Report review #2

This manuscript presents an ensemble-based variational data assimilation
framework aimed at calibrating parameters in the ORCHIDEE Land
Surface Model using atmospheric CO:. concentration data. The authors
refer to their method as a 4DEnVar approach and demonstrate its
performance through synthetic twin experiments. However, after carefully
reviewing both the manuscript and the authors’ response to my previous
comments, I remain increasingly convinced that the methodology
implemented in this study more accurately reflects a 3DEnVar formulation
rather than a true 4DEnVar. I strongly encourage the authors to revisit my
earlier review, in which I raised key concerns regarding the temporal
treatment of the observation operator and the background error
covariance. In the following comment, I will explain in more detail why
the method, as described, lacks the defining features of a
four-dimensional ensemble-variational system and should therefore be
categorized as a 3DEnVar.

We would like to thank the reviewer for taking the time to read through and
comment on this manuscript. Your comments will undoubtedly strengthen the
paper and help clarify key points. We have thoroughly revised the manuscript
and incorporated all the changes you suggested. Below, you will find a
point-by-point response to your comments:

1. In my previous review, I highlighted that one of the fundamental
distinctions between 3DVar and 4DVar (and, by extension, 3DEnVar and
4DEnVar) lies in the incorporation of an assimilation window, i.e., whether
the assimilation framework explicitly accounts for the temporal evolution
of observations and background states within a defined time window.
However, in the initial manuscript, there was no mention or
implementation of an assimilation window, and the cost function used
follows a 3DVar formulation. In the authors’ response, they argue that
their assimilation window spans two years (2000-2001), equating the
entire simulation period with a single “assimilation window”. I must
emphasize that this interpretation is incorrect and conceptually flawed. An
assimilation window refers to the temporal period over which observations
and model background states are compared and assimilated within each
cycle. In typical 4DVar or 4DEnVar systems, the assimilation window is
short (e.g., daily or sub-daily), and the system progresses through
multiple assimilation cycles to iteratively improve the estimate of the



optimal analysis over time. In contrast, the authors perform only a single
assimilation cycle over a two-year period, without any time-evolving
ensemble perturbations or temporally resolved assimilation updates. If
one were to accept the authors’ definition of an assimilation window, then
any 3DVar system operating on a long time series would be mistakenly
classified as a 4DVar system, which is clearly not consistent with
established data assimilation literature. Moreover, given that the model is
run only once over 2000-2001, the proper assimilation window—had this
been a genuine 4DVar or 4DEnVar system—should be of at least daily
resolution within that two-year period, requiring many sequential
assimilation cycles. Therefore, I cannot accept the authors' interpretation
that their assimilation window is two years in length. Based on the
methodology described and implemented, I am confident that this system
is best characterized as a 3DEnVar, not a 4DEnVar.

Thank you for your thorough and insightful feedback regarding the
classification of our data assimilation methodology. We greatly appreciate your
expertise and the opportunity to refine our manuscript to ensure clarity and
alignment with established data assimilation terminology.

We understand your concern that our interpretation of a 4DVar does not
correspond to the conventional definition of a 4DVar (or 4DEnVar) system,
which typically involves several short assimilation cycles (e.g., daily or
sub-daily) in order to account for the temporal evolution of observations and
model states. Your comment that an assimilation window refers to the time
period during which observations and model background states are compared
within each cycle is relevant, particularly in the context of traditional 4DVar
systems used in meteorological applications.

In our study, we seek to optimize time-invariant parameters (e.g., Vcmax,
Q10) using a variational framework that explicitly takes into account the
temporal evolution of observations (atmospheric CO2 concentrations) and
model results (CO2 concentrations simulated from the ORCHIDEE model
coupled with the LMDZ atmospheric transport model) over a two-year period.
These time-invariant parameters are fixed constants used to calculate the
interested variable (here the NBP flux, and then the atmospheric
concentration). You are therefore correct in saying that the background terms
are not evaluated over time (as this is not possible), even if changing the
parameter would alter the evolution of the NBP (and then the atmospheric
concentration) over time (as this would change the state of the carbon pool,
for example).



We also acknowledge that our use of a single assimilation cycle covering the
entire two-year period deviates from the conventional 4DVar/4DEnVar
framework, which typically uses sequential cycles with shorter assimilation
windows.

However, the cost function incorporates observations spread over time and
model forecasts, comparing them at several points during this period in order
to constrain the parameters. It is this temporal dimension of the assimilation
process that led us to classify our approach as 4DVar and 4DEnVar, as it
captures the dynamic evolution of the system rather than relying on a single
snapshot, as in 3DVar or 3DEnVar.

To avoid potential misinterpretation and to align more closely with the
expectations of the data assimilation community, we propose a compromise
by adopting the terms Variational Data Assimilation (VarDA) and Ensemble
Variational Data Assimilation (EnVarDA) in place of 4DVar and 4DEnVar,
respectively. These terms emphasize the variational nature of our approach,
which optimizes parameters by leveraging the temporal evolution of
observations and model outputs. We have revised the manuscript to reflect
this updated terminology and have added a clarification in Section 1 to
explicitly describe our assimilation framework L52:

There is a long history of using data assimilation frameworks to
calibrate LSM parameters (Rayner, 2010; MacBean et al.,

2022; Raoult et al., 2024b). Most of the methods used for parameter
calibration are derived from Bayesian formulations of

inverse problems and defined here as variational data assimilation
(varDA) methods. The VarDA method is inspired by the
four-dimensional variational (4DVar) method, which was originally
developed in the field of meteorology and Earth sciences
(Talagrand and Courtier, 1987; Courtier et al., 1994; Asch et al.,
2016) and also employed in atmospheric inversions to correct the
surface CO2 fluxes (Chevallier et al., 2005; Basu et al., 2013; Liu et
al., 2021). This approach is characterised by the definition of a cost
function, which is typically based on a least-squares criterion. This
cost function calculates two terms: (i) an observation term that
computes the difference between observations and model outputs,
and (ii) a background term that incorporates prior knowledge of



the state. The computation of both terms is performed in space
and time. We define here the VarDA method, as our focus is not on
directly optimizing the prior state. Instead, we concentrate on
time-invariant parameters used in the parameterisation that
defines the variable of interest, such as the Net Carbon Flux.
Therefore, while the observation term of the cost function
incorporates time-distributed observations and model predictions -
comparing them across multiple time points - the background term
only compares prior parameter values once, as these values
remain constant over time. Furthermore, with the VarDA method, a
single assimilation cycle covering the entire observation period is
used, which differs from the conventional 4DVar framework, which
generally uses sequential cycles with shorter assimilation
windows. In order to minimise this cost function, the VarDA
method calculates its gradient with respect to the different
parameters to be calibrated.

and L89

More recently, an ensemble 4DVar method named 4DEnVar
implemented in Pinnington et al. (2020) for LSM parameter estimation
has proved very promising. This method uses a small ensemble to
circumvent the necessity for a tangent linear and adjoint model. This
4DEnVar method has been used to estimate JULES LSM crop
parameters at a single Nebraskan site (Pinnington et al., 2020) and to
calibrate pedotransfer functions to improve JULES LSM soil moisture
predictions over East Anglia (Pinnington et al., 2021) and the whole of
the UK (Cooper et al., 2021). This method was also successfully used
by Douglas et al. (2025) to calibrate the parameters of a simple carbon
model in a twin experiment. Although the method was defined as
4DEnVar in Pinnington et al. (2020) and Douglas et al. (2025), we
choose to refer to it as EnVarDA to maintain consistency with the
definitions previously presented.

This clarification highlights that our approach optimizes parameters over a
time period using a single cycle, with the cost function incorporating
time-varying observations and model outputs, distinguishing it from traditional
3DVar/3DEnVar methods while acknowledging its differences from standard
4DVar/4DEnVar implementations.



We have also added:

L205: “where, for example, the concatenated vector y=(y_0,y_1,...,y {N_tH T
represents all available observations at all times over the time window.”

L261: “where each H(x_i) is a concatenated vector of extracted simulations to
correspond with all observations available at all times across the time window.

We believe this revision addresses your concerns while maintaining the
integrity of our methodology. Thank you again for your valuable feedback,
which has significantly improved the clarity and rigor of our manuscript.

2. In my previous review, I explicitly pointed out that setting all diagonal
elements of the R matrix to 0.01 ppm is an overly simplistic and
unrealistic treatment of observation error. I suggested that, at a
minimum, the R matrix should reflect the variance of the observations at
each site, which would introduce basic spatial heterogeneity and improve
the physical realism of the assimilation system. However, in the authors’
latest response, no changes were made to the R matrix design. The
authors merely acknowledge that the 0.01 ppm setting is simplistic, but
continue to use it without further justification or adjustment. Computing
observation-based variances—even from synthetic data—is not technically
difficult, especially in a twin experiment framework where the synthetic
observations are fully defined. A more realistic R matrix would be
straightforward to implement and would significantly improve the
credibility of the assimilation framework. Therefore, I strongly urge the
authors to either: Revise the R matrix to reflect spatially varying
variances based on the observation time series, or Provide a quantitative
justification (e.g., sensitivity analysis) showing that using a constant 0.01
ppm does not materially affect the assimilation results. Without such a
revision or justification, the conclusions drawn from the assimilation
experiments may not be robust or generalizable.

We thank you for your feedback regarding the R matrix in our manuscript. Your
comments, particularly on the simplistic use of a uniform diagonal R matrix with a
value of 0.01 ppm highlight an important aspect of data assimilation that warrants
careful consideration.

We fully agree that, in applications involving real observations, the R matrix should
incorporate at least spatial and, ideally, temporal variability to reflect observation
error variances at different sites, thereby enhancing the physical realism of the
assimilation system. In this study, our primary objective was to compare the
performance of two data assimilation methods - VarDA and the EnVarDA - in solving



an inverse problem for parameter calibration within a complex atmospheric CO2
concentration modeling framework, specifically using the ORCHIDEE land surface
model coupled with the LMDZ atmospheric transport model.

To focus on this methodological comparison, we employed a twin experiment
framework with synthetic observations generated by ORCHIDEE+LMDZ without
added noise or perturbations. This idealized setup eliminates complexities such as
model structural errors or measurement errors, allowing the model to perfectly match
the synthetic observations. In this context, we chose a uniform R matrix value of 0.01
ppm for both methods to ensure a consistent and controlled comparison, as the
synthetic observations are noise-free and equally reliable across all stations.
Assigning differential weights to stations via a heterogeneous R matrix seemed less
relevant and sub-optimal in this perfect case, where all stations can theoretically be
fitted equally well.

We added L348:

The R matrix represents the model-structural and observation errors. In
our twin experiment setup, we choose not to add only very small errors
in the pseudo-observations to compare both methods in an ideal case.
In this context, structural errors in the ORCHIDEE LSM (i.e. missing
processes, etc.) and in the transport model (i.e., coarse spatial
resolution, wind biases, etc.), or measurement errors are discarded.
Indeed, since the pseudo-observations are generated by a simulation, as
detailed in Section 2.3, there exists at least one solution where all
observations can be matched perfectly. For this reason, we use a
simplified R matrix with the same small diagonal terms of 0.01 ppm for
all stations. The rationale behind this choice is that, as all stations can
be matched perfectly, we do not want to introduce any spatial or
temporal preferences.

It is also clear that any change to the R matrix should change the results, as the
opposite seems incorrect, but we believe that characterising the error in a system
and testing the potential performance of a system are two different things. In our
article, we do not wish to characterise the observation/model error (as there is none
in reality), but we wish to test and compare two methods. We are convinced that as
long as the same R is used in both systems, we can conclude that EnVarDA has
many advantages over VarDA.

Moreover to assess the robustness of our approach and address the potential risk of
overfitting due to the simplified R matrix, we evaluated the normalized chi-square
statistic for the simple case, following Talagrand and Boutier (1999) and Trémolet
(2006), obtaining scores of 0.015 for EnVarDA and 1.2 for VarDA. These values
suggest that our error estimates are either appropriately specified or slightly



overestimated, as scores significantly greater than 1 would indicate error
underestimation and a potential shift in the cost function minimum (Trémolet (2006)).

These findings support the validity of our conclusions within the controlled twin
experiment framework. We recognize, however, that a more realistic R matrix
incorporating spatially varying variances is critical for the use of real-observation, as
we have observed in an ongoing work with real observations. We have also explicitly
added the point raised by the reviewer in the discussion L565:

However, the assimilation of real observations is not straightforward. The use
of real data must be followed by characterisation of the model/observation
errors. Indeed, the matrix R must reflect modelling/observation errors at
each site, which would introduce spatial heterogeneity, as each station
may have different modelling errors, mainly structural errors from both
the transport model and the ORCHIDEE flux model, or measurement
problems. A good characterisation of the matrix R is of paramount
importance, as it can have a considerable impact on the results
obtained. If the model/observation errors are incorrect, the EnVarDA method
can give infeasible posterior parameter values, i.e. outside the imposed
parameter bound- aries (and therefore give non-physical parameter values).
Furthermore, even with feasible posterior parameter values, the parameters
obtained may be beyond the assumption of linearity made by the use of linear
combinations in Eq. 18 and therefore do not improve the associated
simulation. Nevertheless, several techniques seem promising for managing
these limitations.

We believe this approach will address your concerns without necessitating a
complete re-optimization of all experiments, which would be computationally
intensive and time-consuming given the scope of the study.

3. The manuscript lacks a clear and detailed explanation of how the
background error covariance matrix B is constructed. This is a
fundamental component of any variational data assimilation framework,
as it governs how prior uncertainty is propagated into the analysis.
However, the manuscript appears to apply the same simplified approach
to the background error covariance matrix B as it does to the observation
error covariance matrix R —namely, by assigning constant diagonal values
of 0.01. This practice is scientifically inappropriate. The background error
covariance matrix and the observation error covariance matrix represent
distinct sources of uncertainty and must be treated separately. Using the
same constant value for both implicitly assumes that the model and
observation uncertainties are identical in magnitude and structure, which
is both unrealistic and unjustified—even in a twin experiment setup. Even



in idealized experiments, a scientifically grounded design of B is expected.
For example, B could be derived from ensemble statistics, parameter
perturbation experiments, or climatological variances. These are standard
practices in both 3DVar and EnVar systems.

We thank the reviewer for their comment and apologise if our original explanation
was unclear. We fully agree that the two matrices R and B must be treated
separately and confirm that this is what we have done in the article. Note that we
couldn’t have done otherwise, because R relates to the error in atmospheric
concentrations (in ppm), while B relates to the error in the model parameters, each
of which has its own range of variation and unit. As discussed in the comment above
R is indeed a diagonal matrix with an error of 0.01 ppm. But we clearly presented -
also in section 2.3.3 - how B is designed : “The B matrix contains the background
errors associated with the prior knowledge of the model parameters. We set an error
corresponding to 30% of the parameter range for the simple case and 20% for the
complex case (as we use larger parameter ranges).” To improve clarity and avoid
potential confusion, we have revised Section 2.3.3 to more explicitly separate the
descriptions of R and B into two distinct paragraphs (see Lines 330-345 in the
revised manuscript):

To implement the two data assimilation methods, e-VarDA and EnVarDA,
we define two error covariance matrices: R and B. These matrices are
configured to be diagonal, as we are assimilating "synthetic"
observations, and are common to both methods to ensure comparable
experiments. Their configurations are informed by previous data
assimilation studies using ORCHIDEE and a simplified carbon model
(Kuppel et al., 2012, 2013; Bastrikov et al., 2018; MacBean et al., 2016),
with Peylin et al. (2016) specifically applying diagonal matrices for
atmospheric CO2 observations.

R Matrix

[...]

B Matrix

The B matrix represents the background errors associated with prior
knowledge of the parameters. We set the error to 30% of the parameter
range for the simple case and 20% for the complex case (as we use
larger parameter ranges for this case). The background errors of each
parameter can be seen in Fig. 3 for the simple case and in Fig. 6 as well
as Table A2.

4. To improve clarity and transparency, I strongly recommend that the
authors include a dedicated "Experiment Design" section in the
manuscript, preferably early in the Methods section. Currently, the
description of the different twin experiments is scattered and somewhat



difficult to follow, especially with regard to the distinctions between test
cases, the naming conventions used, and the variables being optimized.
Additionally, I suggest including a summary table that clearly outlines the
different experiments conducted.

We thank the reviewer for these comments and apologise for the lack of clarity. We
have modified the structure as follows:

2.3 Experiment Design
2.3.1 Twin Experiment Description

To test the data assimilation methods presented in Section 2.2, we
conducted a so-called twin experiment to evaluate their efficiency
in calibrating parameters involved in calculating NBP fluxes in the
ORCHIDEE LSM model. This experimental framework reduces
complexities associated with model-data errors, focusing on the
performance of the assimilation methods. The known ’true’
parameters being the default parameter values of the ORCHIDEE
model are used to generate the synthetic observations. New
values of a priori parameters are manually generated, ensuring
physically meaningful values that differ from the 'true’ parameters
both presented in Table A2. The assimilation methods are then
applied to assess how closely they converge toward the known
solution (standard parameter values). The synthetic observations
of atmospheric CO2 concentrations from the 21 continental
stations are assimilated simultaneously over a two-year window
(2000-2001) to monitor spatial and temporal variations in carbon
fluxes, as shown in Figure A4. A limited period was chosen for
practical reasons to avoid computationally expensive simulations.

2.3.2 Generation of Synthetic Observations

To generate synthetic observations for the twin experiment, we
simulate net biome productivity (NBP) fluxes at the global scale
using the ORCHIDEE LSM with default parameter values, referred
to as the 'true’ parameters (see Table A2). These NBP fluxes
represent the net carbon fluxes of the land component, calculated
as the difference between emission fluxes (heterotrophic and
autotrophic respiration, and disturbance fluxes due to land-use
change) and sink fluxes (primarily due to photosynthesis). The
concentration given by the surface fluxes (the simulated NBP
fluxes, along with other fluxes described in Section 2.1.4) are



transported using pre-calculated transport fields of the LMDZ
model over the period 2000-2001. We then extract atmospheric
CO2 concentrations at 21 continental atmospheric stations,
shown in Figure 1, which are highly sensitive to continental
carbon fluxes, providing significant constraints on the
parameters. This process enabled the generation of synthetic
observations of monthly average atmospheric CO2
concentrations at these 21 stations over the two-year period. It is
important to note that the steps taken here to generate the
synthetic observations are exactly the same as those used to
perform a simulation. This means that there is at least one
solution where the model can perfectly match the synthetic
observation.

2.3.3 Simplified case

[.]

2.3.4 Complex case

]

2.3.5 Error covariance matrices

]

2.3.6 Tuning € for gradient calculation

[.]

2.3.7 Defining the impact of the configuration

]

Each section was revised to reflect every aspect of the experiment we performed.
We specifically split the first section into two parts to explicitly describe how the
Synthetic Observations are generated, thereby removing any potential doubt. No
additional information was added to the text but the text was revised to eliminate any
potential confusion. We did include a list of all the experiments performed in the last
section L380:

To assess their impact, we launch the twin experiment using different
configurations:

e for the simple case:



o 5 different values of € for the e-VarDA based on the sensitivity
test presented in Section 2.3.6 ;
o 5 different ensemble sizes in the EnVarDA;
e for the complex case:
o 5 different ensemble sizes in the EnVarDA;
o 1 values of € for the e-VarDA.

5. In the author's response, it is stated that the experiments represent a
full-field assimilation, implying that the assimilation directly updates the
full state variables and can correct potential model biases. However, this
characterization is not substantiated in the manuscript. There is no
analysis or discussion demonstrating how the assimilation affects model
biases—either in the prior fields, posterior fields, or fluxes. A full-field
assimilation experiment should, by definition, lead to noticeable
improvements in the state estimation compared to the biased model
trajectory. To support this claim, I strongly recommend that the authors:
1. Include an explicit evaluation of model biases before and after
assimilation, especially in CO. concentrations or fluxes (e.g., NBP); 2.
Quantify the impact of assimilation on these biases.

Thank you for your feedback and for highlighting the need for a clear demonstration
of how our assimilation approach addresses model biases in CO. concentrations and
fluxes, such as Net Biome Productivity (NBP).

In our study, we focus on calibrating parameters within the ORCHIDEE LSM that
govern key processes such as photosynthesis and soil carbon decomposition, which
in turn influence exchange fluxes like Gross Primary Production (GPP) and NBP.
These parameters are optimized using atmospheric CO: concentration data, while
forcing variables (e.g., temperature, wind, precipitation) are prescribed from
ERA-Interim reanalysis data to ensure accurate timing of meteorological events. As
such, our assimilation does not directly update the state variables themselves but
indirectly improves the model’s representation of CO. concentrations and fluxes by
optimizing the parameters that drive these processes.

We acknowledge that the use of the term ‘full-field assimilation’ in our previous
response could have been confusing. These terms are not used in the context of
LSM parameter calibration (see, for example, the review articles by Raoult et al.
2024, Macbean et al. 2022, or Rayner et al. 2010).

To address your specific recommendations:



1.

Evaluation of Model Biases Before and After Assimilation: We believe
that our manuscript already includes a comprehensive evaluation of biases in
CO: concentrations and fluxes. For CO: concentrations, we quantify the
improvement in model performance through the Root Mean Squared
Difference (RMSD) scores, as presented in Figures 4 and 5, which compare
prior and posterior simulations against synthetic observations at 21
atmospheric stations. Specifically, Figure 4 (and Figure A4 in the revised
manuscript) shows the time series of CO. concentrations, illustrating the
reduction in discrepancies between model outputs and observations
post-assimilation. For fluxes, Figure 7 and Figure A3 in the revised manuscript
provide spatial differences in NBP and GPP fluxes, respectively, between prior
and posterior estimates compared to “true” synthetic fluxes. These figures
demonstrate the impact of assimilation on reducing biases in both CO.
concentrations and fluxes. We have also added a new analysis following
Hodson et al. (2021) and Geman et al., 1992, who proposed to decompose
the mean square difference (MSD) into bias and variance L451

We computed the mean squared difference (MSD) between the
synthetic observations concatenated across all stations and the
prior simulation, as well as the two posterior simulations.
Following Hodson et al. (2021) and Geman et al. (1992), we
decomposed the MSD into bias and variance terms as presented
in Section A. The prior MSD is 11.49 ppm2 and is reduced to 0.04
ppm2 using the EnVarDA method and to 0.08 ppm2 using the
VarDA method. The decomposition of the prior MSD indicates a
squared bias of 4.96 ppm2 and an error variance equal to 6.53
ppm2. The same decomposition for the posterior simulations
yields a squared bias of 0.006 ppm2 and an error variance equal
to 0.03 ppm2 for the EnVarDA method, and a squared bias of 0.002
ppm2 and an error variance equal to 0.07 ppm2 for the VarDA
method.

And L502

Furthermore the MSD score is better for the EnVarDA method
(0.04 ppm2 using the EnVarDA method and to 0.08 ppm2 using the
VarDA method) and the MSD decomposition (Geman et al., 1992;
Hodson et al., 2021) highlights that EnVarDA better reduces the
error variance, whereas the squared bias reduction is slightly
better for the VarDA method. However, squared bias values below
0.01 ppm2 are negligible. While the mean RSMD reduction and
MSD scores are similar for the complex case, the MAD scores in
parameter space are different.



2. Quantification of Bias Impact: The manuscript quantifies the impact of
assimilation on biases in CO: concentrations and fluxes in the “Results” and
“Discussion” sections. For CO: concentrations, we report a mean RMSD
reduction of 91.3% for 4DEnVar and 92.3% for e-4DVar across all stations (L
425-430, Page 17). For NBP and GPP, we discuss the recovery of global
budgets and highlight challenges in achieving correct spatial distributions due
to equifinality, particularly in 485-497 and 510-517 (Pages 21 and 23).
These sections detail how both methods successfully reduce biases in global
NBP and GPP budgets, although 4DEnVar performs better in capturing spatial
patterns due to its ensemble-based approach, which mitigates issues related
to local minima.

We believe these analyses directly address the impact of assimilation on model
biases, as requested.
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