
Response to Reviewer 1 
 
We thank Reviewer 1 for your thoughtful comments and valuable suggestions, with which we 
fully agree with. In this revision, we have made several major changes to address your concerns, 
as detailed in our point-by-point responses below. These revisions are also shown in the tracked-
changes version of the manuscript submitted with this response. 
 
This study presents a convolutional neural network (CNN) framework—TCNN v1.0—for 
retrieving key tropical cyclone (TC) intensity and structure metrics, such as maximum sustained 
wind speed (VMAX), minimum central pressure (PMIN), and radius of maximum wind (RMW), 
from gridded climate data. A major strength of this framework lies in its ability to infer realistic 
TC intensity characteristics from relatively coarse-resolution reanalysis (MERRA-2), addressing 
a long-standing challenge in global climate models where TC structures are typically under-
resolved. The authors argue that this approach has the potential to improve TC intensity 
estimation from both current numerical weather predictions and future climate model outputs. 
 
Your evaluation and positive comments on our work are appreciated. We wish to take this 
opportunity to re-emphasize two key points that we have not been able to fully convey in our 
previous version: 
 Climate datasets like MERRA-2 contain some meaningful environmental information about 

TC intensity and structure that deep learning (DL) models can effectively learn, even at 
coarse spatial resolutions. This environmental information allows DL models to retrieve TC 
intensity and structure much better than the traditional vortex tracking methods that directly 
calculate the maximum wind speed or the minimum central pressure on the climate data grid. 

 Despite this promising capability, we also highlight that the MERRA-2 dataset has inherent 
limitations in representing TC fine-scale features for DL models to learn as with any other 
climate reanalysis products. Due to the lack of these fine-scale processes, our DL model 
performance appears to reach an upper limit beyond which further improvements are 
unlikely, regardless of the DL model tuning or architectures. The results presented in this 
study may thus represent the maximum capacity of DL-based TC intensity/structure retrieval 
from coarse-resolution datasets that we wish to present. 

These insights are important, as they have not been discussed in previous literature, particularly 
in the context of TC climate downscaling from gridded climate data. We are currently working 
on a follow-up study focused on the second bullet point above, as it has significant implications 
for future machine learning applications in TC research. In this study, we acknowledge that this 
second point is more like a hypothesis, as it is only partially supported in the present work and 
remains to be fully demonstrated. We hope these clarifications help place our study in a broader 
context and convey its potential implications more clearly. 
 
The study includes a thorough analysis of model sensitivity to input variables, domain 
configuration, and especially data sampling strategies. The results underscore the importance of 
proper train-test data partitioning, as the model’s performance degrades substantially when tested 
on unseen TCs using a chronological split. This finding is important and well-motivated. 
However, if the generalization issue is one of the study’s key conclusions, the decision to report 
the model’s primary performance metrics based on random sampling (where samples from the 
same TC may appear in both training and test sets) needs further justification. Specifically, while 



the reported RMSE for VMAX prediction (7.11 kt) appears to outperform previous methods, this 
result may overestimate the model's actual predictive capability, as the RMSE increases to 19.2 
kt under a more realistic chronological split. 
 
We agree with your comments. Our previous abstract was indeed unclear and incomplete, as we 
meant to report both the best possible performance with our TCNN model in retrieving TC 
intensity that we can achieve with the random sampling and the other performance with sampling 
by year. It is not our intention to claim that our TCNN model is better than previous retrieval 
methods based on satellites, because our focus here is on retrieving TC intensity from gridded 
climate dataset, which differs from previous studies that focused on retrieval from satellite 
images or radar data. In this revision, we have revised the abstract, the result discussion 
extensively as well as our conclusions to avoid the misleading information as in our previous 
version.            
 
Furthermore, the authors cite existing studies such as Chen et al. (2019), which also employ 
CNN-based approaches to retrieve TC intensity from satellite data. Since Chen et al. used a 
chronological split in their validation, a more direct and critical comparison would be 
appropriate, even if the architectures and input data sources differ, especially given the common 
goal of improving TC intensity retrieval. 
 
Thank you for pointing this out, which is again related to the unclear discussion of our results as 
we responded to your comment just above. We wish to mention again that our main focus here is 
quite different from what presented in Chen et al. (2019) in the sense that we want to retrieve TC 
intensity/structure from coarse-resolution gridded climate data for climate downscaling purposes, 
while Chen et al. (2019) applied DL to satellite imagery for operational forecast. This distinction 
was not clearly highlighted in our previous work, but it is in fact a key part of this study because 
gridded climate data contains much different information about TC intensity from satellite 
imagery. In particular, gridded data like MERRA-2 does not contain full TC structure that can be 
matched with an observed TC intensity. Thus, there is a limit on how much we can retrieve TC 
intensity from gridded climate data. Chen et al. (2019) on the other hand presented the TC 
intensity retrieval from a different perspective, with satellite images as an input. Thus, their 
results are more applicable to real-time forecast, while our results are more applicable to climate 
research such as downscaling future projection. We hope this revision could make this point 
clearer.   
 
These issues also call into question the core assumption of the study—that ambient 
environmental conditions at 0.5° resolution contain sufficient information to estimate TC 
intensity. If the model struggles to generalize to new TCs, this may suggest that it is learning TC-
specific patterns rather than robust physical relationships. As this assumption is foundational to 
the study’s broader claims, especially regarding the potential application to future climate 
projections, further justification or clarification is needed. 

This is in fact one of the two key points we wish to emphasize. For reference, we now include in 
this revision (Figures 2, 3, and 4) the direct calculation of TC intensity/structure from MERRA-2 
grid data based on vortex tracking methods commonly used in previous studies for downscaling 
TC intensity climatology. When compared to observed TC intensity, it is evident that these 



directly-computed intensities significantly underestimate actual TC intensity, particularly for 
storms reaching Category 1 or higher. 

In contrast, our TCNN model, which assumes that environmental conditions contain useful 
signals for intensity estimation, demonstrates markedly improved performance in retrieving TC 
intensity and structure even with chronological sampling (as shown in Figures 2, 3, and 4). While 
our model operates at a relatively coarse resolution of 0.5°, its ability to extract meaningful 
environmental signals represents a significant scientific finding. This result supports the premise 
that accurate representation of storm-scale environmental features is critical for predicting TC 
intensity changes. We have accordingly revised Figures 2, 3, and 4 and added new Figure 5 to 
better illustrate the relative performance of intensity retrieval from our DL model versus 
traditional vortex tracking methods, which underscores the role of environmental information in 
improving TC intensity prediction as we want to present in this study. 

The sensitivity test on domain size (Section 3.2.1) is informative, and the conclusion that a 
25°×25° input domain yields the best performance is reasonable. Still, more discussion linking 
the domain size results with those from model architecture and convolutional kernel experiments 
would strengthen the study. This would also help clarify how spatial context is encoded and used 
by the CNN. Similarly, the reported seasonal variation in TCNN performance deserves more 
physical interpretation, particularly regarding how environmental influences on TC intensity may 
vary by season. 
 
For the domain size sensitivity, we note that the domain of 25x25 degree would correspond to an 
area of radius 1600 km around a TC center. This domain is sufficiently large to include all TC 
basic structure including the far-field outflow and related subsidence, which can account for TC-
environment interaction and explain for the better performance of our TCNN model as obtained 
in this study. However, this domain size comes with an issue that the sample size is now 
significantly reduced after we pre-process the training data, thus making it less robust. We have 
included this discussion in this revision to provide readers with more information. 
 
For the seasonal variability, we note that TC seasons generally peak from May-October with an 
average of 3-4 storms per month, while the off-peak winter months has an annual average < 1 
storm on average. With such a lack of TC statistics for the off-peak winter period, our DL model 
cannot provide a reliable result, consistent with the larger error bars seen in the previous Figure 
10. Any systematic evaluations of environmental conditions during these winter months will 
suffer from the lack of statistical robustness. In this revision, to address your concerns, we have 
revised our previous Figure 9 (which is Figure 10 in this revision) with channel importance 
derived for 2 periods (January-April) and (May-November). These results could help answer 
which environmental factors plays a more important role during the off-peak and the peak TC 
seasons as you commented. We hope this new result could address your concern.     
 
In summary, while this study presents an innovative and potentially valuable approach for 
estimating TC intensity and structure from gridded climate data, the current manuscript does not 
yet provide sufficient justification for its core claims. The reliance on a data sampling strategy 
that inflates performance metrics, coupled with limited generalization to unseen TCs, raises 
concerns about the framework’s robustness and applicability, particularly for future climate 



projections, which inherently involve unseen conditions. Furthermore, the key physical 
assumptions underlying the model are not adequately supported by the results, and the sensitivity 
analyses, while informative, could be more cohesively interpreted to strengthen the physical 
insights. 

With the major revisions outlined above including i) providing a clearer physical interpretation 
of our results, ii) adding new results, iii) better clarification of the significance of our work, and 
iv) correcting several misleading discussions that you pointed out, we hope this revised version 
meets your expectations. We thank you again for your insightful comments and suggestions, 
which have greatly enhanced the quality of our manuscript. 

 
  


