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S1 Example of the Douglas Peucker sampling scheme
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Figure S1. Douglas-Peucker sampling points for sample size 10, 50, and 100 for the training period of the Iller catchment.
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S2 Comparison learning curves using the Kling Gupta efficiency (KGE)

Figure S2 compares the learning curves of the different data- and process-based models for the three study catchments Iller,

Saale and Selke using the KGE as evaluation metric. Note, that the learning curves are made for the validation period, not the

calibration period.
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Figure S2. Learning curve using the continuous random sampling strategy for the different models and catchments, Kling Gupta efficiency,

KGE. The closer the values to 1 the better the model performance.

S3 Comparison sampling schemes using the Kling Gupta efficiency (KGE)

Figure S3 compares the learning curves of the HBV model for three different sample schemes (optimal = Douglas-Peucker,

random, random consecutive) for the three study catchments Iller, Saale and Selke using the KGE as evaluation metric. Note,

that the learning curves are made for the validation period, not the calibration period.

S4 Comparison model performance with different level of discretization of model forcing using the Kling Gupta

efficiency (KGE)

Figure S4 compares the KGE values when forcing the HBV model once with lumped and once with semi-distributed, i.e.

sub-catchment wise, meteorological input for the three study catchments Iller, Saale and Selke.
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Figure S3. Learning curves using Kling Gupta efficiency, KGE. Three different sampling schemes are compared for the HBV model and for

the three study catchments Iller, Saale and Selke. The closer the values to 1 the better the model performance.

Table S1. Parameter ranges GR4J, plus snow parameters

Parameter Min Max Description

x01 0.01 1.5 Capacity of production store

x02 -5.0 5.0 Water exchange coefficient

x03 1.0 500 Capacity of routing store

x04 0.5 5.0 Time parameter of unit hydrograph

x05 0.0 500 Average annual snow

x06 0.01 0.99 Air snow coefficient

S5 Parameter ranges for the different process-based models

S6 Settings Latin Hypercube Sampling

For the Latin Hypercube Sampling, all model parameters were sampled in their provided range in 1,000 repetitions. All re-

sulting 1,000 model runs, can be considered at once to cover all 10 sample sizes since the sampling strategy is independent of

the model performance of previous runs. In contrast, evolutionary algorithms such as dynamically dimensioned search (DDS,

Tolson and Shoemaker (2007)) or shuffled complex evolution algorithm (SCE-UA, Duan et al. (1992)) define their search based
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Table S2. Parameter ranges SWAT+.

Parameter Min Max Description

snomelt_tmp -2.0 2.0 Snowmelt temperature [◦ C]

esco 0.0 1.0 Soil evaporation compensation factor

epco 0.0 1.0 Plant uptake compensation factor

cn3_swf -0.5 0.5 Soil water factor for cn3

awc 0.0 0.2 Available water capacity of soil layer

k 0.5 2.0 Saturated hydraulic conductivity

lat_ttime 0.5 50 Lateral flow travel time

perco 0.0 1.0 Percolation from upper to lower tank

alpha 0.0 1.0 Baseflow factor

surlag 0.2 8.0 surface runoff lag coefficient

cn2 -10 10 SCS curve number for moisture condition II

Table S3. Parameters ranges HBV model.

Parameter Min Max Description

TT -2.5 2.5 Threshold temperature [◦ C]; threshold defining over which air temperature

snow is melting and under which snow is accumulating

SFCF 0.8 1.2 Snow correction factor[-]; correcting the snow input to account for gauge under-

catch (overcatch)

CFMAX 2.0 15 degree day factor [mm/d ◦ C]; defining the rate of snowmelt per degree temper-

ature

LP 0.0 1.0 threshold reduction ETP [-]; reducing the potential ET to estimate actual ET

FC 50 1000 Maximum storage in soil box [mm]; defines the size of the soil bucket

BETA 1.0 5.0 Shape coefficient [-]; shapes the relation between soil moisture [mm] and frac-

tion of rain (or snowmelt) and thus its relative contribution to runoff

Alpha 0.0 1.0 Shape coefficient [-]; shapes the relation between water storage in the upper

groundwater (gw) bucket and drainage

K1 0.01 0.4 Recession coefficient (upper gw bucket) [1/d]

PERC 0.0 6.0 Max. flow from upper to lower gw box [-]

K2 0.0001 0.1 Recession coefficient (lower gw bucket) [1/d]

MAXBAS 1.0 5.0 Factor triangular weighting [d]
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Figure S4. Learning curves using Kling Gupta efficiency, KGE. Three different sampling schemes are compared for the HBV model and for

the three study catchments Iller, Saale and Selke. The closer the values to 1 the better the model performance.

on the model performance value of previous runs, the sampling would be unique for each sample size. Therefore. each of the

30 repetitions would have to run separately for each sample size (10 times more computational effort). The Latin Hypercube

Sampling was performed by using the Python framework SPOTPY (Houska et al., 2015).
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Table S4. Ranges of global mHM gamma parameters.

Parameter Min Max Description

snowThresholdTemperature -2.0 2.0 Threshold for rain/snow partitioning [◦ C]

minCorrectionFactorPET 0.7 1.3 Minimum factor for PET correction with aspect [-]

orgMatterContent_forest 5.0 10.0 Organic matter content [%] for forest

orgMatterContent_impervious 0.0 1.0 Organic matter content [%] for impervious

orgMatterContent_pervious 1.0 5.0 Organic matter content [%] for pervious

PTF_lower66_5_constant 0.75 0.8 Zacharias PTF parameters below 66.5% sand content

PTF_lower_66_5_Db -0.27 -0.25 Zacharias PTF parameters below 66.5% for mineral bulk density

PTF_Ks_constant -1.2 -0.285 PTF parameters for saturated hydraulic conductivity

PTF_Ks_sand 0.0006 0.026 PTF parameters for saturated hydraulic conductivity for sand

PTF_Ks_clay 0.003 0.013 PTF parameters for saturated hydraulic conductivity for clay

infiltrationShapeFactor 1.0 4.0 Shape factor for partitioning effective precipitation into runoff and infiltration

based on soil wetness [-]

slowInterflowRecession_Ks 1.0 30 Multiplier for variability of saturated hydraulic conductivity to derive slow in-

terflow recession constant

exponentSlowInterflow 0.05 0.3 Multiplier for variability of saturated hydraulic conductivity to derive slow in-

terflow exponent

rechargeCoefficient 0.0 50 Groundwater rate parameter
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