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This manuscript presents an ensemble-based variational data assimilation 
framework aimed at calibrating parameters in the ORCHIDEE Land 
Surface Model using atmospheric CO₂ concentration data. The authors 
refer to their method as a 4DEnVar approach and demonstrate its 
performance through synthetic twin experiments. However, after carefully 
reviewing both the manuscript and the authors’ response to my previous 
comments, I remain increasingly convinced that the methodology 
implemented in this study more accurately reflects a 3DEnVar formulation 
rather than a true 4DEnVar. I strongly encourage the authors to revisit my 
earlier review, in which I raised key concerns regarding the temporal 
treatment of the observation operator and the background error 
covariance. In the following comment, I will explain in more detail why 
the method, as described, lacks the defining features of a 
four-dimensional ensemble-variational system and should therefore be 
categorized as a 3DEnVar. 
 
We would like to thank the reviewer for taking the time to read through and 
comment on this manuscript. Your comments will undoubtedly strengthen the 
paper and help clarify key points. We have thoroughly revised the manuscript 
and incorporated all the changes you suggested. Below, you will find a 
point-by-point response to your comments: 

 
 
1. In my previous review, I highlighted that one of the fundamental 
distinctions between 3DVar and 4DVar (and, by extension, 3DEnVar and 
4DEnVar) lies in the incorporation of an assimilation window, i.e., whether 
the assimilation framework explicitly accounts for the temporal evolution 
of observations and background states within a defined time window. 
However, in the initial manuscript, there was no mention or 
implementation of an assimilation window, and the cost function used 
follows a 3DVar formulation. In the authors’ response, they argue that 
their assimilation window spans two years (2000–2001), equating the 
entire simulation period with a single “assimilation window”. I must 
emphasize that this interpretation is incorrect and conceptually flawed. An 
assimilation window refers to the temporal period over which observations 
and model background states are compared and assimilated within each 
cycle. In typical 4DVar or 4DEnVar systems, the assimilation window is 
short (e.g., daily or sub-daily), and the system progresses through 
multiple assimilation cycles to iteratively improve the estimate of the 



optimal analysis over time. In contrast, the authors perform only a single 
assimilation cycle over a two-year period, without any time-evolving 
ensemble perturbations or temporally resolved assimilation updates. If 
one were to accept the authors’ definition of an assimilation window, then 
any 3DVar system operating on a long time series would be mistakenly 
classified as a 4DVar system, which is clearly not consistent with 
established data assimilation literature. Moreover, given that the model is 
run only once over 2000–2001, the proper assimilation window—had this 
been a genuine 4DVar or 4DEnVar system—should be of at least daily 
resolution within that two-year period, requiring many sequential 
assimilation cycles. Therefore, I cannot accept the authors' interpretation 
that their assimilation window is two years in length. Based on the 
methodology described and implemented, I am confident that this system 
is best characterized as a 3DEnVar, not a 4DEnVar. 
 
Thank you for your thorough and insightful feedback regarding the 
classification of our data assimilation methodology. We greatly appreciate your 
expertise and the opportunity to refine our manuscript to ensure clarity and 
alignment with established data assimilation terminology.  
 
We understand your concern that our interpretation of a 4DVar does not 
correspond to the conventional definition of a 4DVar (or 4DEnVar) system, 
which typically involves several short assimilation cycles (e.g., daily or 
sub-daily) in order to account for the temporal evolution of observations and 
model states. Your comment that an assimilation window refers to the time 
period during which observations and model background states are compared 
within each cycle is relevant, particularly in the context of traditional 4DVar 
systems used in meteorological applications. 
 
In our study, we seek to optimize time-invariant parameters (e.g., Vcmax, 
Q10) using a variational framework that explicitly takes into account the 
temporal evolution of observations (atmospheric CO2 concentrations) and 
model results (CO2 concentrations simulated from the ORCHIDEE model 
coupled with the LMDZ atmospheric transport model) over a two-year period. 
These time-invariant parameters are fixed constants used to calculate the 
interested variable (here the NBP flux, and then the atmospheric 
concentration). You are therefore correct in saying that the background terms 
are not evaluated over time (as this is not possible), even if changing the 
parameter would alter the evolution of the NBP (and then the atmospheric 
concentration) over time (as this would change the state of the carbon pool, 
for example). 



  
We also acknowledge that our use of a single assimilation cycle covering the 
entire two-year period deviates from the conventional 4DVar/4DEnVar 
framework, which typically uses sequential cycles with shorter assimilation 
windows. 
  
However, the cost function incorporates observations spread over time and 
model forecasts, comparing them at several points during this period in order 
to constrain the parameters. It is this temporal dimension of the assimilation 
process that led us to classify our approach as 4DVar and 4DEnVar, as it 
captures the dynamic evolution of the system rather than relying on a single 
snapshot, as in 3DVar or 3DEnVar. 
 
 
To avoid potential misinterpretation and to align more closely with the 
expectations of the data assimilation community, we propose a compromise 
by adopting the terms Variational Data Assimilation (VarDA) and Ensemble 
Variational Data Assimilation (EnVarDA) in place of 4DVar and 4DEnVar, 
respectively. These terms emphasize the variational nature of our approach, 
which optimizes parameters by leveraging the temporal evolution of 
observations and model outputs. We have revised the manuscript to reflect 
this updated terminology and have added a clarification in Section 1 to 
explicitly describe our assimilation framework L52: 
 

There is a long history of using data assimilation frameworks to 
calibrate LSM parameters (Rayner, 2010; MacBean et al., 
2022; Raoult et al., 2024b). Most of the methods used for parameter 
calibration are derived from Bayesian formulations of 
inverse problems and defined here as variational data assimilation 
(VarDA) methods. The VarDA method is inspired by the 
four-dimensional variational (4DVar) method, which was originally 
developed in the field of meteorology and Earth sciences 
(Talagrand and Courtier, 1987; Courtier et al., 1994; Asch et al., 
2016) and also employed in atmospheric inversions to correct the 
surface CO2 fluxes (Chevallier et al., 2005; Basu et al., 2013; Liu et 
al., 2021). This approach is characterised by the definition of a cost 
function, which is typically based on a least-squares criterion. This 
cost function calculates two terms: (i) an observation term that 
computes the difference between observations and model outputs, 
and (ii) a background term that incorporates prior knowledge of 



the state. The computation of both terms is performed in space 
and time. We define here the VarDA method, as our focus is not on 
directly optimizing the prior state. Instead, we concentrate on 
time-invariant parameters used in the parameterisation that 
defines the variable of interest, such as the Net Carbon Flux. 
Therefore, while the observation term of the cost function 
incorporates time-distributed observations and model predictions - 
comparing them across multiple time points - the background term 
only compares prior parameter values once, as these values 
remain constant over time. Furthermore, with the VarDA method, a 
single assimilation cycle covering the entire observation period is 
used, which differs from the conventional 4DVar framework, which 
generally uses sequential cycles with shorter assimilation 
windows. In order to minimise this cost function, the VarDA 
method calculates its gradient with respect to the different 
parameters to be calibrated.  

and L89 
 

More recently, an ensemble 4DVar method named 4DEnVar 
implemented in Pinnington et al. (2020) for LSM parameter estimation 
has proved very promising. This method uses a small ensemble to 
circumvent the necessity for a tangent linear and adjoint model. This 
4DEnVar method has been used to estimate JULES LSM crop 
parameters at a single Nebraskan site (Pinnington et al., 2020) and to 
calibrate pedotransfer functions to improve JULES LSM soil moisture 
predictions over East Anglia (Pinnington et al., 2021) and the whole of 
the UK (Cooper et al., 2021). This method was also successfully used 
by Douglas et al. (2025) to calibrate the parameters of a simple carbon 
model in a twin experiment. Although the method was defined as 
4DEnVar in Pinnington et al. (2020) and Douglas et al. (2025), we 
choose to refer to it as EnVarDA to maintain consistency with the 
definitions previously presented. 
 

This clarification highlights that our approach optimizes parameters over a 
time period using a single cycle, with the cost function incorporating 
time-varying observations and model outputs, distinguishing it from traditional 
3DVar/3DEnVar methods while acknowledging its differences from standard 
4DVar/4DEnVar implementations.  
 
 



We have also added: 
L205: “where, for example, the concatenated vector y=(y_0,y_1,...,y_{N_t})^T 
represents all available observations at all times over the time window.” 
L261: “where each H(x_i) is a concatenated vector of extracted simulations to 
correspond with all observations available at all times across the time window.  
 
We believe this revision addresses your concerns while maintaining the 
integrity of our methodology. Thank you again for your valuable feedback, 
which has significantly improved the clarity and rigor of our manuscript.  
 
2. In my previous review, I explicitly pointed out that setting all diagonal 
elements of the R matrix to 0.01 ppm is an overly simplistic and 
unrealistic treatment of observation error. I suggested that, at a 
minimum, the R matrix should reflect the variance of the observations at 
each site, which would introduce basic spatial heterogeneity and improve 
the physical realism of the assimilation system. However, in the authors’ 
latest response, no changes were made to the R matrix design. The 
authors merely acknowledge that the 0.01 ppm setting is simplistic, but 
continue to use it without further justification or adjustment. Computing 
observation-based variances—even from synthetic data—is not technically 
difficult, especially in a twin experiment framework where the synthetic 
observations are fully defined. A more realistic R matrix would be 
straightforward to implement and would significantly improve the 
credibility of the assimilation framework. Therefore, I strongly urge the 
authors to either: Revise the R matrix to reflect spatially varying 
variances based on the observation time series, or Provide a quantitative 
justification (e.g., sensitivity analysis) showing that using a constant 0.01 
ppm does not materially affect the assimilation results. Without such a 
revision or justification, the conclusions drawn from the assimilation 
experiments may not be robust or generalizable. 
 

We thank you for your feedback regarding the R matrix in our manuscript. Your 
comments, particularly on the simplistic use of a uniform diagonal R matrix with a 
value of 0.01 ppm highlight an important aspect of data assimilation that warrants 
careful consideration.  

We fully agree that, in applications involving real observations, the R matrix should 
incorporate at least spatial and, ideally, temporal variability to reflect observation 
error variances at different sites, thereby enhancing the physical realism of the 
assimilation system. In this study, our primary objective was to compare the 
performance of two data assimilation methods - VarDA and the EnVarDA - in solving 



an inverse problem for parameter calibration within a complex atmospheric CO2 
concentration modeling framework, specifically using the ORCHIDEE land surface 
model coupled with the LMDZ atmospheric transport model.  

To focus on this methodological comparison, we employed a twin experiment 
framework with synthetic observations generated by ORCHIDEE+LMDZ without 
added noise or perturbations. This idealized setup eliminates complexities such as 
model structural errors or measurement errors, allowing the model to perfectly match 
the synthetic observations. In this context, we chose a uniform R matrix value of 0.01 
ppm for both methods to ensure a consistent and controlled comparison, as the 
synthetic observations are noise-free and equally reliable across all stations. 
Assigning differential weights to stations via a heterogeneous R matrix seemed less 
relevant and sub-optimal in this perfect case, where all stations can theoretically be 
fitted equally well. ​
​
We added L348: 

The R matrix represents the model-structural and observation errors. In 
our twin experiment setup, we choose not to add only very small errors 
in the pseudo-observations to compare both methods in an ideal case. 
In this context, structural errors in the ORCHIDEE LSM (i.e. missing 
processes, etc.) and in the transport model (i.e., coarse spatial 
resolution, wind biases, etc.), or measurement errors are discarded. 
Indeed, since the pseudo-observations are generated by a simulation, as 
detailed in Section 2.3, there exists at least one solution where all 
observations can be matched perfectly. For this reason, we use a 
simplified R matrix with the same small diagonal terms of 0.01 ppm for 
all stations. The rationale behind this choice is that, as all stations can 
be matched perfectly, we do not want to introduce any spatial or 
temporal preferences. 

It is also clear that any change to the R matrix should change the results, as the 
opposite seems incorrect, but we believe that characterising the error in a system 
and testing the potential performance of a system are two different things. In our 
article, we do not wish to characterise the observation/model error (as there is none 
in reality), but we wish to test and compare two methods. We are convinced that as 
long as the same R is used in both systems, we can conclude that EnVarDA has 
many advantages over VarDA. 

Moreover to assess the robustness of our approach and address the potential risk of 
overfitting due to the simplified R matrix, we evaluated the normalized chi-square 
statistic for the simple case, following Talagrand and Boutier (1999) and Trémolet 
(2006), obtaining scores of 0.015 for EnVarDA and 1.2 for VarDA. These values 
suggest that our error estimates are either appropriately specified or slightly 



overestimated, as scores significantly greater than 1 would indicate error 
underestimation and a potential shift in the cost function minimum (Trémolet (2006)).  

These findings support the validity of our conclusions within the controlled twin 
experiment framework. We recognize, however, that a more realistic R matrix 
incorporating spatially varying variances is critical for the use of real-observation, as 
we have observed in an ongoing work with real observations. We have also explicitly 
added the point raised by the reviewer in the discussion L565: 

However, the assimilation of real observations is not straightforward. The use 
of real data must be followed by characterisation of the model/observation 
errors. Indeed, the matrix R must reflect modelling/observation errors at 
each site, which would introduce spatial heterogeneity, as each station 
may have different modelling errors, mainly structural errors from both 
the transport model and the ORCHIDEE flux model, or measurement 
problems. A good characterisation of the matrix R is of paramount 
importance, as it can have a considerable impact on the results 
obtained. If the model/observation errors are incorrect, the EnVarDA method 
can give infeasible posterior parameter values, i.e. outside the imposed 
parameter bound- aries (and therefore give non-physical parameter values). 
Furthermore, even with feasible posterior parameter values, the parameters 
obtained may be beyond the assumption of linearity made by the use of linear 
combinations in Eq. 18 and therefore do not improve the associated 
simulation. Nevertheless, several techniques seem promising for managing 
these limitations. 

We believe this approach will address your concerns without necessitating a 
complete re-optimization of all experiments, which would be computationally 
intensive and time-consuming given the scope of the study.  

 
3. The manuscript lacks a clear and detailed explanation of how the 
background error covariance matrix B is constructed. This is a 
fundamental component of any variational data assimilation framework, 
as it governs how prior uncertainty is propagated into the analysis. 
However, the manuscript appears to apply the same simplified approach 
to the background error covariance matrix B as it does to the observation 
error covariance matrix R —namely, by assigning constant diagonal values 
of 0.01. This practice is scientifically inappropriate. The background error 
covariance matrix and the observation error covariance matrix represent 
distinct sources of uncertainty and must be treated separately. Using the 
same constant value for both implicitly assumes that the model and 
observation uncertainties are identical in magnitude and structure, which 
is both unrealistic and unjustified—even in a twin experiment setup. Even 



in idealized experiments, a scientifically grounded design of 𝐵 is expected. 
For example, 𝐵 could be derived from ensemble statistics, parameter 
perturbation experiments, or climatological variances. These are standard 
practices in both 3DVar and EnVar systems. 
 
We thank the reviewer for their comment and apologise if our original explanation 
was unclear. We fully agree that the two matrices R and B must be treated 
separately and confirm that this is what we have done in the article. Note that we 
couldn’t have done otherwise, because R relates to the error in atmospheric 
concentrations (in ppm), while B relates to the error in the model parameters, each 
of which has its own range of variation and unit. As discussed in the comment above 
R is indeed a diagonal matrix with an error of 0.01 ppm. But we clearly presented - 
also in section 2.3.3 - how B is designed : “The B matrix contains the background 
errors associated with the prior knowledge of the model parameters. We set an error 
corresponding to 30% of the parameter range for the simple case and 20% for the 
complex case (as we use larger parameter ranges).” To improve clarity and avoid 
potential confusion, we have revised Section 2.3.3 to more explicitly separate the 
descriptions of R and B into two distinct paragraphs (see Lines 330–345 in the 
revised manuscript): 
 

To implement the two data assimilation methods, ϵ-VarDA and EnVarDA, 
we define two error covariance matrices: R and B. These matrices are 
configured to be diagonal, as we are assimilating "synthetic" 
observations, and are common to both methods to ensure comparable 
experiments. Their configurations are informed by previous data 
assimilation studies using ORCHIDEE and a simplified carbon model 
(Kuppel et al., 2012, 2013; Bastrikov et al., 2018; MacBean et al., 2016), 
with Peylin et al. (2016) specifically applying diagonal matrices for 
atmospheric CO2 observations. 
R Matrix 
[...] 
B Matrix 
The B matrix represents the background errors associated with prior 
knowledge of the parameters. We set the error to 30% of the parameter 
range for the simple case and 20% for the complex case (as we use 
larger parameter ranges for this case). The background errors of each 
parameter can be seen in Fig. 3 for the simple case and in Fig. 6 as well 
as Table A2. 

 
4. To improve clarity and transparency, I strongly recommend that the 
authors include a dedicated "Experiment Design" section in the 
manuscript, preferably early in the Methods section. Currently, the 
description of the different twin experiments is scattered and somewhat 



difficult to follow, especially with regard to the distinctions between test 
cases, the naming conventions used, and the variables being optimized. 
Additionally, I suggest including a summary table that clearly outlines the 
different experiments conducted. 
 

We thank the reviewer for these comments and apologise for the lack of clarity. We 
have modified the structure as follows: 

​ 2.3 Experiment Design 

​ 2.3.1 Twin Experiment Description 

To test the data assimilation methods presented in Section 2.2, we 
conducted a so-called twin experiment to evaluate their efficiency 
in calibrating parameters involved in calculating NBP fluxes in the 
ORCHIDEE LSM model. This experimental framework reduces 
complexities associated with model-data errors, focusing on the 
performance of the assimilation methods. The known ’true’ 
parameters being the default parameter values of the ORCHIDEE 
model are used to generate the synthetic observations. New 
values of a priori parameters are manually generated, ensuring 
physically meaningful values that differ from the ’true’ parameters 
both presented in Table A2. The assimilation methods are then 
applied to assess how closely they converge toward the known 
solution (standard parameter values). The synthetic observations 
of atmospheric CO2 concentrations from the 21 continental 
stations are assimilated simultaneously over a two-year window 
(2000–2001) to monitor spatial and temporal variations in carbon 
fluxes, as shown in Figure A4. A limited period was chosen for 
practical reasons to avoid computationally expensive simulations. 

​ 2.3.2 Generation of Synthetic Observations 

To generate synthetic observations for the twin experiment, we 
simulate net biome productivity (NBP) fluxes at the global scale 
using the ORCHIDEE LSM with default parameter values, referred 
to as the ’true’ parameters (see Table A2). These NBP fluxes 
represent the net carbon fluxes of the land component, calculated 
as the difference between emission fluxes (heterotrophic and 
autotrophic respiration, and disturbance fluxes due to land-use 
change) and sink fluxes (primarily due to photosynthesis). The 
concentration given by the surface fluxes (the simulated NBP 
fluxes, along with other fluxes described in Section 2.1.4) are 



transported using pre-calculated transport fields of the LMDZ 
model over the period 2000–2001. We then extract atmospheric 
CO2 concentrations at 21 continental atmospheric stations, 
shown in Figure 1, which are highly sensitive to continental 
carbon fluxes, providing significant constraints on the 
parameters. This process enabled the generation of synthetic 
observations of monthly average atmospheric CO2 
concentrations at these 21 stations over the two-year period. It is 
important to note that the steps taken here to generate the 
synthetic observations are exactly the same as those used to 
perform a simulation. This means that there is at least one 
solution where the model can perfectly match the synthetic 
observation. 

​ 2.3.3 Simplified case 

​ ​ [...] 

​ 2.3.4 Complex case 

​ ​ [...] 

​ 2.3.5 Error covariance matrices 

​ ​ [...] 

​ 2.3.6 Tuning ϵ for gradient calculation 

​ ​ [...] 

​ 2.3.7 Defining the impact of the configuration  

​ ​ [...] 

Each section was revised to reflect every aspect of the experiment we performed. 
We specifically split the first section into two parts to explicitly describe how the 
Synthetic Observations are generated, thereby removing any potential doubt. No 
additional information was added to the text but the text was revised to eliminate any 
potential confusion. We did include a list of all the experiments performed in the last 
section L380: 

To assess their impact, we launch the twin experiment using different 
configurations:  

●​  for the simple case:  



○​ 5 different values of ϵ for the ϵ-VarDA based on the sensitivity 
test presented in Section 2.3.6 ;  

○​  5 different ensemble sizes in the EnVarDA; 
●​ for the complex case: 

○​  5 different ensemble sizes in the EnVarDA; 
○​ 1 values of ϵ for the ϵ-VarDA. 

 
 
 
5. In the author's response, it is stated that the experiments represent a 
full-field assimilation, implying that the assimilation directly updates the 
full state variables and can correct potential model biases. However, this 
characterization is not substantiated in the manuscript. There is no 
analysis or discussion demonstrating how the assimilation affects model 
biases—either in the prior fields, posterior fields, or fluxes. A full-field 
assimilation experiment should, by definition, lead to noticeable 
improvements in the state estimation compared to the biased model 
trajectory. To support this claim, I strongly recommend that the authors: 
1. Include an explicit evaluation of model biases before and after 
assimilation, especially in CO₂ concentrations or fluxes (e.g., NBP); 2. 
Quantify the impact of assimilation on these biases. 
​
Thank you for your feedback and for highlighting the need for a clear demonstration 
of how our assimilation approach addresses model biases in CO₂ concentrations and 
fluxes, such as Net Biome Productivity (NBP).  

In our study, we focus on calibrating parameters within the ORCHIDEE LSM that 
govern key processes such as photosynthesis and soil carbon decomposition, which 
in turn influence exchange fluxes like Gross Primary Production (GPP) and NBP. 
These parameters are optimized using atmospheric CO₂ concentration data, while 
forcing variables (e.g., temperature, wind, precipitation) are prescribed from 
ERA-Interim reanalysis data to ensure accurate timing of meteorological events. As 
such, our assimilation does not directly update the state variables themselves but 
indirectly improves the model’s representation of CO₂ concentrations and fluxes by 
optimizing the parameters that drive these processes.  

We acknowledge that the use of the term ‘full-field assimilation’ in our previous 
response could have been confusing. These terms are not used in the context of 
LSM parameter calibration (see, for example, the review articles by Raoult et al. 
2024, Macbean et al. 2022, or Rayner et al. 2010).  

To address your specific recommendations: 



1.​ Evaluation of Model Biases Before and After Assimilation: We believe 
that our manuscript already includes a comprehensive evaluation of biases in 
CO₂ concentrations and fluxes. For CO₂ concentrations, we quantify the 
improvement in model performance through the Root Mean Squared 
Difference (RMSD) scores, as presented in Figures 4 and 5, which compare 
prior and posterior simulations against synthetic observations at 21 
atmospheric stations. Specifically, Figure 4 (and Figure A4 in the revised 
manuscript) shows the time series of CO₂ concentrations, illustrating the 
reduction in discrepancies between model outputs and observations 
post-assimilation. For fluxes, Figure 7 and Figure A3 in the revised manuscript 
provide spatial differences in NBP and GPP fluxes, respectively, between prior 
and posterior estimates compared to “true” synthetic fluxes. These figures 
demonstrate the impact of assimilation on reducing biases in both CO₂ 
concentrations and fluxes. We have also added a new analysis following 
Hodson et al. (2021) and Geman et al., 1992, who proposed to decompose 
the mean square difference (MSD) into bias and variance L451 

We computed the mean squared difference (MSD) between the 
synthetic observations concatenated across all stations and the 
prior simulation, as well as the two posterior simulations. 
Following Hodson et al. (2021) and Geman et al. (1992), we 
decomposed the MSD into bias and variance terms as presented 
in Section A. The prior MSD is 11.49 ppm2 and is reduced to 0.04 
ppm2 using the EnVarDA method and to 0.08 ppm2 using the 
VarDA method. The decomposition of the prior MSD indicates a 
squared bias of 4.96 ppm2 and an error variance equal to 6.53 
ppm2. The same decomposition for the posterior simulations 
yields a squared bias of 0.006 ppm2 and an error variance equal 
to 0.03 ppm2 for the EnVarDA method, and a squared bias of 0.002 
ppm2 and an error variance equal to 0.07 ppm2 for the VarDA 
method. 

And L502​
 

Furthermore the MSD score is better for the EnVarDA method 
(0.04 ppm2 using the EnVarDA method and to 0.08 ppm2 using the 
VarDA method) and the MSD decomposition (Geman et al., 1992; 
Hodson et al., 2021) highlights that EnVarDA better reduces the 
error variance, whereas the squared bias reduction is slightly 
better for the VarDA method. However, squared bias values below 
0.01 ppm2 are negligible. While the mean RSMD reduction and 
MSD scores are similar for the complex case, the MAD scores in 
parameter space are different.​
 



2.​ Quantification of Bias Impact: The manuscript quantifies the impact of 
assimilation on biases in CO₂ concentrations and fluxes in the “Results” and 
“Discussion” sections. For CO₂ concentrations, we report a mean RMSD 
reduction of 91.3% for 4DEnVar and 92.3% for e-4DVar across all stations (L 
425–430, Page 17). For NBP and GPP, we discuss the recovery of global 
budgets and highlight challenges in achieving correct spatial distributions due 
to equifinality, particularly in  485–497 and 510–517 (Pages 21 and 23). 
These sections detail how both methods successfully reduce biases in global 
NBP and GPP budgets, although 4DEnVar performs better in capturing spatial 
patterns due to its ensemble-based approach, which mitigates issues related 
to local minima. 

We believe these analyses directly address the impact of assimilation on model 
biases, as requested.  

​
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