
Response to reviewers’ comments 

We thank the reviewers for the constructive comments and suggestions, which are very positive to 

improve scientific contents of the manuscript. We have revised the manuscript appropriately and 

addressed all the reviewers’ comments point-by-point for consideration as below. The remarks from 

the reviewers are shown in black, and our responses are shown in blue color. All the page and line 

numbers mentioned following are refer to the revised manuscript without change tracked. 

 

The authors present a long time series of SO2 observations using active DOAS instruments at two 

measurement sites in Shanghai. The first measurement site is located at a river, while the second 

one is an urban background site. During the observation period, the SO2 emissions of ships were 

restricted twice and the changes on the ambient SO2 levels as a result of these changes were 

evaluated and interpreted. In order to interpret the measurements, two machine learning models 

were used to first interpolate data gaps and then to eliminate the influence of different weather 

conditions on the measured SO2 levels. The manuscript is generally well written and of high interest 

for scientists and policymakers, but I would suggest some improvements before publication in ACP.  

General comments: 

1. I would highly recommend adding some more explicit information how ship traffic changed and 

evolved at the measurement site during the years, e.g. average number of ship passages per year and 

the composition of ship types throughout the years. Changes in ship traffic density or fleet 

composition are often mentioned and used for interpretation of results, but never explicitly shown 

to the reader. Figure 8 somewhat reflects this, but only for ships where the plumes were captured 

with the DOAS instrument.  

Response: Thank you for your comment. We have added information on ship traffic at the WSW 

site (2018–2023). Over a thousand vessels pass daily, including cargo, passenger, fishing, and tanker 

ships. Figures S1, S2 and Text S1 summarize daily vessel numbers, moving vs. stationary ships, 

vessel type composition, main and auxiliary engine power, and typical speeds. Seasonal and long-

term trends, as well as the presence of larger, higher-powered vessels. 

In the manuscript: 

“where over a thousand vessels pass daily, including cargo ships, passenger ships, fishing boats, 

oil tanker and other ships in various operating conditions. Shipping activities are the primary source 

of ambient pollution at this site. Fig S1, S2 and Text S1 give an overview of ship activity in the WSW 

Channel.” Please refer to Line 81-89. 

In the Supporting document: 

Text S1. Overview of Ship Activity in the WSW Channel. 

“To provide background information on local ship traffic conditions relevant to the observed SO₂ 

variations, this section summarizes key characteristics of vessel activity in the WSW channel based 

on AIS data from 2018 to 2023. 

Figure S1 presents the temporal evolution of daily vessel numbers in the channel, including total 

ships, moving ships, and stationary ships. Seasonal reductions in traffic are evident around the time 

of the Chinese New Year each year, reflecting holiday-related slowdowns. Throughout the period, 

the overall number of ship traffic shows a gradual increasing trend. The vessel type composition is 



also illustrated, showing that cargo ships and passenger boats have remained the predominant 

categories. 

Figure S2 shows daily statistics of the main engine (ME) and auxiliary engine (AE) power of vessels 

passing through the channel. The ME power is generally much higher than AE power, reflecting the 

dominant role of propulsion engines in energy consumption and emissions. The large standard 

deviations in both ME and AE power reflect the diversity of ship types in the WSW channel—ranging 

from large cargo ships and cruise vessels (with ME power up to 50,000–70,000 kW) to small fishing 

and harbor boats (tens of kW). In recent years, the upper percentiles of both ME and AE power have 

increased, suggesting a growing presence of larger or higher-powered vessels in the area. 

Vessel speed is another relevant operational parameter. Although instantaneous speed can vary 

significantly within a single ship’s trajectory, it is observed that the maximum speed of vessels 

operating in this region can reach up to 52.6 knots. At the same time, many ships remain stationary 

near the shore or move slowly within the channel, typically maintaining speeds around 5–6 knots.” 

 

 

Figure S1. Temporal dynamics of daily ship traffic and ship type composition in the WSW 

channel (2018–2023). (a) Daily number of total ships, moving ships, and stationary ships 

detected from AIS records. (b) Percentage composition of different ship types over time, 

including passenger boats, cargo ships, oil tankers, shipping boats, harbor ships, and other 

vessels. 

 



 

Figure S2. Temporal statistics of main engine and auxiliary engine power of vessels in the WSW 

channel (2018–2023). (a) Time series of main engine (ME) power, showing the mean ± standard 

deviation (shaded area) and the 25th, 50th, and 75th percentiles of power (kW). (b) Time series 

of auxiliary engine (AE) power, showing the mean ± standard deviation (shaded area) and the 

25th, 50th, and 75th percentiles of power (kW). 

 

2. I would suggest adding Figure S6 of the Supplement to Figure 6 because it’s an important piece 

of information.  

Response: Thank you for your comment. We already adding Figure S6 of the Supplement to Figure 

6. In the revised manuscript, you can see the trend of the concentration distribution of SO2 ranging 

from 2 ppbv to 30 ppbv. The corresponding description has also been modified. 

 

Figure 6: Yearly variation in SO2 plume proportions and baseline level from 2018 to 2023. (a-f) 

Number of SO2-rich plumes within different concentration ranges divided by the total valid spectra 

for each year. (g) Annual baseline concentrations of SO2 obtained through the BEADs algorithm. 

Please refer to Line 307-310. 



 

3. How are ship emissions treated in the machine learning gap-filling algorithm? Does the gap-

filling only reproduce the baseline SO2 signal from other sources than ships? Can you provide a 

comparison of the result of the gap-filling algorithm with measured data?  

Response: Thank you for your comment. We address your three sub-questions as follows. As the 

first two questions are closely related, we discuss them together. 

Question 1: How are ship emissions treated in the machine learning gap-filling algorithm? In 

designing the machine learning (ML)-based gap-filling algorithm, we considered it essential to 

include parameters that could reflect ship emissions. Initially, we attempted to use two types of input 

variables: (a) the number of vessels derived from AIS data, and (b) an hourly ship emission 

inventory based on bottom-up estimates within a 4 km radius around the WSW (LP-DOAS) site. 

However, we found that at the hourly scale, neither of these indicators showed meaningful 

correlation with Observed_SO2 concentrations in the shipping channel. Changing these variables 

had negligible impact on the ML model outputs, suggesting that they could not effectively represent 

hourly variations in ship emissions. We believe this is due to the coarse nature of AIS-based 

indicators: ship numbers do not capture ship type, size, or operational status.  

Likewise, raw bottom-up emission inventories are spatially aggregated and cannot be readily 

matched to the high temporal resolution of hourly LP-DOAS measurements. Although it is indeed 

meaningful to relate emission inventories obtained over a certain area to concentrations measured 

along a single LP-DOAS path, establishing such a correspondence at an hourly scale is highly 

challenging and beyond the scope of this study (Although it is difficult to establish a correspondence 

at an hourly scale, we find that at coarser temporal resolutions, emission inventory data can be used 

to validate the Ship_related_SO2 identified in this study in terms of overall trends. As shown in Text 

S5.) 

Therefore, in a second round of modeling, we took advantage of the fact that the observed pollutants 

at WSW—including SO2, NO2, HONO, HCHO, and O3—are themselves strongly influenced by 

ship emissions. These co-measured pollutants were used as predictors to reconstruct missing SO2 

values via cross-species learning within the ML framework. That is, when SO2 data were missing, 

its temporal patterns were inferred from other concurrent trace gases. This allows the model to retain 

the signal of ship emissions implicitly present in the co-measured species. As shown in Figure 2. 

Question 2: Does the gap-filling only reproduce the baseline SO2 signal from other sources than 

ships? Regarding the second question specifically: no, the gap-filling model does not only reproduce 

a “baseline” SO2 signal excluding ship emissions. Instead, the reconstructed SO2 values at WSW 

reflect the combined influence of three major sources: (a) Direct ship emissions, which are captured 

via learned associations with co-pollutants (such as NO2 and HONO), as previously addressed in 

the response to the first question; (b) land-based sources from urban areas, which also known as 

Deweahthered_FDU and (c) Meteorological influences, which are incorporated using feature 

representations derived from ERA5 reanalysis data.  

The model was trained using feature vectors representative of all these sources, ensuring that the 

gap-filled SO2 values capture the variability of emissions, including those originating from ships. 

Question 3: Can you provide a comparison of the result of the gap-filling algorithm with measured 



data? Of course, now we are very pleased to present to you the comparison between the gap-filling 

algorithm and the actual observed values. To evaluate the performance of the machine learning gap-

filling algorithm, we conducted a point-to-point comparison between predicted and observed SO2 

concentrations using a dataset from 2024, comprising 641 valid hourly measurements. As shown in 

Figure S6. This segment was selected as a new representative test case, given the lack of long 

continuous observations during earlier periods. The data were not arbitrarily selected or artificially 

stitched together; rather, they were drawn from the naturally continuous measurement windows 

available in January, February and March of 2024. Although data is still incomplete, the period we 

selected represents the longest and most continuous segment of real observations available.  

Figure S6 demonstrate strong consistency between the predicted and observed data, with an R2 of 

0.84, RMSE of 0.41 ppbv, and MAE of 0.29 ppbv. The overall mean SO2 concentration was 1.42 

ppbv from observations and 1.38 ppbv from model predictions, indicating minimal systematic bias. 

Across different concentration ranges, the model reproduced observed values accurately: for 

example, in the 1–3 ppbv range, both predicted and observed means were nearly identical (1.74 vs. 

1.75 ppbv), and even for higher values (3–5 ppbv), the agreement remained robust (3.66 vs. 3.88 

ppbv). We further examined the model’s ability to reproduce short-term SO2 episodes, which are of 

particular importance for ship plume characterization. Among the data, 1.25% of points exceeded 5 

ppbv. For this subset, the predicted mean was 4.71 ppbv, compared to an observed mean of ~5.45 

ppbv. The predicted maximum SO2 also closely approached the observed maximum (5.94 vs. 6.08 

ppbv). Although the reproduction effect of high concentrations is slightly lower than that of low 

concentrations (this is usually due to the relatively lower occurrence frequency of high 

concentrations, resulting in fewer opportunities to provide learning samples), in general, the model 

can well reproduce the changes in SO2 concentration in the waterway environment. These results 

indicate that the model is capable of recovering both baseline concentrations and elevated episodes 

associated with local sources such as ship emissions. Importantly, although the algorithm does not 

rely on explicit ship indicators (e.g., AIS or emission inventories), it incorporates co-measured 

species (NO2, HONO, HCHO, O3) and meteorological factors that reflect shared influences from 

ship activity. This design enables the model to retain shipping-related signals in an implicit but 

effective way. 

We have now added detailed explanations regarding the treatment of ship emissions in the 

methodology section of manuscript. At the same time, in the supplementary materials, we have 

added our considerations when selecting indicators to represent the emissions of the ship, and also 

included a new comparison diagram and textual explanation of the gaps-filling algorithm. These 

pieces of information are intended to help future readers better understand the role and performance 

of the gap-filling algorithm used in this study. 

In the manuscript: 

“As illustrated in Fig. 2a, the gap-filling model for WSW SO2 incorporates several predictive 

features representing three major types of environmental influences: including meteorological 

conditions, ship emissions, and urban land-based emissions. Specifically, co-measured pollutants 

at WSW (NO2, HCHO, HONO, O3) help represent shipping-related emissions through cross-species 

learning, while SO2 measured at FDU—after meteorological normalization (Deweathered_FDU)—

accounts for urban land-based emission influences.” Please refer to Line 117-121. 



In the supplementary materials  

Text S3. Machine learning data input, model tuning, and performance evaluation. 

“When training the model to fill the missing SO2 values at WSW, three categories of input features 

were incorporated to comprehensively capture environmental influences from different sources: 

meteorological conditions, ship emissions, and urban land-based emissions. Specifically, these 

consisted of: seven meteorological variables from the ERA5 reanalysis dataset; co-measured 

pollutant data (including HCHO, HONO, O3, and NO2) obtained via DOAS at the WSW site—which 

facilitated indirect capture of ship emission signals through cross-species learning; and 

meteorologically normalized SO2 data from the FDU site (Deweathered_FDU), representing 

background variations associated with urban land-based emissions. The model achieved an R2 of 

0.76 and an RMSE of 0.65 ± 0.21. The completed SO2 concentration time series is presented in 

Figure S3. 

The selection of predictor variables to represent ship emissions involved multiple rounds of testing 

and evaluation. Initial attempts to incorporate AIS-derived indicators, such as ship number and 

hourly bottom-up emission inventories within a 4 km radius around the WSW site, showed no 

significant correlation with observed SO2 concentrations at the hourly scale—their inclusion 

resulted in negligible improvement in model performance. This outcome is attributed to the fact that 

AIS-based ship number do not capture distinctions in ship type, size, or operational status. For raw 

bottom-up emission inventories, it’s spatially aggregated and cannot be readily matched to the high 

temporal resolution of hourly LP-DOAS measurements. Consequently, the approach shifted toward 

using co-measured pollutants (NO2, HCHO, HONO, O3) obtained at the same WSW site, which are 

strongly influenced by ship activities. 

To evaluate the performance of the machine learning-based gap-filling algorithm, a point-to-point 

comparison was conducted between predicted and observed SO2 concentrations. The evaluation 

used an independent validation dataset from 2024, consisting of 641 hourly measurements obtained 

during naturally continuous observation windows in January, February, and March. As shown in 

Figure S6, the gap-filled SO2 concentrations (Predicted SO2) demonstrate strong agreement with 

observed SO2. The model achieved an R2 of 0.84, with an RMSE of 0.41 ppbv and MAE of 0.29 ppbv. 

The overall mean observed SO2 concentration was 1.42 ppbv, compared to a predicted mean of 1.38 

ppbv. The model accurately reproduced observed values across different concentration ranges: 

within the 1–3 ppbv interval, the predicted mean (1.75 ppbv) was nearly identical to the observed 

mean (1.74 ppbv), and for higher concentrations (3–5 ppbv), the predicted mean (3.88 ppbv) 

remained close to the observed value (3.66 ppbv). The model’s ability to capture short-term SO₂ 

episodes—critical for characterizing ship plumes—was also evaluated. Among all data points, 1.25% 

exceeded 5 ppbv. For these high-concentration events, the predicted mean was 4.71 ppbv compared 

to an observed mean of 5.45 ppbv. The predicted maximum (5.94 ppbv) closely matched the observed 

maximum (6.08 ppbv). Although the reconstruction of peak concentrations shows a slight 

underestimation—likely due to the lower frequency of high‐concentration events limiting training 

examples—the model overall captures the temporal variations in SO2 concentrations well in the 

waterway environment.” 

 



  

Figure S6. Comparison between observed and machine learning-predicted hourly SO2 

concentrations at WSW in 2024. (a) Temporal variation using ordered sample index. (b) 

Regression plot showing strong agreement (R2 = 0.848) between predicted and observed values. 

 

4. Also, in the supplement it looks like, there were almost no measurements at WSW in 2020 and 

from July 2022 to July 2023, how does this influence the results?  

Response: Thank you for your comment. We acknowledge the limited measurement coverage at the 

WSW site in 2020 and between July 2022 and July 2023, which may raise concerns about the 

reliability of model-filled values and their influence on trend analysis. However, this limitation is 

unlikely to affect the overall conclusions. Our gap-filling model has been validated to reproduce 

long-term variations in channel SO2 concentrations reliably. Based on an independent 2024 

validation dataset, the entire bias observed was about –0.04 ppbv (Predicted_SO2 minus Observed 

SO2) Although this estimate may be slightly large due to the relatively short validation period, a 

longer-term comparison (2018–2023) between predicted and observed SO2 shows extremely small 

residuals at WSW (-0.0032 ppbv; see Text S3 and Figures S4, S5). This indicates that over broader 

temporal scales, the gap-filling values are very close to the real measurements. Even if SO2 levels 

in 2020–2022 were uniformly adjusted upward by 0.04 ppbv, the key findings—namely, a decrease 

from 2018 to 2020 followed by an increase from 2020 to 2023—would remain unchanged. 

Furthermore, the gap-filling data were only used in Section 3.1 for long-term trends; the analyses in 

Sections 3.2 and 3.3 relied solely on observed data and are therefore unaffected.  

While the missing periods may have reduced the number of high- SO2 plumes captured at WSW in 

2020–2022, this effect is expected to be limited. The analyses in Sections 3.2 and 3.3 are based on 

the relative contribution of high-concentration plumes rather than the absolute number of plumes, 

which helps mitigate the influence of incomplete sampling.  

To address this issue, we compared the differences between the predicted and observed values 

during 2018–2023. We also conducted a limitation analysis of the article in the supplementary 

material and main text. 

In the supplementary materials: 

Text S3. Machine learning data input, model tuning, and performance evaluation. 

“Figure S4 presents the residual error plots and their frequency distribution between the predicted 

and observed SO₂ concentrations for both sites. Figure S5 shows the scatter plots of the predicted 

versus observed SO₂, along with the correlation coefficients (R²). The results demonstrate that the 



mean residuals are negligible (-0.0032 ppbv at WSW and -1.16×10⁻⁵ ppbv at FDU). The majority 

of daily residuals (59.36% at WSW and 86.9% at FDU) fall within ±0.2 ppbv, and the high R² values 

(above 0.9) confirm a strong model-observation agreement at both locations” 

 

Figure S4. Time series and frequency distribution of residuals (Predicted SO₂ minus Observed 

SO₂) at the daily mean scale for (a, c) WSW and (b, d) FDU during 2018–2023. 

 

 

Figure S5. Scatter plots between predicted and observed SO₂ concentrations at the daily mean 

scale for (a) WSW and (b) FDU. 

 

Text S7. Limitations and Uncertainties 

“From a measurement coverage perspective, another source of uncertainty arises from the limited 

measurements at the WSW site in 2020 and between July 2022 and July 2023, during which 

reconstructed values were used to fill missing periods. Our validation analysis shows that the gap-

filling model reproduces long-term SO2 variations reliably, with a mean residual of –0.0032 ppbv 

over 2018–2023 (see Text S3, Figures S4, S5), although short validation samples (e.g., in 2024) 

suggest that biases of up to –0.04 ppbv may occasionally occur. Even if the concentrations during 



2020–2022 were uniformly adjusted by this margin, the main interannual trends—a decrease from 

2018 to 2020 followed by an increase from 2020 to 2023—would remain unchanged. We note, 

however, that the absence of measurements may reduce the number of high-SO2 plumes captured 

during these years. Because our plume-related analyses in Sections 3.2 and 3.3 are based on relative 

contributions rather than absolute plume counts, this influence is expected to be limited, but some 

degree of bias cannot be fully excluded.” 

 

 

5. What is the main wind direction at FDU and WSW? Even though FDU is a background station I 

would assume ship traffic could influence the SO2 signal at this station, when the wind blows 

somewhat from the direction of the river.  

Response: Thank you for your comment. The WSW and FDU stations are only about 4 km apart 

and both fall within the same ERA5 grid cell. Therefore, they are subject to broadly the same 

prevailing wind patterns, which are predominantly from the northeast (NE) and southeast (SE) 

sectors throughout 2018–2023. These directions are aligned with the Yangtze River channel, where 

ship traffic is concentrated, meaning that in principle both stations can be affected by ship emissions 

under such wind conditions. 

However, we would like to clarify that in our methodology, we did not directly use the raw observed 

SO2 at FDU as the background signal. Instead, we applied meteorological normalization 

(Deweathered model) to the FDU data, using machine learning to model and remove the effects of 

meteorology (including wind direction and speed, temperature, boundary layer height, etc.) on 

pollutant levels. This process effectively captures and accounts for episodes where ship-related air 

masses might lead to elevated concentrations due to directional transport. By removing these 

meteorologically driven variations, the residual signal at FDU reflects the underlying background 

pollution trend, excluding short-term transport effects such as those from the river channel. 

Therefore, in our study, the Deweathered SO2 concentration at FDU (Deweathered_FDU) is used 

as the background station level, not the direct Observed_FDU. This ensures that our background 

estimation is robust against meteorological and directional influences, including potential ship 

traffic impacts. 

We have added a wind rose figure (Figure S8) in the Supplement to illustrate the prevailing wind 

directions in WSW and FDU, and we have refined the description of Deweathered_FDU in the 

manuscript to clarify that while southeast winds can theoretically transport ship emissions to FDU, 

the deweathering procedure minimizes such influences, ensuring that FDU represents the urban 

background. 

In the manuscript: 

“For the FDU site, however, the Deweathered model effectively removes the influence of 

transported pollution under different wind directions (Fig. S8)—for example, ship-related SO2 

transported from the northeast channel—so that the residual values can represent the locally 

generated SO2 level. Given that both FDU and WSW are located in similar environments, primarily 

surrounded by residential areas and typical urban roads, the Deweathered_ SO2 concentrations at 

FDU are therefore taken as the background level for Shanghai’s urban region. Thus, by subtracting 

the background (Deweathered_FDU) from the Deweathered_WSW, the contribution of 



ship_related_SO2 can be effectively determined.” Please refer to Line 145-150. 

 

 

Figure S8. Wind direction frequency distribution at WSW and FDU station from 2018 to 2023. 

(a) The aggregated wind distribution for all years. (b)–(g) The show annual wind patterns from 

2018 to 2023. Wind direction is plotted in polar coordinates with percentage frequency indicated 

by concentric circles. 

 

6. Could you elaborate a little bit on what measures the ships can use to reduce SO2 emissions in 

this control area (e.g., change of fuel to lower sulphur fuels, scrubbers, …)  

Response: Thank you for your comment. In this emission control area, ships can adopt several 

technical and operational measures to reduce SO2 emissions, in line with both international and 

domestic regulations, including Switch to low-sulfur fuels, use of exhaust gas cleaning systems 

(scrubbers), use of alternative fuels and Operational measures. 

One of the most common approaches is switching to low-sulfur fuels, such as marine gas oil (MGO) 

(Corbett et al., 2008), very low sulfur fuel oil (VLSFO) (Sultanbekov et al., 2022), or ultra-low 

sulfur fuel oil (ULSFO) (Ershov et al., 2022). Using these fuels can directly and effectively reduce 

the emission of SO2. 

Another widely used method is the installation of exhaust gas cleaning systems, known as scrubbers, 

which can effectively remove SO2 from exhaust gases, allowing continued use of high-sulfur fuels 

while still complying with emission standards (Lunde Hermansson et al., 2024; Andreasen and 

Mayer, 2007). However, it is worth noting that the promotion of scrubbers has been limited due to 

environmental concerns associated with their use, including potential impacts such as slowed 

growth and increased mortality of marine organisms (Koski et al., 2017; Thor et al., 2021), as well 

as the acidification of surrounding waters (Hassellöv et al., 2013; Claremar et al., 2017). 

In addition, the use of alternative fuels such as liquefied natural gas (LNG) (Pavlenko et al., 2020; 

Attah and Bucknall, 2015), methanol(Svanberg et al., 2018; Shi et al., 2023), or biofuels(Cesilla De 



Souza and Eugênio Abel Seabra, 2024; Ahmed et al., 2025) has also emerged as a cleaner option, 

with LNG being particularly effective in reducing sulfur oxide emissions. However, the adoption of 

such fuels remains limited due to infrastructure and economic constraints. 

Operational strategies such as speed reduction (slow steaming), route optimization, and the use of 

shore power while berthed can also significantly reduce fuel consumption and thus SO2 emissions, 

especially in coastal and port areas. These measures are often implemented in combination, 

depending on ship characteristics, route planning, and regulatory requirements (Zis et al., 2015; Zis 

et al., 2014).  

We introduce several methods to reduce SO2 emissions from ships in the manuscript, and discuss 

the limitations of these approaches in Section 3.2 

In the manuscript: 

“In 2015, China launched its Domestic Emission Control Area (DECA 1.0) policy, requiring ships 

with compatible facilities in the Pearl River Delta, Yangtze River Delta, and Bohai Rim (Beijing-

Tianjin-Hebei) regions to use fuel with ≤0.5% sulfur content during berthing periods from January 

2016 (Zou et al., 2020; Zhang et al., 2019; Wang et al., 2021). By late 2018, China upgraded the 

policy to DECA 2.0, mandating that all ships operating within China's territorial sea (12-nautical-

mile zone) must use fuel with ≤0.5% sulfur content while sailing from January 2019 onward, and 

≤0.1% sulfur content while at berth, or adopt equivalent emission control measures. For example, 

installing exhaust gas cleaning systems (scrubbers) (Lunde Hermansson et al., 2024; Andreasen 

and Mayer, 2007), adopting alternative fuels like LNG(Pavlenko et al., 2020; Attah and Bucknall, 

2015), methanol(Svanberg et al., 2018; Shi et al., 2023) and biofuels(Cesilla De Souza and Eugênio 

Abel Seabra, 2024; Ahmed et al., 2025), and applying operational strategies such as slow steaming 

and shore power use(Zis et al., 2015; Zis et al., 2014).” Please refer to Line 46-56. 

“Some ships may have started using fuels with slightly lower sulfur content, which led to an increase 

in the frequency of low SO2 plumes. The adoption of low-sulfur fuels was the most common choice 

during this period, as it required little or no modification of existing engine systems (Vedachalam et 

al., 2022; Slaughter et al., 2020). In contrast, due to the high retrofitting costs of engine systems 

and the limited number of ships using LNG, most ports currently do not provide bunkering facilities 

for LNG and other alternative fuels, including biofuels (Vedachalam et al., 2022). Although 

scrubbers allowed the continued use of high-sulfur fuels, their application was constrained by high 

installation costs, long retrofitting times (up to 9 months) (Slaughter et al., 2020), and concerns 

about secondary environmental impacts from waste discharges (Hassellöv et al., 2013; Claremar et 

al., 2017; Thor et al., 2021). Only 3,000/60,000 vessels have been retrofitted with a scrubber system, 

as reported by Slaughter et al. (2020).” Please refer to Line 276-285. 

 

 

Specific comments: 

1. L159: If these differences are caused by irregular ship traffic, this should be assessable in the AIS 

data and should be shown (as already mentioned in general comment 1) 

Response: Thank you for your comment. We have added explicit information on ship traffic at the 

WSW site (2018–2023). As mentioned in our response to General Comment # 1, the newly added 

Figures S1–S2 and Text S1 summarize detailed AIS-based statistics, including daily vessel counts 



(typically over a thousand per day), the proportions of moving vs. stationary ships, vessel-type 

composition (cargo, passenger, fishing, and tanker ships), main and auxiliary engine power, typical 

speeds, as well as seasonal and long-term trends and the occurrence of larger, higher-powered 

vessels. 

In addition, rather than directly using the raw AIS data, we compared the AIS-based bottom-up 

emission inventory with the Ship_related_SO2 derived in this study (which reflects the SO2 

concentration variations attributable to irregular ship activities). The results show that 

Ship_related_SO2 exhibits a stronger correlation with the inventory than either the directly 

observed_SO2 or the Deweathered_SO2, further confirming the validity of our approach. 

Furthermore, the conclusions drawn from our study may provide valuable insights for refining 

future ship emission inventories. Our approach, reason and result are detailed in the supplementary 

materials: (Text S5, S6; Figs. S15, S16), where we describe how AIS data were processed, integrated, 

and converted into emission inventory data to explain temporal variations in Ship_related_SO2. 

Below, we clarify our methodology in two key aspects: 

Firstly, why we did not use raw AIS data such as ship numbers? while the WSW channel experiences 

high vessel traffic (1,000–5,000 ships per day), raw ship counts alone are an inadequate proxy for 

SO2 emissions. This is because vessels vary considerably in operational status (e.g., moving vs. 

stationary, high vs. low speed), size, and proximity to the measurement path. For example, two ships 

passing through the channel may both be counted as "1" in AIS statistics, yet their actual SO2 

emissions could differ by orders of magnitude due to differences in operational conditions and types. 

Secondly, why we used an emission inventory? This inventory integrates multiple ship parameters—

including position, speed, type, and main and auxiliary engine power—to estimate hourly SO2 

emissions. As demonstrated in supplementary materials Figure S15, this method yields significantly 

stronger correlations with ship_related_SO2 (R2 = 0.32–0.54) than raw SO2 concentrations (R2 = 

0.04–0.06). Supplementary materials Figure S16 further shows synchronized temporal trends 

between the inventory estimates and observed Ship_related_SO2, validating the effectiveness of this 

approach. 

It is also worth noting that the development of ship emission inventories from AIS data remains an 

active and complex research field. While methodological refinements are beyond the scope of this 

study, we adopted a well-established inventory methodology (detailed in the Text S6) to ensure a 

meaningful and practical comparison with our observed results. We have also added clarifications 

in the manuscript and updated the supplementary material (Text S5, S6) to explain our AIS data 

processing methodology and justify the use of the emission inventory as the most representative 

dataset for shipping activity. 

In the manuscript: 

“In addition, a ship emission inventory based on AIS data was constructed, which further supports 

the interpretation of the variability observed at WSW (Text S5).” Please refer to Line 205-206. 

In supplementary materials: 

Text S5. Comparison Between Observational Data and AIS-Based Ship Emission Inventory. 

“In the paragraph of this supplementary material, we compared Ship_related_SO2 derived from 

DOAS observations with those estimated by traditional bottom-up ship emission inventories, 



discussed the similarities and differences in outcome trends between the two approaches, and 

identified the underlying causes. AIS data provides detailed information on ship activities and is 

commonly used for calculating ship emission inventories on large spatiotemporal scales (Mao et 

al., 2020; Zou et al., 2020).  

The reason for employing a comprehensive ship emission inventory from AIS, rather than relying 

on any single ship parameter (e.g., ship count, engine power, or speed), is as follows: While 

parameters like ship count, main engine power, and speed are valuable indicators, they are 

independently insufficient to accurately represent actual SO2 emissions. This is because emissions 

are the product of a complex interplay of these factors. For instance: A high-powered ship moving 

slowly may emit similarly to a lower-powered ship at high speed; A stationary ship using its 

auxiliary engine for onboard services may emit more than a ship maneuvering at low speed with its 

main engine at idle; Simply counting all vessels equally ignores the vast differences in emission 

potential between a large container ship and a small fishing boat.  

Therefore, a bottom-up emission inventory methodology was adopted (Text S6). This approach 

synthesizes the key parameters derived from AIS data—including ship type, instantaneous position 

and speed, and installed main and auxiliary engine power—into a holistic framework. By applying 

standardized emission algorithms and fuel sulfur content assumptions, this inventory translates 

dynamic ship activity into estimated hourly SO2 emissions.  

The scatter plots in Figure S15 illustrate the correlation (R2) between ship emission inventory-based 

SO2 emissions and the 14-day mean SO2 concentrations based on observation at the WSW site. In 

the process of removing meteorological influences and land-based emissions, the correlation 

between the ship emission inventory and SO2 concentrations progressively improves step by step. 

For the period from 2018 to 2020, the R2 increases from 0.064 (Observed_SO2) to 0.154 

(Deweathered_SO2), and further to 0.32 (Ship_related_SO2). Similarly, for the period from 2021 to 

2023, the R2 rises from 0.043 (Observed_SO2) to 0.163 (Deweathered_SO2), and ultimately reaches 

0.54 (Ship_related_SO2). This trend underscores the effectiveness of the combined meteorological 

normalization and land-based emissions subtraction processes in refining our understanding of 

Ship_related_SO2 contributions. Compared with directly observed_SO2, the emissions inventory 

explains the trend of Ship_related_SO2 changes better. 

Figure S16 illustrates the 14-day mean variations of Ship_related_SO2 concentrations and ship 

emission inventory in the WSW from 2018 to 2023. During the policy adjustment period (2018–

2020), both the Ship_related_SO2 and the corresponding SO2 emissions in the inventory showed a 

gradual decline. If all ships had complied with the low-sulfur fuel policy, SO2 emissions from ships 

would have shown a sharp decrease at the early stage of policy implementation, as illustrated in 

Figure S16c. However, due to the presence of non-compliant ships (as discussed in Sections 3.2 and 

3.3), the reduction in SO2 emissions from ships has been a gradual process, as shown in Figure 

S16a. While the consistency between Ship_related_SO2 and the inventory improved during the 

policy stabilization period (2021–2023) in Figure S15f, which means that the fuel use of ships is 

closer to the policy requirements.” 



 

Figure S15. Correlations between 14-day mean SO2 concentrations (x-axis) at WSW site and 

ship SO2 inventory (y-axis), divided into three categories: (a, d) Observed_SO2 concentrations, 

(b, e) Deweathered_SO2 concentrations, and (c, f) Ship_related_SO2 concentrations. (a–c) 

correspond to the policy adjustment period from 2018 to 2020, while panels (d–f) represent 

the policy stabilization period from 2021 to 2023. 

 

Figure S16. 14-day mean variations of Ship_related_SO2 concentrations and emission 

inventory in the Wusong channel from 2018 to 2023. (a) and (b) represent the 14-day mean 

Ship_related_SO2 derived from observations for 2018–2020 and 2021–2023, respectively. (c) 



and (d) show the corresponding 14-day mean SO2 emissions from the ship emission inventory 

during the same periods.  

 

2. L173: Was there a strong reduction in ship traffic in 2020 due to COVID19 compared to the other 

years? Is this decrease in WSW data maybe influenced by the lack of observational data in 2020?  

Response: Thank you for your comment. According to the newly added Figure S10, ship traffic in 

the 4-km radius around the WSW site showed a clear increasing trend from 2018 to 2023, with daily 

average ship number of 1037 ± 247, 1178 ± 312, 1223 ± 353, 1268 ± 363, 1507 ± 489, and 1939 ± 

594, respectively. This supports our description of steadily growing shipping activity at WSW. 

Although the total number of vessels in 2020 remained higher than in 2018 and 2019, there was 

indeed a temporary reduction during the most severe COVID-19 lockdown period (January–April 

2020), when the daily average dropped to 916 ± 406 vessels, lower than in the same months of 2018 

(937 ± 264) and 2019 (1002 ± 309). Therefore, while the pandemic temporarily suppressed traffic, 

it did not reverse the long-term growth trend of shipping activity at WSW. 

Regarding your second question on whether the observed decrease at WSW may be influenced by 

the lack of measurements in 2020: as also discussed in our response to General Comment #4, we 

acknowledge that the gap-filled values could slightly underestimate SO2 concentrations. A short 

validation using an independent 2024 dataset suggested a possible bias of about –0.04 ppbv 

(Predicted minus Observed). However, a longer-term comparison over 2018–2023 showed an 

extremely small residual at WSW (–0.0032 ppbv; see Text S3 and Figures S4–S5), indicating that 

the model reproduces long-term variations reliably. Even if SO2 concentrations in 2020 were 

adjusted upward by 0.04 ppbv, the key interannual trend—namely, a decrease from 2018 to 2020 

followed by an increase from 2020 to 2023—would remain unchanged. 

We have added a description of the changes in ship numbers from 2018 to 2023 in the main text, 

presented the temporal variations in ship numbers during this period in Figure S10 of the 

Supplement, and discussed the limitations and uncertainties arising from missing observations in 

Supplementary Text S7. 

In the manuscript: 

“Fig. S12 shows the overall increasing trend in the number of ships from 2018 to 2023, with 

irregular fluctuations within each year.” Please refer to Line 253-254.  

In supplementary materials: 



 

Figure S12. Annual variation of shipping activity in the channel from 2018 to 2023. (a) 

Monthly total number of ships and annual mean values. (b) Yearly ship number by ship type 

(cargo, oil tanker, passenger boat, fishing boat, and harbor boat). (For a more robust 

parameter of activity, a ship emission inventory (Text S7) was created, incorporating ship 

number, type, ME & AEpower, and speed for comparison with Ship_related_SO2) 

Text S7. Limitations and Uncertainties 

“From a measurement coverage perspective, another source of uncertainty arises from the limited 

measurements at the WSW site in 2020 and between July 2022 and July 2023, during which 

reconstructed values were used to fill missing periods. Our validation analysis shows that the gap-

filling model reproduces long-term SO₂ variations reliably, with a mean residual of –0.0032 ppbv 

over 2018–2023 (see Text S3, Figures S4–S5), although short validation samples (e.g., in 2024) 

suggest that biases of up to –0.04 ppbv may occasionally occur. Even if the concentrations during 

2020–2022 were uniformly adjusted by this margin, the main interannual trends—a decrease from 

2018 to 2020 followed by an increase from 2020 to 2023—would remain unchanged. We note, 

however, that the absence of measurements may reduce the number of high-SO2 plumes captured 

during these years. Because our plume-related analyses in Sections 3.2 and 3.3 are based on relative 

contributions rather than absolute plume counts, this influence is expected to be limited, but some 

degree of bias cannot be fully excluded.” 

 

3. L196 to L199: FDU shows a decrease and stabilization at a lower level, while WSW shows a 

decrease and then increases again in 2022 and 2023. Please clarify. L196 ~ L199:  

Response: Thank you for pointing this out. We have carefully re-examined the trend descriptions 

and revised the text accordingly to ensure consistency between the observed data and the written 

interpretation. Specifically, we have clarified that: 

“After normalizing for meteorological influences, the deweathered SO2 concentrations 

(Deweathered_WSW and Deweathered_FDU) represent a time series with meteorological 

variability removed. These deweathered values is overall higher than the observed concentrations. 

Deweathered_FDU shows a decreasing trend in 2022 followed by a stabilization in 2023, while 

Deweathered_WSW exhibits a decline since 2018 and an increase again in 2022 and 2023.” Please 

refer to Line 222-225.  



 

4. Add Figure S6 to Figure 6, because it is an important piece of information for your reasoning. 

Response: Thank you for your comment. We already adding Figure S6 of the Supplement to Figure 

6. In the revised manuscript, you can see the trend of the concentration distribution of SO2 ranging 

from 2 ppbv to 30 ppbv. The corresponding description has also been modified. 

 

Figure 6: Yearly variation in SO2 plume proportions and baseline level from 2018 to 2023. (a-f) 

Number of SO2-rich plumes within different concentration ranges divided by the total valid spectra 

for each year. (g) Annual baseline concentrations of SO2 obtained through the BEADs algorithm. 

Please refer to Line 307-310. 

 

Technical corrections: 

1. L12: Zhou should be capitalized. 

Response: Thank you for pointing this out. We have corrected the capitalization and now “Zhou” 

is properly capitalized. Please refer to Line 12. 

 

2. L125: please add a reference for the ERA5 dataset. 

Response: Thank you for your comment. We have revised the manuscript to include a description 

of the ERA5 dataset and added appropriate references. The revised sentence now reads: 

“All meteorological data used in this study were obtained from the fifth-generation European Centre 

for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, known as ERA5, which 

provides hourly around-the-clock meteorological factors from surface up to 0.01 hPa (spanning 137 

vertical levels) with a spatial resolution of 0.25° × 0.25° (Marshall, 2000; Hersbach et al., 2020).” 

Please refer to Line 164-169. 

 

3. Figure 4: here CDECA is mentioned, but this is not mentioned or explained anywhere else, please 

clarify. Also, there is a typo in “low-sulfur fuel oil” right before “CDECA” in this Figure. 



Response: Thank you for your comment. We have revised the Introduction to explicitly clarify the 

timeline and sulfur content limits of China emission control policies. The previously used 

abbreviation “CDECA” has been replaced by “DECA 2.0” for consistency. We also revised the 

description in Figure 4 about “low-sulfur fuel oil”. 

“In 2015, China launched its Domestic Emission Control Area (DECA 1.0) policy, requiring ships 

with compatible facilities in the Pearl River Delta, Yangtze River Delta, and Bohai Rim (Beijing-

Tianjin-Hebei) regions to use fuel with ≤0.5% sulfur content during berthing periods from January 

2016 (Zou et al., 2020; Zhang et al., 2019; Wang et al., 2021). By late 2018, China upgraded the 

policy to DECA 2.0, mandating that all ships operating within China's territorial sea (12-nautical-

mile zone) must use fuel with ≤0.5% sulfur content while sailing from January 2019 onward, and 

≤0.1% sulfur content while at berth, or adopt equivalent emission control measures.” Please refer 

to Line 47-53. 

 

Figure 4: Monthly Observed_SO2 concentrations based on DOAS and Deweathered_SO2 after 

weather normalization in WSW and FDU, and Ship_related_ SO2 contributions during 2018-2023. 

(a) The light purple bars represent the monthly average Observed_SO2 concentration at WSW; The 

solid black circles represent the deweathered SO2 concentration at WSW after removing 

meteorological influences. The gray star symbols indicate the monthly average contribution of 

Ship_related_SO2. (b) The light blue bars represent the monthly average observed SO2 

concentration at FDU; The solid black circles represent the Deweathered_SO2 concentration at 

FDU removing meteorological influences. Please refer to Line 209-216. 

 

4. L250: Please verify 2023, I think it should be 2021. 

Response: Thank you for pointing this out. We have carefully checked the sentence and confirmed 

that the correct year should indeed be 2021. This has now been corrected in the revised manuscript. 

“The baseline was highest in 2018 and subsequently exhibited a declining trend from 2018 to 2021, 

followed by an increase from 2021 to 2023, consistent with the variation in Ship_related_SO2 

observed in Section 3.1.” Please refer to Line 287-288. 

 



5. Supplement: 

"𝑚𝐿𝐹/𝑎𝐸𝐹: Main engine/auxiliary engine emission factor, g/kWh", I think mLF needs to be changed 

to mEF. 

Response: Thank you for pointing this out. We have corrected the typo in the Supplement: “𝑚𝐿𝐹” 

has been changed to “𝑚𝐸𝐹” to accurately represent the main engine emission factor. 

“𝑚𝐸𝐹/𝑎𝐸𝐹: Main engine/auxiliary engine emission factor, g/kWh;” 
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