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Abstract. Targeting satellite observations offer a promising avenue for detecting and quantifying anthropogenic greenhouse
gas (GHG) emissions from localized point sources at high spatial resolution. In this study, we assess the detection potential of
the Twin ANthropogenic Greenhouse gas Observers (TANGO) satellite mission, scheduled for 2028, using orbit simulations
and the TNO Global Point Source (GPS) inventory. We examine its target selection approach across three observational scenar-
ios, Clear-Sky, Cloud-Filtered, and Cloud-Forecast, by applying two prioritization schemes (one favoring CH4 point sources
over CO- and the other vice versa). Results show that, under current detection limits (TDL), TANGO can detect a large fraction
of major point sources, identifying ~500 targets per repeat cycle, depending on the prioritization scheme employed. However,
cloud cover significantly reduces observational yield (~64-68% fewer detections). Integrating a cloud-forecast-informed target
selection improves the total number of detected targets by 34.6% under CO, prioritization and 22.1% under CHy4 prioritization
compared to the cloud-filtered scenario, demonstrating the benefits of adaptive observation strategies. We also explore a hy-
pothetical Enhanced Detection Limit (EDL) scenario, representing the potential for future satellites with improved sensitivity.
While EDL extends the range of observable sources, many of these smaller emitters are associated with greater uncertainties,
highlighting the importance of well-characterized retrieval precision. Finally, we discuss the potential benefits of a satellite
constellation, which could enhance revisit times and observational frequency for sources of key interest. Our results demon-
strate TANGO as a case study for the capabilities and challenges of next-generation targeting satellite missions, highlighting

the importance of high-resolution GHG monitoring and cloud-aware adaptation for improving global emission quantification.
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1 Introduction

We are entering a climate regime where warmer conditions are becoming the norm, unprecedented in recorded human history.
Anthropogenic greenhouse gas (GHG) emissions, particularly carbon dioxide (CO3) and methane (CHy), are driving this shift
through their relatively long atmospheric lifetimes and strong infrared-absorbing properties, thereby amplifying radiative forc-
ing. The latest ERC report on GHG emissions of all world countries (Crippa et al., 2023) indicated that global anthropogenic
GHG emissions increased by 62% in 2022 compared to 1990 levels. Thus, tracking and recording anthropogenic CO and CH,4
emissions are pivotal factors influencing international and national carbon quantification systems.

Major human-induced sources of CO- include fossil fuel combustion, such as coal, natural gas, and oil; clearing of forests
and other land use changes; and industrial processes like cement manufacturing (Friedlingstein et al., 2023). Anthropogenic
sources of CH, include activities such as cattle farming, rice cultivation, natural gas production and distribution, oil produc-
tion and associated gas venting, coal mining, municipal solid waste from landfills, and wastewater treatment (Olivier, 2022).
The global carbon cycle absorbs some of these emissions; however, a significant part of CO5 remains in the atmosphere, in-
creasing concentrations (Friedlingstein et al., 2023). CHy4, while accounting for a smaller portion compared to CO; in the
atmosphere, has approximately 28-34 times more global warming potential over a 100-year period than CO, (Myhre et al.,
2013). Therefore, addressing both CO, and CHy4 emissions is vital for effectively mitigating climate change (Etminan et al.,
2016).

At the forefront of counteraction strategies is the Paris Agreement, which came into effect in 2016. As of December 2024,
194 states and the European Union, representing over 98% of global GHG emissions, have signed and ratified the Agreement.
The primary long-term objective of the Paris Agreement is to keep the rising global mean temperature well below 2°C above
pre-industrial levels while striving to limit the rise at 1.5°C (UNFCCC, 2015). However, recent climate data indicate that
2024 is the first year where global temperatures have surpassed this 1.5°C threshold, with an annual average temperature of
approximately 1.6°C above the 1850-1900 baseline (World Meteorological Organization, 2025; Copernicus Climate Change
Service, 2025; McCabe, 2025). This milestone underscores the accelerating pace of global warming and places additional
pressure on international climate mitigation efforts. Yet, progress toward these goals remains uncertain. Despite temporary
reductions in CO; during unprecedented events like the COVID-19 pandemic (Le Quéré et al., 2020; Liu et al., 2020), achieving
the Agreement’s goals calls for more comprehensive global actions beyond CO5 reductions. This realization led to the Global
Methane Pledge at COP26 in November 2021, in which the participating parties committed to significantly reducing methane
emissions (Malley et al., 2023).

To alleviate the effects of climate change due to the rise in GHG concentrations, we require reliable climate predictions.
This mandates a thorough understanding of the sources and sinks of CO5 and CH,4, which cannot be fully addressed by the
limited spatial coverage of ground-based measurement techniques, regardless of their high accuracy (Jacob et al., 2022; Zhao
et al., 2023). Hence, we utilize satellite remote sensing to fill these data gaps with precise and accurate measurements of

column-averaged dry air mole fraction of COs and CHy, i.e., XCO, and XCH, (Butz et al., 2011; Jacob et al., 2022).
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Satellite measurements of XCO» and XCH, can be broadly classified into two categories: mapping satellites and targeting
satellites. Mapping satellites such as GOSAT, OCO-2, OCO-3, Sentinel-5 Precursor, and Sentinel 5 provide ground pixel
resolution on the order of kilometres (1-10 km) and are designed to capture natural carbon fluxes on a subcontinental scale
(Eldering et al., 2017; Wang et al., 2019; Lorente et al., 2021). They have broader scanning swath widths spanning from 300
to 3000 km and, under favorable conditions, can also be used to measure large emission sources (Nassar et al., 2017; Reuter
et al., 2019; Pandey et al., 2019; Hakkarainen et al., 2021; Sierk et al., 2021).

To ensure accurate quantification and precise anthropogenic carbon emission reporting, we require systems that can detect
and quantify relatively smaller emissions left out by mapping satellites. Targeting satellites provide a new avenue in this
context due to their ground pixel resolution ranging from several tens to a few hundred meters, depending on the mission. Such
high resolution enables these satellites to target smaller emission sources and allows for the visualization of plume imagery,
providing emission attribution to sectors such as coal-fired power plants, fossil fuel production, large industrial facilities, and
landfill sites (Qian, 2021; Guanter et al., 2021; Irakulis-Loitxate et al., 2022; Sherwin et al., 2023). Advances in satellite
technology, such as the compact spectrometer concept proposed by Strandgren et al. (2020), have demonstrated the feasibility
of monitoring localized CO2 emissions from medium-sized power plants, a critical yet under-monitored category contributing
significantly to global emissions.

Despite their capabilities, targeting satellites come with their own challenges. Their narrower swath width, ranging from 30
to 50 km, creates difficulties in achieving global coverage within a reasonable number of overpasses. Hence, these missions
demand careful planning and policy for prioritizing target selection to maximize their observational capabilities. Global cloud
coverage is the other major challenge, as approximately 70% of the Earth’s surface is covered by clouds at any given moment
(Stubenrauch et al., 2013). This is a general challenge of GHG remote sensing using satellite observations, as cloud cover
significantly obstructs visibility and reduces the number of viable targets, directly affecting observational yield.

In this work, we explore the potential of targeting satellites in capturing CO5 and CH4 point emitters of lower emission levels.
Satellites such as TANGO, GHGSAT, and CarbonMapper have the ability to maneuver and dynamically adjust observation
plans as they are designed to focus on specific high-priority targets. To assess the feasibility of these systems, we simulate
satellite trajectories under various scenarios to determine how many targets can be observed based on the TNO GPS inventory
(Dellaert et al., 2024). Additionally, we assess the challenge of cloud cover, as it significantly reduces data yield. To address
the challenge of cloud clearing, our study explores the potential benefits of integrating cloud forecast information into satellite
systems to improve target detection efficiency.

The orbital parameters, detection limits, and observational capabilities of the TANGO satellite are used as a proxy to assess
the performance of targeting GHG satellites. The methodologies developed in this study can be extended to or applied to similar
observing systems.

The manuscript is organized as follows. Section 2 introduces the TANGO satellite mission and the global point source
inventory used as a baseline dataset. Section 3 describes the simulation design and methodology. Then, in Section 4, we

present the main results and findings from the simulations under different scenarios, while Section 5 discusses the implications
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of these findings in the context of targeting satellite-based GHG monitoring. Finally, Section 6 concludes the manuscript with

a summary of the key insights and their relevance to future satellite missions.

2 Satellite Parameters and Emission Inventory

This section describes the TANGO satellite mission and the emission inventory used in this study. We first introduce the
satellite’s capabilities, including its observational strategy and detection thresholds, followed by an overview of the Global
Point Source (GPS) Inventory, which provides spatially explicit data on CO, and CH,4 emissions. These elements form the

foundation for simulating satellite-based emission detection.
2.1 TANGO Satellite Mission

The Twin ANthropogenic Greenhouse gas Observers (TANGO) is an upcoming satellite mission scheduled to launch in 2028
as part of the European Space Agency’s (ESA) SCOUT program (Landgraf et al., 2024). The mission consists of two CubeSat
satellites: TANGO-Carbon, which focuses on measuring CO5 and CHy, and TANGO-Nitro, which measures NOy emissions,
both targeting point source emitters such as power plants, industrial sites, and oil and gas production facilities. The temporal
co-registration between CO2/CH, and NO, measurements is designed to be less than 60 seconds, enabling synchronized
observations of co-located emissions from the same sources. TANGO-Carbon will measure sunlight reflected by the Earth and
its atmosphere in the 1.6 pum spectral range (1590-1675 nm) with a spectral resolution of 0.45 nm and a spectral sampling
of 0.15 nm. The pushbroom spectrometer is designed to achieve a signal-to-noise ratio of 270 at the spectral continuum of a
reference scene with a solar zenith angle (SZA) of 70°, a viewing zenith angle (VZA) of 0°, and a Lambertian surface albedo
of 0.15 (Lyet = 3.16 x 102 photonssr ' cm™2nm~'s~1). This capability enables the detection of CO, sources larger than
2 Mt/year and CH, sources larger than 5 kt year—!. TANGO-Nitro will use the visible spectral range (400-500 nm band) to
assist in plume detection. The satellite’s narrow swath width of 30 km and ground pixel resolution of approximately 300 meters
make it suitable for detecting localized emission sources. TANGO uses two agile CubeSat satellites, to be launched into a low-
Earth, sun-synchronous orbit at approximately 500 km altitude. The satellites’ agility allows them to dynamically adjust their
observation strategy—through roll, pitch, and yaw maneuvers—enabling them to prioritize and scan high-emission targets,
enhancing their versatility compared to more static satellites. Additionally, TANGO will operate in a late-morning orbit, with
an equatorial crossing time of approximately 10:30, as assumed in this study. In our simulations, the TANGO-Carbon orbital
parameters and detection limits are used as a proxy for the targeting satellites to evaluate their capabilities in measuring point

source targets of CO2 and CH,4 and determining how many of these sources can be detected under various scenarios.
2.2 Global Point Source Inventory

This study uses the TNO Global Point Source (GPS) inventory as a foundational dataset for simulating satellite target selection
and emission data. The GPS inventory provides spatially explicit emission data for point sources of CO2, CH,4, and NO,.

It covers emissions worldwide across key sectors such as power plants, iron/steel production, cement production, refineries,
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Figure 1. Global distribution of CO2 and CH4 emission sources and their cumulative emission contributions based on the GPS inventory. The
left panels show the spatial distribution of CO2 (top) and CH4 (bottom) point sources, with emission rates represented by colour intensity.
The right panels display the cumulative emission distributions for CO2 (top) and CHy (bottom); vertical lines indicate the proportion of

emissions covered under TDL (dashed blue lines) and EDL (dashed purple lines) relative to the point sources included in the GPS inventory.

landfills, coal mines, oil and gas production facilities, and other relevant industries. The dataset is compiled from multiple
regional and global sources, including the CoCO2 2018 global point source database, Climate TRACE, and the Global Energy
Monitor (GEM). Additionally, the inventory includes gridded emission information for diffuse sources, those that could not be
identified as point sources, making the GPS inventory comprehensive for global emission estimates.

Given TANGO'’s detection limits (TDL), a subset of the GPS inventory was created for simulation purposes, containing only
CO, sources with emissions larger than 2 Mt year—! and CHy sources larger than 5 kt year~!. In addition to these baseline
detection limits, simulations were extended to test more optimistic thresholds, including 0.5 Mt year—! for CO5 and 1 kt year—!
for CHy, to evaluate the feasibility of detecting smaller emitters (Enhanced Detection Limits, EDL). These baseline inventories,
derived by applying TDL and EDL thresholds to the TNO GPS dataset, form the foundation for evaluating TANGO’s target

selection strategies and emissions coverage, as further discussed in Sections 4 and 5.
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Figure 1 illustrates the global distribution of CO; and CH,4 emission sources from the GPS inventory. The maps in the left
panels display the spatial clustering of emission sources, while the right panels show the cumulative emission distributions for
CO; and CHy4. These distributions emphasize the contributions of smaller emitters to global totals. This figure parallels the
cumulative emission analysis in Strandgren et al. (2020) (Figure 1), which focused on power plant emissions using similar
methods. Figure 1 expands on this by including CH4 sources alongside CO5 and covering a broader range of industrial sectors.
TANGO’s current detection limits (TDL) (dashed blue lines) capture 54.3% of CO, emissions and 78% of CH, emissions
relative to the large (industrial) point sources included in the GPS inventory, whereas the Enhanced Detection Limits (EDL)
(dashed purple lines) increase the coverage to 89.5% for CO3 and 91.6% for CHy. It should be noted that the GPS inventory,
while comprehensive for industrial point sources, does not cover all anthropogenic emissions. Emissions from sectors such
as road transport, residential buildings, and agriculture (for CHy) are represented as gridded diffuse emissions, which were
not included in this study as we focus exclusively on point sources. According to Dellaert et al. (2024), the total TNO GPS
dataset accounts for 23% of global CH, emissions and 47% of global CO- emissions relative to total anthropogenic emissions
as reported in the EDGAR dataset (Crippa et al., 2023).

An overview of the spatial distribution of TDL and EDL point sources across continents is shown in Figure 2. Under
TDL thresholds, the inventory includes significant emitters across all continents. For instance, in Asia, 1114 CO4 sources
account for 4623.76 Mt year—! of regional emissions, while in North America, 652 CH, sources contribute 5215.88 kt year*.
These numbers reflect the major emitters detectable within TDL, offering insights into the satellite’s immediate operational
capabilities.

Distinct regional patterns also emerge in the emission inventory. Asia’s dominance in CO; and CH,4 emissions reflects its
industrial density and energy demands, whereas North America’s high CHy emissions are driven by its extensive oil and gas
infrastructure. Although Africa and Oceania host fewer emitters within the thresholds, their contribution to total emissions
remains noteworthy.

The non-linear relationship between point source counts and cumulative emissions in Figure 2 underscores the value of
improved detection limits for both CH, and CO. For CHy, increasing sensitivity from TDL to EDL expands the inventory
from 4035 to 11,897 point sources (a 194.8% increase), yet the cumulative emissions increase by only 17.5%. This pattern
indicates that many additional sources included under EDL are smaller emitters contributing less individually. A similar trend
is observed for CO5, emphasizing the importance of incorporating smaller emitters into emission inventories for future missions
to achieve comprehensive monitoring.

While EDL reflects a broader capability beyond TANGO’s immediate scope, these insights align with the mission’s objective
of advancing GHG monitoring technologies. The results serve as a stepping stone for developing similar missions to improve

global emissions inventories and address limitations inherent to current systems.
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Figure 2. Continental distribution of point sources based on the GPS inventory under TDL and EDL. Bar plots show point source counts
for CHy (sky blue) and CO5 (orange) under EDL, with striped patterns representing TDL overlaid on EDL bars. Meanwhile, the line plots
overlay cumulative emissions as a function of these thresholds, with dashed lines representing EDL and solid lines representing TDL. The
line plots are colour-coordinated with their respective y-axes, with sky blue lines and labels representing CH, emissions (kt year') and

orange lines and labels representing CO emissions (Mt year ).

3 Simulation Design and Methodology

In this section, we outline our simulation workflow. We start from the TNO Global Point Source inventory to list all CO5 and
CH, emitters. Next, we define observation schemes based on two detection thresholds (TDL and EDL) and two prioritization
rules: one favoring CO, sources and one favoring CH, sources. Then, for each scheme, we run a four-day orbit simulation
that includes TANGO’s roll and pitch maneuvers and excludes overpasses with solar zenith angles above 70°. After that, we
apply three cloud-treatment approaches: ideal clear-sky conditions, post-selection filtering using MODIS cloud masks, and
pre-selection using cloud forecasts (with a one-day offset test). Finally, we compare, analyze, and discuss the detected targets

under each scenario.
3.1 Satellite Trajectory Simulation

In this study, we employed an orbit simulator to generate satellite trajectories for TANGO. Given the satellite’s orbital param-
eters, a four-day simulation period was selected, as TANGO requires approximately four days to complete one full orbit cycle
and return to the same geographical position (repeat cycle). The simulation replicated TANGO’s orbital motion at an altitude

of 500 km, with a local time of ascending node (LTAN) of 10:30 hours and a near-circular orbit (eccentricity = 0.0).
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Figure 3. Schematic Illustration of TANGO’s dynamic maneuverability using roll and pitch adjustments during an observational cycle. The

plot represents a 10° roll maneuver, showing key stages of satellite operation: reorientation, stabilization, and imaging.

We conducted the simulations for the year 2022 with different periods of four consecutive days to study the seasonal per-
formance dependencies of the mission. Each simulation run started at a different epoch, covering various dates throughout the
year. This approach allowed us to simulate how the satellite would pass over all continents during different seasons, account-
ing for daylight conditions to optimize point source detections. The TANGO mission commits to data quality for solar zenith
angles (SZA) below 70°, and therefore we excluded overpasses with larger SZA in the post-simulation data filtering, as these
conditions are generally unfavorable for imaging due to increased atmospheric path lengths and lower signal-to-noise ratios. It
is important to note that the actual orbital parameters of the TANGO mission may vary, but these simulated trajectories provide

a good approximation for our purpose of understanding the emission target detection capabilities of targeting satellites.
3.2 Satellite maneuverability and Target prioritization strategy

To overcome the challenge of the narrow swath width inherent to targeting satellites like TANGO, the satellite system is
designed to perform dynamic adjustments using its roll, pitch, and yaw angles. This maneuverability allows the satellite to
detect targets within a 30° roll on either side of its orbital path, extending its coverage beyond the narrow nadir-viewing
scenario. For example, during its orbital motion, based on a predefined target list, if a target is located 10° to the left of the
orbital path, the satellite will reorient itself to capture the target and then return to its original position. However, other potential
targets in the vicinity might not be seen during operations as the satellite adheres to a predefined prioritization policy.

Several factors influence this satellite maneuver procedure. Once a target is selected, the satellite requires time for reorien-
tation to that specific angle, followed by a stabilization period to ensure the system is ready for scanning. The satellite then
has a limited imaging window, during which data is recorded. Subsequently, the satellite reverts to its original nadir-viewing
trajectory. Depending on the roll angle and the satellite’s hardware capabilities, this maneuver takes several seconds. Figure 3
provides a schematic representation of the satellite’s maneuvering process.

In this study, we simulated a prioritization policy to address the clustering of point source targets and to exhibit the effects

of these maneuvers. Many point source emitters tend to cluster in specific regions due to the concentration of industrial,
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agricultural, and fossil fuel-related activities or appear within a short time window during the satellite’s overpass. In such
cases, where multiple targets are detected in proximity, targets are selected for scanning based on a predefined prioritization
policy. For this study, we used two distinct prioritization strategies: one prioritizing large CO, emitters and switching to CHy
emitters when no significant CO5 sources were available, and the other focusing on large CH4 emitters and switching to CO2
targets under similar conditions. These strategies were tested across three scenarios—Clear-Sky, Cloud-Filtered, and Cloud-
Forecast—to evaluate the satellite’s detection capabilities under varying conditions. (These scenarios are described in detail in
Sections 3.3 and 3.4). To simulate these scenarios, we explicitly modeled the satellite maneuvers required to target emissions.
The maneuvers were calculated based on the angular location of each target relative to the satellite’s orbital path. This approach

ensured that the simulations accounted for realistic constraints, such as the time required for reorientation and stabilization.
3.3 Cloud Filtering and Target Optimization

Using the processes described in Sections 3.1 and 3.2, we simulated ideal target selection, referred to here as "Clear-Sky con-
ditions." In this scenario, all potential emission sources of CO5 and CHy are assumed to be fully observable without interfer-
ence. However, while the Clear-Sky scenario represents the theoretical maximum detection capacity of the satellite within the
constraints described in the sections above, it does not account for the significant impact that global cloud coverage has on real-
world observations. Hence, to simulate more realistic operational conditions, we incorporated a cloud filtration strategy into our
workflow. We utilized satellite-based cloud mask data from the MOD35_L.2 product (DOI: 10.5067/MODIS/MOD35_L2.061),
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite (Ackerman et al.,
2015). The MODIS cloud mask provides confidence levels for each pixel, categorized as cloudy, uncertain, probably clear,
or confidently clear. Data from individual MODIS granules, representing 5-minute orbital segments, were reprojected onto a
uniform global grid. To reduce data gaps and ensure consistent spatial coverage, we averaged the cloud confidence values over
four days, corresponding to the satellite’s repeat cycle. Only grid cells that remained entirely invalid (e.g. missing data) over the
four days were excluded from further analysis. By incorporating this process, we reduced the rejection of cloud data, ensuring
that observations from partially clear regions contributed to the analysis, thereby improving data retention for target detection
under realistic cloud conditions.

The cloud filtration process involves two steps, as depicted in Figure 4. After selecting the targets, in the first step, we assess
the cloud coverage within a 50 km radius of each emission source. If the cloud cover exceeds 70%, the target is flagged as
unsuitable for observation and excluded from further analysis. This coarse-scale screen balances discarding hopelessly overcast
regions against retaining potentially observable scenes. Krijger et al. (2007) show that allowing up to 20% cloud at footprints of
~10000 km? raises clear-scene yield from ~3% (zero-cloud requirement) to ~17%. By analogy, our 70% cloud cut at 50 km
excludes only the worst 30% of overcast areas while keeping most viable targets. For targets with less than 70% cloud cover,
we proceed to the second filtering step: a localized 3 km-radius check that retains only those with < 30% cloud cover (i.e., >
70% clear pixels). This finer check leverages TANGO’s ~300 m pixels to exploit narrow “windows” through broken clouds.
Frankenberg et al. (2024) demonstrate that ~200 m retrievals boost clear-scene frequency by 5—10x compared to kilometer-

scale footprints. At 300 m resolution, a 3 km circle covers roughly 300 independent pixels, so requiring > 70% clear leaves
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Figure 4. The schematic flowchart shows the logical sequence of the two-step cloud filtering process applied to emission target selection.
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more than 210 valid soundings per target. While this does not imply that retrievals can consistently produce a complete data
product under such conditions, it provides sufficient clear pixels for robust plume detection. Only targets that pass both steps
are considered viable, ensuring a high probability of visibility. These thresholds were chosen based on insights from the cited
studies for simulation purposes and may not universally apply to all regions or cloud types, as persistent cloud formations,
especially in the tropics, might require further refinement. By implementing this filtering mechanism, we better understand the
influence of cloud cover and optimize the selection of realistic target numbers.

By integrating this cloud-clearing methodology, we optimize target selection, offering insights into the influence of cloud
cover on satellite performance and enhancing the overall reliability of our simulations. These results provide a more realistic

understanding of how many emission sources can be detected compared to the idealized clear-sky conditions.
3.4 Cloud-Forecast integration

To improve the detection of targets hindered by global cloud cover, we propose integrating high-resolution cloud forecast
information into the satellite systems. Operationally, we assume forecast fields for the upcoming cycle are available 24 h in
advance, with daily updates to the target list. In the second scenario (Cloud-Filtered), targets are selected solely based on the
prioritization strategy using emission levels without considering the likelihood of clear skies near the targets. These targets
are then filtered using a two-step cloud filtration process (see Section 3.3), removing all targets within cloud-covered regions.

While this ensures that the remaining targets have a higher probability of visibility, the cloud-clearing process significantly

10
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reduces the number of usable targets for the satellite. However, if forecast information on cloudiness is available, observations
could be redirected to alternative targets that are more likely to be clear of clouds, enhancing the overall data yield. The third
scenario (Cloud-Forecast) builds on this concept by integrating cloud forecasts into the target selection process.

In the Cloud-Forecast scenario, we assume perfect forecast data availability, using MODIS cloud mask data (MOD35_1.2
product) as a proxy for high-resolution cloud forecasts. Simulations begin by pre-filtering the GPS inventory through the
two-step cloud filtration process, based on forecast data specific to each four-day simulation cycle, to remove sources likely
obscured by clouds. This results in a refined inventory of emission sources with high visibility potential for each cycle. Dynamic
maneuvering and cluster-based prioritization strategies are then applied to this filtered inventory, incorporating forecast data
to guide the satellite’s trajectory. By identifying and prioritizing alternative targets with better viewing conditions, the satellite
bypasses cloud-covered regions and focuses on observable areas, improving detection efficiency. Since this scenario assumes
no forecast errors, additional post-selection filtering based on actual cloud conditions is not required.

To evaluate the effects of forecast inaccuracies, we introduced a subcase called the “Forecast +1d* scenario. Here, the
MODIS cloud mask data for one four-day period serves as the forecast, while the actual cloud conditions are represented by
a four-day average shifted by one day. Targets are first pre-filtered using the forecast data to create the refined inventory and
plan satellite maneuvers. Post-maneuver, the actual cloud data is applied to filter out any remaining cloud-covered targets,
accounting for errors introduced by the temporal misalignment. This setup represents a simplified model of forecast errors,
evaluating how such inaccuracies might affect target detection. While the Cloud-Forecast scenario assumes perfect forecast
accuracy, the Forecast +1d scenario provides a baseline to estimate detection variability under imperfect conditions. These
scenarios offer a systematic approach to assess how integrating cloud forecasts and accounting for forecast inaccuracies impact

the operational efficiency and detection potential of targeting satellite missions.

4 Results

In our analysis, we evaluated the detection potential of the TANGO satellite under three simulation scenarios: Clear-Sky,
Cloud-Filtered, and Cloud-Forecast. These scenarios examine variations in detection performance under ideal and near-realistic

conditions.
4.1 Evaluation of Simulation Scenarios

The Clear-Sky scenario simulates ideal conditions, with all emission sources observable without cloud interference, provid-
ing an upper limit of the satellite’s detection potential. This case allows us to evaluate the maximum target coverage within
TANGO’s operational constraints, establishing the baseline detection capacity for COs and CH4 point sources. In contrast,
the Cloud-Filtered scenario incorporates realistic global cloud coverage by applying a two-step cloud filtration strategy. This
scenario emphasizes the impact of cloud cover on the satellite’s ability to detect emission sources. Lastly, the Cloud-Forecast

scenario demonstrates potential improvements by integrating cloud forecast data to guide satellite operations.

11
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Figure 5 compares the three simulation scenarios: Clear-Sky (top panel), Cloud-Filtered (middle panel), and Cloud-Forecast
(bottom panel) conditions, based on a four-day simulation period from March 18-22, 2022, representing a northern hemisphere
spring. The light blue bands on the map indicate the width of the satellite’s trajectory, encompassing TANGO’s maximum roll
angle capability, which defines the spatial extent within which targets can be detected.

In each panel, detected targets are colour-coded by emission sector, with COq sources represented by circles and CHy
sources by squares. The figure illustrates the CO, prioritization strategy, where priority is based on emission size, and when
CO, sources are unavailable, large CH4 sources are selected. The middle and bottom panels overlay cloud coverage derived
from MODIS cloud mask data and qualitatively exhibit the impact of cloud cover on target detection. During this four-day
simulation period, the Clear-Sky scenario identifies 435 targets, which are reduced to 120 in the Cloud-Filtered scenario due
to cloud interference. Incorporating cloud forecasts in the Cloud-Forecast scenario improves this detection count to 177. This
visualization highlights the reduction in detectable targets under cloud-covered conditions and demonstrates the improvements

achieved by cloud-forecast integration, which helps circumvent cloud-filled areas.
4.2 Monthly Detection Patterns Across Scenarios

To quantitatively assess target detection, we conducted simulations for the entire year of 2022, generating target counts every
four days. Figures 6 and 7 show the monthly average number of targets detected under each scenario, calculated by averaging
all four-day results within each month. Error bars represent the standard deviation, indicating variability around these monthly
averages. Figure 6 illustrates selected targets under the CO; prioritization scheme for TDL, while Figure 7 depicts results for
the CH, prioritization scheme for both TDL and EDL. In both figures, total counts represent the combined number of detected
CO5 and CHy4 sources.

Even under the same detection threshold (TDL), the total number of targets detected differs between the two prioritization
strategies. Prioritization schemes implemented in this study influence both the relative balance of selected targets (COy versus
CHy) and the total number of detections. This variation arises from the inventory composition. For instance, the baseline
inventory includes 4035 CH,4 sources compared to 1834 COx sources under TDL, and 11,897 CH,4 sources compared to 6766
CO,, sources under EDL. This disparity explains the higher total detections under the CHy4 prioritization scheme, as the larger
pool of available CH, sources leads to more selections. Conversely, CO4 prioritization results in fewer total detections due to
the smaller pool of CO4 sources.

In Figure 6, the blue line represents the Clear-Sky scenario, the green line shows the Cloud-Filtered case, and the orange
line indicates the Cloud-Forecast scenario. This figure illustrates the substantial impact of global cloud cover on detection
capabilities. After applying the two-step cloud filtering, the number of detectable targets is notably reduced. The yearly average
target counts in the Clear-Sky, Cloud-Filtered, and Cloud-Forecast scenarios are 404 £ 6, 128 &£ 2, and 195 + 3, respectively.
This represents a 68% =+ 1% decrease in detectable targets from Clear-Sky to Cloud-Filtered, with the uncertainty propagated
from the standard errors of the mean target counts in both scenarios. This reduction is consistent with global cloud cover
estimates, which indicate that approximately 70% of Earth’s surface is obscured by clouds at any given time, underscoring the

critical role of cloud cover in influencing satellite measurements (Stubenrauch et al., 2013).
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Figure 5. Global distribution of detected CO2 and CH4 point sources based on a four-day simulation period from March 18-22, 2022, under
three scenarios: Clear-Sky (top panel), Cloud-Filtered (middle panel), and Cloud-Forecast (bottom panel) for TDL simulations. Detected
targets are colour-coded by emission sector, with CO2 sources represented by circles and CHy sources by squares. Marker size is scaled
to emission strength within each gas type. Overlaid cloud coverage is categorized as confident clear, uncertain clear, probably cloudy, and
confident cloudy, based on MODIS cloud mask data. The light blue bands indicate the width of the satellite’s trajectory, encompassing
TANGO’s maximum roll angle.

In contrast, the Cloud-Forecast scenario shows a substantial improvement in detection capability, with a 53% + 4% increase

in detectable targets over the Cloud-Filtered scenario. This improvement highlights the potential of near-real-time cloud fore-

13



310

315

320

325

500

+— Clear Sky
i Cloud-Filtered

Cloud Forecast -
—3- Forecast +1d 1

IS
S
3

i

w

=1

3
W

N
S
3

Average Number of Targets Per 4-Day Interval

S
3

Figure 6. Monthly average number of detected emission targets per repeat cycle for CO2 prioritization under TDL (2022). The figure
illustrates the total number of detected targets for each month across four scenarios: Clear Sky (sky blue), Cloud-Filtered (green), Cloud
Forecast (orange), and Forecast +1d (purple). Data points reflect the total averages for CO2 and CHy4 detections combined, with error bars

indicating standard deviations within each scenario.

cast integration in boosting detection efficiency for satellite missions like TANGO, enabling more accurate and adaptive target
selection even under partially cloudy conditions.

To further simulate realistic operational constraints, we evaluated the ‘Forecast +1d’ scenario. This subcase shifts the cloud
forecast data by one day, leveraging MODIS cloud mask data averaged over four days, to model the potential impacts of
forecast inaccuracies. While this approach assumes temporal misalignment, it does not represent a true forecast error scenario
but is a conservative estimate to assess detection variability under operational constraints. The agreement between forecast and
Forecast +1d categorical cloud mask data over the year was 76% =+ 1%, reflecting the impact of the averaging and temporal
shift used in the simulation. The Forecast +1d scenario, represented by purple dashed lines in Figures 6 and 7, illustrates the
impact of forecast error on the target detection count across each prioritization scheme and detection limit setting.

In Figure 6, for the CO, prioritization scheme, the yearly average target count in the Forecast +1d scenario was 153 + 3.
While this is 22% + 2% lower than the Cloud-Forecast scenario (195+ 3), it remains significantly higher than the Cloud-
Filtered case (128 + 2), representing a 20% =+ 3% improvement. Despite a forecast accuracy of approximately 76%, these
results demonstrate that integrating forecast data yields a tangible benefit in enhancing target detection. This finding shows the
value of real-time cloud forecast integration in boosting detection efficiency for satellite missions like TANGO, allowing for
more adaptive target selection even under suboptimal forecast conditions.

Figure 7 presents the detection outcomes under the CHy prioritization scheme, comparing target counts for TANGO’s current
detection limits (TDL) with a lower detection threshold (EDL) representative of a future satellite scenario. Similar to Figure 6,
the scenarios—Clear-Sky, Cloud-Filtered, Cloud-Forecast, and Forecast +1d—are shown with different coloured lines, where

dashed lines represent TDL and solid lines indicate EDL.
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Figure 7. Monthly average number of detected targets per repeat cycle under TDL and EDL with CHy4 prioritization across different simu-
lation scenarios: Clear-Sky (sky blue), Cloud-Filtered (green), Cloud-Forecast (orange), and Forecast +1d (purple). The average number of
detected emission targets is shown on the y-axis, with months on the x-axis. TDL results are represented by solid lines, while EDL results

are depicted with dashed lines.

In the Clear-Sky scenario, the CHy prioritization scheme yielded a yearly average target count of 582 £+ 7 for TANGO
detection limits, which increased to 1157 &£ 15 under the EDL. This substantial increase of 99% =+ 4% accentuates the potential
advantage of improved detection limits, enabling the satellite to capture smaller emitters that are undetectable with current
TANGO capabilities.

The Cloud-Filtered scenario, reflecting realistic cloud cover constraints, shows considerable reductions in target counts, with
a yearly average of 212 4 4 for TDL. The EDL partially offsets this reduction, raising the average count to 398 + 6, an 88%
+ 5% increase over the TDL within the same scenario. This increase reflects the larger pool of detectable targets under the
EDL inventory, which includes smaller emitters that TDL is not designed to capture. However, TDL effectively targets major
emitters, fulfilling its current operational objectives. While cloud cover imposes similar constraints on both thresholds, the
enhanced sensitivity of EDL allows it to detect additional targets in clear-sky regions, translating to relatively higher numbers
under cloud-filtered conditions.

Integrating cloud forecast data in the Cloud-Forecast scenario further improves detection outcomes relative to the Cloud-
Filtered scenario. For TDL, the Cloud-Forecast scenario achieves a yearly average of 272 + 5 targets, marking a 28% =+ 3%
increase over the Cloud-Filtered case. Under EDL, the Cloud-Forecast scenario reaches 527 + 7, representing a 32% =+ 3%
improvement over the Cloud-Filtered case. These results underscore the combined benefit of cloud forecast integration and
enhanced detection sensitivity, which together optimize observational yield even under variable cloud conditions. For TDL,
the Forecast +1d scenario yields a yearly average target of 222 4+ 5, a 4.8% increase over the Cloud-Filtered case. With
EDL, the improvement is more pronounced, with a 7.5% increase, from 398 + 6 in the Cloud-Filtered to 428 + 6. These
results demonstrate that even under a conservative estimate of forecast inaccuracy, integrating cloud forecast data enhances the

detection capabilities, maintaining resilience in achieving target detection under suboptimal conditions.
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Figure 8. Average number of CH4 and CO., targets detected per four-day interval across continents under CHy prioritization for TDL and
EDL detection limits. Detection scenarios include Clear Sky, Cloud-Filtered, Cloud Forecast, and Forecast +1d, as indicated by colour-coded
markers. Solid bars represent CHy4 targets, while striped bars represent CO4 targets for TDL. Scatter squares denote EDL detections using

the same colour scheme: solid colours for CH4 and striped patterns for CO».

4.3 Continental Detection Distribution

Figure 8 presents the continental distribution of selected CH4 and CO; targets under the CHy prioritization scheme. TDL-
selected targets are displayed as bar plots, with solid colours for CHy and striped patterns for COs. EDL-selected targets
are shown as overlaid scatter markers, solid squares for CH4 and striped for COs, illustrating a possible future capability.
The figure highlights how targets are distributed across scenarios and continents, focusing on the operational constraints and
performance of TANGO under TDL. A numerical breakdown of the detected targets under both CHy and CO; prioritization
schemes is provided in Appendix A (Tables Al & A2), summarizing the average number of detected sources per 4-day cycle
across continents for different cloud scenarios.

Compared to the baseline distribution in Figure 2, TANGO effectively selects high-emission targets under operational con-
straints such as maneuvering and prioritization. For instance, in Asia, the baseline TDL inventory includes 2431 CH,4 sources
and 1114 CO; sources per 4-day interval. From this pool, an average of 206 CH4 and 103 CO,, targets are selected in the Clear-
Sky scenario. Similarly, North America contributes 59 CH4 and 14 CO- targets from its baseline pool of 652 CH, and 341 CO4
sources. These results demonstrate TANGO’s focus on significant emitters, enabling efficient use of its limited observational
capacity.

The Cloud-Filtered scenario highlights the challenges posed by cloud cover in target selection. For example, under TDL,
Europe sees 10.8 CHy targets per 4-day interval compared to 43.3 in Clear-Sky, while North America records 21.6 CH, targets
compared to the Clear-Sky scenario of 58.9. However, the Cloud-Forecast scenario demonstrates TANGO’s adaptability, with
forecast data enabling the selection of 28.5 CHy targets in North America, up from 21.6 in Cloud-Filtered. These improvements

emphasize the value of real-time forecasting in overcoming observational limitations imposed by cloud cover.
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The Forecast +1d scenario, incorporating forecast inaccuracies, surpasses Cloud-Filtered conditions. For instance, under
TDL, Asia records 94 CH,4 targets per 4-day interval, compared to 111.6 in Cloud-Forecast and 89.1 in Cloud-Filtered. Sim-
ilarly, Europe retains 8 CO» targets in Forecast +1d, exceeding the 7.3 observed in Cloud-Filtered. These results demonstrate
TANGO’s resilience in maintaining robust target selection capabilities despite forecast variability.

The EDL results, shown as a future capability, highlight the additional detection potential for smaller emitters. For instance,
in Africa under Clear-Sky, the average number of CH, targets increases from 62 (TDL) to 92.5 (EDL). Similarly, in Asia,
CH, targets rise from 206.1 to 303. However, these enhancements represent a hypothetical scenario and are presented as a

supplementary case to demonstrate how advanced detection thresholds could expand the satellite’s observational scope.

5 Discussions

The objective of this study is to verify the capabilities of targeting satellites in detecting CO- and CHy4 point source emissions.
By providing precise observations of individual emitters, targeting satellites complement existing satellite systems and fill
critical gaps in emission inventories. This is pivotal in the context of global climate agreements, where monitoring smaller and
distributed emitters can contribute to more comprehensive carbon budgets.

In our work, TANGO was chosen as the model satellite for simulations, as it represents a near-future realization. Our findings
demonstrate the major role TANGO could play in advancing satellite-based GHG monitoring. By utilizing its Detection Limits
(TDL), the satellite captures major emitters effectively under operational constraints, as evidenced by the scenarios analyzed
in this study. Here, we contemplate the results of our simulations and assess their implications.

The simulations were conducted using two prioritization strategies: CO, prioritization and CHy prioritization. These strate-
gies were chosen specifically to explore TANGO’s capability in dynamically focusing on different types of emitters and do not
represent the actual operational prioritization strategies. TANGQO’s design as a flexible research satellite allows for the devel-
opment of user-defined prioritization schemes tailored to specific mission objectives. For instance, while this study prioritized
high-emission sources to demonstrate detection potential, alternative strategies could target medium emitters, prioritize under-
monitored sectors (e.g., agriculture, small-scale industrial facilities), or address emissions in regions with sparse ground-based
observations. This adaptability makes TANGO a versatile tool for addressing diverse emission monitoring needs.

For this proof-of-concept study, the CO, and CH prioritization schemes served as a baseline to evaluate TANGO’s detection
capabilities. We explored three scenarios to assess performance under varying conditions: Clear-Sky (ideal upper limit), Cloud-
Filtered (realistic global cloud cover), and Cloud-Forecast (which includes a Forecast +1d subcase that incorporates forecast
inaccuracies). The Forecast +1d scenario thus represents a conservative estimate designed to explore detection variability under
worst-case forecast conditions. These scenarios confirm the potential of using cloud forecasts to improve detection efficiency
by focusing on high-visibility regions.

We utilized the TNO global point source inventory to establish a baseline dataset for our simulations under TDL and EDL

thresholds. Under TDL, the inventory contained 4035 CH4 sources and 1834 CO- sources, while EDL expanded the dataset
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to 11897 CH4 and 6766 CO, sources. These baseline datasets served as the global pool from which targets were dynamically
selected in the respective simulations, aligning with the detection limits and prioritization strategies defined in this study.

As illustrated in the cumulative emission distributions (Figure 1), TDL covers 54.3% of global COy emissions and 78% of
global CH4 emissions relative to the point sources included in the GPS inventory. This substantial coverage validates TANGO’s
capacity to optimally target major emitters, even under its current detection thresholds. While the EDL provides more extensive
coverage, raising these percentages to 89.5% for CO5 and 91.6% for CHy, the contributions achieved under TDL maintain their
importance in improving global emissions monitoring.

In the TDL simulations, the yearly average number of detected targets per repeat cycle (four-day interval) varies depending
on the prioritization strategy applied. Under the Clear-Sky scenario, the satellite detected 404 + 6 targets when prioritizing
COs and 582 + 7 for CH,4 prioritization, representing the upper limit of detection. Considering the TDL inventory of 5869
total point sources, this corresponds to approximately 6.8% and 9.9% detection efficiency for COy and CH, prioritization,
respectively. This shows the satellite’s capacity to capture a meaningful subset of high-priority emitters within a single repeat
cycle under operational constraints.

With multiple repeat cycles, a majority of the TDL inventory could theoretically be observed if the satellite prioritized
all point sources equally. However, operational constraints, such as the need for frequent revisits to certain under-monitored
targets, particularly those located in regions with sparse ground-based observations or targets of emerging concern, may alter
this distribution. In such cases, prioritization strategies would need to focus on repeatedly targeting these particular emitters,
likely decreasing the number of unique sources observed per cycle. This illustrates a trade-off between broad coverage and
targeted monitoring, showing the importance of user-defined prioritization strategies to align with specific mission objectives.

One potential refinement for future prioritization schemes could involve coupling target selection with uncertainty metrics in
the GPS inventory. Sources with larger uncertainties could be assigned higher priorities, ensuring that the satellite observations
reduce uncertainty in emission estimates over time. This coupling could also be implemented dynamically, allowing priorities
to evolve as uncertainties are reduced through repeated observations. While this approach improves mission efficiency, it would
require well-characterized and regularly updated uncertainty metrics. As such, fine-tuning prioritization schemes remains an
essential step in optimizing TANGO’s mission operations over the coming years.

Further, in the TDL simulations, for the Cloud-Filtered scenario, the numbers decreased to 128 4 2 for CO4 prioritization
(212 + 4 for CHy4 prioritization) when cloud conditions were considered. The integration of forecast data in the Cloud-Forecast
scenario improved detection, with an average of 195 4 3 targets under COs prioritization (272 + 5 for CHy prioritization).
Finally, in the Forecast +1d subset, where forecast inaccuracies were modeled, the average detection was 153 + 3 targets for
COy, prioritization (222 + 5 for CHy prioritization).

The observed differences between CO2 and CH, detection rates across all scenarios can be attributed to the larger baseline
inventory of CHy sources, which inherently increases the likelihood of detection under the same operational conditions. CHy
sources, often associated with clustered sectors such as oil and gas production or landfills, present more frequent opportunities
for detection within a limited swath width. By contrast, COy sources, typically tied to larger industrial emitters like power

plants and cement factories, tend to be more spatially dispersed, resulting in fewer targets per repeat cycle.
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The seasonal trend in Figures 6 and 7 across scenarios also reveals a lower count of detected targets during the Northern
Hemisphere winter months, as expected from real-world solar illumination conditions. Because targets with solar zenith angles
above 70° are pre-filtered, the number of viable targets is much lower during the winter months in the Northern Hemisphere.
This pattern further illustrates the uneven distribution of point emission sources globally (Figure 1, left panels), with the
Southern Hemisphere’s summer months contributing fewer additional targets due to the relatively low density of emission
sources compared to the Northern Hemisphere (Figure 2).

Cloud cover remains a dominant challenge in satellite-based greenhouse gas (GHG) observations. According to Krijger et al.
(2007), even relatively low cloud fractions significantly affect retrieval accuracy, often necessitating stringent cloud filtering
that compromises data yields. This effect is exacerbated in tropical regions, as demonstrated by Frankenberg et al. (2024),
where shallow cumulus clouds during the wet season limit valid measurements to as low as 0.1% of attempted observations.
Hence, special attention must be directed toward resolving cloud-related challenges to improve the detection performance of
systems like TANGO.

In our study, the Clear-Sky scenario provided an upper limit for TANGO’s detection capability, free from cloud interference.
However, the Cloud-Filtered scenario revealed a substantial reduction in detected targets due to global cloud coverage, with
approximately 68% fewer detections in CO» prioritization and 64% in CH, prioritization. These reductions align closely
with global cloud coverage statistics derived from MODIS cloud mask data that we used in our study, where the yearly
average of "probably cloudy" and "confidently cloudy" conditions (flags in cloud mask data that were considered cloudy in
the simulations) accounts for 70.65%, consistent with the findings of Stubenrauch et al. (2013). Given that much of the Earth’s
surface is persistently cloud-covered, strategies to tackle these obstacles are important for improving satellite detection yields.

One promising avenue for mitigating cloud interference is leveraging finer spatial resolution, as noted by Frankenberg et al.
(2024). Their work suggests that high-resolution systems (~200 m) can exploit gaps between clouds to achieve significantly
higher observational yields, even in cloud-dense regions. With its proposed resolution of 300 m, TANGO is well-equipped to
take advantage of such gaps, particularly in demanding environments like the humid tropics. Additionally, TANGO includes an
exploratory operational mode with a resolution/sampling of 200 m, further enhancing its potential in adverse atmospheric con-
ditions. However, finer resolution alone cannot fully overcome the limitations created by persistent cloud cover, necessitating
additional strategies.

Our study investigated the integration of cloud forecast data as a complementary method to mitigate cloud interference.
By incorporating dynamic forecast information, satellite systems can optimize target selection in near real-time, avoiding
regions with high cloud cover and focusing on high-visibility targets. This cloud avoidance strategy, implemented through daily
updates to the satellite’s predefined target list, has the opportunity to strengthen detection yields. Simulations incorporating this
approach demonstrated marked improvements: target detections increased by approximately 34.6% in CO- prioritization and
22.1% in CHy4 prioritization when compared to the Cloud-Filtered scenario. Even when forecast uncertainties were introduced
in the Forecast +1d subset, the number of detected targets consistently surpassed those achieved with post-filtered static cloud

masking.
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These findings reinforce the utility of integrating forecast-based adaptive strategies into operational satellite systems. While
cloud forecast accuracy and update frequency remain technical challenges, the demonstrated improvements in detection num-
bers present a robust case for their inclusion in future targeting satellite missions. In the context of TANGO, such an approach
complies with its design as a flexible research satellite, capable of dynamically adjusting observation plans to maximize yield
in varying atmospheric conditions.

While TDL represents the current detection limits of TANGO’s operational framework, EDL illustrates the speculative future
potential of next-generation targeting satellites with higher spatial resolution but similar orbital mechanics to TANGO. EDL
scenarios expand observational capability by capturing smaller emitters that are undetectable under TDL. These sources, while
increasing the total number of detected targets across all scenarios, may be associated with larger uncertainties in emission
estimates due to their lower emission strengths. For instance, under Clear-Sky scenarios, CHy targets in Africa increase from
62 under TDL to 92.5 under EDL, while Asia’s CHy targets rise from 206.1 to 303. Across all scenarios, the total number
of detected targets often doubles under EDL compared to TDL, reflecting the broader reach of lower detection thresholds.
Although these results are promising, they represent a hypothetical future capability and should be considered supplementary
to the current mission. The primary focus remains on TDL, which already addresses the lion’s share of global point source
emitters.

Another method for augmenting the number of observable detections is deploying a constellation of targeting satellites akin
to TANGO. Such a fleet of satellites could advance observational capabilities compared to single satellite systems by reduc-
ing revisit times and expanding coverage. Satellite constellations have already been applied in other missions. For instance,
GHGSat employs a constellation of small satellites to monitor methane emissions, improving detection and source attribution
from point sources (MacLean et al., 2024). Similarly, Carbon Mapper plans to deploy a multi-satellite constellation to monitor
CO5 and CH4 emissions with high spatial resolution (Jacob et al., 2022).

While TANGO currently needs approximately four days for near-global coverage, a constellation of four similar systems
in evenly spaced, phased orbits could achieve comparable coverage in one day. Our single-satellite simulations show TANGO
detects about 500 targets per four-day repeat cycle under clear-sky conditions and about 120 under realistic cloud cover. A
four-satellite constellation would therefore provide roughly 500 detections each day, effectively quadrupling the temporal
yield without altering per-satellite performance. The higher revisit frequency would improve monitoring dynamic emission
patterns, such as intermittent releases. Additionally, by increasing the number of satellites, the likelihood of capturing targets
during clear-sky conditions or better exploiting gaps in cloud cover would improve significantly. Frequent revisit cycles would
also facilitate more adaptable prioritization strategies, allowing dynamic reallocation of observation priorities to high-impact
or under-monitored emitters.

The concept of a constellation is not without challenges, including the need for efficient management of multiple satellites,
optimization of deployment strategies, and mitigation of risks associated with orbital congestion and debris (Curzi et al., 2020).
The technical complexity of such coordination, along with the costs of launching and maintaining multiple satellites, cannot be
overstated. Nevertheless, advancements in small satellite technology and the increasing availability of launch services suggest

that a targeting constellation holds substantial promise for advancing global GHG monitoring.
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6 Conclusions

In this study, we assessed the potential of targeting satellites, using the upcoming TANGO mission as a representative case, to
monitor anthropogenic CO5 and CHy4 point source emissions. By leveraging simulations based on TANGO’s orbital parameters,
detection limits, and dynamic maneuverability, we evaluated its capacity to observe major and minor emission point sources
under varying scenarios, including Clear-Sky, Cloud-Filtered, and Cloud-Forecast conditions.

Our results show that TANGO has the potential to detect approximately 500 targets per repeat cycle under current detection
limits (TDL), depending on the prioritization schemes used, covering a significant proportion of CO5 and CH4 point sources
globally. Cloud coverage, however, emerged as a dominant factor influencing detection yields, with approximately 68% fewer
detections for CO4 prioritization in Cloud-Filtered scenarios. Integrating cloud forecast data effectively mitigated this limi-
tation, improving detection yields by 34.6% for CO, and 22.1% for CHy prioritization. Over the full year, TANGO detects
approximately 36,748 targets under COq prioritization in the Clear-Sky scenario, dropping to 10,857 in the Cloud-Filtered
scenario. Cloud-Forecast improves detection to 16,607, while the Forecast+1D scenario yields around 13,016 targets. Since
CHy sources are more numerous than CO» point sources, overall detection counts are higher under CHy prioritization, follow-
ing similar trends. These findings indicate that Cloud-Forecast represents an upper bound on forecast-driven target selection
benefits, while Forecast+1D provides a more realistic lower bound. The difference between these cases shows that forecast
inaccuracies significantly reduce detection gains, limiting the benefits of adaptive targeting.

In addition to the TDL simulations, we also looked into the potential of enhanced detection limits, which captured smaller
emitters and showed promising prospects. Despite the capabilities of the current single-satellite design of TANGO, our study
proposes the deployment of a satellite constellation. A constellation of TANGO-like satellites could significantly reduce revisit
times, improve coverage, and enhance the adaptability of prioritization strategies, enabling more dynamic monitoring of GHG
emissions.

In summary, targeting satellites like TANGO offer substantial potential in advancing global GHG monitoring that could com-
plement existing systems and fill critical gaps in emission inventories. The integration of cloud forecast data enhances detection
efficiency, while future progress in detection thresholds, spatial resolution, and satellite constellations will further strengthen

their function in supporting international climate agreements and informing policies geared toward mitigating climate change.

Data availability. The point-source detection lists for the March 18-22, 2022 simulation (Clear-Sky, Cloud-Filtered, and Cloud-Forecast
scenarios) are included in the Supplementary Material. The complete global point source data for greenhouse gas emission (GPS) used
in this study was developed by TNO and made available for research purposes to the study team in support of the TANGO mission. For
questions, future use, and use in other areas, please contact TNO (hugo.deniervandergon @tno.nl). The MOD35_L2 cloud mask data from

the MODIS instrument (DOI: 10.5067/MODIS/MOD35_1.2.061) are publicly accessible.
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Appendix A: Continental Detection Statistics
Al CH, prioritization Detection Counts

535 Table Al provides the numerical breakdown of detected CH4 and CO- sources across continents for different cloud scenarios
under CHy prioritization for both TDL and EDL settings. The values represent the average number of detected sources per

4-day repeat cycle.

Table Al. Average number of CH4 and CO- targets detected per four-day interval across continents under CHy4 prioritization for TDL and

EDL detection limits.

‘ Clear Sky Cloud-Filtered | Cloud Forecast | Forecast +1d

Continent Type
CH4 CO2 CH4 CO2 CH4 COy CHs COo
TDL | 62.0 9.0 232 53 26.0 6.3 234 5.7
Africa
EDL | 925 335 43.6 17.2 50.3 19.5 46.0 172
TDL | 206.1 103.0 | 89.1 346 | 111.6 429 94.0 342
Asia
EDL | 303.0 2415 | 1228 72.6 | 1502  97.8 1279 717
TDL | 433 32.6 10.8 73 14.0 11.5 10.3 8.0
Europe

EDL | 1059 694 232 14.7 31.6 243 22.1 17.0
TDL | 589 13.9 21.6 59 28.5 9.8 22.6 7.6

North America
EDL | 143.0 369 44.8 13.3 65.4 23.4 50.3 18.5

TDL | 15.0 8.0 5.1 1.9 8.4 29 6.7 2.0

Oceania

EDL | 24.0 18.0 9.6 55 16.8 6.8 133 5.1
TDL | 25.9 4.0 7.5 1.2 9.0 22 7.4 1.6

South America

\EDL\ 526 380 | 190 132 | 245 178 | 195 141

A2 CO. prioritization Detection Counts

Table A2 presents the corresponding numerical breakdown for CO4 prioritization, showing how the selection scheme affects

540 the distribution of detected sources under different cloud scenarios.

Author contributions. HCA, JL, and AB contributed to the conceptualization and methodology development. HCA conducted the satellite
simulation study with input from JL, using an orbit simulator developed with contributions from PV. SD provided the GPS inventory and
related support. HCA performed the formal analysis and created the figures. HCA wrote the original draft, while all authors contributed to

the interpretation of results and the review and editing of the manuscript.
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Table A2. Average number of CH4 and CO» targets detected per four-day interval across continents under CO» prioritization for TDL and

EDL detection limits.

) ‘ ‘ Clear Sky Cloud-Filtered | Cloud Forecast | Forecast +1d
Continent Type

CHs CO2 | CHy4 CO2 CH4 CO2 CHs COq2
TDL | 450 11.0 | 143 6.3 17.7 7.1 15.8 6.9

Africa
EDL | 58.8 339 25.6 16.1 33.0 20.8 30.2 17.8
TDL | 53.7 119.6 | 18.7 384 32.7 60.6 25.8 476
Asia
EDL | 58.5 312.7 | 17.6 93.1 39.6 138.8 31.2 108.2
TDL | 20.2 35.8 3.9 9.4 6.2 13.9 4.4 10.0
Europe

EDL | 41.7 90.1 8.6 21.3 14.5 36.6 103 257
TDL | 243 424 7.7 15.7 133 23.7 104 182

North America

EDL | 79.1 1083 | 28.8 422 41.8 58.8 322 468
TDL | 11.0 11.0 32 3.1 5.8 4.1 43 2.9

Oceania

EDL | 200 260 6.0 9.1 11.7 11.2 8.7 8.7
TDL | 179 11.0 4.4 3.8 52 4.9 4.0 3.7

South America

‘EDL‘SOA 618 | 114 199 | 156 296 | 120 233
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