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Abstract. The expansion of maritime trade has made ship emissions a significant target for SO2 reduction policies. However, 

there is still a lack of observational data to reflect the long-term changes in SO2 emission from ships. This study conducted 

continuous observational experiments using Differential Optical Absorption Spectroscopy (DOAS) from 2018 to 2023 in a 15 

shipping channel in Shanghai, China. By employing machine learning and background subtraction, the trends of ambient 

SO2 related to ship emissions (Ship_related_SO2) over the six-year period were revealed. Furthermore, whether ships in the 

channel were using low-sulfur fuels was determined by a decomposition of SO2-rich plumes signals (which reflect high-

emission ships) and baseline variations. The findings indicate that ship activities increased ambient SO2 concentrations in the 

channel by 0.48 ± 0.25 ppbv (43.24% of urban background levels). During the policy adjustment phase (2018 to 2020), 20 

Ship_related_SO2 levels declined steadily due to low-sulfur fuel regulations. While from 2021 to 2023 (the policy 

stabilization phase), increased ship activity became the dominant driver of rising Ship_related_SO2 levels. Despite policy 

effectiveness, excessive emissions from cargo ships persisted throughout the study period. This study quantified the 

contribution of ship emissions to ambient SO2 during 2018–2023 based on observations, evaluating the effectiveness of low-

sulfur policies and supporting ongoing efforts to mitigate SO2 pollution from maritime activities. The methodology 25 

developed here can be adapted to other global shipping channels, providing a framework for monitoring and regulating ship 

emissions worldwide. 

 

1 Introduction 

Sulfur dioxide (SO2), classified as an airborne carcinogen (Von Nieding, 1978; Ghanbari Ghozikali et al., 2016), contributes 30 

to urban haze, increases environmental health risks, and facilitates the formation of sulfate aerosols through heterogeneous 
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reactions (Squizzato et al., 2018). Although volcanic eruptions are a major natural source of SO2 (Carn et al., 2016), the 

widespread use of sulfur-containing fuels, such as coal and oil, in human activities remains the dominant anthropogenic 

source globally (Zhong et al., 2019; Van Aardenne et al., 2001). In response to the global challenge of rising energy demand 

and continued SO2 emissions, the United States (Miller, 2011), the European Union (Meyer and Pac, 2017), and several 35 

other countries (Moran, 2007; Lou et al., 2021; Kuttippurath, 2022) have introduced a series of policies that have effectively 

reduced land-based SO2 emissions. However, with the rapid expansion of maritime trade, SO2 emissions from shipping are 

projected to keep increasing (Zhao et al., 2020), posing growing threats to coastal atmospheric environments (Zhang et al., 

2017; Wang et al., 2019), and becoming a major focus of global research and policy initiatives. 

To curb SO2 emissions from maritime shipping, the International Maritime Organization (IMO) implemented a global 40 

regulation in 2020 that reduced the allowable sulfur content from 3.5% to 0.5% (Zhao et al., 2020; Fossum et al., 2024), 

aiming to reduce the shipping industry's impact on atmospheric environments. In addition, six Emission Control Areas 

(ECAs) have been established worldwide. Among them, the Baltic Sea, North Sea, North American, and U.S. Caribbean 

ECAs receiving IMO approval, while the European and California coastal ECAs were independently designated by their 

respective authorities (Fossum et al., 2024; Mohiuddin et al., 2024). As the world's most active maritime trading nation 45 

(Ducruet and Wang, 2018), China's port activities exert a particularly strong influence on coastal air quality. In 2015, China 

launched its Domestic Emission Control Area (DECA 1.0) policy, requiring ships with compatible facilities in the Pearl 

River Delta, Yangtze River Delta, and Bohai Rim (Beijing-Tianjin-Hebei) regions to use fuel with ≤0.5% sulfur content 

during berthing periods from January 2016 (Zou et al., 2020; Zhang et al., 2019; Wang et al., 2021). By late 2018, China 

upgraded the policy to DECA 2.0, mandating that all ships operating within China's territorial sea (12-nautical-mile zone) 50 

must use fuel with ≤0.5% sulfur content while sailing from January 2019 onward, and ≤0.1% sulfur content while at berth, 

or adopt equivalent emission control measures. For example, installing exhaust gas cleaning systems (scrubbers) (Lunde 

Hermansson et al., 2024; Andreasen and Mayer, 2007), adopting alternative fuels like LNG(Pavlenko et al., 2020; Attah and 

Bucknall, 2015), methanol(Svanberg et al., 2018; Shi et al., 2023) and biofuels(Cesilla De Souza and Eugênio Abel Seabra, 

2024; Ahmed et al., 2025), and applying operational strategies such as slow steaming and shore power use(Zis et al., 2015; 55 

Zis et al., 2014). Despite the effectiveness of these policy measures in controlling SO2 emissions from shipping, previous 

studies have shown that the impact of ship emissions on air quality in coastal areas is still significant (Viana et al., 2014; 

Xiao et al., 2022; Xiao et al., 2023), which provides an important basis for further research on reduction of ship SO2 

emissions. 

Previous research has extensively utilized high spatiotemporal resolution AIS (Automatic Identification System) ship 60 

activity data and air quality models to quantify the environmental impact of ship emissions (Zhao et al., 2020; Liu et al., 

2017; Feng et al., 2019a; Li et al., 2020; Fan et al., 2016; Zhang et al., 2023; Feng et al., 2023). Simulation results from 2016 

to 2020 show that the control of SO2 emissions from ships was particularly effective in 2020 due to the influence of low-

sulfur policies (Luo et al., 2024). Compared to simulations, observational data can more accurately capture real-world 
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changes in pollution from ships and ports (Eger et al., 2023), while also serving as a critical tool for refining emission 65 

inventories, improving atmospheric models, and identifying excessive emission ships (Cheng et al., 2019; Liu et al., 2024; 

Krause et al., 2021; Kattner et al., 2015). In light of the low-sulfur policies, critical questions remain: Has the low-sulfur 

policy effectively regulated ship SO2 emissions? Can the low levels of SO2 observed in 2020 be sustained amidst anticipated 

long-term growth in maritime activity? Addressing these questions requires continued observational research. 

This study aims to address these gaps by presenting long-term observational data from the Shanghai shipping channel, one of 70 

the busiest maritime routes in the world. By integrating Differential Optical Absorption Spectroscopy (DOAS) 

measurements with machine learning, we propose a novel approach to quantifying ship emissions and evaluating policy 

effectiveness, with implications for other coastal regions facing similar challenges. Specifically, this study pursues three key 

objectives: (1) to quantify the contribution of ship emissions to ambient SO2 levels in the Shanghai shipping channel over a 

six-year period (2018–2023), (2) to evaluate the effectiveness of low-sulfur policies in reducing ship-related SO2 emissions, 75 

and (3) to identify potential gaps in current emission inventories and regulatory frameworks. 

2 Data and methods 

2.1 DOAS set up and spectra retrieval 

Experiments measuring SO2 were conducted using two active DOAS systems from 2018 to 2023 at Wusong wharf (WSW, 

31.37°N,121.51°E) and the Jiangwan Campus of Fudan University (FDU, 31.34°N, 121.51°E). The WSW site is located 80 

downstream the confluence of the Huangpu River and the Yangtze River, where over a thousand vessels pass daily, 

including cargo ships, passenger ships, fishing boats, oil tanker and other ships in various operating conditions. Shipping 

activities are the primary source of ambient pollution at this site. Fig. S1, S2 and Text S1 give an overview of ship activity in 

the WSW Channel. The FDU site, situated 4 km southwest of WSW, characterized as a typical urban location with no 

significant local pollution sources, as noted in previous study (Liu et al., 2024; Guo et al., 2020).  85 

Each active DOAS system was equipped with a light source (150 W xenon lamp), a reflecting/receiving telescope, an array 

of retroreflectors, a spectrometer, and a computer. In WSW, the light was emitted from a laboratory on the third floor 

(approximately 10 meters above ground level) of the Wusong Maritime Safety Administration building (ground elevation ~6 

m above sea level) and reflected across the channel by an array of retroreflectors located on the opposite bank (which is also 

about 10 meters above ground level), forming a light path of 1,540 m. Given the local tidal range of approximately 1-4 90 

meters, the vertical height of the light path above the water surface varied between roughly 12 and 15 meters. Due to the 

optical path crossing the airspace above the shipping channel, emission signals from vessels below can be easily captured by 

active DOAS. At FDU, the transmitting terminal of active DOAS was located in a laboratory on the 7th floor of the 

Environmental Science Building, with the retroreflectors array placed to the southwest, forming a light path of 2,689 m. In 

previous studies, this site effectively represents Shanghai's urban areas with relatively clean atmospheric conditions (Liu et 95 



4 

 

al., 2024; Zhu et al., 2020; Gu et al., 2022). Spectral signals retrieval and time-series pollutant concentrations calculations 

were performed using the DOASIS software developed by the Institute of Environmental Physics at Heidelberg University, 

with SO2 retrieved in the 299~308 nm wavelength range. Additional technical details on the DOAS instrument, spectral data 

processing, and detection limits are available provided in Text S2 and Table S1 of the Supporting Information. 

 100 

Figure 1: Location of the relevant site in this campaign. (a) The red pentagon represents the location of DOAS in Wusong Wharf (WSW) 

and Fudan University (FDU), respectively; the bidirectional arrows indicate the light path of DOAS. The black circles represent the two 

environmental monitor stations around FDU station. (b) DOAS light path setting in WSW, and (c) in FDU. Base map: © OpenStreetMap 

contributors, licensed under ODbL. 

2.2 Machine learning and Ship_related_SO2 obtained 105 

The SO2 in the atmosphere associated with ship activity in the channel (Ship_related_SO2) was obtained by removing both 

meteorological effects and land-based emissions from the completed WSW observations, as shown in Fig. 2. Therefore, this 

study developed two data-processing models using extremeGradientBoostingRegressor (XGB) and ExtraTreesRegressor 

(ETR). The first model was used to impute missing SO2 concentration data (Fig. 2a), while the second model was designed 

to eliminate meteorological influences (Fig. 2b). Both models used machine learning techniques to capture complex 110 

relationships among multiple variables and improve data accuracy. 

XGB was selected to address data gaps from 2018 to 2023 caused by weather conditions and equipment maintenance at both 

two sites, XGB is an optimized distributed gradient enhancement library designed for efficiency, flexibility, and portability. 

It implements machine learning algorithms in the Gradient Boosting framework (Pan, 2018; Friedman, 2002). These models 

identify patterns between feature and target vectors in large datasets to make predictions or decisions, and they have been 115 

maturely applied to environmental research (Li et al., 2024; Zhu et al., 2022; Zhang et al., 2022).  

As illustrated in Fig. 2a, the gap-filling model for WSW SO2 incorporates several predictive features representing three 

major types of environmental influences: including meteorological conditions, ship emissions, and urban land-based 

emissions. Specifically, co-measured pollutants at WSW (NO2, HCHO, HONO, O3) help represent shipping-related 
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emissions through cross-species learning, while SO2 measured at FDU—after meteorological normalization 120 

(Deweathered_FDU)—accounts for urban land-based emission influences. When filling gaps in the FDU SO2, NO2 

concentration from active DOAS in FDU, and SO2 from two surrounding environmental monitoring stations, are used to 

represent environment characteristics of land emissions in Shanghai. Besides, seven meteorological factors, including 

temperature (TEMP), relative humidity (RH), wind speed (WS), wind direction (WD), solar radiation (SSRD), boundary 

layer height (BLH), and surface pressure (P) from the European Center for Medium-Range Weather Forecasts (ECMWF) 125 

atmospheric reanalysis product ERA5, were used as meteorological impacts for both models. Observed_WSW and 

Observed_FDU represent the completed SO2 sequence after XGB filling. All input data were hourly averages. Models were 

trained with 5-fold cross-validation and evaluated through independent validation test. The details about Machine learning 

data input, model tuning, and performance evaluation can be seen in Text S3. 

The Deweathered model is used to eliminate the influence of meteorological factors on air pollution. This method simulates 130 

and offsets the impacts of various meteorological conditions, thereby estimating pollutant concentrations independent of 

weather variability (Vu et al., 2019; Grange et al., 2018). Among the commonly used methods, tree-based ensemble learning 

models, such as Random Forest and its variants, have been widely applied and proven effective in deweathering air quality 

data (Grange and Carslaw, 2019; Grange et al., 2018; Ceballos-Santos et al., 2021). To the best of our knowledge, this study 

is the first to apply the ETR specifically for deweathering Ship_related_SO2 data. In this study, the ETR model was selected 135 

as the core algorithm. ETR is a variant of the Random Forest model, sharing nearly identical ensemble learning principles 

but introducing greater randomness during node splitting. This added randomness helps further reduce model variance and 

overfitting risk compared to standard RF, while maintaining comparable interpretability and robustness (Gall et al., 2011). 

For both sites, a large amount of historical meteorological data from ERA5 reanalysis dataset and time-related variables 

(Unix time, Julian day, and day of the week) were put into Deweathered model training. The training process and parameter 140 

description of the model are provided in Fig. S7 and Text S3 of the Supporting Information. 

By applying Deweathered model to the observed SO2 at WSW and FDU in Fig. 2b, c, the study isolated the ambient SO2 

contribution directly attributable to ship emissions (Ship_related_SO2). This is because after accounting for meteorological 

effects, the SO2 concentrations recorded at WSW reflect the combined influence of the urban land-based emissions and ships 

emissions. For the FDU site, however, the Deweathered model effectively removes the influence of transported pollution 145 

under different wind directions (Fig. S8)—for example, ship-related SO2 transported from the northeast channel—so that the 

residual values can represent the locally generated SO2 level. Given that both FDU and WSW are located in similar 

environments, primarily surrounded by residential areas and typical urban roads, the Deweathered_SO2 concentrations at 

FDU are therefore taken as the background level for Shanghai’s urban region. Thus, by subtracting the background 

(Deweathered_FDU) from the Deweathered_WSW, the contribution of Ship_related_SO₂ can be effectively determined. 150 
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Figure 2: Schematics of Ship_related_SO2 obtained based on DOAS observation, machine learning and meteorological impacts 

elimination (a) To complete the observation sequence, several models were trained and the most effective XGB model was selected, using 

5-fold cross-validation. For the training of FDU, the feature parameters were selected from the continuous observation data of two 

automatic monitoring stations near FDU and seven meteorological data. The training of WSW used the SO2 observation data of FDU, 155 
other pollution data observed in the channel and seven meteorological data. (b) Eliminate meteorological influences on Observed_WSW 

and Observed_FDU to highlight local emission impacts. (c) Subtracting the emission characteristics of FDU and WSW to obtain 

Ship_related_SO2. 

2.3 Auxiliary data 

This study utilized AIS-based ship trajectory data to identify suspicious high-emission ships. AIS data provide detailed real-160 

time information on ship locations, speeds, routes, and types, having been widely used in the study of ship emissions and 

related environmental impacts (Yang et al., 2019; Tu et al., 2018). The automatic monitoring stations for ambient air quality, 

Yangpu Station and Hongkou Station, provided hourly SO2 concentration time series data from 2018 to 2023, which were 

used as input variables for imputing missing values in Observed_SO2. All meteorological data used in this study were 

obtained from the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric 165 

reanalysis, known as ERA5,which provides hourly around-the-clock meteorological factors from surface up to 0.01 hpa 

with the spatial resolution of 0.25° × 0.25°(Marshall, 2000; Hersbach et al., 2020). 
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3 Results and Discussion 

3.1 Long-Term Characteristics of SO2 

Figure 3 illustrates the monthly variations in SO2 concentrations at the FDU background site and the WSW shipping channel 170 

site from 2018 to 2023, both before and after Deweathered. At the FDU site (Fig. 3a, b), the observed SO2 concentrations 

display significant variability and weak inter-annual correlation, indicative of the influence of meteorological factors. After 

Deweathered, the SO2 levels demonstrate a highly consistent trend over the six years, with minimal inter-annual differences. 

This reflects the stable nature of land-based emissions and highlights the effectiveness of the Deweathered process in 

isolating anthropogenic emission signals from meteorological noise. In contrast, at the WSW site (Fig. 3c, d), the 175 

Deweathered model also reduces variability and enhances the stability of the annual trends compared to the observed data. 

However, noticeable differences remain between years, likely due to the irregular and dynamic nature of shipping activities. 

 

Figure 3: Monthly SO2 concentrations at the FDU background site and WSW shipping channel site from 2018 to 2023. (a) observed and 

(b) meteorological impacts eliminated (deweathered) SO2 concentrations at the FDU site, respectively. (c) and (d): the corresponding data 180 
for the WSW site. 

Figure 4 shows the observed monthly average SO2 concentrations at WSW and FDU from 2018 to 2023, as well as the 

results after removing meteorological influences. Table 1 presents their annual changes. Figure S9 displays their annual 

changes by a column chart. Influenced by the activities of ships using sulphur-containing fuels in the channel, the observed 

SO2 in WSW (Observed_WSW) was notably higher than the observed SO2 in FDU (Observed_FDU), with mean values of 185 

1.49 ± 1.25 ppbv and 1.03 ± 0.88 ppbv, respectively. Owing to China's relentless efforts to improve air quality and reduce 

the use of sulphur-containing fuels, including initiatives such as the Air Pollution Prevention and Control Action Plan (2013–

2017) and the Three-Year Action Plan to Fight Air Pollution (2018–2021) (Yue et al., 2020; Cai et al., 2017; Feng et al., 
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2019b), the Observed_FDU have decreased to relatively low levels and have shown a continuous decline over the past six 

years, with a 19.0% (0.22 ppbv) reduction from 2018 to 2023. Conversely, the Observed_WSW showed an annual trend of 190 

first decreasing by 26.11% from 2018 to 2020, reaching their lowest point in 2020, followed by a gradual increase of 16.5% 

from 2020 to 2023. This trend before 2020 is consistent with previous studies (Luo et al., 2024). Both locations exhibit a 

pattern of slightly higher SO2 concentrations in winter and lower concentrations in summer, with fluctuations occurring mid-

year. Emissions and meteorological conditions are the two primary factors influencing atmospheric pollutant levels (Zhao et 

al., 2020). Changes in SO2 emissions serve as the primary driving force. According to the Multi-resolution Emission 195 

Inventory for China (MEIC), residential and transportation sources of SO2 emissions in Shanghai are significantly higher in 

winter than in other seasons (Fig. S10), likely contributing to the elevated winter values. The transport and dispersion of SO2 

from other sources under specific wind directions, such as emissions from power generation activities located far from the 

WSW and FDU sites, may account for the mid-year fluctuations in SO2 concentrations. We trained 50 ETR models on 

bootstrap samples of the training data for each site and computed the permutation importance (with 95% confidence intervals) 200 

for each predictor variable. The result shows that “wind direction” became the most important variable for explaining SO2 

variability at both sites (Fig. S11), which aligns with the findings of Grange and Carslaw (2019) at the port city of Dover in 

England. The higher degree of fluctuation at WSW compared to FDU can be attributed to the more irregular ship emissions 

at WSW. Fig. S12 shows the overall increasing trend in the number of ships from 2018 to 2023, with irregular fluctuations 

within each year. In addition, a ship emission inventory based on AIS data was constructed, which further supports the 205 

interpretation of the variability observed at WSW (Text S5). Furthermore, the cold and dry winter monsoon reduces the rates 

of SO2 oxidation and wet deposition, resulting in a longer lifetime of SO2 molecules and thus easier accumulation. In 

contrast, during the summer, increased chemical reactivity and more effective wet removal processes lead to lower SO2 

concentrations. 

 210 
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Figure 4: Monthly Observed_SO2 concentrations based on DOAS and Deweathered_SO2 after weather normalization in WSW and FDU, 

and Ship_related_SO2 contributions during 2018-2023. (a) The light purple bars represent the monthly average Observed_SO2 

concentration at WSW; The solid black circles represent the deweathered SO2 concentration at WSW after removing meteorological 

influences. The gray star symbols indicate the monthly average contribution of Ship_related_SO2. (b) The light blue bars represent the 

monthly average observed SO2 concentration at FDU; The solid black circles represent the Deweathered_SO2 concentration at FDU 215 
removing meteorological influences. 

 

Table 1: The annual concentration of Observed_WSW, Deweathered_WSW, Observed_FDU, Deweathered_FDU and Ship_related_SO2 

from 2018 to 2023. 

SO2 (ppbv) 2018 2019 2020 2021 2022 2023 

Observed_WSW 1.80 ± 1.75 1.40 ± 1.23 1.33 ± 1.03 1.40 ± 1.29 1.46 ± 1.04 1.55 ± 0.96 

Deweathered_WSW 1.96 ± 0.56 1.54 ± 0.32 1.43 ± 0.29 1.41 ± 0.26 1.52 ± 0.27 1.60 ± 0.25 

Observed_FDU 1.16 ± 1.04 1.07 ± 0.84 1.04 ± 0.82 1.04 ± 0.99 0.94 ± 0.81 0.94 ± 0.74 

Deweathered_FDU 1.27 ± 0.29 1.16 ± 0.26 1.12 ± 0.25 1.07 ± 0.28 1.01 ± 0.27 1.02 ± 0.22 

Ship_related_SO2 0.69 ± 0.33 0.39 ± 0.12 0.30 ± 0.13 0.34 ± 0.16 0.53 ± 0.26 0.59 ± 0.20 

 220 

Meteorological factors affect the dispersion, transport, accumulation, and chemical reactions of pollutants in the atmosphere. 

After normalizing for meteorological influences, the deweathered SO2 concentrations (Deweathered_WSW and 

Deweathered_FDU) represent a time series with meteorological variability removed. These deweathered values is overall 

higher than the observed concentrations. Deweathered_FDU shows a decreasing trend in 2022 followed by a stabilization in 

2023, while Deweathered_WSW exhibits a decline since 2018 and an increase again in 2022 and 2023. Nonetheless, under 225 

certain conditions, high concentrations of pollutants can still be locally transported, leading to elevated pollution levels, such 

as January in 2021. The Deweathered_FDU data, which represent the baseline SO2 levels from terrestrial anthropogenic 

sources in urban Shanghai (mainly residential activities and ground transportation), showed a reduction of 16.7% (0.25 ppbv) 

over the six-year period. Due to the removal of meteorological dispersion effects, Deweathered_FDU exhibited a smoother 

U-shaped seasonal pattern, with lower concentrations in summer and higher concentrations in winter, consistent with 230 

previously observed trends in SO2 vertical column densities over the Yangtze River Delta derived from satellite data (Wang 

et al., 2018). In contrast, the Deweathered_WSW results, which reflect the combined impact of both terrestrial and maritime 

SO2 sources, retain some mid-year fluctuations. These fluctuations can be attributed to higher ship emissions during spring 

and summer (Fan et al., 2016; Jalkanen et al., 2009), as well as the influence of weather conditions, such as typhoons, which 

can restrict shipping activities.  235 

The contribution of SO2 air pollution directly associated with shipping activities (Ship_related_SO2) can be quantified by 

subtracting the Deweathered_FDU values from the Deweathered_WSW values. Over the six-year period, Ship_related_ SO2 

led to an average increase of 0.48 ± 0.25 ppbv in atmospheric SO2 concentrations. Year-on-year reductions in 

Ship_related_SO2 were observed in 2019 and 2020, with declines of 43.47% and 23.08%, respectively. These reductions 

likely highlight the effectiveness of China's comprehensive low-sulfur policy within emission control areas, implemented on 240 

January 1, 2019, and the IMO global low-sulfur policy, enacted on January 1, 2020, in curbing SO2 emissions from shipping 



10 

 

activities. From 2020 to 2023, Ship_related_SO2 exhibited an average annual growth rate of 19.50%. This upward trend is 

plausibly attributable to the progressive increase in port throughput at Shanghai post-2020. The reasons behind these changes 

will be further discussed in Section 3.2. 

Besides, the reduction in SO2 levels not only improves air quality but will also mitigate the formation of sulfate aerosols, 245 

which are known to contribute to respiratory diseases and climate change. This highlights the dual benefits of low-sulfur 

policies for public health and environmental sustainability. To sustain these reductions, stricter enforcement of low-sulfur 

fuel regulations and enhanced monitoring of ship activities are recommended. Additionally, expanding emission control 

areas to other high-traffic regions could further mitigate the impact of ship emissions on coastal air quality. 

3.2 Variation of SO2-rich plumes in channel 250 

To further investigate whether the observed increase in SO2 concentrations in the shipping channel is attributable to the 

potential failure of low-sulfur policies, this study analyzes the frequency of SO2 signals captured in the channel from 2018 to 

2023, as well as changes in baseline levels. This analysis was conducted by separating high-time-resolution DOAS 

observations using the Baseline Estimation and Denoising using Sparsity (BEADs) algorithm (Ning et al., 2014), as 

illustrated in Fig. 5 (an example from January 12 to 13, 2018). The SO2-rich plumes emitted during the operation of ships 255 

burning high-sulfur fuel can serve as indicators of the fuel's sulfur content, with higher plume peaks generally corresponding 

to higher sulfur levels. In contrast, lower variation in the baseline reflects the slower-changing trend of environmental SO2, 

likely due to an increased proportion of low-emission vessels. All SO2-rich plumes were confirmed by AIS data to originate 

from ship activity (Text S4). 

 260 

Figure 5: Time series of baseline trends and SO2-rich plume signals separated from Observed_WSW using the BEADs algorithm. The 

black line represents the DOAS observed SO2 concentrations, the green line indicates the baseline, and the blue line corresponds to plumes 

sequence extracted using the BEADs algorithm. The dashed line marks the threshold for identifying SO2-rich plumes. 
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Figure 6 illustrates the annual variation in the absolute frequency proportion of SO2-rich plume events, as well as changes in 265 

the baseline from 2018 to 2023. Here, SO2-rich plumes are classified into six concentration ranges: [2,4) ppbv, [4,6) ppbv, 

[6,8) ppbv, [8,10) ppbv, [10,20) ppbv, [20,30) ppbv, respectively. The peak frequency of SO2-rich plumes within the [6,30) 

ppbv range exhibits a general declining trend year by year, while the numbers of major emission sources in the channel 

(cargo ships and passenger boats) exhibited a stable or growing trend from 2018 to 2023 (Fig. S12b). This demonstrates that 

the observed trends in SO2 emissions were not driven by changes in the scale or composition of the ship fleet (since emission 270 

sources were actually increasing), but rather by changes in the emission behavior of individual ships. These results indicate 

that low-sulfur policies have effectively reduced high-level SO2 emissions from ships overall—particularly in 2023, when 

the SO2 plumes exceeding 10 ppbv were nearly absent, despite gaps in observational data in certain years that caused 

fluctuations in the overall declining trend. In contrast, low SO2 plumes [4,6) ppbv shows a fluctuating pattern, gradually 

increasing before 2020 and then declining with some variations during the policy stabilization phase. This trend may reflect 275 

the transitional effect of policy implementation: during the policy adjustment phase from 2018 to 2020, high SO2 emissions 

began to decrease, but many pollution sources were not fully eliminated. Some ships may have started using fuels with 

slightly lower sulfur content, which led to an increase in the frequency of low SO2 plumes. The adoption of low-sulfur fuels 

was the most common choice during this period, as it required little or no modification of existing engine systems 

(Vedachalam et al., 2022; Slaughter et al., 2020). In contrast, due to the high retrofitting costs of engine systems and the 280 

limited number of ships using LNG, most ports currently do not provide bunkering facilities for LNG and other alternative 

fuels, including biofuels (Vedachalam et al., 2022). Although scrubbers allowed the continued use of high-sulfur fuels, their 

application was constrained by high installation costs, long retrofitting times (up to 9 months) (Slaughter et al., 2020), and 

concerns about secondary environmental impacts from waste discharges (Hassellöv et al., 2013; Claremar et al., 2017; Thor 

et al., 2021). Only 3,000/60,000 vessels have been retrofitted with a  scrubber system, as reported by Slaughter et al. (2020) 285 

As policies were more strictly enforced after 2020, the frequency of low SO2 plumes emissions also started to decline, 

reflecting the impact of comprehensive control measures.  

The baseline was highest in 2018 and subsequently exhibited a declining trend from 2018 to 2021, followed by an increase 

from 2021 to 2023, consistent with the variation in Ship_related_SO2 observed in Section 3.1. During the policy adjustment 

period from 2018 to 2020, ships gradually reduced the sulfur content in their fuel, which led to an overall decrease in 290 

environmental SO2, offsetting the increase in SO2 emissions caused by the growing number of shipping activities. Starting in 

2021, as policy implementation stabilized, the rise in the baseline was mainly attributed to the increased intensity of shipping 

operations. Therefore, we also analyzed the occurrence of low-concentration SO2 plumes in the [2–4) ppbv range. These 

weaker plumes showed a clear increasing trend from 2021 to 2023, suggesting that the observed rise in baseline SO2 was not 

driven by high-emission ships but rather by the cumulative contribution of numerous compliant vessels emitting smaller 295 

amounts of SO2. The growing frequency of such plumes highlights how large-scale, compliant shipping activity can still 

elevate ambient SO2 levels, especially when vessel density increases significantly. 
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Based on the combined results from Sections 3.1 and 3.2, it is likely that the observed increase in ambient SO2 

concentrations over shipping channel after 2020 was primarily driven by increased shipping activity. However, throughout 

the six years of observation, we consistently found signals suggesting the use of illegal fuel by ships (especially during the 300 

policy adjustment phase from 2018 to 2020). Given the expected continued growth in maritime activities, further reducing 

the sulfur content in marine fuels will be crucial to preventing Ship_related_SO2 emissions from impacting air quality in 

coastal cities and potentially offsetting the land-based SO2 reduction efforts already achieved. To address this, real-time 

monitoring systems, such as the DOAS-based approach developed in this study, could be integrated into port inspection 

protocols to identify and penalize non-compliant vessels more effectively. The methodology developed here provides a 305 

scalable framework for monitoring ship emissions in other coastal regions, enabling policymakers to better assess the 

effectiveness of low-sulfur policies and identify areas for improvement. 

 

Figure 6: Yearly variation in SO2 plume proportions and baseline level from 2018 to 2023. (a-f) Number of SO2-rich plumes within 

different concentration ranges divided by the total valid spectra for each year. (g) Annual baseline concentrations of SO2 obtained through 310 
the BEADs algorithm. 

3.3 Variation of SO2-rich plumes in channel 

To determine which ships were potentially using non-compliant fuel, those SO2-rich plumes identified in Section 3.2 were 

matched with ship information from AIS data. Given the high traffic density in the channel, multiple ships could be passing 

through the light path when a SO2-rich plume was detected, therefore, two matching datasets were established as illustrated 315 

in Fig. 7: Unique-Matching Dataset: This dataset includes only those plumes where a single ship was present near the light 

path at the plume peak moment; Fastest-Matching Dataset: This dataset considers all plumes with identifiable concurrent 

ship activities and matches them with the ship that had the shortest time consumption when crossing the light path 

(indicating a higher likelihood of being the source). Approximately 30% of the plumes satisfied the strict criteria of Unique-
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Matching dataset, emphasizing accuracy in source identification. In contrast, the Fastest-Matching dataset, while sacrificing 320 

some precision, provides a more comprehensive statistical representation of SO2-rich plumes. 

 

Figure 7: Illustration of two Matching-datasets for associating SO2-rich plumes with AIS ship activities. (a) Unique-Matching, where only 

plumes observed during the passage of a single ship (ship #2) near the DOAS light path are considered; and (b) Fastest-Matching, where 

plumes are matched to the ship (ship #5) with the shortest crossing time. 325 

Figure 8 illustrates the proportional contributions of various ship types to different SO2 peak value ranges within the Unique-

Matching datasets during two distinct policy periods. During 2018–2020 in Fig. 8a, cargo ships dominated the contribution 

to SO2 emissions across all peak value ranges, with proportions increasing from 56% in the >4 ppbv range to 80% in the >20 

ppbv range. Passenger boats were the second-largest contributors, accounting for 29–31% in lower peak value ranges but 

decreasing as peak values increased. The contributions of oil tankers, fishing boats, and harbor ships were relatively small 330 

and remain stable across all ranges. During 2021–2023 in Fig. 8b, Cargo ships remain the primary contributors, with a slight 

decrease in dominance compared to 2018-2020, ranging from 55% in the >4 ppbv range to 60% in the >20 ppbv range. 

Although the proportion of peaks contributed by certain ship types increased, such as Passenger boats and harbor ships, the 

total peak occurrences for all ships significantly decreased during the policy stabilization period. At this stage, the 

distribution of ship types remains consistent regardless of changes in SO2 plume concentrations. The same trend can be seen 335 

in the Fastest-Matching Dataset in Fig. S14. All results indicate that from 2018–2023, cargo ships consistently dominated 

SO2 emissions under both Matching Datasets, particularly at higher plume value ranges. This suggests that greater emphasis 

should be placed on inspecting cargo ships for compliance with fuel standards during future port supervision and 
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enforcement efforts. Moreover, these non-compliant ship activities may have contributed to inaccuracies in bottom-up ship 

emission inventories based on AIS data during the 2018–2020 period (A comparison between observational data and AIS-340 

based ship emission inventory is provided in Text S5). 

 

Figure 8: Proportional distribution of Unique-Matching ship types corresponding to different peak SO2 values during (a) the policy 

adjustment period (2018–2020) and (b) the policy stabilization period (2021–2023). The ship types include harbor ships, fishing boats, 

cargo ships, passenger boats, oil tankers, and other ships. 345 

 

4 Conclusion 

This study provides a comprehensive six-year dataset on ship-related SO2 emissions in the Shanghai shipping channel from 

2018 to 2023, using continuous observations with Differential Optical Absorption Spectroscopy (DOAS) and machine 

learning techniques. The results indicate a marked decrease in urban SO2 concentrations, reflecting the success of China's 350 

emission reduction policies. However, at the shipping channel, SO2 levels initially decreased from 2018 to 2020 due to the 

low-sulfur policy but began to rise again from 2020 to 2023, driven by increased shipping activities. This underscores the 

need for stricter sulfur content regulations and better enforcement, particularly for non-compliant cargo ships, which were 

identified as key contributors to SO2-rich plumes. 

The study’s findings highlight two important considerations for global policymakers: First, the success of low-sulfur policies 355 

in reducing emissions during the 2018–2020 phase offers valuable insights for other coastal nations, particularly those with 

rapidly growing maritime traffic. Second, the detection of non-compliant ships stresses the importance of enhancing real-

time monitoring technologies.  

The DOAS-based methodology employed here, which effectively separates ship emissions from meteorological and urban 

background influences, offers a scalable and cost-effective tool for port authorities worldwide. However, when expanding 360 
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this framework to other regions with varying maritime traffic densities and regulatory contexts, or when applying it to 

monitor additional pollutants such as NOX and PM2.5, it is imperative to acknowledge several methodological limitations. 

These include potential biases from the single-site background subtraction method, dependencies on meteorological 

reanalysis data in the Deweathered model, and uncertainties arising from vertical sampling geometry due to tidal variations 

and stack heights (detailed in Text S7). Although these systematic uncertainties do not substantially impact the conclusions 365 

supported by the large-sample data, they indicate that more precise data—such as using image recognition to determine 

specific ship activity and stack characteristics—would be necessary for finer-scale studies, such as quantifying emissions 

from individual ships. These factors should be carefully considered in future applications. 

 

Data available. The data set of observation in this measurement report can be available at 370 

https://doi.org/DOI:10.17632/dvc97wxbcz.1 (Liu, 2025). 
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