Review #1

Evaluating the overall quality ("general comments"),

The authors conduct a twin model experiment to test the ability of two competing
parameter estimation techniques (eta-4DVAR vs. 4DEnVar) to constrain 54
parameters within the land model ORCHIDEE. The authors use synthetic
observations to generate atmospheric CO2 station data in which to retrieve the
‘true’ parameters from prior parameter distributions. The authors find that the
4DEnVar approach performs the best in terms of the RMSE statistic of global NBP
and in terms of the posterior parameter values relative to the true values. The
authors claim this demonstrates strong potential for 4DEnVar to be used with real
data, and should be widely applicable to other land surface models.

We would like to thank the reviewer for taking the time to read through and
comment on this manuscript, comments that will strengthen the paper and help
clarify key points of the paper.

This reviewer found the topic relevant to the current state of earth system science
which requires a wide range of observations to calibrate model performance to
improve forecasts/projections. The potential for such a problem to be
ill-constrained and suffer from equifinality stood out to this reviewer given the use
of a single data set (atmospheric CO2) to constrain a multi-dimensional problem.
This author recommends a more nuanced discussion of equifinality for this
application both in the twin model experiment and for potential applications of
using real data (see scientific questions below). This reviewer also would have
appreciated a better description of how the parameter values were sampled
(perturbed) from their respective distributions - and also to what extent the authors
could have presented their results for the 4DEnVar using parameter distributions
rather than point estimates. It was somewhat surprising how well the posterior
parameter values improved the global distribution of NBP, given the limited range
of the CO2 station footprint. More discussion related to the distribution of land
PFTs relative to the CO2 station footprint may have been helpful to aid this
discussion.

We thank the reviewer for highlighting these very important points, which we have
addressed by improving existing figures, adding a new one, and revising or
expanding the text accordingly. Please see the specific changes in the manuscript,
as detailed in our response under each reviewer's comments. We agree that the



inherent equifinality of such data assimilation problems was not properly addressed
in the discussion. We have added a paragraph to the discussion to address this
issue and believe that this comment strengthens the article.

Individual scientific questions/issues ("specific comments")

(Please note that changes to the text are referenced by the line number in the new
manuscript.)

Lines 45-50: If you calibrate against CO2 observations only, and do not adjust for
model biases in land carbon pools - how accurate can your projections/forecasts of
the carbon cycle be?

Thank you for raising this important point. While it is true that calibrating solely
against atmospheric CO2 observations may not fully address biases in land carbon
pools, it still provides a valuable global constraint on carbon fluxes. This approach
ensures that the overall carbon budget is consistent with observed atmospheric
CO2 concentrations, which is crucial for accurate projections and forecasts of the
carbon cycle. To further improve the accuracy of our model, we acknowledge the
importance of incorporating additional data sources integrating remote sensing
data and in-situ measurements of land carbon pools to better constrain and reduce
model biases. This multi-faceted approach would enhance the reliability of our
projections and provide a more comprehensive understanding of the carbon cycle
dynamics.

In this study, we assume that performing a complete TRENDY simulation, as
described in Section 2.1.1, provides a realistic estimate of carbon sinks. However, we
would like to emphasise that the main focus of this article is methodological - we
present a two-year twin experiment designed to evaluate the feasibility and
performance of the assimilation framework using atmospheric CO, data.

In the case of assimilation of real observations, the ideal solution would be also to
include a pre-assimilation phase in the assimilation, i.e. the complete spin-up +
transient simulation, to monitor the effect of the initialisation of the land carbon
pools in the atmospheric CO, concentration. However, given the cost of such
simulations, this may not be feasible. Another potential solution is to run a small
transient simulation with the modified parameter before the assimilation windows.
For example, when assimilating the year 2000-2005, start the simulation in 1995



until 2005 and only consider the last five years (2000-2005). This way, the carbon
reservoir would be modified and influenced by the parameter. It would also allow
for better monitoring of the effect of long-term changes and thus increase
confidence in the projection.

Line 95: “We demonstrate the potential of 4ADEnVar using synthetic observational
data and compare its performance with that of 4DVar with finite differences.”

Your criteria for testing the differences between the methods is vaguely stated here.
Are you judging success based on which method best identifies the ‘true
parameters’.

We added more detail in L96:

We demonstrate the potential of 4DEnVar using synthetic observation data
according to different criteria: i) the differences between synthetic
observation and simulation of atmospheric CO2 concentration, ii) the
spatial distribution of carbon flux as well as their subcomponent, and iii)
the recovery of the true parameters used to generate the synthetic
observation. We also compare the performance of 4DEnVar using these
criteria with that of 4DVar with finite differences

Lines 135:140: Given the use of pre-calculated transport fields that relate
atmospheric concentrations to surface fluxes, you do not make use of a dynamic
atmospheric ensemble to generate this relationship based upon actual atmospheric
forcing. This seems a bit like using a background climatology to get the
concentration/surface flux relation. Also the land seems to be decoupled from
your atmosphere - in the sense the dynamics that drive the CO2 concentration/flux
relationship is not the same as the actual met forcing driving the land model. This
is perhaps not as important given the authors are generating ‘perfect’ obs, but
during implementation for real parameter estimation should this not have an
important impact?

The land model is decoupled from the atmosphere, and ORCHIDEE is run offline
using meteorological forcing files from a reanalysis of ERA-Interim data every 3
hours. The use of reanalysis meteorological fields is important in order to better
respect the temporal dependence of meteorological events. The pre-calculated
transport field is generated using the LMDZ model, which is driven by winds from



the same reanalysis meteorological data. This is not the same as using climatological
data, as the calculation is performed using reanalysis winds for the same years as
those of the simulations. The use of these precalculated transport fields reduces the
calculation time when running the same atmospheric simulation several times by
only changing the surface fluxes. We add more clarification by adding in L141:

The calculated winds ( u and v) used to drive LMDZ are provided by
ERA-Interim reanalysis meteorological data in order to realistically
account for the temporal dependence of meteorological events.

and L151

Nevertheless, it is important to note that the use of these
pre-calculated transport fields does not allow for the evaluation of
dynamic feedbacks between the surface and the atmosphere that may
occur due to parameter changes.

Line 150-155, Figure 1: One would expect that the CO2 sites were also chosen such
that land surface areas sensitive to atmospheric CO2 also coincide with the range of
land surface PFT types in this analysis. Any consideration of this?

Line 280-85 - Same question as before, these sites were chosen to be sensitive to
land surface fluxes, however, do they provide good sampling of the most important
PFTs? Sampling of North America and South America look poor. Sampling of Africa
does not include the tropics at all.....

In this study, the authors considered the pre-calculated transport fields for a
handful of actual atmospheric stations (21). The locations of the stations are
therefore determined by the actual observation networks. It is true that some PFTs
are undersampled as there are more stations in northern latitudes, mainly in
America and Europe, than in the rest of the world. We selected the stations based
on their sensitivity to continental fluxes. Although the number of stations is not
ideal, it allows us to monitor terrestrial carbon fluxes. The other stations were
mainly located over the ocean and would have been less affected by changes in the
terrestrial component given the chosen assimilation window. Only the TrBE (Tropical
Broadleaf Evergreen forests) PFT, mainly found in the Amazon rainforest and



Central Africa, and the BoND (Boreal Deciduous Needleleaf forests) , mainly found in
Siberia, appear to be less observed. We believe that this is also related to the results
presented in Figure 7 for Epsilon 4Dvar. Indeed, we see from the well distribution
that the largest differences appear in these two regions, which could be explained
by the fact that they are less monitored.

We have added the following text to the manuscript L162

The selected stations also provide a good overview of most PFTs.
However, as we can see in Fig. 1, two PFTs appear to be less sensitive to
the selected stations: TrBE, which is mainly found in the tropical forests
of Amazonia and Central Africa, and BoND, which is mainly found in
Siberia.

L486

We believe that the different spatial structure obtained by e-4DVar
against the synthetic net carbon flux could be explained by the fact that
the two PFTs TrBE and BoND are not well monitored, creating a dipole in
the Amazonian and Siberian regions to compensate for the incorrect
carbon flux corrections in other regions.

Line 286: How was your prior parameter distributions chosen? From the uniform
distribution shown in the figures where you only show upper and lower bounds?
Or from a normal distribution as described in Equation 14 and 15?

The new a priori parameter vector was manually perturbed in order to find a new
set of parameters giving a simulation of the a priori atmospheric concentration
consistent with the observations or simply realistic. We added to the text L296:

A new vector of a priori parameters was generated manually, ensuring
that it differed from the “real” parameter values while retaining
physically meaningful values.

Figure 3: Showing the ensemble mean parameter behavior doesn't give any
information on the ensemble distribution. Maybe | am misinterpreting the
implementation of the 4DEnVar method, but can’t you show this in terms of the
true, prior and posterior *distributions* instead of the ensemble mean behavior?



Figure 6: Same question as before - can you convey this information in terms of
distributions (histograms)?

Figures 3 and 6 have been modified to display the standard deviation of the
posterior ensemble as an error bar that can be considered as the posterior
uncertainty. We prefer not to use histograms, as all distributions are Gaussian. The
mean and standard deviation are therefore sufficient to visualise the ensemble. The
use of histograms is very useful, but would make the figure difficult to read,
particularly in the complex case involving 57 parameters (which would result in 57
histograms). The legends have been modified as well.

We added in L274:

A posterior ensemble can be generated as it is described by Douglas et
al 2025 by calculating Xa' where
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and in L463:

Furthermore, Fig. 3 shows a significant decrease in the standard
deviation of the posterior ensemble. This allows us to identify which
parameters and therefore which PFTs appear more sensitive. In this
case, it seems that the results for the TrNC3 and Crops C4 PFTs are the
most uncertain.

and in L473:

The posterior ensemble generated for the 4DEnVar also shows a
reduction in uncertainty for all parameters. This uncertainty reduction
is not equal for all parameters - a maximum reduction can be seen for
the Q10 parameter(reducing the standard deviation by 94 %) and the
lowest for the less sensitive m, .. s, Parameter (with a 14% reduction
for the NC4 PFT).

Figure 6: (SLA panel) Why do most of the prior values for the parameters all start at
the same value? Were they not being perturbed independently?



Indeed, the parameters were not perturbed independently; the new set of a priori
values used in data assimilation was derived from the ‘actual’ a priori values of the
model which may be identical across different PFTs. We applied the same
perturbation for these PFTs.

Table A1: What does proportion mean in this context?

Line 430: As far as | can tell, it is still not defined what the ‘proportion’ of the
parameters is. Is it based on global land area coverage, or land coverage that
coincides with spatial footprints from your chosen network? These could be two
completely different things. Did you do any comparison of the MAD statistic based
on % of land area covered by the CO2 network spatial footprint? Are they strongly
related? Would be nice to see a land surface map with PFT distribution.

Plant functional types (PFT) in ORCHIDEE and acronyms used in this study as well as
their proportion

The proportion is the Global Cover Fraction by the PFT, the remaining proportion
being Bare Soil. The title of the Table has been modified to reflect that.
The PFT maps used in this study are available here:

https://orchidas.lsce.ipsl.fr/dev/Iccci/orchidee_pfts.php

Table A2: Is the partial derivative averaged over space and time? Therefore the
4dEnvar itself doesn’t account for any seasonality (time-variation) in the
relationship?

The partial derivative in Table A2 is indeed averaged in space and time; it is used for
the e-4DVar approach to select the “best” epsilon values, It is not used with
4DEnVar. In both approaches, assimilation is performed over the entire two-year
time window. The temporal variation is therefore taken into account. We have
added this clarification to the text of Table A2 and Figure A2.

Spatial and temporal average of the partial derivative for all parameter for
each PFT


https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php

Figure 7: | was surprised at how well the True - Posterior 4dEnvar net carbon flux
(top right panel) performed given the limitation of the spatial footprint influencing
the station CO2, thus informing the biogenic contribution to CO2. This is
promising, but be aware, that the ability to match the net carbon flux gives no
guarantee that the component fluxes are well simulated. An interesting
complement to this plot would be to compare the true component fluxes of GPP
and ecosystem respiration against the posterior component fluxes of GPP and
ecosystem respiration for the complex case.

We agree that the performance of True - Posterior 4dEnVar was significant on both
net and gross (not shown in the first version of the paper) carbon fluxes. We have
now included in the appendix the analysis on GPP (figure A4) which shows
consistent quality of the fit of 4ADEnVar posterior to the True observation.

We believe that this result is mainly due to the fact that we are in a twin experiment
with no model-data bias. In this case, the model is considered ‘perfect’ and can fully
recover the synthetic observation, which we believe greatly simplifies the problem.
We also believe that the poorer performance of e-4DVar is mainly due to the fact
that 1) the method is more sensitive to local minima, 2) the estimation of the
tangent linear model relying on a finite difference approach is more uncertain
(strongly dependent on the value of epsilon),and 3) The BoND PFT does not change
because the PFT is not sufficiently sensitive and is therefore compensated by other
PFTs/regions.

However, both of these problems seem to be solved by 4DEnVar. The approach is
less sensitive to local minima because it generates an ensemble that is less affected
by local minima. We added the figure of the GPP estimates in the appendix (Figure
A3) and added this text in discussion L491

Fig. A3 shows the differences in spatial distribution of gross primary
production (GPP) between the "synthetic" fluxes and the prior/posterior
estimate of the two methods, as well as their global yearly budget. We
can see that GPP obtained with the 4DEnVar method is slightly better
than the e-4DVar method for the global budget and better matches the
spatial distribution of the synthetic flux.The e-4DVar method appears to
compensate for the lack of change between the prior and posterior GPP
across most of the Northern Hemisphere.

and L497



This experiment of calibrating a large number of parameters represents a
more realistic case, even if we consider a very low model/observation error.
The results demonstrate the good performance of 4DEnVar, which, even
in a ‘perfect’ model situation, i.e. a model that can perfectly simulate
observations, can assimilate observations while being less impacted by
local minima. However, this may not be the case when using actual
observations and introducing more complex modelling/observation
errors.

Line 431: | think a more nuanced discussion of equifinality is required here and/or
in the Discussion. In addition to the pure number of parameters attempted to
calibrate simultaneously - equifinality can arise for a number of different reasons -
1) a single parameter type being compensated within the large list of PFTs, 2) the
station CO2 concentration is influenced through the NBP, which is a confluence of
both photosynthetic and respiration processes, which can easily compensate for
each other to provide a net biogenic carbon flux consistent with station CO2 data. |
understand that this is a twin model experiment, so the following do not necessarily
contribute here, but if this setup were to be applied to real data additional
equifinality challenges present themselves including 1) the model state itself
(carbon, water nutrient pools) have not been constrained by any data, thus
parameters will compensate for biases due to model state initialization problems 2)
The biogenic fluxes (controlled by parameters) would seem to contribute just a
portion of the land-atmosphere carbon exchange which includes other large fluxes
from fossil fuel, fires and ocean fluxes which would have to be measured
accurately-- 3) atmospheric model transport errors, influencing the relationship
between land carbon flux and station CO2 data.

We agree with the reviewer and propose adding the following text:
L507

In this twin experiment, both methods have to deal with the inherent
equifinality of atmospheric concentration assimilation. This equifinality
occurs when parameters compensate for each other, resulting in either
an incorrect spatial distribution of NBP or inaccurate estimates of
subcomponents such as GPP and total ecosystem respiration (TER), but



L553

still allowing for a match with observations. Although both methods
considered in this study successfully recovered the global budgets for
NBP and GPP, the e-4DVar method did not obtain the correct spatial
distributions of NBP and GPP (see Figures 7 and 8). This is not the case
for the 4ADEnVar method, which better recovered the ‘true’ spatial
distributions of NBP and GPP. We believe that this equifinality could
increase the number of local minima, further disrupting the
performance of the e-4DVar method. We also believe that the ensemble
nature of the 4DEnVar method provides a more comprehensive view of
the parameter space, making it less sensitive to local minima and
therefore to equifinality issues.

The assimilation of real observations of atmospheric concentrations
may also increase the equifinality mentioned in Section 4.1 for several
reasons, such as: i) Incorrect initial conditions of the carbon pools,
which can impact respiration; ii) Wrong estimates of other flux
components, such as ocean or fossil fuel components; iii) Structural
errors in either the land surface model or the transport model. The
issue of incorrect initial conditions can be addressed by starting the
simulation a couple of years before the assimilation window. This allows
for the correction of the initial carbon pool and better accounts for the
effects of the new parameter values on the carbon pool. To handle
other components, such as ocean components, the same assimilation
can be repeated using different estimates of the ocean flux. Ideally, an
ocean model could be included in the optimization to calibrate both
land and ocean components, as is done in atmospheric inversion. The
advantage of the 4DEnVar method is that it only requires forward
simulations. Therefore, no code adaptations are needed, making it
easier to use different transport models. This should help detect and
address structural errors. The equifinality can also be reduced by
assimilating multiple data streams simultaneously, as done in Peylin et
al. (2016) and Bacour et al. (2023), to calibrate both GPP and NBP at the
same time.



Line 512: Given the significant challenges related to equifinality mentioned above, |
am not sure this setup shows “great potential” to constrain parameters. | might be
more realistic and state that it demonstrates that 4DEnvar shows more potential
than eta-4DVar.

We continue to believe that the 4DEnVar method has strong potential. Mainly
because the technical implementation of this is simpler than that of the standard
4DVar method and the size of the ensemble required is reasonable, with the
methods giving satisfactory results (good reduction of the model observation
mismatch). We believe that many of the reviewer's very relevant comments are
inherent to atmospheric concentration assimilation and would therefore still be
present with other assimilation methods. We mostly agree with the reviewer and
have replaced “great” with ‘good’ to be more moderate.

Purely technical corrections
Abstract:

Awkward: “These models rely on parameterisations that necessitate to be carefully
calibrated”. These models rely on parameterizations that require careful
calibration.

Thank you for the suggestion; We have applied this correction.
Introduction:

Can you describe in terms more accessible to the general community what isotropic
means in this context?

“corrections to CO2 surface fluxes are isotropic in time and space.”
We added in the text L32

This statistical optimisation generally assumes that the corrections to CO2
surface fluxes are isotropic in time and space. This suggests that errors in
surface fluxes are only correlated in space by distance between points,
and not by direction. Furthermore, these errors are not strongly
correlated in time.



Line 115: | wouldn't use the terminology ‘assimilation’ routine to describe
photosynthesis or carbon uptake routine. Assimilation is often used within data
assimilation context, a component of this analysis, which is not what this is
describing.

We agree with the reviewer and have changed ‘The carbon assimilation’ by The
carbon fixation'.

Section 2.1.4. | think it's also worth mentioning that you didn’t optimize the prior
biogenic fluxes by constraining them with carbon pool observations (LAI, biomass,
soil carbon etc).

We presented this aspect in section 2.1.1 describing the spin up, transient and
historical simulation carried out to equilibrate the soil carbon pool that are
computed dynamically in ORCHIDEE, which also equilibrate other carbon pools such
as the leaf area index (LAl) and biomass. We believe that, thanks to the other
changes requested by the reviewer, we have presented these aspects more clearly.

Shouldn’t Figure A1 include the land biogenic fluxes for the truth simulation, just for
relative perspective? After all the parameter optimization is based on the influence
of biogenic fluxes on the atmospheric CO2.

This figure is intended to show the other components of the global C budget that
are used as input to LMDZ (described in §2.1.4) that have not been optimised in our
study. We present the actual simulation of the net land biogenic fluxes in Figure 7.
We believe that including these elements in Figure A1 could cause confusion as to
what has been optimised in our framework and what has not. We therefore prefer
not to include terrestrial biogenic fluxes in Figure A1.

Line 305: LAImax: The absolute max value that LAl can be? Can you clarify? Does
this mean carbon cannot be allocated to leaf carbon once achieving this level?

LAlmax is the maximum value that LAl can reach for each PFT, which stops
allocation to the leaves once this value is reached. We added this clarification L323
Once the LAI reaches LAlImax, no carbon is allocated in the leaf.



Line 444: LAI or LAImax ?
We have corrected the manuscript to add LAImax.



Review #2

While this manuscript addresses a highly relevant and important topic—adjoint-free
data assimilation for land surface model parameter estimation using atmospheric CO:
concentrations, there is a fundamental conceptual misunderstanding regarding the data
assimilation framework employed. The authors repeatedly describe their method as a
"4DEnVar" approach. However, after careful review of the methodology and
experimental design, it is clear that the implemented framework aligns more closely
with a 3DEnVar method rather than a true 4DEnVar. 1 will provide more specific
comments below detailing the evidence for this classification error and offering

suggestions for how to appropriately revise the manuscript.

We would like to thank the reviewer for taking the time to read and comment on the
manuscript. We acknowledge the concerns raised regarding the terminology used to
describe our method. However, we believe there may have been a misunderstanding
about the nature of our approach. To clarify, our method is indeed a 4DEnVar and not
a 3DEnVar, as it involves time assimilation over a two-year window covering all data.
We realise that our initial explanation may not have been sufficiently clear, and we
apologise for any confusion this may have caused. In response, we have provided
detailed replies to each of the reviewers’ comments below and have revised the
manuscript accordingly to improve clarity.

(Please note that changes to the text are referenced by the line number in the new

manuscript.)

1. The authors incorrectly label their method as "4DEnVar." In classical data
assimilation terminology, the key distinction between 3D and 4D variational methods
lies in the incorporation of assimilation windows. A three-dimensional variational

(3DVar or 3DEnVar) method assimilates observations as a function of space only,



without explicitly considering the time evolution of the model states. In contrast, a
four dimensional variational (4DVar or 4DEnVar) method introduces a temporal
dimension by defining an assimilation window, allowing the model to evolve
dynamically and best fit the observations distributed across time within that
assimilation window. In this manuscript, there is no explicit mention of an
assimilation window, nor is there any evidence that the model trajectory evolves and
interacts with observations at multiple times during a window. Instead, observations
appear to be treated statically, consistent with a 3DEnVar framework. Therefore, the
method used in this study should be accurately referred to as 3DEnVar, not 4DEnVar.
The manuscript must be revised to correct this misclassification throughout, including

the title, abstract, methods, results, and discussion sections.

We fully agree with the explanation given by the reviewer on the difference between
the 3DVar and the 4DVar. However we would like to clarify that our approach does fall
under the category of the 4DVar as we assimilate pseudo-observations both in space
and time. Specifically, we are using the full 2 years of pseudo-observations within an
assimilation window of 2 years. Furthermore, a temporal window is essential when
calibrating parameters. Since parameters remain constant over time, we need to find
the ‘best’ set of parameters that fits the observations over time. Assimilating a single
time step would lead to different parameters for each time step. In order to clarify this

point, we have added to L300

The assimilation of atmospheric CO, concentrations at the 21 stations is
performed simultaneously using a two-year assimilation window in order
to assimilate all observations and thus monitor variations in carbon

fluxes in space and time, as shown in Fig. A4.

Figure A4 has been added to illustrate the assimilated time series and clarify this
point.

Given that we are using two years of observations and that temporal evolution is as



important as the spatial distribution of carbon fluxes, we need to incorporate time into

the assimilation scheme and therefore rely on a 4DVar or 4DEnVar method.

2. The description at L5658 defines general variational assimilation, not 4DVar
specifically. 4DVar uniquely involves an assimilation window and time-evolving

model trajectory. Please correct this definition.
We apologise for the lack of precision. We have therefore modified it L57 as follows:

The 4DVar approach involves defining a cost function (which is usually based
on a least-square criterion) that computes the difference between
observations and model outputs distributed in space and time as well as a

background term that accounts for prior knowledge of the parameters.

3. Data assimilation can generally be categorized into full-field assimilation and
anomaly assimilation. Full-field assimilation adjusts the model state towards observed
absolute values, while anomaly assimilation only incorporates the observed anomalies.
The authors must clearly specify which approach is used. If full-field assimilation is

applied, the impact on climatology should be explicitly evaluated and presented.

We thank the reviewer for raising this point. In our study, the model parameters are
adjusted to better match the model output to the absolute values of the observations,
rather than considering their anomalies. As such, the assimilation most closely match
the definition of a full-field assimilation. This approach is consistent with the goal of

our study, which is to evaluate the potential of using atmospheric CO: observations to



constrain land surface model parameters through 4DEnVar.

We would like to emphasise that this study is based on a controlled twin experiment,
where the primary objective is to assess the method's ability to recover known “true”
parameter values and to match synthetic observations. As such, we focus on
demonstrating the feasibility and strengths of the approach itself, rather than
evaluating its impact on climatological metrics in a real-world context. We agree that
when assimilating real observations, it will be important to assess the impact on other
aspects of the model outputs. However, since this study is methodological in nature
and uses synthetic data, we believe that including such an evaluation would be

beyond the scope and would not directly strengthen the main message.

4. The cost function shown in Equation (5) corresponds to the standard 3DVar
formulation, as it lacks any temporal dimension or model trajectory integration. A true
4DVar cost function should involve the evolution of the model state over time:

Please revise both the equation and the method name accordingly.

While the reviewer is correct that the standard 3DVar formulation lacks a temporal
dimension, here, y represents a vector of observations and H(x) the model output
over the given window. Therefore, the assimilation over time is made implicit by this
formulation.However, we recognise that there may be some confusion about this and
have changed the manuscript L185.

Here, the model operator output H(x) and the observation y are defined in
time and space. All observations are concatenated into a large vector of
observations y, in order to represent all observations available in a given

time window. The same operation is performed for the output of operator
H(x).

We have added the classic 4DVar Cost feature and explain our simplification in L200:

the 4DVar cost function:
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where t refers to time steps 0,...,N_t. Since the parameter must be
constant over time, we consider only a single time window that includes
all observation vector y (in time and space). We therefore simplify to the

compact form the initial 4DVar cost to the compact form:

(H(@) —y) R (Hlx) ~y) + (@ —2,) B (@ ).
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5. Lines 310-315: The R matrix represents the observation error covariance (not both
the model/observation error) and should account for spatial heterogeneity in
observation uncertainty. Setting all diagonal elements to 0.01 ppm is overly simplistic.
Even in a simple setup, R could be statistically computed based on the variance of the

observation. Please consider a more realistic design or justify this simplification.

In our case, model structural errors include both the structural errors associated with
the ORCHIDEE model for the computation of the net carbon fluxes and the transport
model error. In this context the model errors are likely the dominant part of the R
matrix, given that measurements of atmospheric CO2 are usually relatively precise.
The R matrix represents errors linked to the comparison of y and H(x) excluding the
model parametric error that is accounted for in the B matrix. Therefore, the error in the
model structure and the observation operator are essentially taken into account here.
so that R contains model and observation errors in this case, and B only parameter

errors.

Furthermore, we agree that setting all diagonal elements to 0.01 ppm is simplistic, but
since we are in a conceptual framework relying on twin experiments, we have
considered the model to be perfect, allowing for a very low error to be used. We
would also add that this observation error is close to the difference in atmospheric
CO,data between observation and model simulations obtained after optimisation

(especially for 4DEnVar), as illustrated in Figure 4. We have added the following to



the text L329:

Indeed, since no error was included in the pseudo-observation and as

we are in a Twin experiment, a simplistic R matrix was used.

We also added to the text some references and justification in L334.

The configuration of the R and B matrices was based on previous data
assimilation studies with ORCHIDEE and a simplified carbon model
(Kuppel et al., 2012 and 2013; MacBean et al., 2016; Peylin et al., 2016;
Bastrikov et al., 2018). These studies employed diagonal matrices for R
and B to assimilate in situ observations, while Peylin et al. (2016)

specifically used them for atmospheric CO: observations.

6. Lines 364-366: Please clearly define how RMSD is computed, and indicate whether

systematic bias is removed prior to calculation.
we have clarified how we computed the RMSD in L386 :

The results in terms of 1) mean reduction in the mean square difference
(RMSD) calculated between the pseudo-observation and the simulation
over the two years of the assimilation window for the 21 atmospheric

stations,
We also added an Appendix named Metrics calculation:

The RMSD and MAD are calculated as follows:
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where x* can be either xb or xa. The Pearson correlation coefficients
were computed using the Numpy Python library with the ‘corrcoef’
function. The paired t-tests were computed using the ‘stats.ttest\_rel’

function from the Scipy library.

7. The evaluation relies almost entirely on RMSD and MAD. Please consider
providing additional diagnostic metrics, such as correlation coefficients between
posterior and true fields, or skill scores, to offer a more complete picture of

assimilation performance.

We agree with the reviewer that a range of metrics is necessary to evaluate
performance. In addition to the evaluation of the NBP already in the manuscript, we
computed to Pearson correlation coefficients of the NBP in time and in space and add

this to the manuscript in L 442:

The Pearson correlation coefficient between the 'synthetic' NBP and the
prior NBP is 0.87 in time and 0.17 in space. The posterior NBP obtained
by the 4DEnVar method shows a Pearson correlation coefficient against
the 'synthetic' NBP of 0.99 in time and 0.98 in space. In comparison, the
posterior NBP obtained by the e-4DVar method has correlation

coefficients of 0.98 in time and 0.84 in space.

We added the figure of the GPP estimates in the appendix (Figure A3) and
added this text in discussion L491

Fig. A3 shows the differences in spatial distribution of gross
primary production (GPP) between the "synthetic" fluxes and the
prior/posterior estimate of the two methods, as well as their
global yearly budget. We can see that GPP obtained with the
4DEnVar method is slightly better than the e-4DVar for the global
budget and better matches the spatial distribution of the
synthetic flux. The e-4DVar appears to compensate for the lack of



change between the prior and posterior GPP across most of the
Northern Hemisphere.
We have also added Figure A4, which shows the time series for the different stations.
We calculated Pearson's correlation coefficients for each station, but they were all
between 0.98 and 1. This high value is mainly due to the fact that we are in a twin
experiment mode, where ‘synthetic’ observations are generated by the model. We felt

that it was not necessary to include them in the manuscript.

8. The differences in RMSD reductions between different methods and configurations
are discussed, but no statistical tests are provided. Please include simple significance
tests (e.g., paired t-tests) to assess whether the differences in RMSD reductions are

statistically meaningful across stations.

We thank the reviewer for this suggestion. We have performed a paired t-test as
suggested by the reviewer, which confirms that the differences in RMSD reduction are

significant. We added the following text in L423:

Since the posterior RMSDs obtained were close, we performed a paired
t-test (Student, 1908) between the two posterior RMSDs to determine
whether they were significantly different. We obtained a t-value of -2.125
between the posterior RMSDs obtained by 4DEnVar and e-4DVar, with a
p-value of 0.046. This confirms that the average posterior RMSD
obtained by 4DEnVar is significantly lower than the posterior RMSD

obtained by e-4DVar, with a confidence level of 95%.

9. The comparison between 4DEnVar and e-4DVar is repeatedly emphasized, but €



4DVar is not equivalent to standard 4D Var. Please emphasize earlier and more clearly
that the e-4DVar results are only a rough approximation and that conclusions should

not be generalized to comparisons with a full 4D Var system.

We do agree that the ¢-4DVar is not equivalent to standard 4DVar and we actually
explicitly say it in the manuscript L530
The results obtained here for the e-4DVar are not equivalent to a standard
4Dvar using a tangent linear and adjoint model. Therefore, we can draw no
conclusions on the comparison between the 4DEnvar and standard 4DVar
methods as was highlighted in Liu et al. (2008)
In order to clarify we added in L229 the following sentence:
Due to this approximation, e-4DVar is therefore not entirely equivalent to

standard 4DVar.

10. All evaluations are performed against the same synthetic dataset used for
assimilation. For robustness, a portion of the synthetic observations should be withheld

during assimilation and used for independent validation.

We agree with the reviewer that this approach is relevant as a sanity check for
data assimilation, and in particular when “real” observations are used.
Because we here use synthetic data over a limited time window (2-years) and
a limited number of stations, we have rather chosen to perform a
complementary evaluation with respect to NBP and the subcomponents
carbon flux (GPP) in Fig 7 and Fig 3A. This evaluation is described in the

discussion section, L491

Fig. 3A shows the differences in spatial distribution of gross
primary production (GPP) as well as their global estimates. We can
see that 4DEnVar better matches the global estimates and the
spatial distribution of the synthetic flux. It seems that e-4DVar has
to compensate for the fact that the BoND PFT does not change



between the prior and the posterior and seems to fall into a local
minimum.
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Review #3

Summary of manuscript

The authors explore the assimilation of atmospheric CO2 concentration data
for parameter calibration of the ORCHIDEE model using the 4DEnVar data
assimilation method. Through carefully designed data assimilation
experiments, they demonstrate the capability of 4DEnVar in assimilating
atmospheric CO2 concentration for parameter calibration, and highlighted its
superiority over the e-4DVar method in terms of computational efficiency,

parameter recovery, and fitting to CO2 concentration observations.

We would like to thank the reviewer for proofreading the manuscript, for their
insightful comments that helped improve the article, and for pointing out
numerous typos. (Please note that changes to the text are referenced by the

line number in the new manuscript.)
General comments

Due to the continuous evolution of land surface models (LSMs), the use of
4DVar and gradient descent method for calibrating LSM parameters faces
significant challenges in maintaining the tangent linear and adjoint models.
Thus, it is necessary to explore adjoint-free variational methods. However, as
the authors mentioned, the results obtained here for the €-4DVar are not
equivalent to a standard 4DVar, and no conclusions can be drawn regarding
the comparison between the 4DEnVar and standard 4DVar methods. In light
of this, to what extent can this study provide insights and practical guidance
for the application of 4DEnVar to other LSMs and the assimilation of real,
multi-source observations? | believe the manuscript would benefit from a

clearer articulation of its research significance.

We thank the reviewer for this comment and agree that better stating the



significance of the research will help the paper have a strong impact. While we
do not directly compare the results to 4DVar, we do compare to €-4DVar,
which has been used as a surrogate for 4DVar in our community due to the
difficulty in maintaining the tangent linear/adjoint of the model. We show in
this study that 4DEnVar can be used to assimilate atmospheric CO2 data, and
we compare the €-4DVar method in order to strengthen this message. We
agree that this message may be missed in the article and propose the

following addition text L 534:

The assimilation of atmospheric CO2 concentration data using
4DVar has been implemented with a tangent linear model, as in
Castro-Morales et al., 2019, or an adjoint model, as in Scholze et
al., 2007. In these cases, the tangent linear or adjoint model was
developed alongside the forward model. However, the &-4DVar
method was used in experiments where obtaining the tangent
linear or adjoint model proved too difficult, such as in Peylin et al.,
2016, and Bacour et al., 2023. Although £-4DVar is not equivalent to
standard 4DVar, a comparison of 4DEnVar with ¢&-4DVar
demonstrates the strong performance of 4DEnVar, making it a

promising candidate for this application.
We also modify the following paragraph L580 by:

Moreover, the 4DEnVar method was used to assimilate several
types of data using either simple carbon model (Douglas et al.,
2025) or more complex LSM as the JULES LSM (Pinnington et al.,
2020, 2021; Cooper et al., 2021). This new application in the
ORCHIDEE LSM shows that this method is model-independent. By
adding different observation terms (one term per data flux) to the
cost function, the method should be able to perform multi-flux

data assimilation, which would help to reduce the equifinality



problem.

The manuscript focuses on the introduction, application, and evaluation of the
4DEnVar and e-4DVar methods throughout the methodology, results, and
discussion sections. However, this focus is not well reflected in the title.
Perhaps the authors could consider revising the title in light of related works,

such as Yaremchuk et al. (2016).

We thank the reviewer for this comment, however, we believe the title
does accurately reflect the content and outcome of our paper. This work
was conducted to prepare for the assimilation of atmospheric CO,
concentration data in a Land Surface Model (LSM), which offers numerous
advantages as presented in the introduction. However, this type of
assimilation is not straightforward and requires the development of a
robust data assimilation (DA) system. Our article focuses specifically on
this DA system, which is why the title begins with "Toward the.' While we do
not present actual assimilation of atmospheric CO, concentration data, we
propose promising methodologies for future application. We particularly
emphasize the use of Adjoint-free Variational Methods, as many complex
LSMs like ORCHIDEE, JULES, CLM cannot rely on adjoint models. We believe
it is important for the community to know that this type of assimilation is
possible with a system that is easier to implement and requires only
forward simulations. The comparison with the e-4DVar method was
included because it has been previously used in ORCHIDEE (Peylin et al.,
2016; Bacour et al., 2023), making it a relevant benchmark to strengthen
our message. Unlike the significant work of Yaremchuk et al. (2016), our
study focuses exclusively on Adjoint-free Variational Methods (as e-4DVar

does not require an adjoint).



In the comparison of the assimilation results between the 4DEnVar and
g-4DVar methods, the authors repeatedly attribute the poorer performance of
the €-4DVar method to the fact that it falls into a local minimum. However, for
the 4DVar method, whether the parameter iteration converges to a local
minimum undoubtedly depends on factors such as the a priori parameter
vector. This study employed only one a priori parameter vector, and its
generation process was not clarified. This raises concerns about the
reproducibility and generalizability of the findings. In other words, would
different conclusions be reached if a different a priori parameter vector was

used?

No other prior was used as the kind of assimilation are expensive therefore
only one optimisation is performed (see for example Peylin et al., 2016;
Schirmann et al., 2016; Castro-Morales et al., 2019; Bacour et al., 2023). We

clarify how the prior was generated L296:

A new vector of a priori parameters was generated manually,
ensuring that it differed from the “real” parameter values while
retaining physically meaningful values.

However, we also note that the poorer performance of the e-4DVar is also due
to certain regions that are less well monitored by atmospheric stations in
L486, as shown in Figure 7 and A3.

We believe that the different spatial structure obtained by ¢-4DVar
is likely to be explained by the fact that the two PFTs TrBE and
BoND are not well monitored, creating a dipole in the Amazonian
and Siberian regions to compensate for the erroneous carbon flux
in other regions.

A more detailed description and presentation of the methods and results are

needed. The manuscript currently lacks an explanation of the parameter set's



value range and sampling approach. It would be beneficial to include formulas
that demonstrate how the selected parameters influence ecosystem
processes such as photosynthesis, respiration, and other carbon cycle
components. Personally, | would appreciate seeing the distribution of the
parameter ensemble and the spread of the ensemble simulations, as

presented in Pinnington et al. (2020).

We completely agree with the reviewer that showing the prior and posterior
parameter uncertainties is a vital part of this type of work, and indeed is a key
strength of the 4DEnVar method. These aspects have also been noted by
other reviewers, and we apologise for omitting the part of the methods used
to generate the sample. Figures 3 and 6 have been modified to show the
standard deviation of the a priori and a posteriori distributions for the
4DEnVar methods, as well as how the ensemble were generated in
accordance with the work of Douglas et al. 2025. And added the following text
and in L463:

Furthermore, Fig. 3 shows a significant decrease in the standard
deviation of the posterior ensemble. This allows us to identify
which parameters and therefore which PFTs appear more
sensitive. In this case, it seems that the results for the TrNC3 and
Crops C4 PFTs are the most uncertain.

and in L473:

The posterior ensemble generated for the 4DEnVar also shows a
reduction in uncertainty for all parameters. This uncertainty
reduction is not equal for all parameters - a maximum reduction
can be seen for the Q10 parameter(reducing the standard
deviation by 94 %) and the lowest for the less sensitive m,,in¢ resp
parameter (with a 14% reduction for the NC4 PFT).

We have chosen not to include the equations of the model involving the
parameters to be optimised for the sake of clarity, especially given the

complexity of the ORCHIDEE model. We have shared all previous work



describing the model in detail in section 2.1.1. We have also explained the
choice of calibrated parameters and their respective relationship with the
main processes in which they participate, as detailed in sections 2.3.1 and
2.3.2. The impact of each parameter on atmospheric CO2 concentration is
examined in section 2.4. We believe that describing the many model

equations would not really improve the main messages of the article.

The authors may need to consider citing and discussing some recent studies,

such as Douglas et al. (2025).
The paper of Douglas et al. (2025) was discussed in L86

This method was also successfully used by Douglas et al. 2025 to
calibrate the parameters of a simple carbon model in a twin

experiment.
in L274:

A posterior ensemble can be obtained as it is described by Douglas
et al 2025 by calculating Xa' where
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Specific comments

Line 34: “i.e.” to “i.e.,”.

Thank you for spotting this error. We corrected the text accordingly.
Lines 50-51: Pay attention to the spacing before or after the paragraph.
We corrected the text following the reviewer’s suggestion.

Line 54: “4DVar” to “four-dimensional variational (4DVar)". Please check the



use of abbreviations in the manuscript to ensure they are correct.
We have included this to the manuscript.

Lines 56-58: It is necessary to add references here, such as Talagrand and

Courtier (1987).

We agree with the reviewer and added the references

Line 83: The citation format is incorrect and needs to be changed from

“Pinnington et al. (2020)" to “(Pinnington et al., 2020)".
We have corrected the manuscript, thank you for spotting this.
Line 92: The space between 'approaches' and '," is extra.

We have corrected the manuscript, thank you for spotting this.

Line 92-94: The sentence is not concise and clear. It is recommended to revise
it as follows: “Although tangent linear or adjoint models are not required for
methods such as GA, MCMC, or emulator-based approaches, these methods
necessitate defining a large ensemble, making them unfeasible for use in this

study due to the time-consuming nature of model simulations.”

We agree with the reviewer. We revised the text to include this modification

L92

Line 123: The period currently at the beginning of the line should be placed at

the end of the previous line.

We have edited the manuscript to correct all typographical errors and



rephrase certain sentences.

Line 151 and Figure 1: You mentioned the stations are selected according to
their 6-month averaged sensitivity. Which six months were chosen? Given
seasonal variations, it would seem more reasonable to select a full year or
multiple years. Additionally, you may need to clarify whether any climate
pattern, such as ENSO or 10D, occurred during the sensitivity analysis period

and the simulation period. Please provide a more detailed description.

We acknowledge that the station selection could have been explained in more
detail. First we selected continental stations operating during the 2000-2001
period. For those stations, we evaluated the daily average sensitivity over the
last six months for each month of the 2 year assimilation window. Then, we
calculated the average sensitivity over the last six months (which corresponds
to an average of 24 maps, each map representing the average sensitivity over

the last six months). We have added in the legends of the Fig.1

Monthly mean sensitivity map of atmospheric CO2 concentrations
to land carbon fluxes at the 21 stations considered over the
2000-2001 period. The average sensitivity map is obtained by
deriving, for each atmospheric station and each of the 24 months,
the map of the average daily sensitivity of the atmospheric
concentration of CO2 to surface carbon flux (in ppm/GtC) over the

last six months, and then calculating the average of the 24 maps.
To our knowledge no ENSO or IOD events occurred during this period.

Line 160: The version of the Global Fire Emission Database used in the study is

outdated, or why used this one?

We acknowledge that this dataset is not up-to-date. However, because this

study relies on simulated data only, we believe that using a more recent



version of the database would not affect the study’s conclusion or it's key
message . However, we have been working on an updated configuration of
the data assimilation framework aiming to assimilate real data. In doing so,
we are considering updated datasets for the component of the surface CO,
fluxes other than the biospheric one (including GFED) as well as an updated

version of the atmospheric transport model.

Line 171: Please verify that the equations are correctly written. For example,

vectors should be in italics, while matrices should not.

Thank you for spotting this. We have corrected all incorrect notations.

Line 278: It is suggested to consider organizing the default parameter values

in a table and placing them in the supplement.

We have added a table to the appendix in order to show the True and Prior

parameter values.

We simulate the NBP fluxes at the global scale using the ORCHIDEE
LSM with the default parameter values (see Tab. A2)

Line 284: It is necessary to specify how the a priori parameter vector was

obtained.

The new a priori parameter vector was manually perturbed in order to find a
new set of parameters giving a simulation of the a priori atmospheric
concentration consistent with the observations.. We added to the text L296:

A new vector of a priori parameters was generated manually,
ensuring that it differed from the “real” parameter values while
retaining physically meaningful values.



Lines 289-290: “Vcmax” and “°C” should not be italicized.
We have corrected all incorrect notations in italics in the manuscript.
Line 312: It is recommended to provide some references regarding this setup.

Lines 313-314: A more detailed explanation of the parameter range settings

and the rationale behind them is needed.
We added to the text some references and justification in L334.

The configuration of the R and B matrices was based on previous data
assimilation studies with ORCHIDEE and a simplified carbon model
(Kuppel et al., 2012 and 2013; MacBean et al., 2016; Peylin et al., 2016;
Bastrikov et al., 2018). These studies employed diagonal matrices for R
and B to assimilate in situ observations, while Peylin et al. (2016)

specifically used them for atmospheric CO: observations.

Lines 364-365: Although RMSD and MAD are common statistical metrics, | still
recommend that the authors provide their calculation formulas and
explanations here. Since the observations have already been synthesized, are
the simulation results involved in the calculation also synthesized?
Furthermore, both RMSD and MAD, in terms of their form, resemble the cost
function, as they include the critical term representing the difference between
observations and simulations. In assimilation experiments, reductions in
these metrics are expected. It would be valuable to explore additional metrics
with distinct physical interpretations (e.g., coefficient of determination, R?) to

comprehensively assess method performance.



We added an Appendix named Metrics calculation

The RMSD and MAD are calculated as follows:
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where x* can be either xb or xa. The Pearson correlation coefficients
were computed using the Numpy Python library with the ‘corrcoef’
function. The paired t-tests were computed using the ‘stats.ttest\_rel’

function from the Scipy library.

We agree with the reviewer that a range of metrics is necessary to evaluate
performance. This was also requested by the second reviewer.

In addition to the evaluation of the NBP already in the manuscript, we computed to
Pearson correlation coefficients of the NBP in time and in space and add this to the

manuscript in L 442:

The Pearson correlation coefficient between the 'synthetique' NBP and
the prior NBP is 0.87 in time and 0.17 in space. The posterior NBP
obtained by the 4DEnVar method shows a Pearson correlation
coefficient against the 'synthetique’ NBP of 0.99 in time and 0.98 in
space. In comparison, the posterior NBP obtained by the e-4DVar

method has correlation coefficients of 0.98 in time and 0.84 in space.

We added the figure of the GPP estimates in the appendix (Figure A3) and
added this text in discussion L491

Fig. A3 shows the differences in spatial distribution of gross
primary production (GPP) between the "synthetic"” fluxes and the
prior/posterior estimate of the two methods, as well as their
global yearly budget. We can see that GPP obtained with the
4DEnVar method is slightly better than the e-4DVar method for



the global budget and better matches the spatial distribution of
the synthetic flux.The e-4DVar method appears to compensate for
the lack of change between the prior and posterior GPP across
most of the Northern Hemisphere.

We have also added Figure A4, which shows the time series for the different stations.
We calculated Pearson's correlation coefficients for each station, but they were all
between 0.98 and 1. This high value is mainly due to the fact that we are in a twin
experiment mode, where ‘synthetic’ observations are generated by the model. We felt

that it was not necessary to include them in the manuscript.

Line 367: There should be a space between the number and the unit.
We have corrected the manuscript.

Line 370-372: | don't fully understand why configurations with more ensemble
members (e.g., 350, 400) result in a smaller RMSD reduction. Could the

authors provide an explanation?

We thank the reviewer for this very interesting question, which is not yet fully
understood. We have added some hypotheses that we have formulated to the

text L519.

But the performance of the 4DEnVar method seems dependent on
the generated ensemble. As shown in Table 2, slightly lower
performance is observed with larger ensembles, indicating that a
bigger ensemble does not necessarily yield better results. This
could be due to the increased dimensionality of the problem,
making the iterative minimization more challenging.

Additionally, we generated a new ensemble for each experiment,

which provides different information about the parameter space



and can lead to different optimal values. This shows the
importance of the prior ensemble generated. Nevertheless, the
reduction in RMSD remains satisfactory, with a reduction of more

than 90%.

Line 395: The use of 'seem to' here makes the experiment appear
insufficiently rigorous.

We agree and have removed ‘seem to'.

Line 412: Use exponential notation and change “GtC/year” to “Gt C year".
All notations (including those in the figure) have been modified.

Line 523: The line break in the link seems to be problematic.

We thank the reviewer and have corrected the manuscript.

Figure 1. The website should include the date of the last access.

We have corrected the manuscript.

Figure 3. “triangle” to “triangles”.

We have corrected the manuscript.

Figure 4: It is recommended to consistently retain two decimal places.

We thank the reviewers for these comments. We have modified Figure 4 to

show only two decimal places.

Figure 7: The presentation of the last subplot can be improved, for example,

the current color scheme does not match well with that of the other subplots.



We thank the reviewer for this comment

Figure A1: Revise unnecessary capitalization and add a comma at the end of

the sentence.

We have corrected the manuscript.
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