cover (LC) products and a LC-to-PFT cross-walking approach (Poulter
et al., 2015) (see https://orchidas.Isce.ipsl.fr/dev/Iccci/).

In this study, ORCHIDEE is run offline using 3-hour ERA-Interim surface weather forcing fields (Dee et al., 2011) over
2000-2001, and aggregated to the spatial resolution of the LMDZ atmospheric transport model (2.5° latitude x 3.75° longitude)
. The carbon pools are brought to equilibrium following the TRENDY protocol (Sitch et al., 2024). This involves spinning up
the model for 200 years, employing an analytical spin-up for soil carbon pools to bring them to equilibrium. This process uses a
constant CO4 concentration of 1700, no land-use change (LUC), and recycled ERA-Interim meteorological data from 1990 to
1999, as these are the only years where forcing data is available preceding the assimilation period. This spin-up run is followed
by a transient simulation to account for the effects of disturbances, varying global atmospheric CO5 concentration and LUC

from 1800 to 1999, recycling the same meteorological data.
2.1.2 LMDZ atmospheric transport model

The atmospheric transport model used in this study is version 3 of the LMDZ General Circulation Model (GCM) (Hourdin
and Armengaud, 1999). The LMDZ atmospheric model has been widely used to model the climate; it was implemented as the
atmospheric component of the IPSL Earth System Model (Dufresne et al., 2013). Its derived transport model has been used
to simulate gas, particle chemistry and greenhouse gas distributions in numerous studies (Peylin et al., 2005; Chevallier et al.,
2005; Locatelli et al., 2015; Remaud et al., 2018). The advection is based on Van Leer scheme (Leer, 1977); the deep convection
is parametrised following the scheme of (Tiedtke, 1989); and turbulent mixing in the planetary boundary layer is based on a
second-order local closure formalism (Hourdin and Armengaud, 1999). It uses a horizontal resolution of 2.5° (latitude) x 3.75°
(longitude) and 19 sigma-pressure layers up to 3 hPa. The calculated winds (# and v) used to drive LMDZ are provided by
ERA-Interim reanalysis meteorological data in order to realistically account for the temporal dependence of meteorological
events. In this study, we use pre-calculated transport fields, as described in Peylin et al. (2005): they quantify the sensitivity

of atmospheric concentrations at a given atmospheric station according to the space-time variability of the surface fluxes.
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The temporal resolution of the concentration is monthly, taking into account the daily surface fluxes of each grid cell in the
model (as shown on the Fig. 1). These pre-calculated transport fields have proven to be very useful - they considerably reduce
computing time, given that the model only needs to be run once. They have been used to assimilate atmospheric CO- data in
a few data assimilation studies (Peylin et al., 2016; Bacour et al., 2023). Although the version of LMDZ used in this study is
outdated, the main objective of this work is to develop a framework for atmospheric data assimilation that will support future
research using an updated version of LMDZ. Therefore, these pre-calculated transport fields provide a low-cost experiment
so as to address the methodological and technical challenges that were previously presented. Nevertheless, it is important
to note that the use of these pre-calculated transport fields does not allow for the evaluation of dynamic feedbacks between
the surface and the atmosphere that may occur due to parameter changes. The pre-calculated transport fields were originally
calculated to assimilate atmospheric CO4 concentration data using the NOAA Earth System Laboratory’s collaborative product
(GLOBALVIEW-CO2, 2013). They model average monthly concentrations at 53 stations over the period 1990-2009. The

stations are located at different altitudes and in different locations on the continents and oceans around the world.
2.1.3 Atmospheric stations

Fig. 1 shows the location of the 21 stations selected for this study. The stations were selected according to their sensitivity to
continental fluxes (also shown in Fig. 1) in order to capture the temporal and spatial variations in fluxes over the continental
surface. The selected stations are therefore mainly located above the land surface. The other stations, mainly located over the
oceans, are less sensitive to continental fluxes, capturing mainly long term variations. As we are only assimilating 2 years of
concentrations, we choose not to take them into account. The selected stations also provide a good overview of most PFTs.
However, as we can see in Fig. 1, two PFTs appear to be less sensitive to the selected stations: TrBE, which is mainly found in

the tropical forests of Amazonia and Central Africa, and BoND, which is mainly found in Siberia.
2.1.4 Other components of surface CO, fluxes

Other components contributing to the global surface fluxes are not optimised in this study:

— The oceanic flux component was derived from a neural networks model which estimated the spatial and temporal varia-

tions in CO; fluxes between the air and the sea (Peylin et al., 2016).

— The global maps of biomass burning emissions are taken from the Global Fire Emission Database version 3 (Randerson

et al., 2013).

— The fossil fuel CO; emission products used here were developed by the University of Stuttgart/IER on the basis of
EDGAR v4.2.

All the fluxes used are described in greater detail in previous studies (Peylin et al., 2016; Bacour et al., 2023) and are shown
in Fig. Al.



190

TAP " Ryo

Figure 1. Monthly mean sensitivity map of atmospheric CO2 concentrations to land carbon fluxes at the 21 stations considered over the
2000-2001 period. The average sensitivity map is obtained by deriving, for each atmospheric station and each of the 24 months, the map
of the average daily sensitivity of the atmospheric concentration of COs to surface carbon flux (in ppm GtC™!) over the last six months,
and then calculating the average of the 24 maps. The colour of the pixel indicates the influence of the surface fluxes given by the pixel on
the atmospheric concentration of CO2, depending on the station. Red indicates a very strong influence of surface fluxes. The blue, green

and violet colours indicate different influences, from strong to weak. White indicates no influence from surface fluxes (see full detail of the

stations https://gml.noaa.gov/dv/site/index.php [Last access : 5 June 2025]).
2.2 Data assimilation framework
2.2.1 A Bayesian setup

First, let us define a general Bayesian framework, mainly following Tarantola (1987, 2005), that accounts both for model/ob-

servation error and an a priori background error. Taking the approach of Kennedy and O’Hagan (2001), for an observational

ppm Gt C™t
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constraint y, let
y=YV+e (D

where ) represents the relevant aspect of the observed system and e represents the error on that observation, often due to
instrument error but can include any error in the derivation of the data product. Let ‘H represent the model operator that takes

the parameter vector « as input. We then assume that there exists an input x* such that:
y=Y+e=H(z*)+n+e (2)

where 7 represents the model error, given an imperfect model. Here, the model operator output 2 (*) and the observation y
are defined in time and space. All observations are concatenated into a large vector of observations ¥ , in order to represent all
observations available in a given time window. The same operation is performed for the output of operator # (x*). Note that,
given no additional information about the errors, we assume that i) e and ) are independent of ) and # () respectively and ii)
both are random vector quantities following a multivariate normal distribution with a mean equal to 0 and a covariance matrix
3; such that e ~ N (0, X,) and n ~ N (0,3,,). Furthermore, we assume that the parameter vector « and the model/observation

likelihood y|x both follow Gaussian multivariate distributions:

plule) xexp | ()~ o) R (@) )5 pla) xexp |~ (o - @) B e - e G

where x;, represents prior knowledge of the parameter vector and B and R are respectively the covariance error matrix for
the parameters vector and for the model/observation such that R = 33,, + . We seek to find the posterior distribution p(x|y)

which quantifies the probability of parameters given the observations using Bayes’ theorem:

1 _ 1 _
plaly) x plala)p(a) xexp | 5 (H(@) ~ ) R (@) ) — 5@ a) B o 2. @
2.2.2 The 4DbVar-VarDA method

Standard 4BVarVarDA
In this Section, we present the 4BVarassimitation-VarDA method. Maximising the probability in equation (4) is equivalent to

minimising the following function, usually referred to as the 4BVar-VarDA cost function:

Ny
T(@) = 5O M)~ 9) R (Hala) —y,) + 5 (@ — ) B @ — ) ®

where ¢ refers to time steps 0, ..., /V;. Since the parameter must be constant over time, we consider only a single time window

that includes all observation vector y (in time and space). We therefore simplify to-the-compact-form-the-inttial- 4B Var-the

initial VarDA cost to the compact form:

T@) = (H(x) ~y) "R (H(@) ~y) + (@ —2) B (@~ ). ©
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represents all available observations at all times over the time

where, for example, the concatenated vector

window. The minimum of the equation 6 can be reached iteratively using a descent algorithm that requires the computation of
the gradient of J with respect to the parameter vector x. In addition, when the model is non-linear, it is common to use the

quasi-Newton method to optimise the parameters vector:
i1 =2 — (V2J(2;)) "' x VJ(x;). @)

The gradient of the cost function, VJ(x;), and the square matrix of partial second derivatives of the cost function (called the

Hessian matrix), V2.J(x;), can be calculated as follows:

VJ(z;)=H'R™'(Ha; —y) +B ' (z; —xp);  V>J(x)=H'R'H+B™". ®)
We can update equation (7) using (8):

i1 =z, — [HRTH+B ' 'H'R Y (Hx; —y) + B ! (x; — xp)]. )

Here, the notation ‘H becomes H, because it does not represent the use of the direct operator H. Instead, we use the tangent
linear model H and the adjoint model H”'. Usually, these two terms are coded directly, but for complex models, it is usually
very difficult to code and maintain these terms, especially when the model is subject to many developments (which means that
they quickly become obsolete).

Epsilon-based 4DVar-VarDA variant: e-4DVar-VarDA

To approximate the tangent linear and adjoint models, we can use finite differences:

H(x+ Az) — H(x)

H:
Ax

(10)

where Ax represents a small change in . This estimate will not be as accurate as the exact tangent linear and adjoint models,
but it can still help us in our minimisation objective. The accuracy of the tangent linear and adjoint models is then completely
dependent on the choice of Azx. A selection of Az that is too small may lead to H being insensitive to the parameter vector,
ie. H(x+ Az) — H(x) = HAz ~ 0. This leads to the term corresponding to the difference between the observation and
the output’s operator (Hzx; — y) becoming negligible in equation (8) and hence resulting in an ineffective minimisation. By
contrast, if the choice of Az is too large, the result gives inaccurate tangent linear and adjoint models that lose their local vision
around . This results in a large loss of information and therefore a much less accurate minimisation. In our case, we define €
such that: AZ = Trange * €, Where Trange = Tmaz — Tmin and we will refer to this method as e-4BVear-VarDA. Due to this

approximation, e-4DVar—-VarDA is therefore not entirely equivalent to standard 4BVarVarDA.
2.2.3 The 4DEnVar-EnVarDA method

From 4bVar-VarDA to 4DEnVarEnVarDA
We present here an implementation of 4BVar-VarDA that we do not use in this study, but that is important to understand the

4PEnVarEnVarDA method. This implementation is presented in several studies (Courtier et al., 1994; Gilbert and Lemaréchal,
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1989; Liu et al., 2008; Bannister, 2017; Pinnington et al., 2020), and can be applied when the prior error covariance matrix B
becomes large and difficult to invert. It is possible to introduce a matrix U and a vector w to ensure that the 4BVar-VarDA cost

function converges as efficiently as possible and avoids the explicit calculation of the matrix B given by:

B=UU" (I
and
o = xp + Uw (12)

where x,, represents the posterior value of the parameter vector. Consequently, this changes the J cost function, which is

presented in detail in Courtier et al. (1994):

J(w) = %(HUW +H(xp) —y) " RH(HUW + H(xp) — y) + %wTw (13)
and its gradient:

VJ(w)=UTH'R'(HUwW + H(xp) — y) +w. (14)

4DEnVarEnYarDA

The-4DEnVar- The EnVarDA method described in Liu et al. (2008) and Pinnington et al. (2020) proposes to incorporate an
aspect of the ensemble Kalman Filter (EnKF) in order to avoid the calculation of tangent linear or adjoint models necessary
for 4bVarVarDA. The EnKF is a Kalman filter, but uses a set of [V parameter vectors, also known as ensemble members, to

estimate the prior error covariance matrix B (Evensen, 1994). A perturbation matrix:

X}, = (1 — Tp; T2 — Tp}...; TN — Tp) - (15)

where the ensemble members x; for ¢ = 1,..., N are generated according to a multivariate normal distribution using xp as the

mean and B as the covariance matrix: N (zp, B). It follows that:

B~ XXy (16)
Using the same logic as equation (12), we can use the perturbation matrix as follows:

Tq = Tp + Xpw (17)
where w is a vector of length N. The cost function in Equation (13) is updated accordingly:

J(w) = %(HXLw +H(z) —y) R (HXw + H(zs) —y) + %wTw, (18)

and the gradient in Equation (14) becomes:

VJ(w) =X, "H' R (HX},w + H(zp) — y) + w. (19)

10
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Note that the minimisation problem changes. In both case we try to balance the cost function between the background term
and the observation term but we no longer aim to find « such that H(x) = y, but we now look for w that determines the linear
combination HX} w which is equal to the distance dy such that dy ~ H(x) —y. The HX} term can be approximated by

applying the H operator to each parameter vector x present in X{) :

1
HX| ~ ——— (H(x1) — H(zp); H(x2) — H(xp);...;H(xn) — Hxs)). 20
g (Pca) — o) ) — )i M) — M) 0)
where each H.(x;) is a concatenated vector of extracted simulations to correspond with all observations available at all times

acorss the time window. Each coefficient w; of w multiplies a vector H (x;) — H () present in the approximation of HX}
which represents the distance between a member of the ensemble and the prior information. The optimisation of w is performed
so that the linear combination HX} w converges around dy and taking into account the background terms. Once optimised, the
vector w can be used for another linear combination X w, this time in the input space. This gives &, the posterior value of
the parameter vector, that can be obtained using equation (17). The great advantage of this method lies in the way the gradient
is computed. In particular, the term X{DTHT, which is equivalent to (HX’b)T. This equivalence makes it possible to rewrite

the gradient by "simply" transposing the matrix HX}, :
VJ(w) = (HX}) TR HX,w + H(zs) —y) + w. 1)

Subsequently, tangent linear and adjoint models are no longer required. The subjective choice here is no longer related to the
choice of the € that estimates the tangent linear and adjoint models, but to the number NV of ensemble members used to generate
X4, and HX},. A posterior ensemble can be obtained as it is described by Douglas et al. (2025) by calculating X," where

1

2

X, =X,/ (I+ (be’)TR*HXb’y . 22)
2.2.4 Implementation into ORCHIDAS

The ORCHIDEE Data Assimilation System (ORCHIDAS) is a system desgined to calibrate the parameters of ORCHIDEE and
is developed in Python. It has been used for over 15 years (MacBean et al., 2022) mainly for studies focusing on the carbon
cycle and other terrestrial cycles such as water and energy budget, methane and nitrogen (see the full list of studies published
at https://orchidas.lsce.ipsl.fr/publications.php).

This system has long used 4BVar-VarDA as described in Section 222.2.2, but it also allows the use of several methods such
as genetic algorithms (Bastrikov et al., 2018) or history matching (Raoult et al., 2024a). ORCHIDAS facilitates the testing of
various data assimilation methods while maintaining a consistent configuration for ORCHIDEE execution. In this study, we

implemented the 4DEnVar-EnVarDA method as described in Section 222.2.3.
2.3 FwinexperimentsExperiment Design

2.3.1 Twin Experiment Description

To test the two-data assimilation methods presented in Section 2.2, we use-conducted a so-called twin experiment —This

experiment-significantlyreduees—all-theto evaluate their efficiency in calibrating parameters involved in calculating NBP
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fluxes in the ORCHIDEE LSM model. This experimental framework reduces complexities associated with model-data er-
rorsand-focuses-on-the-efficieney-, focusing on the performance of the assimilation methed—In-this-methods. The known ’true’”
parameters being the default parameter values of the ORCHIDEE model are used to generate the synthetic observations. New.
values of Awin-experimentwedinto-optimisethe-q priori parameters are manually generated, ensuring physically meaningful
values that differ from the ’true’ parameters both presented in Table A2. The assimilation methods are then applied to assess
how closely they converge toward the known solution (standard parameter values). The synthetic observations of atmospheric
€O _concentrations from the 21 continental stations are assimilated simultaneously over a two-year window (2000-2001) to
monitor spatial and temporal variations in carbon fluxes, as shown in Figure A4. A limited period was chosen for practical
reasons to avoid computationally expensive simulations.

2.3.2 Generation of Synthetic Observations

To generate synthetic observations for the twin experiment, we simulate net biome productivity (NBP) fluxes of-at the global
scale using the ORCHIDEE LSM by-ealibrating-the parameters-involvedin-theirealeulation—The-with default parameter values
referred to as the ’true’ parameters (see Table A2). These NBP fluxes represent the net carbon fluxes of the land component,

te—calculated as the difference between the-emissionfluxes-of-emission fluxes (heterotrophic and autotrophic respirationas

wel-as-the-, and disturbance fluxes due to ]:ble&né{%ﬁsmleﬂu*e%mamlyland use change) and sink fluxes ( rimarily due

concentration given by the surface fluxes (the simulated NBP fluxes, along with other fluxes described in Section 2.1.4ever
) are transported using pre-
calculated transport fields of EMBZ—-Wefeeus-en-the LMDZ model over the period 2000—2001. We then extract atmospheric

CO4 concentrations at 21 continental atmospherlc stations, a&shew%ﬂﬂ%g—%—ff—hese%%&&eﬂ&shown in Figure 1, which are
highly sensitive to

en-eurcontinental carbon fluxes, providing significant constraints on the parameters. This hasenabled-us-to-generate—"synthetie
“—process enabled the generation of synthetic observations of monthly average atmospheric C02 concentrations Wat
these 21

stations over the two-year period. It is important to note that the steps taken here to generate the synthetic observations are
exactly the same as those used to perform a simulation. This means that there is at least one solution where the model can
erfectly match the synthetic observation.

12



2.3.3 Simplified case

340 First, we focus on a simplified case involving the calibration of only one PFT-dependant parameter: Vcmax, which controls
the maximum rate of carboxylation limited by Rubisco activity at 25°C. This parameter was chosen because its impact on the
atmospheric CO4 concentration is well understood: when its value increases, the quantity of carbon absorbed by photosynthesis
increases and atmospheric concentrations decrease - and vice versa. The aim of the assimilation is to recover the ’true’ values
of Vcmax for the 14 PFTs resulting in the calibration of 14 parameters. This simplified case is very useful to perform several

345 tests allowing for a better understanding of the behaviour of the different data assimilation methods.
2.3.4 Complex case

To assess the performance of the different approaches in conditions resembling real cases, we perform another twin experiment
in which we calibrate four PFT-dependent parameters and one global parameter involved in different bio-geophysical processes.
The parameters selected was already optimised in previous data assimilation studies using atmospheric CO, concentrations

350 (Peylin et al., 2016; Bacour et al., 2023). In addition to Vcmax, we choose:

the PFT-dependent parameter SLA (Specific Leaf Area) that impacts leaf biomass and hence ecosystem photosynthetic

capacity;

the global parameter Q10 which controls the thermal dependence of heterotrophic respiration;

the PFT-dependent parameter My aint.resp that defines the slope of the maintenance respiration coefficient, which con-

355 trols autotrophic respiration;

the PFT-dependent parameter LAT,,x Which controls the maximum leaf area index for carbon allocation. Once the
LAT reaches LA, .y, no carbon is allocated to the leaf. It impacts the vegetation biomass and therefore acts on both

photosynthesis and respiration.

A total of 57 (14 x 4 + 1) parameters are being calibrated. As they interact within the same modelled processes, the degree of

360 equifinality is significant.

2.3.5 Error covariance matrices

We-need-to—define-the-two-To implement the two data assimilation methods, e-VarDA and EnVarDA, we define two error
covariance matrices;—: R and Brin-order-to-use-the-two-data-assimilation-metheds—Sinee-, These matrices are configured to

be diagonal, as we are assimilating

~synthetic” observations, and are

365 common to both methods to ensure comparable experiments. Their configurations are informed by previous data assimilation
studies using ORCHIDEE and a simplified carbon model (Kuppel et al., 2012, 2013; Bastrikov et al., 2018; MacBean et al., 2016)
» with Peylin et al. (2016) specifically applying diagonal matrices for atmospheric CO; observations.
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The R matrix is-used-to-represent-the-model/observationerrerrepresents the model-structural and observation errors. In our

twin experiment setup, we choose to add onl
very small errors in the synthetic observations to compare both methods in an ideal case. In this context, structural errors in the

ORCHIDEE LSM (i.e. missing processes, etc.) and in the transport model (i.e., coarse spatial resolution, wind biases, etc.

measurement errors are discarded. Indeed, since the synthetic observations are generated by a simulation, as detailed in Section
2.3.2, there exists at least one solution where all observations can be matched perfectly. For this reason, we use a simplified R
matrix was-tused—The-with the same small diagonal terms of 0.01 ppm for all stations. The rationale behind this choice is that

as all stations can be matched perfectly, we do not want to introduce any spatial or temporal preferences.

The B matrix eontainsrepresent the background errors associated with the-prior knowledge of the parameters. We set an-etror
eorresponding-the error to 30% of the parameter range for the simple case and 20%-20% for the complex case (as we use larger

parameter ranges )—to-ensure-that-the-experiments-are-comparable,the R-and-B-matrices-are-commen-to-the-two-methods:

D

used-them-for-atmospherie-COz-observationsfor this case). The background errors of each parameter can be seen in Fig. 3 for
the simple case and in Fig. 6 as well as Table A2.

2.4 Tuoningcforgradientecaleulation

2.3.1 Tuning € for gradient calculation

As explained in Section 222.2.2, the choice of € is essential for effective e-4BVar—-VarDA performance. One way to select an
appropriate € is to perform a e-test which calculates the partial derivative of ‘H for each of the parameters and using different
€. We calculate the partial derivative as follows:

OH _ H(z+Az) —H(z)
oxr Az

(23)

where € defines Az as explained in Section 222.2.2. By changing the e we change Ax and we can seek to find the value of
e for which the derivative becomes stable. Fig. 2 shows the sensitivity of € ranging from 108 to 10~2 on the calculates the
partial derivative of each Vcmax. We see that the partial derivative of Vemax is unstable with an e below 1072 for all PFT.
Therefore, we need a value of € greater than 10~ to ensure correct gradient calculation with respect to the Vemax parameter.
Table A3 shows the values of the mean of the partial derivatives for all parameters and PFTs using an € allowing for a stable
derivative. This also allows us to check the consistency of the derivation calculation. For example, the increase in Vcmax
leads to an increase in the photosynthetic capacity and subsequently in the carbon uptake by vegetationsvegetation. This leads

to a reduction in atmospheric CO5 concentration. We can see in Table A3 that the values obtained for Vemax are negative
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Figure 2. e-test: Spatial and temporal average of partial derivative of 7 as a function of €. The partial derivative of H is calculated with

respect to the parameter Vemazx for each PFT. It is calculated on the concentration space using every station over 2 years. The mean of the

partial derivative is then calculated over space and time in order to visualise the local derivative. The derivative of H is calculated for several

€.

which is the expected response. The same e-test was carried out for the four other parameters used in the complex case, and

the results are shown in Fig. A2 and in Table A3 :

— The partial derivative of SLA diverges with an € below 102 for all PFT. SLA has the same impact that Vcmax has

on atmospheric CO, concentration, so the negative mean values obtained are expected;

405 — The partial derivative of Q10 does not diverge for any values of €. The mean value of its derivation is negative as

expected. Increasing Q10 increases the thermal dependence of heterotrophic respiration and consequently reduces it;

with less heterotrophic respiration the atmospheric CO» concentration decreases;

— The partial derivative of Mmaint.resp diverges with different € values depending on the PFT, ranging from 10~° for

PFT TrBE to 10~2 for PFT CropsCy. This may be due to different distributions and proportions of PFTs (see Table Al).
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However, the mean values at 10~ 2 are all positive. Mmaint.resp Nas an impact on autotrophic respiration, increasing this

parameter increases vegetation respiration and therefore the atmospheric CO» concentration;

— The partial derivative of LAI,.x diverges with an € below 102 for all PFT. Determining the sign of the mean values
of the partial derivative of this parameter is not trivial here. LA, influences vegetation biomass and therefore pho-
tosynthesis and respiration. All PFTs gives a negative mean values for their partial derivative, only the PFT TrBR gives

a positive mean value.

2.4 Defining-the-impaet-of-the-configuration

2.3.1 Defining the impact of the configuration

For both methods, e-4bVar-and-4DEnrVar-VarDA and EnVarDA, the configuration used plays an important role in the quality
of the minimisation of the associated cost function and so the calibration of the parameter. Whether it is the choice of € for
the e-4BVar-VarDA or the number of members used to generate the ensemble in the 4DEnrVarEnVarDA, it is up to the user to

make a choice that can only be subjective. To assess their impact, we launch the twin experiment using different configurations:
— for the simple case:

— 5 different values of € for the e-4BVar-VarDA based on the sensitivity test presented in Section 2.3.1 ;
— 5 different ensemble sizes in the 4DEnVar-EnVarDA;

— for the complex case:

— 5 different ensemble sizes in the 4DEnrVarEnVarDA;

- 1 different values of € for the e-VarDA.

For the complex case using e-4DVar-VarDA | the € is selected relative to the results in the simple case and Fig. A2. To re-tune
€ for each parameter requires too many simulations and so it is not feasible for the complex case.

For each minimisation, the L-BFGS-B (limited memory Broyden—Fletcher—Goldfarb— Shanno) algorithm with bound con-
straints; (Byrd et al., 1995)) algorithm is used. For the e-4DVar-VarDA, we set a maximum number of iterations at 40, due
to computing costs. Indeed, each iteration requires Npgpqm + 1 model simulations. In each case, a solution is reached after
20 iterations (subsequent iterations are only minor corrections of the solution obtained). For 4DEnVarEnVarDA, no maximum
iteration limit is chosen, since an iteration does not requires further simulation of the model (all required information is con-
tained in the pre-calculated ensemble). We can therefore wait for the L-BFGS-B minimiser to converge, i.e. until the gradient

becomes null.
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3 Results
3.1 Comparing the different configurations

The results in terms of 1) mean reduction in root mean square difference (RMSD) calculated between the pseudo-observation
and the simulation over the two years of the assimilation window for the 21 atmospheric stations, 2) Mean Absolute Differences
(MAD) on parameter space and 3) computational demand of each experiment using the simple case are summarised in Table
1. We see that for the e-4DVar—-VarDA method the best results are obtained with an € equal to 5% 1072 where the mean
RMSD reduction is 82.3% and the MAD score is 1.7. The best results for the 4DEnVarEnVarDA method are obtained using
an ensemble of 100 members where the mean RMSD reduction is 97% and the MAD score is 0.3. These two configurations

are therefore considered for the simple case of the twin experiment in Section 3.2.1.

Table 1. Mean RMSD reduction score between "synthetic" observation and posterior simulation of the atmospheric CO2 concentration at 21
atmospheric stations, Mean Absolute Difference (MAD) score computed between the “true” parameter values used to generate the "synthetic"
observations and the posterior parameters and number of simulations used for each configuration of e-4BVar-VarDA and 4BEnVarEnVarDA

for the simple case.

e-4DbVar-VarDA Epsilon Mean RMSD reduction | MAD score | Number of ORCHIDEE simulations needed

107t 79.7% 1.84 300
51072 | 82.3% 1.7 300
1072 75.1% 2.05 300
551073 | 73.1% 1.91 300
1073 69.5% 2.0 300

4bEnVarEnVarDA  Ensemble

50 81.1% 0.44 50
75 91.8% 0.67 75
100 97.0% 0.3 100
150 91.0% 0.34 150
200 96.3% 0.29 200

For the complex case, results are presented in Table 2. We see that the best results for the 4DEnVarEnVarDA method are
obtained with an ensemble of 300 members giving a mean RMSD reduction of 94.4%. This configuration is considered for the

complex case in Section 3.2.2 using the 4BEnrVar-EnVarDA method.
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Table 2. Mean RMSD reduction score between "synthetic" observations and posterior simulation of the atmospheric CO2 concentration at

21 atmospheric stations for each configuration of the 4BEnrVar-EnVarDA method for the complex case

4DEnVarEnVarDA  Ensemble | Mean RMSD reduction
100 81%
200 89.8%
300 94.4%
350 94.0%
400 90.9%

3.2 Comparing e-4DVar-VarDA and 4DEnVarEnVarDA
3.2.1 Simple case

Fig. 3 and Fig. 4 compare the results obtained for the e-4bVar-and-the-4DEnVar—-VarDA and the EnVarDA methods using
the configurations chosen in Section 3.1. Fig. 3 shows that the parameter values obtained by the 4BEnrVarEnVarDA method
is almost equal to the “true” parameters used to generate the "synthetic" observations with a mean absolute difference (MAD)
score of 0.3. This shows that the 4DEnVar-EnVarDA method is able to almost recover the “true” parameters. The parameter
values obtained by the e-4DVar-VarDA method have a MAD score of 2.05, which reduces the prior MAD by 30% but remains
far from the “true” parameter values. Only the Vcmax of PFTs TeNCgs, TeNE and TrBE are close to the “true” value of the
parameters whereas PFTs BoNCs, BoNE, TeBS, TeBE and TrBR give values that are between the prior and the “true” value;
the Vemax of other PFTs have either maintained or increased the distance between the prior and the “true” values. This
shows that the e-4BVar—-VarDA method falls into a local minimum and is therefore unable to recover the “true” parameters.
Fig. 4 shows the different RMSD scores between the synthetic observations and prior/posterior simulations for each of the
21 atmospheric stations. The average reduction of RMSD for e-4BVar—VarDA methods is 82% with a mean RMSD of 0.1
ppm. The largest reduction of RMSD is for the German station, Shauinsland (SCH) (87%) and the lowest is for the Australian
station, Cape Grim (CGO) (49.8%). Comparatively, the average reduction of RMSD for 4DEnVarEnVarDA methods reaches
97% with a mean RMSD of 0.01 ppm across all stations. The highest reduction of RMSD is for the Chinese station, Waliguan
(WLG) (99%) and the lowest one is for the Australian station, Cape Cleveland (CFA) (92.7%). We see that the 4DEnVar
EnVarDA method outperforms the e-4bVar-VarDA method: the 4DEnrVar-EnVarDA method has the best fit to the "synthetic"

observations assimilated and can find the value of the “true” parameters used to generate the "synthetic" observations.
3.2.2 Complex case

For the complex case, Fig. 5 shows the prior/posterior RMSD at each atmospheric station for the 4DEnVar-EnVarDA method
using a ensemble of 300 members and the e-4BVar—-VarDA method using an € of 5% 1072 for all parameters. We stop the

e-4bVar—VarDA method after 25 iterations, which already represents 1450 model simulations, as it shows no significant
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Figure 3. Result in parameter space for the simple case: the prior parameter values are represented by the green triangles and the posterior
parameter values after optimization are represented by the purple + symbol for the e-4BVar—VarDA method and the red x symbol for the
4PEnVarEnVarDA method. The blue circles represent the “true” values used to produce the assimilated ’synthetic’ observations. The green
error bar represents the prior uncertainty, which is also equal to the standard deviation of the prior ensemble used for 4BEnVarEnVarDA.
The red error bar represents the standard deviation of the posterior ensemble obtained by 4BErVarEnVarDA, which can be interpreted as the
posterior uncertainty. The Mean Absolute Difference (MAD) score shown is calculated between the “true” parameter values used to generate
the "synthetic" observations and the different parameter values following the same color code (green score using prior parameter, purple

score using posterior parameter of e-4BVar-VarDA, red score posterior parameter of 4BEnVarEnVarDA).

improvement in the minimisation of its cost function. We find that 4BEaVar-EnVarDA gives a mean reduction in RMSD
of 94.3% across all stations with a maximum reduction of RMSD at the South African station, Cape Point (CPT) (98.8% )
and minimum RMSD reduction at the Finland station, Pallas (PAL) (85%). The e-4BVar—VarDA gives a mean reduction in
RMSD of 92.5% across all stations with a maximum reduction of RMSD at the Chinese station, Walinguan (WLG) (96.9%
) and a minimum RMSD reduction at the Australian station, Cape Grim (CGO) (81.3%). The average RMSD drops from
3.35 ppm to 0.17 ppm after assimilation for 4DEaVar-EnVarDA and to 0.24 ppm for e-4DVar-VarDA. Since the posterior
RMSDs obtained were close, we performed a paired t-test (Student, 1908) between the two posterior RMSDs to determine
whether they were significantly different. We obtained a t-value of -2.125 between the posterior RMSDs obtained by 4BEnVar
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Figure 4. The Root Mean Squared Differences (RMSD) scores between synthetic observations and prior simulations for the simple case
for each of the 21 atmospheric stations are represented by green triangles. The RMSD scores between synthetic observations and posterior

simulations given by the e-4BVar-VarDA (4DEnrVarEnVarDA) method are represented by the purple + symbol ( red x symbol)

and-e-4DVarEnVarDA and e-VarDA, with a p-value of 0.046. This confirms that the average posterior RMSD obtained by
4PEnVar-EnVarDA is significantly lower than the posterior RMSD obtained by e-4BVar-VarDA, with a confidence level of

95%. We computed the mean squared difference (MSD) between the synthetic observations concatenated across all stations
and the prior simulation, as well as the two posterior simulations. Following Hodson et al. (2021) and Geman et al. (1992), we
decomposed the MSD into bias and variance terms as presented in Section A. The prior MSD is 11.49 ppm? and is reduced
t0.0.04 ppm? using the EnVarDA method and to 0.08 ppm? using the VarDA method. The decomposition of the prior MSD
indicates a squared bias of 4.96 ppm? and an error variance equal to 6,53 ppm?. The same decomposition for the posterior
simulations yields a squared bias of 0.006 ppm? and an error variance equal to 0.03 ppm?for the EnVarDA method, and a

squared bias of 0.002 ppm? and an error variance equal to 0.07 ppm? for the VarDA method. We calculate the MAD score
between the “true” parameter and the prior/posterior parameters after normalising between 0 and 1 (because the parameters

do not have the same units). This normalisation allows us to bound the MAD score between 0 and 1. The normalised MAD
score between the “true” parameters and the prior parameters is 0.17. After assimilation using 4DEaVatEnVarDA, a 53%
reduction in this score is obtained, giving a normalised MAD score of 0.08. The e-4BVar-VarDA method gives a reduction in
the normalised MAD of 15% giving a normalised MAD score of 0.14. Fig. 6 shows the prior, “true” and posterior parameter
values obtained using both methods. For each parameter, we calculate the MAD score independently. The 4BEnVar-EnVarDA
method gives a MAD reduction of 44.7% for Vemax, 78.2% for SLA, 36.3% for LAInax, 54.2% for Mmaint.resp and a
reduction of the absolute difference (AD) of 98.8% for Q10. The e-4BVar—VarDA method gives a MAD reduction of 11.3%
for Vemax, 32.7% for SLA, 9.6% for LAIax, 4.2% for Mmaint.resp and a reduction of the AD of 97.5% for Q10. Fig. 7

illustrates the spatial disparities in net land carbon fluxes between the "synthetic" fluxes and the prior/posterior estimation of the
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Figure 5. The Root Mean Squared Differences (RMSD) scores between synthetic observations and prior simulations for each of the 21
atmospheric stations for the complex case are represented by green triangles. The RMSD scores between synthetic observations and posterior

simulations given by the e-4BVar-VarDA (4DEnVarEnVarDA) method are represented by the purple + symbol ( red x symbol)

two methodologies, in addition to their mean annual global net carbon flux. The 4DEnVar-EnVarDA method achieved a mean
annual global net flux of —2.62 Gt C year~ !, with a difference of 0.05 Gt C year~! compared to the "synthetic" fluxes. Spatial

!, with an absolute mean of 0.009 g C m~2 day~!. In

differences were limited to an absolute maximum of 0.28 g C m~2 day~
contrast, the e-4DVar—VarDA method produced a mean annual global net flux of —2.43 Gt C year—!, with a difference of 0.24
Gt C year™! relative to the "synthetic" fluxes. Spatial differences for this method reached an absolute maximum of 0.6 g C
m~2 day~?, with an absolute mean of 0.031 g C m~2 day—!. The Pearson correlation coefficient between the *synthetic’ NBP
and the prior NBP is 0.87 in time and 0.17 in space. The posterior NBP obtained by the 4BEnVar-EnVarDA method shows a
Pearson correlation coefficient against the ’synthetic’ NBP of 0.99 in time and 0.98 in space. In comparison, the posterior NBP

obtained by the e-4DBVar-€-VarDA method has correlation coefficients of 0.98 in time and 0.84 in space.

4 Discussion
4.1 Experiments

In Section 3.2.1, we found that the 4BErVar-EnVarDA method outperforms the e-4BVar—VarDA method, both in terms of
RMSD reduction and MAD score, and with a smaller number of model simulations for the simple case. The 4BEnrVarEnVarDA
method reduces the RMSD by 97%, and almost recovers the “true” parameters, whereas the e-4BVar—-VarDA method reduces
the RMSD by 82% and seems to converge into a local minimum. In addition, 4BEaVar-EnVarDA requires three times fewer
simulations. Other configurations presented in Section 3.1 show that the 4DEnVarEnVarDA, using 50 members, leads to similar
RMSD reduction as e-4DVar—VarDA (see Table 1). However, this 4DEnVar-EnVarDA configuration still gives a better MAD
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Figure 6. Results in parameter space for the complex case: the prior parameter values are represented by the green triangles and the posterior

parameter values after optimization are represented by the purple + symbol for the e-4BVar—VarDA method and the red x symbol for the

4DBEnVar-EnVarDA method. The blue circles represent the values used to produce the assimilated ’synthetic’ observations. The green error

bar represents the prior uncertainty, which is also equal to the standard deviation of the prior ensemble used for 4DEnVarEnVarDA. The

red error bar represents the standard deviation of the posterior ensemble obtained by 4BDEnrVarEnVarDA, which can be interpreted as the

posterior uncertainty. The MAD (or the absolute differences for Q10) scores shown are calculated for each parameter independently.

score of 0.44 giving a reduction of the prior MAD by 85% - this shows that 4DEaVar-EnVarDA method is less influenced by
local minima than the e-4BVar-VarDA method. We can also note that using the e-4DVar—-VarDA method results in a posterior

parameter values that either i) remain close to the a priori values or that ii) increase the distance from the value of the “true”

parameters. The first case can be explained by the lower sensitivity of the parameters concerned. The sensitivity of the Vcmax
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520 parameter depends on the associated PFT. Not all PFTs have the same impact on NBP fluxes, as they do not have the same

spatial distribution or the same proportion (see Table Al). This is the case for the parameters of PFT TeBE, BoNS, BoND,

CropsC,4 and TrNCj3 which have a proportion equal to or less than 3%, and are therefore less influential on global NBP fluxes.

The second case can be explained by self-compensation due to the equifinality of the problem. Indeed, as some parameters are

not properly calibrated, others compensate and may not converge towards the “true” minimum. It may concern the parameter of

525 PFT NCjy. The 4bEnVarEnVarDA method seems to be less affected by these problems and is therefore a promising solution.

Furthermore, Fig. 3 shows a significant decrease in the standard deviation of the posterior ensemble. This allows us to identify

which parameters and therefore which PFTs appear more sensitive. In this case, it seems that the results for the TrNC3 and

CropsCy4 PFTs are the most uncertain.
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Figure 7. Spatial differences in net land carbon fluxes between "synthetic" fluxes and the prior/posterior estimate of the two methods

alongside their mean annual global net carbon flux for the complex case. (Negative values are carbon uptakes and positive values are carbon

emissions)

In Section 3.2.2, we saw that the 4DEnVar-EnVarDA method is able to calibrate 57 parameters and reduces the mean RMSD
530 by 94.3%, which is slightly better that the e-4BVar—-VarDA method with a mean RMSD reduction of 92.5%. It is worth noting
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that the mean RMSD reduction may be better in the complex case than in the simple case . This is mainly due to the fact that
the a priori error is much larger in the complex case. Nevertheless the mean RMSD score remains bigger than in the simple

case (0.17 ppm and 0.24 ppm for the complex case and 0.01 ppm and 0.1ppm for the simple case for 4BEnVar-EnVarDA and

e-4DbVar—-VarDA respectively) . Furthermore the MSD score is better for the EnVarDA method (0.04 m? using the EnVarDA
method and to 0.08 ppm? using the VarDA method) and the MSD decomposition (Geman et al., 1992; Hodson et al., 2021)
highlights that EnVarDA better reduces the error variance, whereas the squared bias reduction is slightly better for the VarDA

method. However, squared bias values below 0.01 ppm? are negligible. While the mean RSMD reduction and MSD scores
are similar for the complex case, the MAD scores in parameter space are different. In fact, the 4DEnVar-EnVarDA method

is closer to the “true” parameters by reducing the normalised MAD by 53%, whereas the e-4DVar—VarDA method remains
very close to the a priori position. The posterior ensemble generated for the 4BEnrVar-EnVarDA also shows a reduction
in uncertainty for all parameters. This uncertainty reduction is not equal for all parameters - a maximum reduction can be
seen for the Q10 parameter(reducing the standard deviation by 94 %) and the lowest for the less sensitive Mmaint.resp
parameter (with a 14% reduction for the NC4 PFT). Both methods are capable of recovering the “true” Q10 parameter since
it is the most sensitive parameter. The e-4BVar—-VarDA method seems to have difficulties in the calibration of the parameter
Mmaint.resp a1d LAT,ax showing reductions in MAD scores that are less than 10%. Considering Fig. A2, we can see that
some PFTs give a partial derivative that do not completely converge with an € of 102 (for example the PFT CropsCy), so it
is likely that the € for these parameters are underestimated. Other PFTs seem to give a partial derivative that do completely
converge with an € of 10~2 (for example the PFT TrBE), but remain close to their a priori value, so it is likely that the
sensitivity of these parameters is low. The other parameters are therefore self-compensating and this may partly explain the
poorer performance of this method in terms of MAD score which are always better for the 4BDErVar-EnVarDA method. The
self-compensating effect can be illustrated in Fig. 7. The posterior spatial distributions of net carbon flux obtained from the
two methods exhibit notable differences. It appears that the e-4BVar-VarDA method obtains a different spatial structure of
the net carbon fluxes. Indeed, the carbon fluxes absent from one region can be reallocated to another, resulting in only minor
variation in atmospheric CO» concentration. We believe that the different spatial structure obtained by e-4BVar—-VarDA against
the synthetic net carbon flux is likely to be explained by the fact that the two PFTs TrBE and BoND are not well monitored,
creating a dipole in the Amazonian and Siberian regions to compensate for the erroneous carbon flux in other regions. It
is therefore notable that the 4DEnVar-EnVarDA method demonstrates superior performance, as it is more aligned with the
’synthetic’ net carbon fluxes both spatially and globally than the e-4DVar—-VarDA method. Fig. A3 shows the differences
in spatial distribution of gross primary production (GPP) between the "synthetic" fluxes and the prior/posterior estimate of
the two methods, as well as their global yearly budget. We can see that GPP obtained with the 4BEnrVar-EnVarDA method
is slightly better than the e-4DVar—VarDA method for the global budget and better matches the spatial distribution of the
synthetic flux. The e-4DVar—VarDA method appears to compensate for the lack of change between the prior and posterior
GPP across most of the Northern Hemisphere. However, the 4DEnrVar-EnVarDA method outperfoms the e-4bVar-VarDA
method also in terms of computational cost: the 4BErVarEnVarDA method only needs 300 simulations, whereas the e-4bVar

-VarDA method needs 1450, which means a reduction in computing time of almost five times. This experiment of calibrating
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a large number of parameters represents a more realistic case, even if we consider a very low model/observation error. The
results demonstrate the good performance of 4DEnVarEnVarDA, which, even in a ‘perfect’ model situation, i.e. a model that
can perfectly simulate observations, can assimilate observations while being less impacted by local minima. However, this
may not be the case when using actual observations and introducing more complex modelling/observation errors. The use of
4PEnVar-EnVarDA here therefore demonstrates its ability to calibrate many parameters with fewer model simulations. In this
experiment, one simulation took 11 minutes (wall times) on average, using 20 CPUs of a computer server (using Intel Xeon
Gold 5115 processor). Neglecting the other computational times, using the e-4BVar—-VarDA for the complex case represents
more than 265 hours of computation, where it only represents 55 hours for the 4DEnVarEnVarDA. Such a reduction cannot be
ignored since a simulation in this experiment represents a short (only 2 years), low-cost model configuration - low ORCHIDEE
spatial resolution and use of pre-calculated LMDZ transport fields.

In this twin experiment, both methods have to deal with the inherent equifinality of atmospheric concentration assimilation.
This equifinality occurs when parameters compensate for each other, resulting in either an incorrect spatial distribution of NBP
or inaccurate estimates of subcomponents such as GPP and total ecosystem respiration (TER), but still allowing for a match
with observations. Although both methods considered in this study successfully recovered the global budgets for NBP and
GPP, the e-4bVar—-VarDA method did not obtain the correct spatial distributions of NBP and GPP (see Fig. 7 and Fig. A3).
This is not the case for the 4BDEnVarEnVarDA method, which better recovered the ‘true’ spatial distributions of NBP and GPP.
We believe that this equifinality could increase the number of local minima, further disrupting the performance of the e-4bVar
-VarDA method. We also believe that the ensemble nature of the 4DEnVar-EnVarDA method provides a more comprehensive
view of the parameter space, making it less sensitive to local minima and therefore to equifinality issues.

The poorer performance of the e-4DVar—VarDA method is likely related to inaccurate determination of €, which results in
inaccurate estimates of the tangent linear and adjoint models. The 4BDEnVar-EnVarDA method avoids the development and
maintenance of tangent linear and adjoint models, and ensures a fully functional assimilation method that does not require the
use of finite differences. But the performance of the 4DEnVar-EnVarDA method seems dependent on the generated ensemble.
As shown in Tab. 2, slightly lower performance is observed with larger ensembles, indicating that a bigger ensemble does
not necessarily yield better results. This could be due to the increased dimensionality of the problem, making the iterative
minimization more challenging. Additionally, we generated a new ensemble for each experiment, which provides different
information about the parameter space and can lead to different optimal values. This shows the importance of the prior ensemble
generated. Nevertheless, the reduction in RMSD remains satisfactory, with a reduction of more than 90%. It seems that the
subjective choice of the 4DEnVar-EnVarDA set-up, i.e. the size and distribution of the ensemble, is less critical than the
subjective choice of € used in the e-4BVar-VarDA, which must be determined independently for each of the parameters and
given assimilated data-streams (with the associated number of model simulations). Moreover, like the tangent linear and adjoint
models, this € must be re-tuned for a different model as the sensitivity of the parameter can be different. Indeed, other studies
using different versions of the ORCHIDEE LSM used different € values (Santaren et al., 2007; Kuppel et al., 2012; Peylin
et al., 2016; Bacour et al., 2023).
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The results obtained here for the e-4DVar—-VarDA are not equivalent to a standard 4DVar-VarDA using a tangent linear
and adjoint model. Therefore, we can draw no conclusions on the comparison between the 4DEnVarEnVarDA and a standard
4DbVar-VarDA methods as was highlighted in Liu et al. (2008). A potential - but hard to implement - way to improve the
e-4bVar—-VarDA may be to have a dynamic e that becomes more refined as the methods converge. Nevertheless, even with the
"perfect” €, we cannot guarantee that the e-4BVar-VarDA method would be less computationally expensive. The assimilation
of atmospheric CO» concentration data using 4BVar-VarDA has been implemented with a tangent linear model, as in Castro-
Morales et al. (2019), or an adjoint model, as in Scholze et al. (2007). In these cases, the tangent linear or adjoint model was
developed alongside the forward model. However, the e-4DVar-VarDA method was used in experiments where obtaining the
tangent linear or adjoint model proved too difficult, such as in Peylin et al. (2016); Bacour et al. (2023). Although e-4DBVar
-VarDA is not equivalent to standard 4BVarVarDA, a comparison of 4DEnrVar-EnVarDA with e-4DVar—VarDA demonstrates
the strong performance of 4BEnaVarEnVarDA, making it a promising candidate for this application.

4.2 Challenges and perspectives

This study relies on twin experiments, which eliminate the complexities associated with model/observation errors, and al-
lows us to focus on the performance of two assimilation methods. This experiment highlights the superiority of the 4BDEnVar
EnVarDA method to assimilate atmospheric CO2 concentration data. However, the assimilation of real observations is not

straightforward. The use of real data must be followed by characterisation of the model/observation errors. Indeed, the matrix

R must reflect modelling/observation errors at each site, which would introduce spatial heterogeneity, as each station may have
different modelling errors, mainly structural errors from both the transport model and fluxes given by the ORCHIDEE LSM

or measurement problems. A good characterisation of the matrix R is of paramount importance, as it can have a considerable
impact on the results obtained. If the model/observation errors are incorrect, the 4BEnVarEnVarDA method can give infeasible

a-posterior posterior parameter values, i.e. outside the imposed parameter boundaries (and therefore give non-physical param-
eter values). Furthermore, even with feasible «posterior posterior parameter values, the parameters obtained may be beyond
the assumption of linearity made by the use of linear combinations in Eq. 18 and therefore do not improve the associated
simulation. Nevertheless, several techniques seem promising for managing these limitations. The inclusion of a weight factor
in the background term, as is done in (Raoult et al., 2016), and a better definition of the error covariance matrix B may provide
a solution. Some of these challenges are not specific to the 4BEnVar-EnVarDA method and are common to the 4BVar-VarDA
method (Raoult et al., 2024b). These challenges are therefore the subject of active research to improve the assimilation of real
observational data.

The assimilation of real observations of atmospheric concentrations may also increase the equifinality mentioned in Section
4.1 for several reasons, such as: i) Incorrect initial conditions of the carbon pools, which can impact respiration. ii) Wrong
estimates of other flux components, such as ocean or fossil fuel components. iii) Structural errors in either the land surface
model or the transport model. The issue of incorrect initial conditions can be addressed by starting the simulation a couple
of years before the assimilation window. This allows for the correction of the initial carbon pool and better accounts for the

effects of the new parameter values on the carbon pool. To handle other components, such as ocean components, the same
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assimilation can be repeated using different estimates of the ocean flux. Ideally, an ocean model could be included in the
optimization to calibrate both land and ocean components, as is done in atmospheric inversion. The advantage of the 4DEnVar
EnVarDA method is that it only requires forward simulations. Therefore, no code adaptations are needed, making it easier to
use different transport models. This should help detect and address structural errors. The equifinality can also be reduced by
assimilating multiple data streams simultaneously, as done in Peylin et al. (2016) and Bacour et al. (2023), to calibrate both
GPP and NBP at the same time.

This study acts as a proof-of-concept for the assimilation of atmospheric CO4 concentration data using adjoint-free methods.
The next steps for the future would be to use real observations, which come with other technical and scientific problems (e.g.
quantifying the model/observation error). Future studies should focus on the assimilation of more recent and more spatially
distributed atmospheric CO concentration data - e.g. satellite XCOo product, using 4DEnVarEnVarDA. To do so, a more
recent version of LMDZ and/or ORCHIDEE should be used. Those studies will focus on the processes involved in the carbon
cycle to improve their parameterisation and/or to detect any missing processes in the model. As the 4BDEnVar-EnVarDA method
only requires forward simulations of the models, it is easy to change the model (either the LSM or the atmospheric transport
model). Furthermore, the method is easy to parallelise as each element of the ensemble is independent. Once built, no further
call of the model is necessary (except in the analysis step), which allows us to explore different configurations, e.g. in the
construction of the error matrix R or the weighting of background terms - both of which play a key role in the assimilation of
real observations - without additional computational cost.

Despite extensive research on the automatic generation of tangent linear and adjoint models - either using new languages or
differential software - it remains an enormous challenge to acquire and maintain tangent linear and adjoint models for complex
and continuously evolving models. However, it is still a key priority to understand structural errors, to quantify uncertainties
and to refine future predictions via parameter calibration. The use of adjoint-free data assimilation methods such as 4BDEnVar
EnVarDA is therefore an excellent opportunity, as it can be implemented quickly and requires no model modification.

Moreover, the 4DEnVar-EnVarDA method was used to assimilate several types of data using either simple carbon model
(Douglas et al., 2025) or more complex LSM as the JULES LSM (Pinnington et al., 2020, 2021; Cooper et al., 2021). This new
application in the ORCHIDEE LSM shows that this method is model-independent. By adding different observation terms (one
term per data flux) to the cost function, the method should be able to perform multi-flux data assimilation, which would help

to reduce the equifinality problem.

5 Conclusions

We showed that the 4BEnVar-EnVarDA method has good potential for calibrating ORCHIDEE parameters assimilating atmo-
spheric CO4 concentration data and using the LMDZ atmospheric transport model. The method was tested on a so-called twin
experiment using two different cases: 1) a simple case where 4DEnVar-EnVarDA effectively recovered the “true” parameter
values, whereas the e-4bVar—VarDA method, despite reducing the RMSD, failed to recover the “true” parameters; and 2)
a complex case where both methods achieved up to a 90% reduction in RMSD, with 4BEaVar-EnVarDA showing slightly
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better performance, including a lower MAD score in parameter space, indicating greater efficiency in parameter recovery and
an improved alignment with ’synthetic’ net carbon fluxes, both spatially and globally. Additionally, 4BEnVar-EnVarDA is
computationally less demanding and does not require the development or maintenance of tangent linear and adjoint models,
facilitating the use of updated model versions without modification. By successfully applying this method to the ORCHIDEE
model with a pre-calculated LMDZ transport model, we illustrated its adaptability, making it well-suited for other land surface

models, whether coupled with atmospheric transport models or not.

Code and data availability. The source code for the ORCHIDEE version used in this model is freely available online at
https://doi.org/10.14768/c68bc728-da71-4383-84df-dcde31d9c006 ORCHIDEE (2025). The ORCHIDAS EnVarDA code and data used in
this paper are available from a Zenodo repository at https://doi.org/10.5281/zenodo.14609416 Beylat (2025).

Appendix A: Metrics calculation

The RMSD and MAD used in these studies are calculated as follows:

Ny
1
RMSD = EZ(H(w*)t—yt)27 (A1)
t=0
1 Nparam
MAD = > |Tei — Terueil, (A2)

n
param g

where . can be either xp or x,. The Pearson correlation coefficients were computed using the Numpy Python library

with the corrcoef function. The paired t-tests were computed using the stats.ttest_rel function from the Scipy

library. We use the decomposition of MSD into bias and variance that was proposed by Geman et al. (1992) and presented b

e=Hiz) y 8)
MSD(e) = Ele (a9
MSD(e) = Var(e) + el (86)
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MSD(e) = Var(e) + Bias(e)?
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Figure A1l. Ocean, Biomass burning carbon fluxes and Fossil emission (2000-2009).
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calculated over space and time

Table A3. Spatial and temporal average of the partial derivative for all parameter for each PFT computed using € allowing a stable derivation.

The partial derivative is calculated on the concentration space using every station over 2 years. The mean of the partial derivative is then
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