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Abstract. The expansion of maritime trade has made ship emissions a significant target for SO, reduction policies. However,
there is still a lack of observational data to reflect the long-term changes in SO, emission from ships. This study conducted
continuous observational experiments using Differential Optical Absorption Spectroscopy (DOAS) from 2018 to 2023 in a
shipping channel in Shanghai, China. By employing machine learning and background subtraction, the trends of ambient
SO; related to ship emissions (Ship_related_SO,) over the six-year period were revealed. Furthermore, whether ships in the
channel were using low-sulfur fuels was determined by a decomposition of SO.-rich plumes signals (which reflect high-
emission ships) and baseline variations. The findings indicate that ship activities increased ambient SO, concentrations in the
channel by 0.48 +0.25 ppbv (43.24% of urban background levels). During the policy adjustment phase (2018 to 2020),
Ship_related_SO, levels declined steadily due to low-sulfur fuel regulations. While from 2021 to 2023 (the policy
stabilization phase), increased ship activity became the dominant driver of rising Ship_related_SO- levels. Despite policy
effectiveness, excessive emissions from cargo ships persisted throughout the study period. This study quantified the
contribution of ship emissions to ambient SO, during 2018-2023 based on observations, evaluating the effectiveness of low-
sulfur policies and supporting ongoing efforts to mitigate SO- pollution from maritime activities. The methodology
developed here can be adapted to other global shipping channels, providing a framework for monitoring and regulating ship

emissions worldwide.

1 Introduction

Sulfur dioxide (SOy), classified as an airborne carcinogen (Von Nieding, 1978; Ghanbari Ghozikali et al., 2016), contributes

to urban haze, increases environmental health risks, and facilitates the formation of sulfate aerosols through heterogeneous
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reactions (Squizzato et al., 2018). Although volcanic eruptions are a major natural source of SO, (Carn et al., 2016), the
widespread use of sulfur-containing fuels, such as coal and oil, in human activities remains the dominant anthropogenic
source globally (Zhong et al., 2019; Van Aardenne et al., 2001). In response to the global challenge of rising energy demand
and continued SO, emissions, the United States (Miller, 2011), the European Union (Meyer and Pac, 2017), and several
other countries (Moran, 2007; Lou et al., 2021; Kuttippurath, 2022) have introduced a series of policies that have effectively
reduced land-based SO, emissions. However, with the rapid expansion of maritime trade, SO, emissions from shipping are
projected to keep increasing (Zhao et al., 2020), posing growing threats to coastal atmospheric environments (Zhang et al.,
2017; Wang et al., 2019), and becoming a major focus of global research and policy initiatives.

To curb SO emissions from maritime shipping, the International Maritime Organization (IMO) implemented a global
regulation in 2020 that reduced the allowable sulfur content from 3.5% to 0.5% (Zhao et al., 2020; Fossum et al., 2024),
aiming to reduce the shipping industry's impact on atmospheric environments. In addition, six Emission Control Areas
(ECAS) have been established worldwide. Among them, the Baltic Sea, North Sea, North American, and U.S. Caribbean
ECAs receiving IMO approval, while the European and California coastal ECAs were independently designated by their
respective authorities (Fossum et al., 2024; Mohiuddin et al., 2024). As the world's most active maritime trading nation
(Ducruet and Wang, 2018), China's port activities exert a particularly strong influence on coastal air quality. In 2015, China
launched its Domestic Emission Control Area (DECA 1.0) policy, requiring ships with compatible facilities in the Pearl
River Delta, Yangtze River Delta, and Bohai Rim (Beijing-Tianjin-Hebei) regions to use fuel with <0.5% sulfur content
during berthing periods from January 2016 (Zou et al., 2020; Zhang et al., 2019; Wang et al., 2021). By late 2018, China
upgraded the policy to DECA 2.0, mandating that all ships operating within China's territorial sea (12-nautical-mile zone)
must use fuel with <0.5% sulfur content while sailing from January 2019 onward, and <0.1% sulfur content while at berth,
or adopt equivalent emission control measures. For example, installing exhaust gas cleaning systems (scrubbers) (Lunde
Hermansson et al., 2024; Andreasen and Mayer, 2007), adopting alternative fuels like LNG(Pavlenko et al., 2020; Attah and
Bucknall, 2015), methanol(Svanberg et al., 2018; Shi et al., 2023) and biofuels(Cesilla De Souza and Eugé&iio Abel Seabra,
2024; Ahmed et al., 2025), and applying operational strategies such as slow steaming and shore power use(Zis et al., 2015;
Zis et al., 2014). Despite the effectiveness of these policy measures in controlling SO, emissions from shipping, previous
studies have shown that the impact of ship emissions on air quality in coastal areas is still significant (Viana et al., 2014;
Xiao et al., 2022; Xiao et al., 2023), which provides an important basis for further research on reduction of ship SO,

emissions.

Previous research has extensively utilized high spatiotemporal resolution AIS (Automatic Identification System) ship
activity data and air quality models to quantify the environmental impact of ship emissions (Zhao et al., 2020; Liu et al.,
2017; Feng et al., 2019a; Li et al., 2020; Fan et al., 2016; Zhang et al., 2023; Feng et al., 2023). Simulation results from 2016
to 2020 show that the control of SO, emissions from ships was particularly effective in 2020 due to the influence of low-

sulfur policies (Luo et al., 2024). Compared to simulations, observational data can more accurately capture real-world
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changes in pollution from ships and ports (Eger et al., 2023), while also serving as a critical tool for refining emission
inventories, improving atmospheric models, and identifying excessive emission ships (Cheng et al., 2019; Liu et al., 2024;
Krause et al., 2021; Kattner et al., 2015). In light of the low-sulfur policies, critical questions remain: Has the low-sulfur
policy effectively regulated ship SO, emissions? Can the low levels of SO, observed in 2020 be sustained amidst anticipated

long-term growth in maritime activity? Addressing these questions requires continued observational research.

This study aims to address these gaps by presenting long-term observational data from the Shanghai shipping channel, one of
the busiest maritime routes in the world. By integrating Differential Optical Absorption Spectroscopy (DOAS)
measurements with machine learning, we propose a novel approach to quantifying ship emissions and evaluating policy
effectiveness, with implications for other coastal regions facing similar challenges. Specifically, this study pursues three key
objectives: (1) to quantify the contribution of ship emissions to ambient SO levels in the Shanghai shipping channel over a
six-year period (2018-2023), (2) to evaluate the effectiveness of low-sulfur policies in reducing ship-related SO, emissions,

and (3) to identify potential gaps in current emission inventories and regulatory frameworks.

2 Data and methods
2.1 DOAS set up and spectra retrieval

Experiments measuring SO, were conducted using two active DOAS systems from 2018 to 2023 at Wusong wharf (WSW,
31.37N,121.51 ) and the Jiangwan Campus of Fudan University (FDU, 31.34 <N, 121.51<E). The WSW site is located
downstream the confluence of the Huangpu River and the Yangtze River, where over a thousand vessels pass daily,
including cargo ships, passenger ships, fishing boats, oil tanker and other ships in various operating conditions. Shipping
activities are the primary source of ambient pollution at this site. Fig. S1, S2 and Text S1 give an overview of ship activity in
the WSW Channel. The FDU site, situated 4 km southwest of WSW, characterized as a typical urban location with no

significant local pollution sources, as noted in previous study (Liu et al., 2024; Guo et al., 2020).

Each active DOAS system was equipped with a light source (150 W xenon lamp), a reflecting/receiving telescope, an array
of retroreflectors, a spectrometer, and a computer. In WSW, the light was emitted from a laboratory on the third floor
(approximately 10 meters above ground level) of the Wusong Maritime Safety Administration building (ground elevation ~6
m above sea level) and reflected across the channel by an array of retroreflectors located on the opposite bank (which is also
about 10 meters above ground level), forming a light path of 1,540 m. Given the local tidal range of approximately 1-4
meters, the vertical height of the light path above the water surface varied between roughly 12 and 15 meters. Due to the
optical path crossing the airspace above the shipping channel, emission signals from vessels below can be easily captured by
active DOAS. At FDU, the transmitting terminal of active DOAS was located in a laboratory on the 7th floor of the
Environmental Science Building, with the retroreflectors array placed to the southwest, forming a light path of 2,689 m. In

previous studies, this site effectively represents Shanghai's urban areas with relatively clean atmospheric conditions (Liu et
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al., 2024; Zhu et al., 2020; Gu et al., 2022). Spectral signals retrieval and time-series pollutant concentrations calculations
were performed using the DOASIS software developed by the Institute of Environmental Physics at Heidelberg University,
with SO retrieved in the 299~308 nm wavelength range. Additional technical details on the DOAS instrument, spectral data

processing, and detection limits are available provided in Text S2 and Table S1 of the Supporting Information.

(a) Shuichan'Road 1 km AR (b)
Wusong Wharf n\
\ )
\

Zhlang‘)\uébang
{

Lo

Shuangjl (C) ¥

ey :*'\?

Songfa’Road
/hul|n(l|l\ ersity

/
‘ b ]: Guofpn’Road
o . //‘ ?
| Honkou Mntian ZN /
T M\. :1; Fudan University
- / . Yangpu Station Xiniianqw’anchenq

Figure 1: Location of the relevant site in this campaign. (a) The red pentagon represents the location of DOAS in Wusong Wharf (WSW)
and Fudan University (FDU), respectively; the bidirectional arrows indicate the light path of DOAS. The black circles represent the two
environmental monitor stations around FDU station. (b) DOAS light path setting in WSW, and (c) in FDU. Base map: © OpenStreetMap
contributors, licensed under ODbL.

2.2 Machine learning and Ship_related_SO: obtained

The SO; in the atmosphere associated with ship activity in the channel (Ship_related_SO,) was obtained by removing both
meteorological effects and land-based emissions from the completed WSW observations, as shown in Fig. 2. Therefore, this
study developed two data-processing models using extremeGradientBoostingRegressor (XGB) and ExtraTreesRegressor
(ETR). The first model was used to impute missing SO, concentration data (Fig. 2a), while the second model was designed
to eliminate meteorological influences (Fig. 2b). Both models used machine learning techniques to capture complex

relationships among multiple variables and improve data accuracy.

XGB was selected to address data gaps from 2018 to 2023 caused by weather conditions and equipment maintenance at both
two sites, XGB is an optimized distributed gradient enhancement library designed for efficiency, flexibility, and portability.
It implements machine learning algorithms in the Gradient Boosting framework (Pan, 2018; Friedman, 2002). These models
identify patterns between feature and target vectors in large datasets to make predictions or decisions, and they have been

maturely applied to environmental research (Li et al., 2024; Zhu et al., 2022; Zhang et al., 2022).

As illustrated in Fig. 2a, the gap-filling model for WSW SO incorporates several predictive features representing three
major types of environmental influences: including meteorological conditions, ship emissions, and urban land-based

emissions. Specifically, co-measured pollutants at WSW (NO;, HCHO, HONO, Ogz) help represent shipping-related
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emissions through cross-species learning, while SO, measured at FDU—after meteorological normalization
(Deweathered FDU)—accounts for urban land-based emission influences. When filling gaps in the FDU SO, NO;
concentration from active DOAS in FDU, and SO, from two surrounding environmental monitoring stations, are used to
represent environment characteristics of land emissions in Shanghai. Besides, seven meteorological factors, including
temperature (TEMP), relative humidity (RH), wind speed (WS), wind direction (WD), solar radiation (SSRD), boundary
layer height (BLH), and surface pressure (P) from the European Center for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalysis product ERA5, were used as meteorological impacts for both models. Observed_WSW and
Observed_FDU represent the completed SO sequence after XGB filling. All input data were hourly averages. Models were
trained with 5-fold cross-validation and evaluated through independent validation test. The details about Machine learning

data input, model tuning, and performance evaluation can be seen in Text S3.

The Deweathered model is used to eliminate the influence of meteorological factors on air pollution. This method simulates
and offsets the impacts of various meteorological conditions, thereby estimating pollutant concentrations independent of
weather variability (Vu et al., 2019; Grange et al., 2018). Among the commonly used methods, tree-based ensemble learning
models, such as Random Forest and its variants, have been widely applied and proven effective in deweathering air quality
data (Grange and Carslaw, 2019; Grange et al., 2018; Ceballos-Santos et al., 2021). To the best of our knowledge, this study
is the first to apply the ETR specifically for deweathering Ship_related_SO, data. In this study, the ETR model was selected
as the core algorithm. ETR is a variant of the Random Forest model, sharing nearly identical ensemble learning principles
but introducing greater randomness during node splitting. This added randomness helps further reduce model variance and
overfitting risk compared to standard RF, while maintaining comparable interpretability and robustness (Gall et al., 2011).
For both sites, a large amount of historical meteorological data from ERA5 reanalysis dataset and time-related variables
(Unix time, Julian day, and day of the week) were put into Deweathered model training. The training process and parameter

description of the model are provided in Fig. S7 and Text S3 of the Supporting Information.

By applying Deweathered model to the observed SO, at WSW and FDU in Fig. 2b, c, the study isolated the ambient SO-
contribution directly attributable to ship emissions (Ship_related_SO,). This is because after accounting for meteorological
effects, the SO, concentrations recorded at WSW reflect the combined influence of the urban land-based emissions and ships
emissions. For the FDU site, however, the Deweathered model effectively removes the influence of transported pollution
under different wind directions (Fig. S8)—for example, ship-related SO, transported from the northeast channel—so that the
residual values can represent the locally generated SO level. Given that both FDU and WSW are located in similar
environments, primarily surrounded by residential areas and typical urban roads, the Deweathered_SO, concentrations at
FDU are therefore taken as the background level for Shanghai’s urban region. Thus, by subtracting the background
(Deweathered_FDU) from the Deweathered_WSW, the contribution of Ship_related_SO: can be effectively determined.
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Figure 2: Schematics of Ship_related_SO. obtained based on DOAS observation, machine learning and meteorological impacts
elimination (a) To complete the observation sequence, several models were trained and the most effective XGB model was selected, using
5-fold cross-validation. For the training of FDU, the feature parameters were selected from the continuous observation data of two
automatic monitoring stations near FDU and seven meteorological data. The training of WSW used the SO2 observation data of FDU,
other pollution data observed in the channel and seven meteorological data. (b) Eliminate meteorological influences on Observed_ WSW
and Observed_FDU to highlight local emission impacts. (c) Subtracting the emission characteristics of FDU and WSW to obtain
Ship_related_SOa.

2.3 Auxiliary data

This study utilized AlS-based ship trajectory data to identify suspicious high-emission ships. AIS data provide detailed real-
time information on ship locations, speeds, routes, and types, having been widely used in the study of ship emissions and
related environmental impacts (Yang et al., 2019; Tu et al., 2018). The automatic monitoring stations for ambient air quality,
Yangpu Station and Hongkou Station, provided hourly SO, concentration time series data from 2018 to 2023, which were
used as input variables for imputing missing values in Observed_SO,. All meteorological data used in this study were
obtained from the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric
reanalysis, known as ERA5, which provides hourly around-the-clock meteorological factors from surface up to 0.01 hpa

with the spatial resolution of 0.25<°x0.25<Marshall, 2000; Hersbach et al., 2020).
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3 Results and Discussion
3.1 Long-Term Characteristics of SO2

Figure 3 illustrates the monthly variations in SO, concentrations at the FDU background site and the WSW shipping channel
site from 2018 to 2023, both before and after Deweathered. At the FDU site (Fig. 3a, b), the observed SO, concentrations
display significant variability and weak inter-annual correlation, indicative of the influence of meteorological factors. After
Deweathered, the SO, levels demonstrate a highly consistent trend over the six years, with minimal inter-annual differences.
This reflects the stable nature of land-based emissions and highlights the effectiveness of the Deweathered process in
isolating anthropogenic emission signals from meteorological noise. In contrast, at the WSW site (Fig. 3c, d), the
Deweathered model also reduces variability and enhances the stability of the annual trends compared to the observed data.

However, noticeable differences remain between years, likely due to the irregular and dynamic nature of shipping activities.
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Figure 3: Monthly SOz concentrations at the FDU background site and WSW shipping channel site from 2018 to 2023. (a) observed and
(b) meteorological impacts eliminated (deweathered) SO2 concentrations at the FDU site, respectively. (c) and (d): the corresponding data
for the WSW site.

Figure 4 shows the observed monthly average SO, concentrations at WSW and FDU from 2018 to 2023, as well as the
results after removing meteorological influences. Table 1 presents their annual changes. Figure S9 displays their annual
changes by a column chart. Influenced by the activities of ships using sulphur-containing fuels in the channel, the observed
SO; in WSW (Observed_WSW) was notably higher than the observed SO; in FDU (Observed_FDU), with mean values of
1.49 +1.25 ppbv and 1.03 +0.88 ppbv, respectively. Owing to China's relentless efforts to improve air quality and reduce
the use of sulphur-containing fuels, including initiatives such as the Air Pollution Prevention and Control Action Plan (2013—
2017) and the Three-Year Action Plan to Fight Air Pollution (2018-2021) (Yue et al., 2020; Cai et al., 2017; Feng et al.,
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2019b), the Observed FDU have decreased to relatively low levels and have shown a continuous decline over the past six
years, with a 19.0% (0.22 ppbv) reduction from 2018 to 2023. Conversely, the Observed  WSW showed an annual trend of
first decreasing by 26.11% from 2018 to 2020, reaching their lowest point in 2020, followed by a gradual increase of 16.5%
from 2020 to 2023. This trend before 2020 is consistent with previous studies (Luo et al., 2024). Both locations exhibit a
pattern of slightly higher SO, concentrations in winter and lower concentrations in summer, with fluctuations occurring mid-
year. Emissions and meteorological conditions are the two primary factors influencing atmospheric pollutant levels (Zhao et
al., 2020). Changes in SO, emissions serve as the primary driving force. According to the Multi-resolution Emission
Inventory for China (MEIC), residential and transportation sources of SO, emissions in Shanghai are significantly higher in
winter than in other seasons (Fig. S10), likely contributing to the elevated winter values. The transport and dispersion of SO-
from other sources under specific wind directions, such as emissions from power generation activities located far from the
WSW and FDU sites, may account for the mid-year fluctuations in SO, concentrations. We trained 50 ETR models on
bootstrap samples of the training data for each site and computed the permutation importance (with 95% confidence intervals)
for each predictor variable. The result shows that “wind direction” became the most important variable for explaining SO,
variability at both sites (Fig. S11), which aligns with the findings of Grange and Carslaw (2019) at the port city of Dover in
England. The higher degree of fluctuation at WSW compared to FDU can be attributed to the more irregular ship emissions
at WSW. Fig. S12 shows the overall increasing trend in the number of ships from 2018 to 2023, with irregular fluctuations
within each year. In addition, a ship emission inventory based on AIS data was constructed, which further supports the
interpretation of the variability observed at WSW (Text S5). Furthermore, the cold and dry winter monsoon reduces the rates
of SO, oxidation and wet deposition, resulting in a longer lifetime of SO, molecules and thus easier accumulation. In
contrast, during the summer, increased chemical reactivity and more effective wet removal processes lead to lower SO,

concentrations.
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Figure 4: Monthly Observed_SO2 concentrations based on DOAS and Deweathered_SO: after weather normalization in WSW and FDU,
and Ship_related_SO2 contributions during 2018-2023. (a) The light purple bars represent the monthly average Observed_SO2
concentration at WSW,; The solid black circles represent the deweathered SOz concentration at WSW after removing meteorological
influences. The gray star symbols indicate the monthly average contribution of Ship_related_SO>. (b) The light blue bars represent the
monthly average observed SO: concentration at FDU; The solid black circles represent the Deweathered_SO. concentration at FDU
removing meteorological influences.

Table 1: The annual concentration of Observed_WSW, Deweathered_WSW, Observed_FDU, Deweathered_FDU and Ship_related_SO»
from 2018 to 2023.

SO, (ppbv) 2018 2019 2020 2021 2022 2023
Observed WSW 180 +1.75 1.40+123 133+103 1.40+129 1.46+104 1.55+0.96
Deweathered WSW  1.96 +£0.56 154 +0.32 1.43+029 1.41+026 1524027 1.60+0.25
Observed_FDU  1.16+1.04 1.07+0.84 1.04+0.82 1.04+099 094081 0.94+0.74
Deweathered FDU ~ 1.27 £029 1164026 1124025 1074028 1014027 1.02+0.22
Ship related SO,  0.69 £0.33 039 +0.12 0.30+0.13 0344016 0534026 0.59 +0.20

Meteorological factors affect the dispersion, transport, accumulation, and chemical reactions of pollutants in the atmosphere.
After normalizing for meteorological influences, the deweathered SO, concentrations (Deweathered WSW and
Deweathered_FDU) represent a time series with meteorological variability removed. These deweathered values is overall
higher than the observed concentrations. Deweathered FDU shows a decreasing trend in 2022 followed by a stabilization in
2023, while Deweathered_WSW exhibits a decline since 2018 and an increase again in 2022 and 2023. Nonetheless, under
certain conditions, high concentrations of pollutants can still be locally transported, leading to elevated pollution levels, such
as January in 2021. The Deweathered_FDU data, which represent the baseline SO, levels from terrestrial anthropogenic
sources in urban Shanghai (mainly residential activities and ground transportation), showed a reduction of 16.7% (0.25 ppbv)
over the six-year period. Due to the removal of meteorological dispersion effects, Deweathered_FDU exhibited a smoother
U-shaped seasonal pattern, with lower concentrations in summer and higher concentrations in winter, consistent with
previously observed trends in SO, vertical column densities over the Yangtze River Delta derived from satellite data (Wang
et al., 2018). In contrast, the Deweathered WSW results, which reflect the combined impact of both terrestrial and maritime
SO; sources, retain some mid-year fluctuations. These fluctuations can be attributed to higher ship emissions during spring
and summer (Fan et al., 2016; Jalkanen et al., 2009), as well as the influence of weather conditions, such as typhoons, which

can restrict shipping activities.

The contribution of SO, air pollution directly associated with shipping activities (Ship_related_SO,) can be quantified by
subtracting the Deweathered FDU values from the Deweathered WSW values. Over the six-year period, Ship_related_ SO
led to an average increase of 0.48 + 0.25 ppbv in atmospheric SO, concentrations. Year-on-year reductions in
Ship_related_SO, were observed in 2019 and 2020, with declines of 43.47% and 23.08%, respectively. These reductions
likely highlight the effectiveness of China's comprehensive low-sulfur policy within emission control areas, implemented on
January 1, 2019, and the IMO global low-sulfur policy, enacted on January 1, 2020, in curbing SO, emissions from shipping

9
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activities. From 2020 to 2023, Ship_related_SO, exhibited an average annual growth rate of 19.50%. This upward trend is
plausibly attributable to the progressive increase in port throughput at Shanghai post-2020. The reasons behind these changes

will be further discussed in Section 3.2.

Besides, the reduction in SO levels not only improves air quality but will also mitigate the formation of sulfate aerosols,
which are known to contribute to respiratory diseases and climate change. This highlights the dual benefits of low-sulfur
policies for public health and environmental sustainability. To sustain these reductions, stricter enforcement of low-sulfur
fuel regulations and enhanced monitoring of ship activities are recommended. Additionally, expanding emission control

areas to other high-traffic regions could further mitigate the impact of ship emissions on coastal air quality.

3.2 Variation of SO2-rich plumes in channel

To further investigate whether the observed increase in SO. concentrations in the shipping channel is attributable to the
potential failure of low-sulfur policies, this study analyzes the frequency of SO- signals captured in the channel from 2018 to
2023, as well as changes in baseline levels. This analysis was conducted by separating high-time-resolution DOAS
observations using the Baseline Estimation and Denoising using Sparsity (BEADs) algorithm (Ning et al., 2014), as
illustrated in Fig. 5 (an example from January 12 to 13, 2018). The SO-rich plumes emitted during the operation of ships
burning high-sulfur fuel can serve as indicators of the fuel's sulfur content, with higher plume peaks generally corresponding
to higher sulfur levels. In contrast, lower variation in the baseline reflects the slower-changing trend of environmental SO,
likely due to an increased proportion of low-emission vessels. All SO,-rich plumes were confirmed by AIS data to originate

from ship activity (Text S4).

20 1 — Observed_WSW
18 4 Baseline
16 ] Plume

14 ]
< 124
o 10_

S0,- rich plume f

15 16 17 18 19 20 21 22 23 00 01 02 03 04
2018/01/12 15:00h - 2018/01/13 04:00h

Figure 5: Time series of baseline trends and SO2-rich plume signals separated from Observed_WSW using the BEADs algorithm. The
black line represents the DOAS observed SO2 concentrations, the green line indicates the baseline, and the blue line corresponds to plumes
sequence extracted using the BEADs algorithm. The dashed line marks the threshold for identifying SO2-rich plumes.
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Figure 6 illustrates the annual variation in the absolute frequency proportion of SO,-rich plume events, as well as changes in
the baseline from 2018 to 2023. Here, SO,-rich plumes are classified into six concentration ranges: [2,4) ppbv, [4,6) ppbv,
[6,8) ppbv, [8,10) ppbv, [10,20) ppbv, [20,30) ppbv, respectively. The peak frequency of SO-rich plumes within the [6,30)
ppbv range exhibits a general declining trend year by year, while the numbers of major emission sources in the channel
(cargo ships and passenger boats) exhibited a stable or growing trend from 2018 to 2023 (Fig. S12b). This demonstrates that
the observed trends in SO, emissions were not driven by changes in the scale or composition of the ship fleet (since emission
sources were actually increasing), but rather by changes in the emission behavior of individual ships. These results indicate
that low-sulfur policies have effectively reduced high-level SO, emissions from ships overall—particularly in 2023, when
the SO, plumes exceeding 10 ppbv were nearly absent, despite gaps in observational data in certain years that caused
fluctuations in the overall declining trend. In contrast, low SO, plumes [4,6) ppbv shows a fluctuating pattern, gradually
increasing before 2020 and then declining with some variations during the policy stabilization phase. This trend may reflect
the transitional effect of policy implementation: during the policy adjustment phase from 2018 to 2020, high SO, emissions
began to decrease, but many pollution sources were not fully eliminated. Some ships may have started using fuels with
slightly lower sulfur content, which led to an increase in the frequency of low SO, plumes. The adoption of low-sulfur fuels
was the most common choice during this period, as it required little or no modification of existing engine systems
(Vedachalam et al., 2022; Slaughter et al., 2020). In contrast, due to the high retrofitting costs of engine systems and the
limited number of ships using LNG, most ports currently do not provide bunkering facilities for LNG and other alternative
fuels, including biofuels (Vedachalam et al., 2022). Although scrubbers allowed the continued use of high-sulfur fuels, their
application was constrained by high installation costs, long retrofitting times (up to 9 months) (Slaughter et al., 2020), and
concerns about secondary environmental impacts from waste discharges (Hassell&v et al., 2013; Claremar et al., 2017; Thor
et al., 2021). Only 3,000/60,000 vessels have been retrofitted with a scrubber system, as reported by Slaughter et al. (2020)
As policies were more strictly enforced after 2020, the frequency of low SO, plumes emissions also started to decline,

reflecting the impact of comprehensive control measures.

The baseline was highest in 2018 and subsequently exhibited a declining trend from 2018 to 2021, followed by an increase
from 2021 to 2023, consistent with the variation in Ship_related_SO, observed in Section 3.1. During the policy adjustment
period from 2018 to 2020, ships gradually reduced the sulfur content in their fuel, which led to an overall decrease in
environmental SO, offsetting the increase in SO, emissions caused by the growing number of shipping activities. Starting in
2021, as policy implementation stabilized, the rise in the baseline was mainly attributed to the increased intensity of shipping
operations. Therefore, we also analyzed the occurrence of low-concentration SO, plumes in the [2-4) ppbv range. These
weaker plumes showed a clear increasing trend from 2021 to 2023, suggesting that the observed rise in baseline SO, was not
driven by high-emission ships but rather by the cumulative contribution of numerous compliant vessels emitting smaller
amounts of SO,. The growing frequency of such plumes highlights how large-scale, compliant shipping activity can still

elevate ambient SO, levels, especially when vessel density increases significantly.
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Based on the combined results from Sections 3.1 and 3.2, it is likely that the observed increase in ambient SO,
concentrations over shipping channel after 2020 was primarily driven by increased shipping activity. However, throughout
the six years of observation, we consistently found signals suggesting the use of illegal fuel by ships (especially during the
policy adjustment phase from 2018 to 2020). Given the expected continued growth in maritime activities, further reducing
the sulfur content in marine fuels will be crucial to preventing Ship_related_SO, emissions from impacting air quality in
coastal cities and potentially offsetting the land-based SO, reduction efforts already achieved. To address this, real-time
monitoring systems, such as the DOAS-based approach developed in this study, could be integrated into port inspection
protocols to identify and penalize non-compliant vessels more effectively. The methodology developed here provides a
scalable framework for monitoring ship emissions in other coastal regions, enabling policymakers to better assess the
effectiveness of low-sulfur policies and identify areas for improvement.
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Figure 6: Yearly variation in SOz plume proportions and baseline level from 2018 to 2023. (a-f) Number of SOa-rich plumes within
different concentration ranges divided by the total valid spectra for each year. (g) Annual baseline concentrations of SO, obtained through
the BEADs algorithm.

3.3 Variation of SO2-rich plumes in channel

To determine which ships were potentially using non-compliant fuel, those SO,-rich plumes identified in Section 3.2 were
matched with ship information from AIS data. Given the high traffic density in the channel, multiple ships could be passing
through the light path when a SO,-rich plume was detected, therefore, two matching datasets were established as illustrated
in Fig. 7: Unique-Matching Dataset: This dataset includes only those plumes where a single ship was present near the light
path at the plume peak moment; Fastest-Matching Dataset: This dataset considers all plumes with identifiable concurrent
ship activities and matches them with the ship that had the shortest time consumption when crossing the light path

(indicating a higher likelihood of being the source). Approximately 30% of the plumes satisfied the strict criteria of Unique-
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Matching dataset, emphasizing accuracy in source identification. In contrast, the Fastest-Matching dataset, while sacrificing

some precision, provides a more comprehensive statistical representation of SO-rich plumes.
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Figure 7: Illustration of two Matching-datasets for associating SO-rich plumes with AIS ship activities. (a) Unique-Matching, where only
plumes observed during the passage of a single ship (ship #2) near the DOAS light path are considered; and (b) Fastest-Matching, where
plumes are matched to the ship (ship #5) with the shortest crossing time.

Figure 8 illustrates the proportional contributions of various ship types to different SO, peak value ranges within the Unique-
Matching datasets during two distinct policy periods. During 2018-2020 in Fig. 8a, cargo ships dominated the contribution
to SO, emissions across all peak value ranges, with proportions increasing from 56% in the >4 ppbv range to 80% in the >20
ppbv range. Passenger boats were the second-largest contributors, accounting for 29-31% in lower peak value ranges but
decreasing as peak values increased. The contributions of oil tankers, fishing boats, and harbor ships were relatively small
and remain stable across all ranges. During 20212023 in Fig. 8b, Cargo ships remain the primary contributors, with a slight
decrease in dominance compared to 2018-2020, ranging from 55% in the >4 ppbv range to 60% in the >20 ppbv range.
Although the proportion of peaks contributed by certain ship types increased, such as Passenger boats and harbor ships, the
total peak occurrences for all ships significantly decreased during the policy stabilization period. At this stage, the
distribution of ship types remains consistent regardless of changes in SO, plume concentrations. The same trend can be seen
in the Fastest-Matching Dataset in Fig. S14. All results indicate that from 2018-2023, cargo ships consistently dominated
SO emissions under both Matching Datasets, particularly at higher plume value ranges. This suggests that greater emphasis

should be placed on inspecting cargo ships for compliance with fuel standards during future port supervision and

13



340

345

350

355

360

enforcement efforts. Moreover, these non-compliant ship activities may have contributed to inaccuracies in bottom-up ship
emission inventories based on AIS data during the 2018-2020 period (A comparison between observational data and AlS-
based ship emission inventory is provided in Text S5).
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Figure 8: Proportional distribution of Unique-Matching ship types corresponding to different peak SO2 values during (a) the policy
adjustment period (2018-2020) and (b) the policy stabilization period (2021-2023). The ship types include harbor ships, fishing boats,
cargo ships, passenger boats, oil tankers, and other ships.

4 Conclusion

This study provides a comprehensive six-year dataset on ship-related SO, emissions in the Shanghai shipping channel from
2018 to 2023, using continuous observations with Differential Optical Absorption Spectroscopy (DOAS) and machine
learning techniques. The results indicate a marked decrease in urban SO, concentrations, reflecting the success of China's
emission reduction policies. However, at the shipping channel, SO levels initially decreased from 2018 to 2020 due to the
low-sulfur policy but began to rise again from 2020 to 2023, driven by increased shipping activities. This underscores the
need for stricter sulfur content regulations and better enforcement, particularly for non-compliant cargo ships, which were

identified as key contributors to SO»-rich plumes.

The study’s findings highlight two important considerations for global policymakers: First, the success of low-sulfur policies
in reducing emissions during the 2018-2020 phase offers valuable insights for other coastal nations, particularly those with
rapidly growing maritime traffic. Second, the detection of non-compliant ships stresses the importance of enhancing real-

time monitoring technologies.

The DOAS-based methodology employed here, which effectively separates ship emissions from meteorological and urban

background influences, offers a scalable and cost-effective tool for port authorities worldwide. However, when expanding
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this framework to other regions with varying maritime traffic densities and regulatory contexts, or when applying it to
monitor additional pollutants such as NOx and PMs, it is imperative to acknowledge several methodological limitations.
These include potential biases from the single-site background subtraction method, dependencies on meteorological
reanalysis data in the Deweathered model, and uncertainties arising from vertical sampling geometry due to tidal variations
and stack heights (detailed in Text S7). Although these systematic uncertainties do not substantially impact the conclusions
supported by the large-sample data, they indicate that more precise data—such as using image recognition to determine
specific ship activity and stack characteristics—would be necessary for finer-scale studies, such as quantifying emissions

from individual ships. These factors should be carefully considered in future applications.

Data available. The data set of observation in this measurement report can be available at
https://doi.org/DOI:10.17632/dvc97wxbcz.1 (Liu, 2025).
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