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Abstract. In this study, we evaluate the statistical relationship between sea ice freeboard and C-band microwave backscatter.

By collocating observations between Sentinel-1 images and Operation IceBridge (OIB) measurements in April 2019, we eval-

uate their relationship under various sea ice types and thickness regimes. We show that, at various spatial scales relevant to

synthetic aperture radar (SAR) observations, there exists an apparent significant correlation between C-band backscatter and

sea ice freeboard. This relation depends on physical parameters of the sea ice, including the ice type, as well as sensor-specific5

parameters such as the observational incidence angle of the SAR satellite. As a result, there is considerable variability in this

apparent relationship and its fitted parameters. Using the fitted relationship, two-dimensional freeboard maps can be predicted

at the scale of SAR images’ effective resolution (i.e., ∼200 m). More importantly, we demonstrate that although the resolution

of SAR images are relatively lower than OIB freeboard maps, we can predict the high-resolution, meter-scale freeboard distri-

bution where altimetry measurements are not available. Thus the representation of altimetric measurements can be improved10

with the upscaling based on the SAR image. The proposed method can be further utilized for the upscaling of satellite based

sea ice topography measurements by the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). Related issues, including the

limitation to spring data, scale dependency and the locality of the statistical relationship, as well as the upscaling of current and

historical satellite campaigns, are further discussed.
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1 Introduction

Polar sea ice has undergone drastic changes in response to global climate change (Kwok, 2018). As Arctic sea ice coverage

diminishes at a substantial rate, there has also been a rapid decrease in ice thickness and volume (Sumata et al., 2023). In

particular, sea ice topography, characterized by the small-scale sea ice height variability, has become smoother (Krumpen

et al., 2025). Satellite altimetry serves as the backbone for observations of the circumpolar sea ice freeboard and thickness.20

For both laser and radar altimeters, the signals are sent from the satellites to Earth. By measuring the time difference between

the emitted pulse from the satellite and the returned echo, the range between the satellite and the reflecting surface on Earth

is estimated. The differentiation of the range of echoes returned from sea ice floes versus interstitial leads gives the radar or

laser freeboard, and the sea ice thickness is then calculated from hydrostatic assumptions and the buoyancy relationship. In

particular, NASA’s ICESat-2 (IS2) satellite is a photon-counting laser altimeter that has carried out continuous observations25

in both polar regions since 2018 (Markus et al., 2017). Six laser beams of IS2 form into three strong-weak pairs, providing

continuous ground coverage in the satellite’s flight direction. Validation efforts with airborne campaigns that collocate with IS2

beam segments, including NASA’s Operation IceBridge (MacGregor et al., 2021, OIB) and MOSAiC (Nicolaus et al., 2022),

show that IS2 is able to achieve highly accurate measurements of the sea ice topography (Kwok et al., 2019; Ricker et al.,

2023).30

Despite their advantages, satellite altimeters have limited coverage over the sea ice cover. The spatial sampling is inherently

confined within the nadir of the satellite’s track. For example, the three IS2 beam pairs are within ∼3 km of its ground track.

In order to attain basin-scale coverage, samples collected throughout the whole month are usually needed. However, within a

month’s time, the sea ice may have undergone significant changes due to both thermodynamic and dynamic processes. These

changes cannot be represented by the aggregated monthly freeboard and thickness maps. Furthermore, the altimetric scans only35

cover limited area within typical passive microwave imagers’ footprints, thus hindering the synergy with these observations

(Xu et al., 2017).

In this paper we explore the potential of improving the laser altimeter’s representation through a synergy with microwave

backscatter measurements by synthetic aperture radars (SAR). In particular, the C-band SAR payloads onboard European

Space Agency’s (ESA’s) Sentinel-1 (S1) satellites provide pan-Arctic coverage since 2014 through the Extra-Wide (EW) swath40

mode scans. In this study, we establish statistical relationships between OIB-based sea ice topographic and freeboard measure-

ments and SAR backscatter normalized radar cross section (σ0) from S1 scenes using collocated observations during April,

2019. OIB flights during this month, in particular the Airborne Topographic Mapper (ATM) measurements, were intention-

ally collocated with IS2 tracks. The ATM measurements feature higher resolution and wider swaths than IS2 measurements,

enabling the analysis of co-variability between freeboard and σ0 at multiple scales. Therefore, they are used to study the up-45

scaling of IS2 measurements. In Section 2 we introduce details of the data used and the processing protocols. Using these

statistical relationships, we further design an algorithm prototype for SAR-based prediction and upscaling of laser altimetry,

as comprehensively described in Section 3. And Section 4 covers the statistical analysis under various sea ice conditions. The

locality and limitations of the prediction algorithm are also investigated, along with other related issues in Section 5.
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2 Data and protocols50

2.1 OIB campaigns in April, 2019

During April 2019 four OIB campaigns were carried out in the Arctic (Fig. 1), which were collocated with IS2 and consequently

provided validation data for the sea ice elevation (ATL07, see also: Kwok et al., 2019) and freeboard products (ATL10). In

particular, the flights on April 8th and 12th were organized in a racetrack pattern and cover more than 200 km along the

corresponding IS2 ground tracks, with outbound (i.e., northbound) and inbound (i.e., southbound) flight passes covering beam55

pair of #3-#4 and #1-#2, respectively. Two different types of conic scans of ATM onboard these OIB campaigns were carried

out: the 15◦ wide swath scan that covers about 500 m across the flight pass, and the 2.5◦ narrow swath scan that covers about 60

m. The scan angle of the wide-swath scanners is 15◦, resulting in a swath width of 500 m. The scan angle of the narrow-swath

scanners is 2.5◦, which enhances the shot density in the central part of the wide swath. In addition, there are three flight passes

of the racetrack, and together they cover over 1 km in the cross-track/flight path direction. Furthermore, the campaign on April60

8th dominantly covered areas with thick multi-year ice (MYI), while that on April 12th sampled more interstitial first-year ice

(FYI) within the MYI. Two other flights on April 19th and 22nd are longer tracks that traverse both MYI and FYI (Fig. 1).

Based on ERA5 data for the study period, the large-scale atmospheric conditions were typical of the late-winter conditions

in the respective regions. There were no sudden warming events or significant precipitation that potentially changes the SAR

backscatter signature of the sea ice.65

In order to fully utilize the ATM measurements on April 8th and 12th, we construct a merged sea ice freeboard map using

all three OIB passes. The left and middle passes were about 1.25 hours apart, while the right and middle passes were about 2.5

hours apart. Full details of the processing are covered in Appendix A. Briefly, first, we retrieve the total freeboard (denoted Fs)

within the entire ATM swath for each pass, using the raw elevation measurements by ATM. Second, we obtain the 1 m-scale

Fs map for each pass through spatial linear interpolation. The scan pattern of the ATM results in a variable number of shot70

spacings within the scan swath, with relatively lower shot density in the middle (Petty et al., 2016). To mitigate uncertainty

introduced by this spatial sampling non-uniformity, the irregularly spaced ATM elevation data are converted to a regularly

spaced 1 m Fs map. Finally, the Fs maps of the three passes are stitched together after collocation, producing the Fs map that

covers ∼1500 m in the cross-flight direction.

The standard OIB Level4 (L4) product includes Fs parameter derived from ATM measurements and geolocated aerial75

photography. It employs a lead discrimination algorithm, which utilizes geolocated aerial photography to identify local sea

surface height, thereby enhancing the quality and number of sea surface height determinations. The final product is gridded to

a 40 m along-track resolution and can serve as a validation reference for the newly constructed 1 m-scale Fs maps. Specifically,

we coarsen the Fs map to match the 40 m resolution and the location (nadir to the flight) of the L4 product. Validations show

strong agreement, with RMSE of 0.15 m on April 8th and 0.1 m on April 12th at 40 m scale. At 400 m scale, RMSE further80

decreased to 0.04 m on April 8th and 0.03 m on April 12th (Fig. S1). Hence the 1 m-scale Fs maps are used further for the

statistical analysis with SAR images.
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Figure 1. OIB campaigns during April 2019. S1 EW images collected around April 8th are shown in the background, with the black boxes

outlining the images used for statistical analysis between C-band backscatter and sea ice freeboard. The solid box marks the boundary of the

S1 image on April 8th, while the dashed (dot-dashed) ones mark those on April 7th (9th). The OIB ground tracks of the 4 days are marked by

red lines, and the location of the 9 km sample segments are shown by the asterisks. The thick yellow line delineates the boundary between the

MYI and the FYI regions according to the sea ice type product provided by the Ocean and Sea Ice Satellite Application Facility (OSI-SAF).
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2.2 S1 EW images and sea ice type maps

Both S1A and S1B data are available during the study period of April 2019. EW mode images with dual polarization channels

(HH and HV) are accessed and collocated with the aforementioned OIB observations. The SAR incidence angles (IA) across85

the swath range from 20◦ to 46◦ for S1’s EW mode. EW mode images use TOPSAR techniques to achieve a very large

swath coverage (∼ 400 km), but TOPSAR acquisitions are affected by the “scalloping effect” (De Zan and Guarnieri, 2006).

Additionally, the noise floor varies with range position, creating discontinuous sharp intensity changes known as the “banding

effect” (Lohse et al., 2021; Sun and Li, 2021). These issues are particularly prominent in the HV channel due to its low

signal-to-noise ratio (SNR) (Segal et al., 2020). Details of the SAR images, including the image identifiers and the acquisition90

times, are provided in Tab. B1. Each image is preprocessed using ESA’s Sentinel Application Platform (SNAP, version 11.0.0).

Processing steps include the application of precise orbit files, thermal noise correction, radiometric calibration, and terrain

correction. Finally, we convert the backscatter intensities into σ0.

Sea ice type information is derived from S1 images and the sea ice classification algorithm used in this study is based

on: Lohse et al. (2020) and Guo et al. (2025). Lohse et al. (2020) developed a supervised algorithm that accounts for the95

class-dependent IA effects, known as the GIA classifier. While this classifier performs well in addressing IA sensitivity, some

misclassifications and ambiguities remain. To address these issues, Guo et al. (2025) enhanced the algorithm by incorporating

GLCM texture features, resulting in improved class separation. This study uses this classification approach to produce sea ice

type maps on the selected S1 scenes.

In the classification process, seven GLCM textures are derived from the HH channel of each SAR image, with a texture100

window size of 11 pixels. Then, SAR intensities (HH and HV) and GLCM textures (HH) are used as input to the GIA classifier,

which incorporates their IA dependencies. Sea ice is classified into three types: level first-year ice (LFYI), deformed first-year

ice (DFYI), and multiyear ice (MYI). To further refine the results, a Markov Random Field based contextual smoothing process

is applied with a window size of 3 pixels (Doulgeris, 2015). The final sea ice type maps have a pixel size of 40 m, but their

effective spatial resolution is significantly coarser due to SAR speckle filtering and textural processing. Sea ice classification is105

carried out for all the S1 images and the results are used for further analysis.

By default, the S1 images are projected to 40 m spatial resolution, which is the nominal pixel spacing of the S1 EW medium

GRDM mode data, though the effective resolution is approximately 90 m. In addition, the processing steps in SNAP may

further degrade the resolution of the σ0 map. This is because a Single Product Speckle Filter with a sliding window of 7×7

pixels wash applied during the speckle filtering process (Mansourpour et al., 2006). We use the following notations for the110

coarsened values: Fs
(s)

and σ0
(s), where s denotes the coarsening scale.

2.3 ICESat2 products

The official IS2 products (version 6) are accessed for the collocating tracks with OIB campaigns on April 8th and 12th (see

Data Availability for details). Each of the beam segments are of about 150 aggregated photons, and the mean sea ice elevation

of each segment is provided in ATL07. Due to the variable photon rates over the sea ice, the along-track length of the beam115
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segment is not constant, around 10∼16 m. It is also different between strong and weak beams, with the beam segment length

of the weak beams at about 50 m. In this study, we use the footprints of both the strong and weak beam segments to study

practical issues limiting the upscaling of IS2 measurements, extending our analysis from OIB to lower freeboard resolution .

2.4 Ancillary datasets

The climate data record of global sea ice drift from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF, version120

OSI-455) is used as the reference to the collocation of the different datasets. The OSI-455 product is available for the period of

1991–2020, and is derived from various passive microwave sensors (SSM/I, SSMIS, AMSR-E, and AMSR2) and wind field

data from an atmospheric reanalysis. The sea ice drift vectors are provided on the Equal-Area Scalable Earth (EASE) grid with

the spatial resolution of 75 km. However, they are not available near the shoreline (i.e., part of the campaign on April 8th near

the Canadian Arctic Archipelago). The temporal scale of the drift vectors is 24-hour, starting/ending at 12:00 UTC (Lavergne125

and Down, 2023).

2.5 Collocation between OIB and S1 images

The collocation between the Fs maps and σ0 in the HH-polarization channel is carried out to correct for potential sea ice drift

and geocoding uncertainties between the two measurements. The OIB flight on April 8th was approximately 40 minutes apart

from its corresponding S1 image acquisition, whereas the OIB flight on April 12th was about 4 hours apart from its respective130

S1 image acquisition. For the OIB flight on April 8th, the ice surveyed was relatively immobile, while that covered by the

campaign on April 12th experienced a drift of approximately 0.02 m/s according to the OSI-455 product. We coarsen the 1

m-scale Fs maps to the nominal pixel size of S1 EW images (i.e., 40 m), and maximize the correlation (Pearson’s r) between

the two fields by locally adjusting the relative location between the two. The increments of the local adjustments is 20 m (i.e.,

half of S1 EW pixel spacing). When collocating OIB tracks with S1 images, we divided the OIB tracks into 9 km segments.135

Collocation is performed independently for each 9 km outbound and inbound segment, in both the along-track and cross-track

directions. In order to compare to the drift corrections during the correlation maximization(see Fig. 4.a and Fig. 5.a), the daily

OSI-SAF drift vectors are scaled to the time interval between the acquisition time of the SAR image and that of the OIB.

Afterwards, bilinear interpolation is carried out in the spatial domain to attain the drift vector at each location along the OIB

flight path.140

3 Methods

3.1 The statistical fitting between the Fs and σ0

To analyze the statistical relationship between Fs and C-band backscatter, we employed a linear regression model for each

9 km segment (both outbound and inbound), defined as: Fs = a ·σ0 + b. Sea ice type maps, which classify the sea ice into

LFYI, DFYI, and MYI, were used. During the classification, a sliding window of 11 pixels was applied in the classification145
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process; if all pixels within an 11×11 window were of the same type, the central pixel was classified as a pure pixel (indicated

by solid circles in Fig. 2 and 3, panel d-i); otherwise, it was labeled as a mixture(indicated by square symbols in Fig. 2 and

3, panel d-i). We specifically examined the relationship between Fs and backscatter for pure MYI pixels. Due to the limited

number of pure FYI and DFYI pixels, these were not included in further analysis.

Backscatter values were binned into 1 dB intervals. For each bin, the mean Fs value within the interquartile range (IQR) was150

calculated. The representative backscatter value for each bin was determined as the mean of the bin boundaries. The statistical

relationship between these mean Fs values and representative backscatter values was then analyzed.

Since the effective resolution of the backscatter used in this study is larger than 40 m, coarser spatial scales adopted for the

computation of Fs, including 100 m (Fig. 2, panel e and h) and 200 m (Fig. 2, panel f and i).

3.2 Fs distribution prediction155

The prediction of Fs distribution is based on 1m-scale samples for OIB and beam-segment scale for IS2. The training of the

prediction algorithm is carried out as follows:

1. Bins backscatter values into 1 dB intervals.

2. For each bin, calculates the mean Fs value within the IQR.

3. Uses the three-component Log-Logistic mixture distribution to fit the Fs sample probability density function (PDF)

within each σ0 bin. The probability density function of the three-component Log-Logistic mixture distribution is given

by:

p(x) =

3∑
i=1

ωi ·
(βi/αi)(x/αi)

βi−1

(1+ (x/αi)βi)2

where ωi is the weight, βi is the shape parameter, and αi is the scale parameter for the i-th Log-Logistic component.160

4. Applies the maximum likelihood estimation (MLE) method to fit the Log-Logistic mixture model. MLE identifies the

optimal parameter estimates by maximizing the likelihood function of the sample data under the hypothesized Log-

Logistic mixture distribution. We transform the problem of maximizing the likelihood function into minimizing the

negative of the likelihood function. The sequential quadratic programming (SQP) algorithm is then used to solve this

optimization problem.165

To evaluate the goodness-of-fit between the sample distribution p(x) and the fitted three-component log-logistic mixture

distribution p̃(x), we employed the Kolmogorov-Smirnov (K-S) distance, defined as:

sup
x

|P (x)− P̃ (x)|

Here, P (x) and P̃ (x) denote the cumulative density function of the sample and the fitted distributions, respectively, and supx

the supremum of the difference between the two. The K-S distance ranges between 0 and 1, with higher value indicating larger
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discrepancy between the distributions. We further used the k-means algorithm for the clustering analysis of these components170

in all σ0 bins, and related them to different sea ice types.

For the test of the prediction algorithm, we train the prediction model with the inbound segment, and carry out the prediction

and validation on the corresponding outbound segment. For OIB tracks, the 9 km segment length is adopted, while for IS2,

due to limited beam segment samples, the longer segment length of 27 km is adopted. For each σ0 on the outbound segment,

we use the fitted Fs distribution on the corresponding σ0 bin on the inbound segment for the prediction. The predicted Fs175

distribution for each σ0 sample is combined for all SAR pixels on the outbound segment. Finally, the prediction is validated

by computing its K-S distance to the observed Fs distribution on the outbound segment. For comparison, the baseline for the

validation is the K-S distance between the observed Fs distribution on the corresponding segment pair on the inbound and the

outbound flight.

4 Results and analysis180

4.1 Sample segments

We first examine two pairs of 9 km OIB segments and collocate them with SAR images (σ0 in HH-polarization), their locations

shown in Figure 1. For the segments on April 8th, the mean Fs was 1.0 m with a standard deviation of 0.45 m, and the mean

σ0 was -10.46 dB with a standard deviation of 2.77 dB. In contrast, the segments on April 12th had a mean Fs of 0.57 m and

a standard deviation of 0.18 m, with a mean σ0 of -12.67 dB and a standard deviation of 1.52 dB. While the 9 km segments185

covered on April 8th mainly consisted of thick MYI, that on April 12th features relatively thinner MYI, mixed with FYI and

young ice.

4.1.1 Sample segments on April 8th

The first 9 km sample segments is shown in Figure 2. The three OIB outbound flight passes are separated by about 75 minutes:

2019-Apr-8 12:34 (middle pass), 2019-Apr-8 13:48 (left pass), and 2019-Apr-8 15:01 (right pass), respectively. The inbound190

flight passes are: 2019-Apr-8 13:21 (middle pass), 2019-Apr-8 14:34 (left pass), and 2019-Apr-8 15:46 (right pass), respec-

tively. For both the outbound and the inbound passes, the central pass overlaps with the left (or right) pass by approximately

100 m in the cross-pass direction. The collocation between the passes indicates minimum correction (1∼2 m), very high

correlations (Pearson’s r over 0.95) and a decorrelation length of less than 5 m (Fig. S2).

For comparison, the collocation between the merged Fs map and the SAR image on the same day (details in Tab. B1) shows195

statistically significant but lower correlation coefficients (Fig. 2.b). The decorrelation length is much longer than that for 1

m-scale Fs (i.e. Fig. S2), mainly due to that correlation between Fs and σ0 is carried out at the scale of 40 m. Besides, the

statistical relationship between Fs and σ0 in the HV-polarization channel is also significant (details in Appendix C).

As shown, the variability of Fs is drastically attenuated, but the statistical correlation between Fs and σ0 (at original reso-

lution) sharpens at larger scales. Specifically, for the segment on the outbound (inbound) flight, the Pearson’s r increases from200
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0.61 (0.66) for the correlation at the 40 m-scale Fs to 0.81 (0.84) for that at the 200 m-scale Fs. For both cases, the slope of

the linear fit also reduces slightly as the scale increases.

4.1.2 Sample segments on April 12th

The other two 9 km sample segments are from the campaign on April 12th, shown in Figure 3. The major differences from the

sample segments on April 8th (Fig. 2) are as follows: (1) according to the OIB Fs map, the MYI is much thinner; (2) it contains205

higher areal fraction of FYI, and (3) the surrounding sea ice has undergone more evident drift and deformation between the

observations by OIB and S1, as indicated by the OSI-455 product.

Although sea ice is generally much thinner (1 m-scale Fs mostly under 2 m), a statistically significant relationship is

also present between Fs and σ0 (Fig. 3 and Fig. C2). For comparison, we also applied a 2nd-order polynomial regression:

Fs = a ·σ2
0 + b ·σ0 + c. The nonlinear model yields slightly better fitting compared to the linear regression model (see Fig. S8210

and S9). For both the outbound and the inbound segments, OIB has attained sufficient sampling of MYI, but the representation

of FYI is not even. Specifically, on the outbound segment, SAR pixels with σHH
0 under 18 dB are scarce, and no level FYI

is detected in the area sampled by OIB. For the inbound segment, an apparent nonlinear relationship between Fs and σ0 is

observed for FYI, due to the effect of ice with different levels of development. LFYI has a consistently low Fs around 20 cm

but corresponds to σ0 that varies over a large range of 5 dB, whereas DFYI has strongly varying Fs up to around 1 m over215

a small range of σ0 around 2∼ dB. The linear fitting for MYI is comparable to that for all sea ice types for the inbound flight

(lower panels of Fig. 3). At both 100 m- and 200 m-scale, the linear regressions of Fs to σ0 show lower fitting slopes for

MYI than for those based on all samples. The variability of Fs at 40-m scale diminishes considerably as the scale increases. In

comparison, MYI always has much steeper regression lines for the sample case on April 8th across all analyzed scales (Fig.

2). This result, although potentially affected by the accuracy of the sea ice type map, highlights the importance of the sufficient220

sampling of various sea ice types to ensure their representation in the study of the statistical relationship.

Interestingly, for MYI which is well observed by both sample segments on April 8th and 12th, the statistical fittings between

Fs and σ0 show large differences. For the sample segments on April 8th, the regressions (40 m-scale) are steeper at: Fs =

0.139 ·σ0+2.443 with Pearson’s r = 0.410 (outbound) and Fs = 0.126 ·σ0+2.236 with the regression’s R =0.458 (inbound).

In comparison, on April 12th, the fitting slopes are shallower by about 50%: Fs = 0.06 ·σ0 +1.338 with the regression’s R225

= 0.281 (outbound at 40 m-scale) and Fs = 0.051 ·σ0 +1.204 with the regression’s R = 0.263 (inbound). After binning the

samples to σ0, the regression lines (i.e., between the mean values of Fs in each σ0 bin and σ0’s) become flatter on April 12th:

mean(Fs) = 0.051 ·mean(σ0)+ 1.244, compared with mean(Fs) = 0.105 ·mean(σ0)+ 2.123 on April 8th. The potential

causes of the different fittings include both: (1) differences in C-band backscatter sensitivity to macro-scale topography due to

different ice/snow properties of the two regions, and (2) different imaging configurations of the SAR images. Related issues,230

such as the effect of IA on the statistical relationships are further discussed in Section 5.1.
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Figure 2. Total freeboard (Fs, colored) and the S1 HH backscatter (σ0, background) over sample segments on April 8th, 2019 (a). Contour

lines delineate the boundary between different sea ice types, including MYI, level FYI (LFYI) and deformed FYI (DFYI). The ICESat-2

ground tracks of the three strong beams (#1, #3 and #5) are also shown as thin black lines. Two 9 km segments on the outbound (i.e.,

northbound) and the inbound flights are marked out by the solid and dashed red boxes, respectively. The correlation map (Pearson’s r)

between σ0 and Fs are shown with local corrections in 20 m steps in both the cross-track and the along-track direction (b and c). The yellow

plus sign indicate the displacements to maximize the correlation between S1 and OIB. The scatter plots between Fs and σ0 after collocation

for the outbound (inbound) flights are shown in panels d, e and f (g, h and i). Three spatial scales for computing Fs based on the 1 m-scale

Fs maps are adopted: 40 m (S1 image resolution, d and g), 100 m (e and h), and 200 m (f and i). In panels d to i, the dots are color coded

according to their ice types, with the solid (dashed) lines showing the linear fitting lines of Fs = a ·σ0 + b for all samples (only MYI pixels)

and the fitted parameters. Also shown in each panel are the mean values of Fs and the IQR after binning with σ0 (1 dB per bin).
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Figure 3. Same as Fig. 2, but for sample segments on April 12th.

.
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4.2 Statistics of all segments on April 8th and 12th

For each of the 9 km OIB segment on April 8th and 12th, we generate a merged Fs map and collocate it with the SAR images

on the same day. The statistical correlations are shown in Figure 4 and 5, respectively.

On April 8th, the local corrections for collocating Fs and σ0 are all within 40 m (Fig. 4.a). The OSI-SAF drift product235

indicates about 100 m drift within the northern part of the OIB track, although the drift vectors are not significant given the

respective product uncertainties. SAR images from the surrounding days (i.e., from April 7th and 9th, listed in Appendix B)

also show little drift in the sea ice pack surveyed by the OIB campaign (details not shown). In addition, we have attained meter-

scale corrections for the collocation of OIB passes (see Fig. A1). Given the relatively coarser resolution of the SAR images,

we assume that sea ice drift and deformation can be ignored when collocating Fs and σ0. The detected local corrections in240

Fig. 4.a may not indicate actual sea ice drifts, but may be due to geolocating uncertainties, such as those induced by geometric

corrections of the SAR images. The correlation between Fs and σ0 at 200 m scale is statistically significant for all segments

(Fig. 4, panel b and d). After binning Fs samples to σ0, the correlation coefficients the mean values of Fs and σ0 within the

bins are mostly over 0.9 (Fig. 4, panel c and e).

For the OIB campaign on April 12th, statistically significant large-scale sea ice drift are observed in the surveyed region245

(see Fig. 5.a). The lengths of the local corrections for collocating Fs and σ0 are about 250 m. The corrections are consistent

between the local segment pairs on the inbound and the outbound flights, and they also agree with the large-scale drift in terms

of both direction (north-east) and magnitude. Therefore, these local corrections correspond to the actual sea ice drift between

the visits by the OIB campaign and S1.

After the corrections, the correlation coefficients are higher and statistically significant for all segments (p= 0.05 level).250

Moreover, the correlation coefficients after binning are mostly over 0.9 (Fig. 5, panels c and e).

In Figure 6 we show the linear regressions between σ0 and 200 m-scale Fs for all segments on April 8th and 12th. The results

indicate that with σ0 and the regression relationships, we can estimate the 200 m-scale Fs with high statistical confidence

(regressions’ R-values over 0.3 for all 9 km segments). Furthermore, the regression parameters show significant variability

among different segments, indicating the physical relationship between Fs and σ0 varies locally. Despite this variation, the255

regression parameters from the inbound and outbound tracks are very similar. We further examine the relations for 27 km-

long segments. As shown in Figure 6, the regression parameters for 27 km segments are much less variant, although certain

variability still exists on different parts of the flight track. Specifically, for the segments on April 8th, the variance of a (b) has

decreased by 48.6% (36.5%) when comparing 27 km-long segments to 9 km-long segments. For the segments on April 12th,

the variance of a (b) decreased even more significantly, by 76.8% (78.7%). Besides, the regressions’ R-values are also higher260

for 27 km-long segments for segments on both April 8th and April 12th. This implies that, small-scale inhomogeneity of the

sea ice cover or errors in data co-location, which cause large variability of a’s and b’s in Figure 6, are effectively attenuated at

larger scales. The regression relationships in Figure 6 can be further used for the prediction and construction of 200 m-sclae

Fs maps based on SAR (Fig. S10 and S11). In particular, given to the locality of the relationships, the prediction of Fs map

should also be carried out adjacent to the collocating observations by SAR and altimetic scans.265
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Figure 4. Statistical relationship between Fs and σ0 for OIB segments on April 8th, 2019. The local corrections to maximize the correlation

between Fs and σ0 are shown for all 9 km segments with valid data on the outbound flight (blue) and the inbound flight (dark red). The

correlation coefficients before and after collocation are shown for the outbound (panel b and c) and the inbound flights (panel d and e) for

all 9 km segments, together with those after binning. Statistically insignificant correlations are shown by crosses (×) in the lower panels

(p= 0.05 significance level).
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Figure 5. Same as Fig. 4, but for OIB segments on April 12th, 2019.
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Figure 6. The linear regression from 40 m-scale σ0 to the 200 m-scale Fs for all segments on April 8th (a, b and c) and April 12th (d, e

and f): Fs = a ·σ0 + b. The regression’s parameters, including a (panel a and d), b (panel b and e), and the R-value (c and f) are shown,

respectively. Two segment lengths are adopted: 9 km and 27 km.
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4.3 Prediction of Fs distribution with σ0 map

Given that the altimetric scans by OIB (and IS2) have a finer resolution than available SAR images, the regression in Section

4.2 is inherently limited in the spatial resolution of the predicted Fs. Moreover, although there is a significant correlation

between Fs and σ0, the variability of Fs is considerable, and no single predictor based on backscatter effectively captures this

variability. Therefore, we focus on the prediction of meter-scale Fs distribution (i.e., at the full resolution of the altimeter data)270

with SAR images based on their collocating observations of Fs and relatively coarser σ0 data.

4.3.1 Study of sample segments

We first study the 9 km sample segments in Section 4.1.1 and 4.1.2. The distributions of Fs in typical σ0 bins of these two 9

km sample segments are shown in Figure 7 and 8, respectively. The sample Fs distributions after binning all show the following

characteristics. First, Fs follows a long-tailed, skewed distribution, which is consistent with various findings in existing studies275

(Xu et al., 2020; Duncan and Farrell, 2022). Second, for larger σ0 bins, the mean value and the variability of Fs are both higher.

Third, the Fs distributions are multimodal, especially for σ0 bins that contain both FYI and MYI samples (e.g., left panels in

Fig. 7 and 8).

To capture the complex shape of the Fs probability density function (PDF), we use the three-component Log-Logistic

mixture distribution to fit the sample PDF in each σ0 bin. The fitting results (i.e., Fig. 7 and 8) indicate that the different PDF280

modes are well captured with very low K-S distance to the sample PDF. We further carry out clustering analysis of the various

components, based on the modal Fs values and the corresponding σ0 (right panels of Fig. 7 and 8). The three clusters indicate

continuous changes of the PDF parameter with respect to σ0, and they generally show a good correspondence to these sea

ice types: FYI, thin MYI and thick MYI. For example, for the sample segments on April 8th, there is prominent presence of

MYI with Fs of over 3 m and σ0 of over −5 dB (Fig. 7). This is captured by a separate Log-Logistic component which we285

manually categorize as the thick MYI. This could corresponds to sea ice of higher age than that of the thinner MYI which

corresponds to the second component. Another example is that components with very small modal values of Fs manifest even

at very large σ0 bins (Fig. 7 and 8, lower panels). Due to the relatively coarse resolution of S1 images, thin FYI may be

present in pixels with otherwise large values of both mean Fs and σ0. These components are captured by the PDF fitting, and

we further manually categorize them as FYI. It is important to note that these categorizations are introduced to interpret the290

fitting results, as the specific categories (FYI, thin MYI, and thick MYI) were not previously defined in our analysis. Based on

the per-bin Fs fittings on the inbound sample segments, we carry out the prediction of Fs distribution on the corresponding

outbound segments. Specifically, based on the observed σ0 map on the outbound segment, we: (1) formulate the distribution of

σ0, (2) compute the Fs distribution according to the sample probability of each of the σ0 bin, and (3) construct the overall Fs

distribution on the outbound segment. For the 9 km sample segments on April 8th, the per-bin Log-Logistic mixture fittings295

demonstrate a high degree of accuracy in fitting the observations for both the inbound and the outbound segments, with K-S

distances of 0.002 for each segment. However, the inbound and the outbound segments differ in the sample Fs distribution (Fig.

9.b), primarily attributed to variations in the thickness of FYI and MYI, as well as differences in their respective proportions.
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Figure 7. Distribution of 1 m-scale Fs in typical σ0 bins of the inbound sample segment on April 8th, 2019. Fs sample PDFs, as well as the

fitted three Log-Logistic mixture components are shown for typical σ0 bins (left panels). Statistical PDF fitting (black solid line) based on

the 3-component Log-Logistic mixture model in each panel, along with each of the components (colored dash lines).

Notably, the modal thickness values of both the thin MYI and the thick MYI are 0.1 m higher on the outbound segment than

on the inbound segment. As a result, the predicted Fs distribution also shows lower modal Fs values (Fig. 9.a). Despite the300

underestimation of the modal Fs, the prediction is closer to the observation, with lower K-S distance: 0.072, compared with

0.076 between the inbound and the outbound segment.

For the 9 km sample segments on April 12th, the prediction also shows lower K-S distance with the observed Fs distribution

on the outbound flight (K-S distance from 0.094 to 0.074). The major improvement is due to different portions of thin FYI

on the outbound and the inbound segments (see also Fig. 3). By using the σ0 map on the outbound segment, we achieve the305

correct representation of thin ice in the predicted Fs distribution.

4.3.2 Validation of prediction for all segments

We carry out the prediction of 1 m-scale Fs distribution for all the 9 km outbound segments. Figure 10 shows that the

predicted Fs PDF is close to the observation, with the mean K-S distance at 0.077. There is a 10% reduction of the baseline

K-S distance, which indicates that the predicted Fs distribution better matches the observations. Especially, large K-S distances310

are effectively attenuated with the prediction: 3 (10) out of the total 91 9 km segments show a K-S distance over 0.15 between

the predicted (inbound) Fs with the outbound observations.

Moreover, there exists a significant positive correlation (Pearson’s r: 0.72, p-value: 2.48×10−16) between the K-S distance

sequences in Figure 10. This indicates that when the Fs elevation is similar between the inbound and the outbound segments,
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Figure 8. Same as Fig. 7, but for the inbound sample segment on April 12th, 2019.

Figure 9. Statistical prediction of Fs distributions on the outbound segment with: (1) the per-σ0 bin Log-Logistic mixture fittings on the

corresponding inbound segment, and (2) the σ0 map on the outbound segment. The observed and the predicted Fs distribution, as well as the

K-S distance between the two are shown for the sample outbound segment on April 8th (panel a) and April 12th (panel c). The Fs sample

distribution on the inbound and the outbound segments are also shown for comparison (b and d).
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Figure 10. K-S distance between the predicted and the sample Fs distribution on all the 9 km outbound segments on April 8th (top panel)

and 12th (bottom panel). The prediction on each 9 km outbound segment is carried out with the PDF fittings on the corresponding 9 km

inbound segment. The K-S distance between the inbound and the outbound sample Fs distributions are also shown.

the prediction is generally better. On the contrary, if the Fs distribution is more different between the two segments, the315

prediction also deteriorates. Therefore, in order to obtain better predictions, the observed Fs should contain sufficient sampling

of different sea ice types in the range of the prediction. Representation issues for large-scale retrievals are further discussed in

Section 5.

5 Discussions and Summary

In this study we investigate the statistical relationship between sea ice freeboard and C-band microwave backscatter, by using320

collocated OIB observations and S1 images. Stronger SAR backscatter is observed for higher snow freeboard, which is at-

tributed to the sensitivity of backscatter to both the sea ice type, with generally high volume scattering for MYI in winter, and

ice topographic features such as ridges, with older ice having experienced stronger deformation (Krumpen et al., 2025). More-

over, the scale-dependency of this statistical relationship, along with its spatial and temporal locality, is further studied. An

algorithm for predicting and extrapolating sea ice topographic measurements with SAR images is introduced that incorporates325

both: (1) the ICESat2 footprint size, and (2) the higher variability for larger sea ice total freeboard.

5.1 Physical mechanisms behind the statistical relationship between σ0 and Fs

The statistical relationship between sea ice freeboard and C-band microwave backscatter is rooted in the different microwave

backscatter mechanisms of various ice surface features. Thin, level ice typically exhibits low backscatter, with two primary

scattering mechanisms contributing to this: surface scattering from the ice surface and volume scattering from air voids (Man-330
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ninen, 1992). However, with thicker ice and larger Fs, both the backscatter and Fs variability are higher, as evidenced by the

larger spread of Fs IQR in higher σ0 bins in Fig. 2. This suggests that more complex physical mechanisms govern the C-band

backscatter variations in thicker ice. In the case of older, rougher ice, the presence of thicker snow cover and more extensive

ice deformation cause increased diffuse reflection and refraction of the incident radar signal (Onstott, 1992).

In addition to the wavelength-scale roughness, several other factors can also influence backscatter, such as the effective radar335

incidence angle, radar azimuth which are greatly affected by ridge geometry (Krumpen et al., 2025). For level ice, the effective

incidence angle is relatively constant, equal to the radar incidence angle. However, for ridges, the local IA varies depending on

the radar and ridge geometries, including the incident radar angle, the ridge slope, and the orientation of the ridge. Even with

constant ice properties, these geometric differences alone can lead to higher surface backscatter from ridges compared to level

ice (Manninen, 1992). Consequently, the radar backscatter and its IA dependency are highly dependent on the ice type and the340

observational geometry (Geldsetzer and Howell, 2023; Lohse et al., 2021, 2020; Guo et al., 2022).

It is important to note that in this study we did not apply IA corrections to the SAR images. There are several reasons: First,

the IA dependency is type-dependent, with deformed ice showing lower sensitivity to IA than level ice (Makynen et al., 2003).

Given the variant ridge density within the SAR’s footprint (∼100 m), a simple correction for IA is insufficient in our study.

Second, for the SAR image on April 8th, the IA change was within 10◦ along the whole OIB track, and on April 12th, IA345

values were within 5◦. Since the range of IA is small, the correction has potentially limited effect on our study. Third, the

best angle for the IA correction should be chosen to maximize the differentiation among different ice types. What is the best

angle remains an open question and requires more systematic study. We further explore the influence of IA on the statistical

relationship for the OIB track on April 8th (no evident deformation or synoptic events around April 8th). By matching SAR

images from April 7th, 8th, and 9th to the OIB track on April 8th, we obtain the statistical relationships between Fs at different350

IAs. In general, the statistical fitting becomes steeper with decreasing IA (Fig. S4). This trend is driven by the higher (lower)

sensitivity of σ0 level (ridged) ice to changes in IA (note the weaker σ0’s at larger IAs in Fig. S4). Therefore, when IA changes,

the statistically significant relationship still holds, but IA has limited effect on this relationship than other factors, such as the

localized sea ice conditions.

Furthermore, snow cover properties such as snow density and wetness can also modulate the C-band scattering signatures355

(Kim et al., 1984). For example, the change in snow density affects the effective wavelength of the microwave signals, therefore

impacting the scattering at the snow-ice interface. Since the OIB campaigns were carried out during later winter/early spring,

the snow cover is dry and therefore largely transparent to C-band signals. In order to apply the statistical prediction algorithm for

other seasons (i.e., late autumn or spring), the snow conditions should be taken into account to better use the SAR measurements

(Livingstone and Drinkwater, 1991).360

5.2 Scale-dependency of the statistical relationship

Based on the OIB tracks on April 8th and 12th, we further explore the scale-dependent characteristics of the statistical relation-

ship. Specifically, both Fs and σ0 maps are coarsened to three spatial resolutions: 100 m, 200 m and 500 m. This coarsening

was achieved by calculating the average values of Fs and the S1 intensity within each coarsening grid cell at the respective
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resolutions, rather than coarsening the OIB Fs alone as previously shown in Section 4. By analyzing the coarsened σ0 and365

Fs maps, we find that the relationship becomes more stable at large scales (Fig. 11). In several 9 km segments, the Pearson

correlation coefficient at 500 m scale is lower than that at 40 m and 200 m scale. This is likely because FYI fraction diminishes

for some segments after coarsening to the 500 m scale. On the OIB tracks on April 8th, there is a special segment ( 55 km

in along-track direction) where the Pearson correlation coefficient drops drastically across all three scales. These segments are

dominated by deformed and thick ice, with a mean Fs of 1.04 m, a Fs std of 0.56 m, and MYI coverage reaching 97.3%.370

Various studies have explored the relationships between sea ice topography and microwave backscatter on different scales,

ranging from SAR-related scales (Macdonald et al., 2024; Kortum et al., 2024) to scatterometry scale (Petty et al., 2017). In

Macdonald et al. (2024), the Radarsat Constellation Mission (RCM, also C-band SAR) images and ICESat-2 products are used

to study the relationship between sea ice roughness and backscatter over land-fast sea ice in the Canadian Arctic Archipelago.

In particular, the statistical relationship based on HV polarization is stronger, and therefore used to predict FYI roughness375

and the height of MYI. In our study, we also find statistically significant relationships on the HV channel (see Appendix C).

Although the HV-channel usually has a lower SNR than the HH-channel, the higher correlations with sea ice topography

statistics may arise from the higher dynamic range of σ0.

In Kortum et al. (2024) the authors explored the extrapolation of IS2 freeboard (ATL10) , allowing for a time difference of

up to 24 hours between S1 and IS2 measurements.380

Similarly, in Macdonald et al. (2024), the HV-channel σ0 maps are also utilized. The prediction is carried out with the pairing

CDFs of Fs and σ0, and the Pearson correlation coefficient at 400 m scale reaches 0.82. In our study, the regression model in

Section 4.2 can also be used to predict Fs maps at similar scales. To ensure consistency with (Macdonald et al., 2024; Kortum

et al., 2024), we aligned the scale of statistical relationships and performed a quantitative analysis, with results presented in

Tab. S1. However, compared to Kortum et al. (2024) and Macdonald et al. (2024), our study focuses mainly on the prediction385

of meter-scale Fs distributions (Sec. 4.3). In addition, we explored the effect of sea ice drift and deformation on the correlation

between altimetric scans and SAR images. As shown in Section 4.2, third-party, large-scale drift products and local adjustments

can be used to facilitate the collocation between the two. Related representation issues are further discussed in Section 5.3.

In Petty et al. (2017) the authors studied the statistical relationship between C-band backscatter measured by ASCAT and the

variability of sea ice topography. The relationship is further used to estimate the atmospheric form drag coefficients based on390

backscatter maps. Although the scatterometers have relatively coarser resolution (25 km for ASCAT), the underlying mech-

anism of the topography-to-backscatter relationship is similar to our study. The macro-scale roughness of the sea ice cover

(i.e., topography) and the sea ice type dependent surface properties affect microwave backscatter, resulting in the statistically

significant relationship between the two.

5.3 Spatial and temporal locality of the statistical relationship between Fs and σ0395

The statistical relationships between Fs and σ0 in Section 4.1.1 and 4.1.2 are based on OIB data and SAR images acquired

on the same day. Furthermore, in Section 4.2, we demonstrated that there is large variability in this relationship, potentially

caused by differences in sea ice/snow conditions and practical factors such as different observational geometries. Therefore,
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Figure 11. The statistical correlation between Fs and σ0 at three spatial scales: 40 m, 200 m, and 500 m. The coarsening is applied to both

Fs and σ0 at these scales. The results for the OIB track on April 8th and 12th are shown in panel a and b, respectively. In order to accumulate

enough samples, especially at the 500 m scale, both the inbound and the outbound segments are used to compute the correlation coefficients.

Note that in order to accommodate the effective resolution of σ0 maps, in Fig. 2 and 3, we only applied spatial averaging to Fs but not to σ0.

the statistical relationship is spatially localized, which implies that the extrapolation of freeboard measurements (e.g., Sec. 4.3)

should be carried out locally.400

Furthermore, we explore the temporal transferability of this relationship, by matching SAR images collected 1 week from the

OIB campaigns. Correspondingly, sea ice may undergo significant drift and deformation, as well as thermodynamic changes

during a week-long interval between the OIB and SAR observations.

For the 9 km sample segments on April 8th (Sec. 4.1.1), we use SAR images from April 1st and April 15th, and collocate

both with the Fs map on April 8th (Fig. S5). The analysis of the drift corrections indicates that there is negligible sea ice405

movement between April 8th and April 15th, and the statistical relationships between Fs and σ0 are consistent (Fig. S5, lower

panels). However, the maximum correlation coefficient between Fs and σ0 is much lower at 0.4 for the SAR image on April

1st, as compared to 0.6 for April 8th (Fig. S5, upper panels). The drift corrections obtained from SAR images on April 1st and

April 8th confirm significant sea ice deformation, leading to suboptimal collocation between not only SAR images, but also

SAR and OIB (note the scattered samples in Fig. S5, panels b and c).410

For the 9 km sample segments on April 12th (Sec. 4.1.2), SAR images from April 5th and April 19th are used for a similar

analysis. Between April 5th and 12th, significant sea ice drift and deformation is present for the sea ice cover around the sample

segments (Fig. S6.a). Correspondingly, the correlation coefficients between Fs and σ0 also witness significant drops: from 0.28

to 0.15 for the outbound segment, and from 0.54 to 0.45 for the inbound segment. On the contrary, between April 12th and

19th, sea ice drift is evident, but very small deformation is present, as indicated by the collocation of SAR images (Fig. S6.d).415
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The correlation coefficients between Fs on April 12th and σ0 on April 19th largely remain the same as that based on April

12th. Specifically, the coefficient is 0.27 for the outbound segment and 0.54 for the inbound segment.

Both cases indicate that the collocation between OIB and SAR deteriorates at longer time intervals, and there are corre-

sponding drops in the statistical relationships. This is presumably caused by synoptic scale forcings that drive sea ice drift

and deformations, which compromise the collocation. As indicated by both observations and modeling studies (Marsan et al.,420

2004; Rampal et al., 2008; Ning et al., 2024), sea ice deformation is localized, and multi-fractal both spatially and temporally.

More importantly, there is strong coupling between the spatial and the temporal domain. At longer time intervals, there is lower

spatial localization of sea ice deformation, which potentially complicates the collocating of SAR and altimetry scans. Further-

more, thermodynamic changes such as snowfall events, snow stratigraphic changes, as well as newly formed sea ice ridges

and leads, can also greatly modulate both Fs and/or C-band backscatter(Tsai et al., 2019; Manninen, 1992). These changes are425

usually associated with synoptic events, which potentially co-occur with sea ice drift and deformation. In summary, there is a

strong locality in the statistical relationship between Fs and σ0. The spatial and temporal windows for collocating SAR and

altimetry scans and further upscaling the freeboard measurements is an important research topic for future studies.

5.4 On the upscaling of IS2 measurements

Compared with the 1 m-scale Fs maps from OIB, the standard sea ice elevation (ATL07) and freeboard (ATL10) products of430

IS2 are provided in beam segments. Since each beam segment consists of ∼150 aggregated photons, the nominal resolution is

between 10 and 20 m in the along-track direction for the three strong beams and ∼11 m in the across-track direction, the laser

footprint’s diameter (Neumann et al., 2020). For weak beams, the beam segment resolution is even coarser by approximately 4

times. By constraining and coarsening OIB Fs maps to the footprints of IS2 strong and weak beam segments, we find that the

correlation maps between Fs and S1 backscatter is in good agreement with those based on the full OIB segment (results for435

the sample segments shown in Fig. S7). Therefore, the collocation with S1 images can also be carried out with IS2 elevation

measurements.

We re-apply the prediction algorithm in Section 4.3 to IS2 footprints of the 9 km sample segments. Specifically, the predic-

tion is trained and validated on the IS2 beam segments on the inbound and the the outbound OIB segments, which cover the

IS2 beam pairs #1-#2 and #3-#4, respectively. However, compared to the 1 m-scale OIB Fs map, the following limitations of440

IS2 are present: First, the IS2 beam segments are coarser, especially for the weak beams. Second, the IS2 ground coverage is

much narrower at 11 m, compared with the ∼1.5 km width of the Fs map. As a result, on the 9 m sample segments, there is a

very limited number of IS2 beam segments (i.e., Fs samples). Therefore, in order to accumulate enough samples for prediction,

we extend the sample segments in both directions to 27 km (equivalent to the length scale used in Fig. 6).

Specifically, we follow the three-step routine for the prediction and evaluation of Fs. First, by using IS2 beam segments445

on the inbound segment (i.e., the #1-#2 beam pair), we bin the Fs samples to σ0, and further carry out the PDF fitting with

3-component Log-Logistic mixture model within each σ0 bin. Second, we predict the Fs distribution on the corresponding

outbound segment, using the σ0 observations on the IS2 footprints (i.e., the #3-#4 beam pair). Finally, we validate the prediction

with the observed Fs samples.
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Figure 12. Same as Fig. 9, but for Fs on IS2 beam segments on the sample segments on April 8th (panel a and b) and April 12th (panel c

and d). Since there are limited number of IS2 beam segments, the length of the sample segments is enlarged to 27 km.

Figure 12 shows the results for the 27 km sample segments on April 8th and 12th. Similar to the validation of the 1 m-scale450

Fs in Figure 9, the prediction on IS2 footprint also yields a good match with the observed Fs distribution. In addition, the K-S

distance is effectively reduced with the prediction: from 0.189 to 0.123 for the sample segment on April 8th, and from 0.182

to 0.119 for that on April 12th. Using the σ0 map on Beams #3 and #4, we produce the Fs distribution that better matches the

observation than t he default Fs distribution on Beams #1 and #2. Especially, the representation of thin ice (less than 30 cm

thick) has greatly improved for both cases, which is the major reason for the reduction in the K-S distance.455

5.5 Outlook

For future work, we plan to further explore the freeboard-backscatter relationship under various conditions. First, a more

extensive coverage of sea ice types is planned, including FYI and thin ice at different stages of development. The historical

records of OIB in the Arctic contain many surveys over various ice conditions especially in the western Arctic. The concurrent

SAR campaigns including S1 can be used to extend the study with more complex ice types and mixtures. Second, the statistical460

relationship and its variability under different weather conditions need more investigation. Factors such as melt conditions and

heavy snowfall could potentially alter both the microwave backscatter and the overall snow budgets. As pointed out in Section
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5.3, we need to account for potential changes in the sea ice under synoptic events, and further obtain the optimal spatial and

temporal window to derive the relationship and the upscaling of altimetry measurements.

For the upscaling of IS2 observations at basin scale, concurrent and spatially collocated SAR images should be used, such465

as those from S1 and the RadarSat Constellation Mission (RCM, see: MDA, 2021). Specifically, we have demonstrated both

spatial and temporal locality of the derived statistical relationships. For altimetry and SAR observations that are separated by

long temporal intervals, thermodynamic and dynamic processes within the ice and overlying snow can degrade the relation-

ships between macro-scale topography and C-band backscatter. Another key factor is the spatial scale for the upscaling of IS2

measurements. In Section 4.3 the prediction is designed to incorporate meter-scale Fs maps. The photon-level elevation mea-470

surements represent a similarly fine spatial scale to the OIB ATM, but contain higher uncertainty than that of the beam segment

elevations (ATL07). The proper temporal and spatial scales for matching SAR images and upscaling of IS2 measurements

should be the subject of detailed studies in the future.

The sea ice topographic roughness and the statistical fittings are dependent on the scale of altimetric observations (Sec. 4).

Beyond the OIB ATM scans (1 m-scale) and the IS2 beam segments (footprint size ∼11 m), various historical and future475

campaigns feature drastically different payload design and resolutions. For example, the nominal footprint size of ICESat is

65 m (Farrell et al., 2009), and at this scale there also exist statistically significant relationships between Fs and the C-band

backscatter (Kortum et al., 2024; Macdonald et al., 2024). Besides, the concurrent SAR observations at both C- and L-bands,

such as ALOS (Advanced Land Observing Satellite) and ALOS-2 (Shimada et al., 2009; Kankaku et al., 2013), can be further

used for the study of the relationships and the upscaling of altimeter measurements. For ICESat, by combining with data from480

SAR satellite payloads such as ESA’s EnviSat ASAR (Miranda et al., 2013), the upscaling of ICESat can be carried out for

constructing a wider coverage record of sea ice freeboard for the period 2003–2008.

Data availability. The data from OIB campaigns in April, 2019 are available from the National Snow and Ice Data Center: https://nsidc.org/

data/ilatm1b/versions/2, and https://nsidc.org/data/ilnsa1b/versions/2 (last access: 6 September 2024). S1 EW images are accessed from the

Copernicus Data Space Ecosystem (available at https://browser.dataspace.copernicus.eu/, last access: 6 September 2024) and processed them485

using the ESA Sentinel Application Platform (SNAP) toolbox. The complete list of used SAR images are provided in the supplement with

public access. The ATL07 and ATL10 product from ICESat-2 (version 6) are accessed at the National Snow and Ice Data Center through

https://nsidc.org/data/atl07/versions/6 and https://nsidc.org/data/atl10/versions/6 (last access: 6 September 2024). The OSI-SAF sea ice drift

product is available at: https://osi-saf.eumetsat.int/products/osi-455 (last access: 6 September 2024). DTU15MSS_1min can be found at:

https://www.space.dtu.dk/ (last access: 12 February 2025).490

The interpolated and stitched 1 m-resolution total freeboard fields (in 3 m segments) of the sample segments on 2019-Apr-8 and 2019-

Apr-12 are achieved at: https://zenodo.org/records/14930672 (last access: 26 February 2025). Additionally, the sea ice type maps based on

Sentinel-1 EW images can also be accessed at the same URL.
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Appendix A: Processing of OIB ATM elevations

The elevations of the original ATM samples are converted into the total freeboard (or the snow freeboard, denoted Fs). For495

OIB flights on April 8th and 12th which were organized in a racetrack pattern(Fig. 1), we merge all OIB samples to construct a

merged map of Fs for both the northbound and the southbound flight passes. Specifically, two steps are carried out, as follows.

A1 Construction of the per-pass 1 m-scale Fs map

As the first step, for each OIB pass, we converted OIB ATM samples into the Fs map which covers over 500 m across the

OIB flight path. Both wide scan and the narrow scan of the OIB ATM are utilized. For a local segment along the OIB flight500

(e.g., 10 m in length), we first project each ATM sample under the polar stereographic projection according to its geolocation

(i.e., its latitude and longitude). Then, we interpolate the samples into a 1 m-scale elevation map, using linear interpolation.

Afterwards, we apply mean sea surface (MSS) geophysical height corrections to the elevation based on mean sea-surface height

(DTU15 MSS model). Finally, we treat the corrected elevation as elevation anomalies, and apply the lowest elevation method

to retrieve the freeboard. Specifically, the lowest 1‰ of elevation samples within each 10 m segment are extracted and linearly505

interpolated to construct the local water level (also at 1 m-scale) using the Inverse Distance Weighting (IDW) method. The

final 1 m-scale Fs map is further validated with the standard 40 m-scale Fs product from IDCSI (Fig. S1).

A2 Collocation between OIB passes and the construction of the merged Fs field

We further merge the three OIB passes to form the Fs map that covers over 1.4 km across the flight path. Since the central

pass and the left pass were separated by 1∼2 hours, and the central pass and the right pass by 3∼4 hours, the sea ice cover510

potentially had undergone drift and deformation. Therefore, we first search for corrections between each of the two pairs of

OIB passes. For each 3 km segment, we maximize the correlation of the overlapping part of the Fs maps of the central and the

left (or the right) pass, by adjusting the relative location of the left (or the right) pass with respect to the central pass. After the

maximum correlation is attained, we record the corrections in both the along-track and the cross-track directions, and further

merge the left and the right pass to the central pass, in order to form a unified Fs map. In Figure 2.a (3.a) we show the merged515

Fs maps for the sample segments on April 8th (12th), and in Figure S2 (S3) the correlation maps between OIB passes.

For certain segments, the central pass and the left (or right) pass do not overlap, and therefore they are not included in further

analysis (especially in Fig. 5). Figure A1 and A2 show the corrections and the maximized correlation of Fs maps between OIB

passes for all 3 km segments on April 8th and 12th, respectively. For April 8th, very high correlation coefficients were attained

for all segments (Pearson’s r all over 0.94). Besides, meter-scale corrections were required, which potentially arise from520

locating uncertainties. On the contrary, on April 12th, evident corrections with length over 100 m were needed to maximize

the correlation, which are also consistent with the large-scale drift provided by OSI-SAF (details not shown). Therefore, we

consider these corrections are associated with sea ice drifts. Evident changes of the sea ice drift at the location of 120 km along

the OIB flight path is detected for both the inbound and the outbound flights, indicting the presence of sea ice deformation.

Especially, the correlation coefficients for the 3 km segments also dropped to lower than 0.9 where the deformation is detected.525

26



Table B1. OIB campaign and the corresponding S1 images. The corresponding ICESat2 ground tracks’ information, including its visit times

are shown in the last column.

Collocation and the resulting correlation coefficients at the scale of 500 m around the location of of the deformation further

indicate that the deformation are localized (i.e., within 500 m) and present at several along-track locations (Fig. A2).

Appendix B: S1 EW images used for analysis for OIB campaigns

Appendix C: Statistical relationship between Fs and σHV
0 for the segments on April 8th and 12th

For the two pairs of sample segments on April 8th and April 12th, the statistical relationship between Fs and the C-band530

backscatter in the HV-channel are shown below in Figure C1 and C2. Our results show general consistency with previous

studies (Macdonald et al., 2024; Kortum et al., 2024), that freeboard generally correlates slightly better with the HV-channel

than with the HH-channel backscatter. The statistical relationship between freeboard and backscatter in the HV-channel for all

the OIB segments are also analyzed in this section (see Fig. C3).

The HV-channel backscatter is generally much weaker than the HH-channel. This is particularly evident for FYI, where HV535

backscatter often falls below the nominal noise floor (Segal et al., 2020). Additionally, the sub-swath artifacts are more evident

in the HV-channel (i.e., abrupt transition of σ0 across the sub-swath boundaries) for Sentinel-1 EW mode images (Lohse et al.,

2021). Despite the stronger correlation observed in the HV band, the qualitative statistical relationship between freeboard and
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Figure A1. Collocation between different OIB flight passes on April 8th, 2019. The along-track segment length is 3 km. The local corrections

of the left and the right pass with respect to the middle pass for each segment on the outbound (inbound) flights is shown in panel a and b

(g and h), respectively. The correlation coefficients (Pearson’s r) after the collocation between the left and the middle pass and that between

the right and the middle are shown in panel c and d the for the outbound flight, respectively. Similarly, panel e and f show the results for the

inbound flights.
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Figure A2. Same as Fig. A1, but for the OIB campaign on April 12th, 2019. Correlation coefficients lower than 0.8 are marked by filled

symbols in panel c, d, g and h. For segments around the apparent deformation (at ∼ 120 km along the track), the local drift correction is

further refined to 500 m in the along-track direction. The 500 m-scale drift corrections and the correlation coefficients are marked by circles

and thin lines.
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Figure C1. Scattered plot of the relationship between Fs and the Sentinel-1 C-band backscatter (σ0) in the HV polarization channel for the

sample segments on April 8th, 2019. Same as in Fig. 2, three spatial scales of Fs are adopted for matching to the 40m-resolution σ0 product:

40m (left column), 100m (middle column) and 200m (right column).

backscatter is similar when using either the HH or HV channel. Given these consideration, this work primarily concentrates on

the S1 HH-channel.540
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Figure C2. Same as Fig. C1, but for the sample segments on April 12th, 2019.
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Figure C3. Same as Fig. 6, but for HV channel
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