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Abstract. In this study, we evaluate the statistical relationship between sea ice freeboard and C-band microwave backscatter.

By collocating observations between Sentinel-1 images and Operation IceBridge (OIB) measurements in April 2019, we eval-

uate their relationship under various sea ice types and thickness regimes. We show that, at various spatial scales relevant to

synthetic aperture radar (SAR) observations, there exists an apparent significant correlation between C-band backscatter and

sea ice freeboard. This relation depends on physical parameters of the sea ice, including the ice type, as well as sensor-specific5

parameters such as the observational incidence angle of the SAR satellite. As a result, there is considerable variability in this

apparent relationship and its fitted parameters. Using the fitted relationship, two-dimensional freeboard maps can be predicted

at the scale of SAR images’ effective resolution (i.e., ∼200m). More importantly, we demonstrate that although the resolution

of SAR images are relatively lower than OIB freeboard maps, we can predict the high-resolution, meter-scale freeboard distri-

bution where altimetry measurements are not available. Thus the representation of altimetric measurements can be improved10

with the upscaling based on the SAR image. The proposed method can be further utilized for the upscaling of satellite based

sea ice topography measurements by the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). Related issues, including the

limitation to spring data, scale dependency and the locality of the statistical relationship, as well as the upscaling of current and

historical satellite campaigns, are further discussed.

1

15

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



1 Introduction

Remote Sensing of Sea Ice: Polar sea ice has undergone drastic changes in response to global climate change (Kwok, 2018). As

Arctic sea ice coverage diminishes at a substantial rate, there has also been a rapid decrease in ice thickness and volume (Sumata

et al., 2023). In particular, sea ice topography, characterized by the small-scale sea ice height variability, has become smoother

(Krumpen et al., 2025). Satellite altimetry serves as the backbone for observations of the circumpolar sea ice freeboard and20

thickness. For both laser and radar altimeters, the signals are sent from the satellites to Earth. By measuring the time difference

between the emitted pulse from the satellite and the returned echo, the range between the satellite and the reflecting surface on

Earth is estimated. The differentiation of the range of echoes returned from sea ice floes versus interstitial leads gives the radar

or laser freeboard, and the sea ice thickness is then calculated from hydrostatic assumptions and the buoyancy relationship. In

particular, NASA’s ICESat-2 (IS2) satellite is a photon-counting laser altimeter that has carried out continuous observations25

in both polar regions since 2018 (Markus et al., 2017). Six laser beams of IS2 form into three strong-weak pairs, providing

continuous ground coverage in the satellite’s flight direction. Validation efforts with airborne campaigns that collocate with IS2

beam segments, including NASA’s Operation IceBridge (MacGregor et al., 2021, OIB) and MOSAiC (Nicolaus et al., 2022),

show that IS2 is able to achieve highly accurate measurements of the sea ice topography (Kwok et al., 2019; Ricker et al.,

2023).30

Problems: Despite their advantages, satellite altimeters have limited coverage over the sea ice cover. The spatial sampling

is inherently confined within the nadir of the satellite’s track. For example, the three IS2 beam pairs are within ∼3km of

its ground track. In order to attain basin-scale coverage, samples collected throughout the whole month are usually needed.

However, within a month’s time, the sea ice may have undergone significant changes due to both thermodynamic and dynamic

processes. These changes cannot be represented by the aggregated monthly freeboard and thickness maps. Furthermore, the35

altimetric scans only cover limited area within typical passive microwave imagers’ footprints, thus hindering the synergy with

these observations (Xu et al., 2017). For example, L-band passive microwave radiometer such as the one onboard the Soil

Moisture and Ocean Salinity (SMOS) satellite have complementary observational capabilities to altimeters, and they can be

physically synergized for the simultaneous retrieval of sea ice thickness and snow depth (Xu et al., 2017; Zhou et al., 2018;

Ricker et al., 2017). However, compared with SMOS’s daily basin coverage, much longer periods are needed to obtain an40

overlapping wide geographic coverage from altimeters such as IS2. Also, small-scale features such as sea ice (refrozen) leads

greatly modulate the L-band brightness temperature (TB, see Zhou et al., 2017), but they are potentially not sampled by line

scans of altimeters. For example, previous studies (e.g., Fig. A2 of Zhou et al., 2018) show that a remarkable reduction of the

TB uncertainty can be achieved with better coverage of freeboard measurements within the SMOS’s footprint.

Paper Info.: In this paper we explore the potential of improving the laser altimeter’s representation through a synergy with45

microwave backscatter measurements by synthetic aperture radars (SAR). In particular, the C-band SAR payloads onboard

European Space Agency’s (ESA’s) Sentinel-1 (S1) satellites provide pan-Arctic coverage since 2014 through the Extra-Wide

(EW) swath mode scans. In this study, we establish statistical relationships between OIB-based sea ice topographic and free-

board measurements and SAR backscatter normalized radar cross section (σ0) from S1 scenes using collocated observations

2

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



during April, 2019. OIB flights during this month, in particular the Airborne Topographic Mapper (ATM) measurements, were50

intentionally collocated with IS2 tracks. The ATM measurements feature higher resolution and wider swaths than IS2 mea-

surements, enabling the analysis of co-variability between freeboard and (σ0) at multiple scales. Therefore, they are used to

study the upscaling of IS2 measurements. In Section 2 we introduce details of the data used and the processing protocols,

and Section 3 covers the statistical analysis under various sea ice conditions. Using these statistical relationships, we further

design an algorithm prototype for SAR-based prediction and upscaling of laser altimetry. The locality and limitations of the55

prediction algorithm are also investigated, along with other related issues in Section 4. Finally, Section 5 includes a summary

and the outlook to future work.

2 Data and protocols

2.1 OIB campaigns in April, 2019

During April 2019 four OIB campaigns were carried out in the Arctic (Fig. 1), which were collocated with IS2 and consequently60

provided validation data for the sea ice elevation (ATL07, see also: Kwok et al., 2019) and freeboard products (ATL10). In

particular, the flights on April 8th and 12th were organized into racetracks and cover more than 200km along the corresponding

IS2 ground tracks, with outbound (i.e., northbound) and inbound (i.e., southbound) flight passes covering beam pair of #3-#4

and #1-#2, respectively. Two different types of conic scans of ATM onboard these OIB campaigns were carried out: the 15◦

wide swath scan that covers about 500m across the flight pass, and the 2.5◦ narrow swath scan that covers about 80m. The65

scan angle of the wide-swath scanners is 15◦, resulting in a swath width of 500m. While the scan angle of the narrow-swath

scanners is 2.5◦, which enhances the shot density within the center of the wide swath. In addition, there are three flight passes

of the racetrack, and together they cover over 1km in the cross-track/flight path direction. Furthermore, the campaign on April

8th dominantly covered areas with thick multi-year ice (MYI), while that on April 12th sampled more interstitial first-year ice

(FYI) within the MYI. Two other flights on April 19th and 22nd are longer tracks that traverse both MYI and FYI (Fig. 1).70

In order to fully utilize the ATM measurements on April 8th and 12th, we construct a merged sea ice freeboard map using

all three OIB passes. Full details of the processing are covered in Appendix A. Briefly, first, we retrieve the total freeboard

(denoted Fs) within the entire ATM swath for each pass, using the raw elevation measurements by ATM. Second, we obtain the

1m-scale Fs map for each pass through spatial linear interpolation. The scan pattern of the ATM results in a variable number

of shot spacings within the scan swath, with lower shot density in the middle (Petty et al., 2016). To mitigate errors introduced75

by this spatial sampling non-uniformity, the irregularly spaced ATM elevation data are converted to a regularly spaced 1m

resolution. Finally, the Fs maps of the three passes are stitched together after collocation, producing the Fs map that covers

∼1500m in the cross-flight direction.

The newly constructed 1m-scale Fs maps are validated with the standard OIB Level4 (L4) product. Specifically, we coarsen

the Fs map to match the 40m resolution and the location (nadir to the flight) of the L4 product. Validations show strong80

agreement, with RMSE of 0.15m on April 8th and 0.1m on April 12th at 40m scale. At 400m scale, RMSE further decreased
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Figure 1. OIB campaigns during April 2019. S1 EW images collected around April 8th are shown in the background, with the black boxes

outlining the images used for statistical analysis between C-band backscatter and sea ice freeboard. The solid box marks the boundary of the

S1 image on April 8th, while the dashed (dot-dashed) ones mark those on April 7th (9th). The OIB ground tracks of the 4 days are marked

by red lines, and the location of the sample segments are shown by the asterisks. The thick yellow line delineates the boundary between the

MYI and the FYI regions according to the sea ice type product provided by the Ocean and Sea Ice Satellite Application Facility (OSI-SAF).

to 0.04m on April 8th and 0.03m on April 12th (Fig. S1). Hence the 1m-scale Fs maps are used further for the statistical

analysis with SAR images.

2.2 S1 EW images and sea ice type maps

Both S1A and S1B data are available during the study period of April 2019. EW mode images with dual polarization channels85

(HH and HV) are accessed and collocated with the aforementioned OIB observations. The SAR incidence angles (IA) across

the swath range from 20◦ to 46◦ for S1’s EW mode. Details of the SAR images, including the image identifiers and the

acquisition times, are provided in Tab. B1. Each image is preprocessed using ESA’s Sentinel Application Platform (SNAP,
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version 11.0.0). Processing steps include the application of precise orbit files, thermal noise correction, radiometric calibration,

and terrain correction. Finally, we convert the backscatter intensities into σ0.90

Sea ice type information is derived from S1 images using a classifier specifically accommodating per-class IA dependencies

of SAR intensities (HH and HV) and gray-level co-occurrence matrix (GLCM) textures (Lohse et al., 2020; Guo et al., 2023).

Details of this classifier are discussed in Appendix B. Sea ice classification is carried out for all the S1 images and the results

are used for further analysis.

By default, the S1 images are projected to 40m spatial resolution, which is the nominal pixel spacing of the S1 EW medium95

GRDM mode data, though the effective resolution is approximately 90m. In addition, the processing steps in SNAP may further

degrade the resolution of the σ0 map. This is because a Single Product Speckle Filter with a sliding window of 7×7 pixels were

applied during the speckle filtering process. We use the following notations for the coarsened values: Fs
(s)

and σ0
(s), where s

denotes the coarsening scale.

2.3 ICESat2 products100

The official IS2 products (version 6) are accessed for the collocating tracks with OIB campaigns on April 8th and 12th (see

Data Availability for details). Each of the beam segments are of about 150 aggregated photons, and the mean sea ice elevation

of each segment is provided in ATL07. Due to the variable photon rates over the sea ice, the along-track length of the beam

segment is not constant, around 10−16m. It is also different between strong and weak beams, with the beam segment length of

the weak beams at about 50m. In this study, we use the footprints of both the strong and weak beam segments to study practical105

issues limiting the upscaling of IS2 measurements, extending our analysis from OIB to lower freeboard resolution but larger

coverage.

2.4 Ancillary datasets

The climate data record of global sea ice drift from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF, version

OSI-455) is used for the collocation of the different datasets. The OSI-455 product is available for the period of 1991–2020,110

and is derived from various passive microwave sensors (SSM/I, SSMIS, AMSR-E, and AMSR2) and wind field data from a

numerical weather prediction (NWP) model. The sea ice drift vectors are provided on the Equal-Area Scalable Earth (EASE)

grid with the spatial resolution of 75km. However, they are not available near the shoreline (i.e., part of the campaign on April

8th near the Canadian Arctic Archipelago). The temporal scale of the drift vectors is 24-hour, starting/ending at 12:00 UTC

(Lavergne and Down, 2023).115

2.5 Collocation between OIB and S1 images

The collocation between the Fs maps and σ0 in the HH-polarization channel is carried out to correct for potential sea ice drift

and geocoding uncertainties between the two measurements. For the OIB flight on April 8th, the ice surveyed was relatively

immobile, while that covered by the campaign on April 12th experienced a drift of approximately 0.02m/s according to the

5
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OSI-455 product. We coarsen the 1m-scale Fs maps to the nominal pixel size of S1 EW images (i.e., 40m), and maximize120

the correlation (Pearson’s r) between the two fields by locally adjusting the relative location between the two. The increments

of the local adjustments is 20m (i.e., half of S1 EW pixel spacing). In order to compare to the drift corrections during the

correlation maximization(see Fig. 4.a and Fig. 5.a), the daily OSI-SAF drift vectors are scaled to the time interval between the

acquisition time of the SAR image and that of the OIB. Afterwards, bilinear interpolation is carried out in the spatial domain

to attain the drift vector at each location along the OIB flight path.125

3 Results and analysis

3.1 Sample segments

We first examine two OIB segments and collocate the SAR images (σ0 in HH-polarization), their locations are shown in Figure

1. For the segment on April 8th, the mean Fs was 1.0m with a standard deviation of 0.45m, and the mean σ0 was -10.46 dB

with a standard deviation of 2.77 dB. In contrast, the segment on April 12th had a mean Fs of 0.57m and a standard deviation130

of 0.18m, with a mean σ0 of -12.67 dB and a standard deviation of 1.52 dB. While the segment covered on April 8th mainly

consisted of thick MYI, that on April 12th features relatively thinner MYI, mixed with FYI and young ice.

The details of the two segments are introduced below.

3.1.1 Sample segment on April 8th

The first sample segment is shown in Figure 2. The three OIB outbound flight passes are separated by about 75 minutes: 2019-135

Apr-8 12:34 (middle pass), 2019-Apr-8 13:48 (left pass), and 2019-Apr-8 15:01 (right pass), respectively. The inbound flight

passes are: 2019-Apr-8 13:21 (middle pass), 2019-Apr-8 14:34 (left pass), and 2019-Apr-8 15:46 (right pass), respectively.

For both the outbound and the inbound passes, the central pass overlaps with the left (or right) pass by approximately 100m

in the cross-path direction. The collocation between the passes indicates minimum correction (1∼2m), very high correlations

(Pearson’s r over 0.95) and a decorrelation length of less than 5m (Fig. S2).140

For comparison, the collocation between the merged Fs map and the SAR image on the same day (details in Tab. B1) shows

statistically significant but lower correlation coefficients (Fig. 2.b). The decorrelation distance is much longer than that for

1m-scale Fs (i.e. Fig. S2), mainly due to that correlation between Fs and σ0 is carried out at the scale of 40m. Besides, the

statistical relationship between Fs and σ0 in the HV-polarization channel is also significant, although the backscatter is weaker

by more than 5 dB (Fig. S3).145

As mentioned earlier, the effective resolution of the backscatter used in this study is greater than 40m. Therefore, the coarser

spatial scales adopted for the σ0 map is also adopted for the computation of Fs, i.e. 100m (Fig. 2, panel e and h) and 200m

(Fig. 2, panel f and i).

As shown, the variability of Fs is drastically attenuated, but statistical relationship between Fs and σ0 (at original resolution)

sharpens at larger scales. Specifically, for the segment on the outbound (inbound) flight, the Pearson’s r increases from 0.61150
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(0.66) for the correlation with the 40m-scale Fs to 0.81 (0.84) for that with the 200m-scale Fs. The slope of the linear fit also

reduces slightly as the scale increases, in both cases.

3.1.2 Sample segment on April 12th

The other two sample segments are from the campaign on April 12th, shown in Figure 3. The major differences from the

sample segments on April 8th (Fig. 2) are as follows: (1) According to the OIB Fs map, the MYI is much thinner; (2) it155

contains more areal fraction of FYI, and (3) the surrounding sea ice has undergone more evident drift and deformation between

the observations by OIB and S1, as indicated by the OSI-455 product.

Although sea ice is generally much thinner (1m-scale Fs mostly under 2m), a statistically significant relationship is also

present between Fs and σ0 (Fig. 3 and S5). For both the outbound and the inbound segments, OIB has attained sufficient

sampling of MYI, but the representation of FYI is not even. Specifically, on the outbound passes, SAR pixels with σHH
0 under160

18 dB are scarce, and no level FYI is detected in the area sampled by OIB. For the inbound passes, an apparent nonlinear

relationship between Fs and σ0 is observed for FYI, due to the effect of ice with different levels of deformation. LFYI has

a consistently low Fs around 20 cm but corresponds to σ0 that varies over a large (5 dB) range, whereas DFYI has strongly

varying Fs up to around 1 m over a small (2-3 dB) range of σ0. The linear fitting for MYI is comparable to that for all sea

ice types for the inbound flight (lower panels of Fig. 3). At both 100m- and 200m-scale, the linear regressions of Fs to σ0165

show lower fitting slopes for MYI than for those based on all samples. The large variability of Fs at 40-m scale is tightened

considerably as the scale increases. In comparison, MYI always has much steeper regression lines for the sample case on

April 8th across all analyzed scales (Fig. 2). This result, although potentially affected by the accuracy of the sea ice type map,

highlights the importance of the sufficient sampling of various sea ice types to ensure their representation in the study of the

relationship.170

Interestingly, for MYI which is well observed by both sample segments on April 8th and 12th, the statistical fittings between

Fs and σ0 show large differences. For the sample segment on April 8th, the regressions (40m-scale) are steeper at: Fs =

0.139 ·σ0 +2.443 with Pearson’s r = 0.410 (outbound) and Fs = 0.126 ·σ0 +2.236 with the regression’s R =0.458 (inbound).

In comparison, for that on April 12th, the fitting slopes are shallower by about 50%: Fs = 0.06·σ0+1.338 with the regression’s

R = 0.281 (outbound at 40m-scale) and Fs = 0.051 ·σ0 + 1.204 with the regression’s R = 0.263 (inbound). Furthermore,175

the backscatter is binned at 1 dB intervals, and the mean Fs value is calculated for each 1 dB σ0 bin. After binning the

samples to σ0, the regression lines (i.e., between the mean values of Fs and σ0 in the bins) are also flatter on April 12th

(mean(Fs) = 0.051 ·mean(σ0)+1.244) than on April 8th (mean(Fs) = 0.105 ·mean(σ0)+2.123). The potential causes of

the different fittings include both: (1) differences in C-band backscatter sensitivity to macro-scale topography due to different

ice/snow properties of the two regions, and (2) different imaging configurations of the SAR images. Related issues, such as the180

effect of IA on the statistical relationships are further discussed in Section 4.1.
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Figure 2. Total freeboard (Fs, colored) and the S1 HH backscatter (σ0, background) over sample segments on April 8th, 2019 (a). Boundaries

between different sea ice types are marked by contour lines, including MYI, level FYI (LFYI) and deformed FYI (DFYI). The sea ice type

information is determined using the classifier described in the Appendix B. The ICESat-2 ground tracks of the three strong beams (#1, #3

and #5) are also shown as thin black lines. Two 10-km segments on the outbound (i.e., northbound) and the inbound flights are marked out

by the solid and dashed red boxes, respectively. The scatter plots between Fs and σ0 after collocation for the outbound (inbound) flights are

shown in panels d, e and f (g, h and i). Three spatial scales for computing Fs from the 1m-scale Fs maps are adopted: 40m (native resolution

of S1 EW mode, d and g), 100m (e and h), and 200m (f and i). In panels d to i, the dots are color coded according to their ice types, with

the solid (dashed) lines showing the linear fitting lines of Fs = a ·σ0 + b for all samples (only MYI pixels) and the fitted parameters. Also

shown in each panel are the mean values of Fs and the interquartiles after binning with σ0 (1 dB per bin).
8
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Figure 3. Same as Fig. 2, but for sample segments on April 12th.

.
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3.2 Statistics of all segments on April 8th and 12th

For each of the OIB segments on April 8th and 12th, we generate a merged Fs map and collocate it with the SAR images on

the same day. The statistical correlations are shown in Figure 4 and 5, respectively.

On April 8th, the local corrections for collocating Fs and σ0 are all within 40m (Fig. 4.a). The OSI-SAF drift product185

indicates about 100m drift within the northern part of the OIB track, although the drift vectors are not significant given

the respective product uncertainties. SAR images from the surrounding days (i.e., from April 7th and 9th, images shown in

Appendix B) also show little drift in the sea ice pack surveyed by the OIB campaign (details not shown). In addition, we have

attained meter-scale corrections for the collocation of OIB passes (see Fig. A1). Given the relatively coarser resolution of the

SAR images, we assume that sea ice drift and deformation can be ignored when collocating Fs and σ0. The detected local190

corrections in Fig. 4.a may not indicate actual sea ice drifts, but may be due to geolocating uncertainties, such as those induced

by geometric corrections of the SAR images. The correlation between Fs and σ0 at 200m scale is statistically significant for

all segments (Fig. 4, panel b and d). After binning to σ0, the correlation coefficients are mostly over 0.9(Fig. 4, panel c and e).

For the OIB campaign on April 12th, statistically significant large-scale sea ice drift are observed in the surveyed region

(see Fig. 5.a). The lengths of the local corrections for collocating Fs and σ0 are about 250m. The corrections are consistent195

between the local segment pairs on the inbound and the outbound flights, and they also agree with the large-scale drift in terms

of both direction (north-east) and magnitude. Therefore, these local corrections correspond to the actual sea ice drift between

the visits by the OIB campaign and S1.

After the corrections, the correlation coefficients are higher and statistically significant for all segments (p = 0.05 level).

Moreover, the correlation coefficients after binning are mostly over 0.9 (Fig. 5, panels c and e).200

In Fig. 6 we show the linear regressions between σ0 and 200m-scale Fs for all segments on April 8th and 12th. The re-

sults indicate that with σ0 and the regression relationships, we can estimate the 200m-scale Fs with high statistical confidence

(regressions’ R-values over 0.3 for most 9km segments). Furthermore, the regression parameters show significant variability

among different segments, indicating the physical relationship between Fs and σ0 is locally variable and/or the uncertainties

in co-location vary locally. Despite this variation, the regression parameters from the inbound and outbound tracks are very205

similar. For 27km-long segments, however, these parameters are much less variant, although certain variability still exists on

different parts of the flight track. Specifically, for the segments on April 8th, the variance of a(b) has decreased by 48.6%

(36.5%) when comparing 27km-long segments to 9km-long segments. For the segments on April 12th, the variance of a(b)

decreased even more significantly, by 76.8% (78.7%). Besides, the regressions’ R-values are also higher for 27km-long seg-

ments for the both segments on April 8th and April 12th. This implies that, small-scale inhomogeneity of the sea ice cover or210

errors in data co-location, which cause large variability of a’s and b’s in Figure 6, are effectively attenuated at larger scales.

The regression relationships in Figure 6 can be further used for the prediction and construction of 200m-sclae Fs maps based

on SAR. In particular, given to the locality of the relationships, the prediction of Fs map should also be carried out adjacent to

the collocating observations by SAR and altimetic scans.
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Figure 4. Statistical relationship between Fs and σ0 for OIB segments on April 8th, 2019. The local corrections to maximize the correlation

between Fs and σ0 are shown for all segments with valid data on the outbound flight (blue) and the inbound flight (dark red). The correlation

coefficients before and after collocation are shown for the outbound (panel b and c) and the inbound flights (panel d and e) for all segments,

together with those after binning. Statistically insignificant correlations are shown by crosses (×) in the lower panels (p = 0.05 significance

level).
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Figure 5. Same as Fig. 4, but for OIB segments on April 12th, 2019.

12

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 6. The linear regression from 40m-scale σ0 to the 200m-scale Fs for all segments on April 8th (a, b and c) and April 12th (d, e and f):

Fs = a ·σ0 +b. The regression’s parameters, including a (panel a and d), b (panel b and e), and the R-value (c and f) are shown, respectively.

Two segment lengths are adopted: 9km and 27km.

13

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



3.3 Prediction of Fs distribution with σ0 map215

Given that the altimetric scans by OIB (and IS2) have a finer resolution than available SAR images, the regression in Section 3.2

is inherently limited in the spatial resolution of the predicted Fs. Moreover, although there is a significant correlation between

Fs and backscatter, the variability of Fs is considerable, and no single indicator based on backscatter effectively captures this

variability. Therefore, we focus on the prediction of meter-scale Fs distribution (i.e., at the full resolution of the altimeter

data) with SAR images based on their collocating observations of high-resolution Fs maps and relatively coarser σ0 maps. In220

particular, in Section 3.2 we find that the relationship between Fs and σ0 is spatially localized. Therefore, the prediction is

based on segments on the OIB’s inbound pass and validated with the adjacent segments on the outbound pass.

3.3.1 Study of sample segments

We first study the sample segments in Section 3.1.1 and 3.1.2. Since the backscatter are binned at intervals of 1 dB, and then

we perform statistical fittings of the 1m-scale Fs distribution for each 1 dB σ0 bin. The distributions of Fs in typical σ0 bins225

of these two sample segments are shown in Figure 7 and 8, respectively. The sample Fs distributions after binning all show

the following characteristics. First, Fs follows a long-tailed, skewed distribution, which is consistent with various findings in

existing studies (Xu et al., 2020; Duncan and Farrell, 2022). Second, there is strong heteroskedasticity associated with Fs:

for larger σ0 bins, the mean value of Fs and the variability of Fs are both higher. Third, the Fs distributions are multimodal,

especially for σ0 bins that contain both FYI and MYI samples (e.g., left panels in Fig. 7 and 8).230

To capture the complex shape of the Fs probability density function (PDF, we use the three-component Log-Logistic mixture

distribution to fit the sample PDF in each σ0 bin. The fitting results (i.e., Fig. 7 and 8) indicate that the different PDF modes are

well captured with very low Kolmogorov-Smirnov (K-S) distance to the sample PDF. We further carry out clustering analysis

of the various components, based on the modal Fs values and the corresponding σ0 (right panels of Fig. 7 and 8). The three

clusters indicate continuous changes of the PDF parameter with respect to σ0, and they generally show a good correspondence235

to these altered sea ice types: FYI, thin MYI and thick MYI. For example, for the sample segment on April 8th, there is

prominent presence of MYI with Fs of over 3m and σ0 of over −5 dB (Fig. 7). This is captured by a separate Log-Logistic

component which we manually categorize as the thick MYI. This could be sea ice of higher age than that of the thinner MYI

which is given by the second component. Another example is that components with very small modal values of Fs manifest

even at very large σ0 bins (Fig. 7 and 8, lower panels). Due to the relatively coarse resolution of S1 images, thin MYI may be240

present in pixels with otherwise large values of both mean Fs and σ0. These components are captured by the PDF fitting, and

we further manually categorize them as FYI. It is important to note that these categorizations are introduced to interpret the

fitting results, as the specific categories (FYI, thin MYI, and thick MYI) were not previously defined in our analysis. Based on

the per-bin Fs fittings on the inbound sample segments, we carry out the prediction of Fs distribution on the corresponding

outbound segments. Specifically, based on the observed σ0 map on the outbound segment, we: (1) formulate the distribution245

of σ0, (2) compute the Fs distribution according to the sample probability of each of the σ0 bin, and (3) construct the overall

Fs distribution on the outbound segment. For the sample segments on April 8th, the per-bin Log-Logistic mixture fittings
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Figure 7. Distribution of 1m-scale Fs in typical σ0 bins of the inbound sample segment on April 8th, 2019. Fs sample PDFs, as well as the

fitted three Log-Logistic mixture components are shown for typical σ0 bins (left panels). Statistical PDF fitting (black solid line) based on

the 3-component Log-Logistic mixture model in each panel, along with each of the components (colored dash lines).

demonstrate a high degree of accuracy in fitting the observations for both the inbound and the outbound segments, with K-S

distances of 0.002 for each segment. However, the inbound and the outbound segments differ in the sample Fs distribution (Fig.

9.b), primarily attributed to variations in the thickness of FYI and MYI, as well as differences in their respective proportions.250

Notably, the modal thickness values of both the thin MYI and the thick MYI are 0.1m higher on the outbound segment than

on the inbound segment. As a result, the predicted Fs distribution also shows lower modal Fs values (Fig. 9.a). Despite the

underestimation of the modal Fs, the prediction is closer to the observation, with lower K-S distance: 0.072, compared with

0.076 between the inbound and the outbound segment.

For the sample segments on April 12th, the prediction also shows lower K-S distance with the observed Fs distribution on255

the outbound flight (K-S distance from 0.094 to 0.074). The major improvement is due to different portions of thin MYI on the

outbound and the inbound segments (see also Fig. 3). By using the σ0 map on the outbound segment, we achieve the correct

representation of thin MYI on the Fs distribution.

3.3.2 Validation of prediction for all segments

We carry out the prediction of 1m-scale Fs distribution for all the outbound segments. The validation is based on the K-S260

distance between the observed Fs sample distribution and the predicted PDF. The baseline is the K-S distance between the

observed samples on the inbound and the outbound segments. Figure 10 shows that the predicted Fs PDF is close to the

observation, with the mean K-S distance at 0.077. There is a 10% reduction of the baseline K-S distance, which indicates that
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Figure 8. Same as Fig. 7, but for the inbound sample segment on April 12th, 2019.

Figure 9. Statistical prediction of Fs distributions on the outbound segment with: (1) the per-σ0 bin Log-Logistic mixture fittings on the

corresponding inbound segment, and (2) the σ0 map on the outbound segment. The observed and the predicted Fs distribution, as well as the

K-S distance between the two are shown for the sample outbound segment on April 8th (panel a) and April 12th (panel c). The Fs sample

distribution on the inbound and the outbound segments are also shown for comparison (b and d).
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Figure 10. K-S distance between the predicted and the sample Fs distribution on all the outbound segments on April 8th (top panel) and

12th (bottom panel). The prediction on each outbound segment is carried out with the PDF fittings on the corresponding inbound segment.

The K-S distance between the inbound and the outbound sample Fs distributions are also shown.

the predicted Fs distribution better matches the observations. Especially, large K-S distances are effectively attenuated with

the prediction: 3 (10) out of the total 91 segments show a K-S distance over 0.15 between the predicted (inbound) Fs with the265

outbound observations.

Moreover, there exists a significant positive correlation (Pearson’s r: 0.72, p-value: 2.48×10−16) between the K-S distance

sequences in Figure 10. This indicates that when the Fs elevation is similar between the inbound and the outbound segments,

the prediction is generally better. On the contrary, if the Fs distribution is more different between the two segments, the

prediction also deteriorates. Therefore, in order to obtain better predictions, the observed Fs should be representative of the sea270

ice cover on the scale of the prediction. Representation issues for large-scale retrievals are further discussed in Section 4.

4 Discussions

4.1 Physical mechanisms behind the statistical relationship between σ0 and Fs

The statistical relationship between sea ice freeboard and C-band microwave backscatter is rooted in the different microwave

backscattering mechanisms of various ice surface features. Thin, level ice typically exhibits low backscatter, with two primary275

scattering mechanisms contributing to this: surface scattering from the ice surface and volume scattering from air voids (Man-

ninen, 1992). However, with thicker ice and larger Fs, both the backscatter and Fs variability are higher, as evidenced by the

larger spread of Fs interquartiles in higher σ0 bins in Fig. 2. This suggests that more complex physical mechanisms govern
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the C-band backscatter variations in thicker ice. In the case of older, rougher ice, the presence of thicker snow cover and more

extensive ice deformation leads to increased diffuse reflection and refraction of the incident radar signal (Onstott, 1992).280

In addition to the wavelength-scale roughness, several other factors can also influence backscatter, such as the effective radar

incidence angle, radar azimuth which are greatly affected by ridge geometry (Krumpen et al., 2025). For level ice, the effective

incidence angle is relatively constant, equal to the radar incidence angle. However, for ridges, the local incidence angle varies

depending on the radar and ridge geometries, including the incident radar angle, the ridge slope, and the orientation of the

ridge. Even with constant ice properties, these geometric differences alone can lead to higher surface backscatter from ridges285

compared to level ice (Manninen, 1992). Consequently, the radar backscatter and its IA dependency is highly dependent on the

ice type and the observational geometry (Geldsetzer and Howell, 2023; Lohse et al., 2021, 2020; Guo et al., 2022).

It is important to note that in this study we did not apply IA corrections to the SAR images. There are several reasons: First,

the IA dependency is type-dependent, with deformed ice showing lower sensitivity to IA than level ice (Makynen et al., 2003).

Given the variant ridge density within the SAR’s effective resolution (∼100m), a simple correction for IA is insufficient in our290

study. Second, for the SAR image on April 8th, the IA change was within 10◦ along the whole OIB track, and on April 12th,

IA values were within 5◦. Since the range of IA is small, the correction has potentially limited effect on our study. Third, the

best angle for the IA correction should be chosen to maximize the differentiation among different ice types. What is the best

angle remains an open question and requires more systematic study. We further explore the influence of IA on the statistical

relationship for the OIB track on April 8th (no evident deformation or synoptic event around April 8th). By matching SAR295

images from April 7th, 8th, and 9th to the OIB track on April 8th, we obtain the statistical relationships between Fs at different

IAs. In general, the statistical fitting becomes steeper with decreasing IA (Fig. S6). This trend is driven by the higher (lower)

sensitivity of σ0 level (ridged) ice to changes in IA (note the weaker σ0’s at larger IAs in Fig. S6). Therefore, when IA changes,

the statistically significant relationship still holds, but IA has limited effect on this relationship than other factors, such as the

localized sea ice conditions.300

Furthermore, snow cover properties such as snow density and wetness can also modulate the C-band scattering signatures

(Kim et al., 1984). For example, the change in snow density affects the effective wavelength of the microwave signals, therefore

impacting the scattering at the snow-ice interface. Since the OIB campaigns were carried out during later winter/early spring,

the snow cover is dry and therefore largely transparent to C-band signals. In order to apply the statistical prediction algorithm for

other seasons (i.e., late autumn or spring), the snow conditions should be taken into account to better use the SAR measurements305

(Livingstone and Drinkwater, 1991).

4.2 Scale-dependency of the statistical relationship

Based on the OIB tracks on April 8th and 12th, we further explore the scale-dependent characteristics of the statistical relation-

ship. Specifically, both the OIB Fs and S1 σ0 maps are coarsened to three spatial resolutions: 100m, 200m and 500m. This

coarsening was achieved by calculating the average OIB Fs and S1 intensity within each coarsening grid cell at the respective310

resolutions, rather than coarsening the OIB Fs alone as previously shown in Section 3. By analyzing the coarsened σ0 and the

coarsened Fs maps, we find that the relationship becomes more stable at large scales (Fig. 11). In several segments, the Pearson
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correlation coefficient at 500m scale is lower than that at 40m and 200m scale. This is likely because FYI is distributed across

various locations and becomes disappeared after coarsening to the 500m scale. On the OIB tracks on April 8th, there is a spe-

cial segment ( 55km in along-track direction) where the Pearson correlation coefficient drops drastically across all three scales.315

These segments are dominated by deformed and thick ice, with a mean Fs of 1.04m, a Fs std of 0.56m, and MYI coverage

reaching 97.3%. Moreover, the footprint size of NASA’s first ICESat satellite is about 65m, and the statistical relationship with

its concurrent SAR payloads (e.g., ESA’s ENVISAT ASAR) can be explored for the prediction of large-scale Fs.

Various studies have explored the relationships between sea ice topography and microwave backscatter on different scales,

ranging from SAR-related scales (Macdonald et al., 2024; Kortum et al., 2024) to scatterometry scale (Petty et al., 2017). In320

Macdonald et al. (2024), the Radarsat Constellation Mission (RCM, also C-band SAR) images and ICESat-2 products are used

to study the relationship between sea ice roughness and backscatter over land-fast sea ice in the Canadian Arctic Archipelago.

In particular, the statistical relationship based on HV polarization is stronger, and therefore used to predict FYI roughness

and the height of MYI. In our study, we also find statistically significant relationships on the HV channel (e.g., Fig. S3 and

S5). Although the HV-channel usually has a lower signal-noise ratio than the HH-channel, the higher correlations with sea ice325

topography statistics may arise from the higher dynamic range of σ0.

In Kortum et al. (2024) the authors explored the extrapolation of IS2 freeboard (ATL10) with temporally coincident S1

images. Similar to Macdonald et al. (2024), the HV-channel σ0 maps are utilized. The prediction is carried out with the pairing

CDFs of Fs and σ0, and the Pearson correlation coefficient at 400m scale reaches 0.82. In our study, the regression model

in Section 3.2 can also be used to predict Fs maps at similar scales. However, compared to Kortum et al. (2024), our study330

focuses mainly on the prediction of meter-scale Fs distributions (Sec. 3.3). In addition, we explored the effect of sea drift and

deformation on the correlation between altimetric scans and SAR images. As shown in Section 3.2, third-party, large-scale

drift products and local adjustments can be used to facilitate the collocation between the two. Related representation issues are

further discussed in Section 4.3.

In Petty et al. (2017) the authors studied the statistical relationship between C-band backscatter measured by ASCAT and335

the variability of sea ice topography. The relationship is further used to estimate the atmospheric form drag coefficients based

on backscatter maps. Although the scatterometers have relatively coarser resolution (25km for ASCAT), the underlying mech-

anism of the topography-to-backscatter relationship is similar to our study. The macro-scale roughness of the sea ice cover

(i.e., topography) and the sea ice type dependent surface properties affect microwave backscatter, resulting in the statistically

significant relationship between the two.340

4.3 Spatial and temporal locality of the statistical relationship between Fs and σ0

The statistical relationships between Fs and σ0 in Section 3.1.1 and 3.1.2 are based on OIB data and SAR images acquired

on the same day. Furthermore, in Section 3.2, we demonstrated that there is large variability in this relationship, potentially

caused by differences in sea ice/snow conditions and practical factors such as different observational geometries. Therefore,

the statistical relationship is spatially localized, which implies that the extrapolation of freeboard measurements (e.g., Sec. 3.3)345

should be carried out locally.
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Figure 11. The statistical correlation between Fs and σ0 at three spatial scales: 40m, 200m, and 500m. The coarsening is applied to both

Fs and σ0 at these scales. The results for the OIB track on April 8th and 12th are shown in panel a and b, respectively. In order to accumulate

enough samples, especially at the 500m scale, both the inbound and the outbound segments are used to compute the correlation coefficients.

Note that in order to accommodate the effective resolution of σ0 maps, in Fig. 2 and 3, we only applied spatial averaging to Fs but not to σ0.

Furthermore, we explore the temporal transferability of this relationship, by matching SAR images collected 1 week from

the OIB sample segments. Correspondingly, sea ice may undergo significant drift and deformation, as well as thermodynamic

changes during a week-long interval between the OIB and SAR observations.

For the sample segment on April 8th (Sec. 3.1.1), we use SAR images from April 1st and April 15th, and collocate both with350

the SAR image on April 8th and the Fs map (Fig. S7). The analysis of the drift corrections indicates that there is negligible sea

ice movement between April 8th and April 15th, and the statistical relationships between Fs and σ0 are consistent (Fig. S7,

lower panels). However, the maximum correlation coefficient between Fs and σ0 is much lower at 0.4 for the SAR image on

April 1st, as compared to 0.6 for April 8th (Fig. S7, upper panels). The drift corrections obtained from SAR images on April

1st and April 8th confirm significant sea ice deformation, leading to suboptimal collocation between not only SAR images, but355

also SAR and OIB (note the scattered samples in Fig. S7, panels b and c).

For the sample segment on April 12th (Sec. 3.1.2), SAR images from April 5th and April 19th are used for a similar analysis.

Between April 5th and 12th, significant sea ice drift and deformation is present for the sea ice cover around the sample segment

(Fig. S8.a). Correspondingly, the correlation coefficients between Fs and σ0 also witness significant drops: from 0.28 to 0.15

for the outbound segment, and from 0.54 to 0.45 for the inbound segment. On the contrary, between April 12th and 19th,360

sea ice drift is evident, but very small deformation is present, as indicated by the collocation of SAR images (Fig. S8.d). The

correlation coefficients between Fs on April 12th and σ0 on April 19th largely remain the same as that based on April 12th.

Specifically, the coefficient is 0.27 for the outbound segment and 0.54 for the inbound segment.
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Both cases indicate that the collocation between OIB and SAR deteriorates at longer time intervals, and there are corre-

sponding drops in the statistical relationships. This is presumably caused by synoptic scale forcings that drive sea ice drift and365

deformation, which reduce how well the SAR backscatter and OIB freeboard are co-located. As indicated by both observa-

tions and modeling studies (Marsan et al., 2004; Rampal et al., 2008; Ning et al., 2024), sea ice deformation is localized, and

multi-fractal both spatially and temporally. More importantly, there is strong coupling between the spatial and the temporal

domain. At longer time intervals, there is lower spatial localization of sea ice deformation, which potentially complicates the

collocating of SAR and altimetry scans. Furthermore, thermodynamic changes such as snowfall events, snow stratigraphic370

changes, as well as newly formed sea ice ridges and leads, can also greatly modulate both Fs and/or C-band backscatter(Tsai

et al., 2019; Manninen, 1992). These changes are also usually associated with synoptic events, which potentially co-occur

with sea ice drift and deformation. In summary, there is a strong locality in the statistical relationship between Fs and σ0. The

spatial and temporal windows for collocating SAR and altimetry scans and further upscaling the freeboard measurements is an

important research topic for future studies.375

4.4 On the upscaling of IS2 measurements

Compared with the 1m-scale Fs maps from OIB, the standard sea ice elevation (ATL07) and freeboard (ATL10) products of IS2

are provided in beam profile segments. Since each beam segment consists of ∼150 aggregated photons, the nominal resolution

is between 10 and 20m in the along-track direction for the three strong beams and ∼11 m, the footprint diameter(Neumann

et al., 2020) in the across-track direction. For weak beams, the beam segment resolution is even coarser by approximately 4380

times. By constraining and coarsening OIB Fs maps to the footprints of IS2 strong and weak beam segments, we find that the

correlation maps between Fs and S1 backscatter is in good agreement with those based on the full OIB segment (results for

the sample segments shown in Fig. S9). Therefore, the collocation with S1 images can also be carried out with IS2 elevation

measurements.

We re-apply the prediction algorithm in Section 3.3 to IS2 footprints of the sample segments. Specifically, the prediction385

is trained and validated on the IS2 beam segments on the inbound and the the outbound OIB segments, which cover the IS2

beam pairs #1-#2 and #3-#4, respectively. However, compared to the 1m-scale OIB Fs map, the following limitations of IS2

are present: First, the IS2 beam segments are coarser, especially for the weak beams. Second, the IS2 ground coverage is much

narrower at 17m, compared with the ∼1.4km width of the Fs map. As a result, on the 9km sample segments, there is a very

limited number of IS2 beam segments (i.e., Fs samples). Therefore, in order to accumulate enough samples for prediction, we390

extend the sample segments in both directions to 27km (equivalent to the length scale used in Fig. 6).

Specifically, we follow the three-step routine for the prediction and evaluation of Fs. First, by using IS2 beam segments

on the inbound segment (i.e., the #1-#2 beam pair), we bin the Fs samples to σ0, and further carry out the PDF fitting with

3-component Log-Logistic mixture model within each σ0 bin. Second, we predict the Fs distribution on the corresponding

outbound segment, using the σ0 observations on the IS2 footprints (i.e., the #3-#4 beam pair). Finally, we validate the prediction395

with the observed Fs samples.

21

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 12. Same as Fig. 9, but for Fs on IS2 beam segments on the sample segments on April 8th (panel a and b) and April 12th (panel c

and d). Since there are limited number of IS2 beam segments, the length of the sample segments is enlarged to 27km.

Figure 12 shows the results for the sample segments on April 8th and 12th. Similar to the validation of the 1m-scale Fs

in Figure 9, the prediction on IS2 footprint also yields a good match with the observed Fs distribution. In addition, the K-S

distance is effectively reduced with the prediction: from 0.189 to 0.123 for the sample segments on April 8th, and from 0.182 to

0.119 for those on April 12th. Using the backscatter information over the prediction area produces an Fs prediction that more400

closely matches the observed Fs for Beams #3 and #4 than simply extrapolating the Fs from Beams #1 and #2. Especially,

the representation of thin ice (less than 30cm thick) has greatly improved for both cases, which is the major reason for the

reduction in K-S distance.

5 Summary and Outlook

In this study we investigate the statistical relationship between sea ice freeboard and C-band microwave backscatter, by us-405

ing collocated OIB observations and S1 images. Stronger SAR backscatter is observed for higher snow freeboard, which is

attributed to the sensitivity of backscatter to both the sea ice type, with generally high volume scattering for MYI in winter,

and ice topographic features such as ridges, with older ice having experienced stronger deformation (Krumpen et al., 2025).

Moreover, the scale-dependency of this statistical relationship, along with its spatial and temporal locality, is further studied. A

algorithm for predicting and extrapolating sea ice topographic measurements with SAR images is introduced that incorporates410

both: (1) the ICESat2 footprint size, and (2) the heteroskedasticity of sea ice total freeboard.

Looking forward to basin-scale retrievals: For the upscaling of IS2 observations at basin scale, concurrent and spatially

collocated SAR images should be used, such as those from S1 and the RadarSat Constellation Mission (RCM, see: MDA, 2021).

Specifically, we have demonstrated both spatial and temporal locality of the derived statistical relationships. For altimetry and

SAR observations that are separated by long temporal intervals, thermodynamic and dynamic processes within the ice and415

overlying snow can degrade the relationships between macro-scale topography and C-band backscatter. Another key factor

is the spatial scale for the upscaling of IS2 measurements. In Section 3.3 the prediction is designed to incorporate meter-

22

https://doi.org/10.5194/egusphere-2025-1069
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



scale Fs maps. The photon-based elevations represent a similarly fine spatial scale to the OIB ATM, but contain considerable

uncertainties. Also, the different photon rates over various sea ice surfaces should also be accounted for. The proper temporal

and spatial scales for the matching SAR images and the upscaling of IS2 measurements should be the subject of detailed studies420

in the future.

Historical & future campaigns: The sea ice topographic roughness and the statistical fittings are dependent on the scale of

altimetric observations (Sec. 3). Beyond the OIB ATM scans (1m-scale) and the IS2 beam segments (20 ∼ 30m for the strong

beams), various historical and future campaigns feature drastically different payload design and resolutions. For example,

the nominal footprint size of ICESat is 65m (Farrell et al., 2009), and at this scale there also exist statistically significant425

relationships between Fs and the C-band backscatter(Kortum et al., 2024; Macdonald et al., 2024). Besides, the concurrent SAR

observations at both C- and L-bands, such as ALOS(Advanced Land Observing Satellite) and ALOS-2(Shimada et al., 2009;

Kankaku et al., 2013), can be further used for the study of the relationships and potentially upscale altimeter measurements.

For ICESat, by combining with data from SAR satellite payloads such as ESA’s EnviSat ASAR (Miranda et al., 2013), the

upscaling of ICESat can be carried out for constructing a wider coverage record of sea ice freeboard for the period 2003–2008.430

Data availability. The data from OIB campaigns in April, 2019 are available from the National Snow and Ice Data Center: https://nsidc.org/

data/ilatm1b/versions/2, and https://nsidc.org/data/ilnsa1b/versions/2 (last access: 6 September 2024). S1 EW images are accessed from the

Copernicus Data Space Ecosystem (available at https://browser.dataspace.copernicus.eu/, last access: 6 September 2024) and processed them

using the ESA Sentinel Application Platform (SNAP) toolbox. The complete list of used SAR images are provided in the supplement with

public access. The ATL07 and ATL10 product from ICESat-2 (version 6) are accessed at the National Snow and Ice Data Center through435

https://nsidc.org/data/atl07/versions/6 and https://nsidc.org/data/atl10/versions/6 (last access: 6 September 2024). The OSI-SAF sea ice drift

product is available at: https://osi-saf.eumetsat.int/products/osi-455 (last access: 6 September 2024). DTU15MSS_1min can be found at:

https://www.space.dtu.dk/ (last access: 12 February 2025).

The interpolated and stitched 1m-resolution total freeboard fields (in 3km segments) of the sample segments on 2019-Apr-8 and 2019-

Apr-12 are achieved at: https://zenodo.org/records/14930672 (last access: 26 February 2025). Additionally, the sea ice type maps based on440

Sentinel-1 EW images can also be accessed at the same URL.

Appendix A: Processing of OIB ATM elevations

The elevations of the original ATM samples are converted into the total freeboard (or the snow freeboard, denoted Fs). For OIB

flights on April 8th and 12th which were organized into racetracks (Fig. 1), we merge all OIB samples to construct a merged

map of Fs for both the northbound and the southbound flight passes. Specifically, two steps are carried out, as follows.445

A1 Construction of the per-pass 1m-scale Fs map

As the first step, for each OIB pass, we converted OIB ATM samples into the Fs map which covers over 500m across the

OIB flight path. Both wide scan and the narrow scan of the OIB ATM are utilized. For a local segment along the OIB flight
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(e.g., 10km in length), we first project each ATM sample under the polar stereographic projection according to its geolocation

(i.e., its latitude and longitude). Then, we interpolate the samples into a 1m-scale elevation map, using linear interpolation.450

Afterwards, we apply atmospheric and tidal corrections to the elevation based on mean sea-surface height (DTU15 MSS

model). Finally, we treat the corrected elevation as elevation anomalies, and apply the lowest elevation method to retrieve the

freeboard. Specifically, the lowest 1‰ of elevation samples within each 10km segment are extracted and linearly interpolated

to construct the local water level (also at 1m-scale) using the Inverse Distance Weighting (IDW) method. The final 1m-scale

Fs map is further validated with the standard 40m-scale Fs product from IDCSI (Fig. S1).455

A2 Collocation between OIB passes and the construction of the merged Fs field

We further merge the three OIB passes to form the Fs map that covers over 1.4km across the flight path. Since the central

pass and the left pass were separated by 1∼2 hours, and the central pass and the right pass by 3∼4 hours, the sea ice cover

potentially had undergone drift and deformation. Therefore, we first search for corrections between each of the two pairs of

OIB passes. For each 3km segment, we maximize the correlation of the overlapping part of the Fs maps of the central and the460

left (or the right) pass, by adjusting the relative location of the left (or the right) pass with respect to the central pass. After the

maximum correlation is attained, we record the corrections in both the along-track and the cross-track directions, and further

merge the left and the right pass to the central pass, in order to form a unified Fs map. In Figure 2.a (3.a) we show the merged

Fs maps for the sample segment on April 8th (12th), and in Figure S2 (S4) the correlation maps between OIB passes.

For certain segments, the central pass and the left (or right) pass do not overlap, and therefore they are not included in further465

analysis (especially in Fig. 5). Figure A1 and A2 show the corrections and the maximized correlation of Fs maps between OIB

passes for all 3km segments on April 8th and 12th, respectively. For April 8th, very high correlation coefficients were attained

for all segments (Pearson’s r all over 0.94). Besides, meter-scale corrections were required, which potentially arise from

locating uncertainties. On the contrary, on April 12th, evident corrections with length over 100m were needed to maximize

the correlation, which are also consistent with the large-scale drift provided by OSI-SAF (details not shown). Therefore, we470

consider these corrections are associated with sea ice drifts. Evident changes of the sea ice drift at the location of 120km along

the OIB flight path is detected for both the inbound and the outbound flights, indicting the presence of sea ice deformation.

Especially, the correlation coefficients for the 3km segments also dropped to lower than 0.9 where the deformation is detected.

Collocation and the resulting correlation coefficients at the scale of 500m around the location of of the deformation further

indicate that the deformation are localized (i.e., within 500m) and present at several along-track locations (Fig. A2).475

Appendix B: S1 EW images used for analysis for OIB campaigns

The sea ice classification algorithm used in this study is based on: Lohse et al. (2020, 2021); Guo et al. (2023). Lohse et al.

(2020) developed a supervised algorithm that accounts for the class-dependent IA effects, known as the GIA classifier. While

this classifier performs well in addressing IA sensitivity, some misclassifications and ambiguities remain. To address these
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Figure A1. Collocation between different OIB flight passes on April 8th, 2019. The along-track segment length is 3km. The local corrections

of the left and the right pass with respect to the middle pass for each segment on the outbound (inbound) flights is shown in panel a and b

(g and h), respectively. The correlation coefficients (Pearson’s r) after the collocation between the left and the middle pass and that between

the right and the middle are shown in panel c and d the for the outbound flight, respectively. Similarly, panel e and f show the results for the

inbound flights.
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Figure A2. Same as Fig. A1, but for the OIB campaign on April 12th, 2019. Correlation coefficients lower than 0.8 are marked by filled

symbols in panel c, d, g and h. For segments around the apparent deformation (at ∼ 120km along the track), the local drift correction is

further refined to 500m in the along-track direction. The 500m-scale drift corrections and the correlation coefficients are marked by circles

and thin lines.
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issues, Lohse et al. (2021) and Guo et al. (2023) enhanced the algorithm by incorporating GLCM texture features, resulting in480

improved class separation. This study uses this classification approach to produce sea ice type maps on the selected S1 scenes.

In the classification process, seven GLCM textures are derived from the HH channel of each SAR image, with a texture

window size of 11 pixels. Then, SAR intensities (HH and HV) and GLCM textures (HH) are used as input to the GIA classifier,

which incorporates their IA dependencies. Sea ice is classified into three types: level first-year ice (LFYI), deformed first-year

ice (DFYI), and multiyear ice (MYI). To further refine the results, a Markov Random Field based contextual smoothing process485

is applied with a window size of 3 pixels (Doulgeris, 2015). The final sea ice type maps have a pixel size of 40 m, but their

effective spatial resolution is significantly coarser due to SAR speckle filtering and textural processing.

Table B1 lists all the S1 EW images used in this study, specifically collected during the OIB campaigns on April 8th and

12th. Two types of images are included: those on the adjacent days of the campaigns, and those separated by about 1 week

from the campaigns. The corresponding IS2 reference ground tracks (RGT) are also shown.490
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