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Abstract. In this study, we evaluate the statistical relationship between sea ice freeboard and C-band microwave backscatter.
By collocating observations between Sentinel-1 images and Operation IceBridge (OIB) measurements in April 2019, we eval-
uate their relationship under various sea ice types and thickness regimes. We show that, at various spatial scales relevant to
synthetic aperture radar (SAR) observations, there exists an apparent significant correlation between C-band backscatter and
sea ice freeboard. This relation depends on physical parameters of the sea ice, including the ice type, as well as sensor-specific
parameters such as the observational incidence angle of the SAR satellite. As a result, there is considerable variability in this
apparent relationship and its fitted parameters. Using the fitted relationship, two-dimensional freeboard maps can be predicted
at the scale of SAR images’ effective resolution (i.e., ~200%"": m). More importantly, we demonstrate that although the reso-
lution of SAR images are relatively lower than OIB freeboard maps, we can predict the high-resolution, meter-scale freeboard
distribution where altimetry measurements are not available. Thus the representation of altimetric measurements can be im-
proved with the upscaling based on the SAR image. The proposed method can be further utilized for the upscaling of satellite
based sea ice topography measurements by the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). Related issues, including
the limitation to spring data, scale dependency and the locality of the statistical relationship, as well as the upscaling of current

and historical satellite campaigns, are further discussed.
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1 Introduction

Polar sea ice has undergone drastic changes in response to global climate change (Kwok, 2018). As Arctic sea ice coverage
diminishes at a substantial rate, there has also been a rapid decrease in ice thickness and volume (Sumata et al., 2023). In
particular, sea ice topography, characterized by the small-scale sea ice height variability, has become smoother (Krumpen
et al., 2025). Satellite altimetry serves as the backbone for observations of the circumpolar sea ice freeboard and thickness.
For both laser and radar altimeters, the signals are sent from the satellites to Earth. By measuring the time difference between
the emitted pulse from the satellite and the returned echo, the range between the satellite and the reflecting surface on Earth
is estimated. The differentiation of the range of echoes returned from sea ice floes versus interstitial leads gives the radar or
laser freeboard, and the sea ice thickness is then calculated from hydrostatic assumptions and the buoyancy relationship. In
particular, NASA’s ICESat-2 (IS2) satellite is a photon-counting laser altimeter that has carried out continuous observations
in both polar regions since 2018 (Markus et al., 2017). Six laser beams of IS2 form into three strong-weak pairs, providing
continuous ground coverage in the satellite’s flight direction. Validation efforts with airborne campaigns that collocate with IS2
beam segments, including NASA’s Operation IceBridge (MacGregor et al., 2021, OIB) and MOSAIC (Nicolaus et al., 2022),
show that IS2 is able to achieve highly accurate measurements of the sea ice topography (Kwok et al., 2019; Ricker et al.,
2023).

Despite their advantages, satellite altimeters have limited coverage over the sea ice cover. The spatial sampling is inherently
confined within the nadir of the satellite’s track. For example, the three IS2 beam pairs are within ~3*£V": km of its ground
track. In order to attain basin-scale coverage, samples collected throughout the whole month are usually needed. However,
within a month’s time, the sea ice may have undergone significant changes due to both thermodynamic and dynamic processes.
These changes cannot be represented by the aggregated monthly freeboard and thickness maps. Furthermore, the altimetric
scans only cover limited area within typical passive microwave imagers’ footprints, thus hindering the synergy with these

observations (Xu et al., 2017). RV

In this paper we explore the potential of improving the laser altimeter’s representation through a synergy with microwave

backscatter measurements by synthetic aperture radars (SAR). In particular, the C-band SAR payloads onboard European Space
Agency’s (ESA’s) Sentinel-1 (S1) satellites provide pan-Arctic coverage since 2014 through the Extra-Wide (EW) swath mode
scans. In this study, we establish statistical relationships between OIB-based sea ice topographic and freeboard measurements
and SAR backscatter normalized radar cross section (o) from S1 scenes using collocated observations during April, 2019. OIB

flights during this month, in particular the Airborne Topographic Mapper (ATM) measurements, were intentionally collocated
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with IS2 tracks. The ATM measurements feature higher resolution and wider swaths than IS2 measurements, enabling the
analysis of co-variability between freeboard and o at multiple scales. Therefore, they are used to study the upscaling of
IS2 measurements. In Section 2 we introduce details of the data used and the processing protocols. Using these statistical
relationships, we further design an algorithm prototype for SAR-based prediction and upscaling of laser altimetry””"*, as com-

prehensively described in Section 3. And Section 4 covers the statistical analysis under various sea ice conditions. The locality

and limitations of the prediction algorithm are also investigated, along with other related issues in Section 5. #2V*Einally, Section
2 Data and protocols
2.1 OIB campaigns in April, 2019

During April 2019 four OIB campaigns were carried out in the Arctic (Fig. 1), which were collocated with IS2 and consequently
provided validation data for the sea ice elevation (ATLO7, see also: Kwok et al., 2019) and freeboard products (ATL10). In

particular, the flights on April 8th and 12th were organized **':into-racetracksin a racetrack pattern and cover more than 200%*":

km along the corresponding IS2 ground tracks, with outbound (i.e., northbound) and inbound (i.e., southbound) flight passes
covering beam pair of #3-#4 and #1-#2, respectively. Two different types of conic scans of ATM onboard these OIB campaigns
were carried out: the 15° wide swath scan that covers about 500" m across the flight pass, and the 2.5° narrow swath scan
that covers about **¥#:g060%#¥": m. The scan angle of the wide-swath scanners is 15°, resulting in a swath width of 500%%V": m,
The scan angle of the narrow-swath scanners is 2.5°, which enhances the shot density in the central part of the wide swath.
In addition, there are three flight passes of the racetrack, and together they cover over 1%£V: km in the cross-track/flight path
direction. Furthermore, the campaign on April 8th dominantly covered areas with thick multi-year ice (MYI), while that on
April 12th sampled more interstitial first-year ice (FYI) within the MYI. Two other flights on April 19th and 22nd are longer
tracks that traverse both MYT and FYT (Fig. 1). #2¥*Based on ERAS data for the study period, the large-scale atmospheric con-

ditions were typical of the late-winter conditions in the respective regions. There were no sudden warming events or significant

precipitation that potentially changes the SAR backscatter signature of the sea ice.

In order to fully utilize the ATM measurements on April 8th and 12th, we construct a merged sea ice freeboard map using

all three OIB passes.®2": The left and middle passes were about 1.25 hours apart, while the right and middle passes were

about 2.5 hours apart. Full details of the processing are covered in Appendix A. Briefly, first, we retrieve the total freeboard

(denoted F) within the entire ATM swath for each pass, using the raw elevation measurements by ATM. Second, we obtain
the 1%V m-scale F; map for each pass through spatial linear interpolation. The scan pattern of the ATM results in a variable
number of shot spacings within the scan swath, with relatively lower shot density in the middle (Petty et al., 2016). To mitigate
uncertainty introduced by this spatial sampling non-uniformity, the irregularly spaced ATM elevation data are converted to a
regularly spaced 1%V m F; map. Finally, the F; maps of the three passes are stitched together after collocation, producing the

F, map that covers ~1500%"”: m in the cross-flight direction.
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REV:The standard OIB Level4 (LL4) product includes F; parameter derived from ATM measurements and geolocated aerial

photography. It employs a lead discrimination algorithm, which utilizes geolocated aerial photography to identify local sea

surface height, thereby enhancing the quality and number of sea surface height determinations. The final product is gridded to

a 40 m along-track resolution and can serve as a validation reference for the newly constructed 1 m-scale F; maps. *"¥The

. Specifically, we coarsen the F; map to match the

40FEVE: m resolution and the location (nadir to the flight) of the L4 product. Validations show strong agreement, with RMSE
of 0.15%V": m on April 8th and 0.1%¥"": m on April 12th at 40%E"": m scale. At 400F="": m scale, RMSE further decreased to
0.047EV: m, on April 8th and 0.03%2¥: m on April 12th (Fig. S1). Hence the 1%£V”: m-scale F; maps are used further for the

statistical analysis with SAR images.
2.2 S1 EW images and sea ice type maps

Both S1A and S1B data are available during the study period of April 2019. EW mode images with dual polarization channels
(HH and HV) are accessed and collocated with the aforementioned OIB observations. The SAR incidence angles (IA) across
the swath range from 20° to 46° for S1’s EW mode. EW mode images use TOPSAR techniques to achieve a very large
swath coverage (~ 400 km), but TOPSAR acquisitions are affected by the “scalloping effect” (De Zan and Guarnieri, 2006).
Additionally, the noise floor varies with range position, creating discontinuous sharp intensity changes known as the “banding
effect” (Lohse et al., 2021; Sun and Li, 2021). These issues are particularly prominent in the HV channel due to its low
signal-to-noise ratio (SNR) (Segal et al., 2020). Details of the SAR images, including the image identifiers and the acquisition
times, are provided in Tab. B1. Each image is preprocessed using ESA’s Sentinel Application Platform (SNAP, version 11.0.0).
Processing steps include the application of precise orbit files, thermal noise correction, radiometric calibration, and terrain

correction. Finally, we convert the backscatter intensities into og.

REV2: icetune i

B. REVZ:Sea ice type information is derived from S1 images and the sea ice classification algorithm used in this study is based

on: Lohse et al. (2020) and Guo et al. (2025). Lohse et al. (2020) developed a supervised algorithm that accounts for the
class-dependent IA effects, known as the GIA classifier. While this classifier performs well in addressing IA sensitivity, some
misclassifications and ambiguities remain. To address these issues, Guo et al. (2025) enhanced the algorithm by incorporating
GLCM texture features, resulting in improved class separation. This study uses this classification approach to produce sea ice
type maps on the selected S1 scenes.

In the classification process, seven GLCM textures are derived from the HH channel of each SAR image, with a texture
window size of 11 pixels. Then, SAR intensities (HH and HV) and GLCM textures (HH) are used as input to the GIA classifier,
which incorporates their IA dependencies. Sea ice is classified into three types: level first-year ice (LFYI), deformed first-year
ice (DFYI), and multiyear ice (MY1). To further refine the results, a Markov Random Field based contextual smoothing process

is applied with a window size of 3 pixels (Doulgeris, 2015). The final sea ice type maps have a pixel size of 40 *V": m, but their
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Figure 1. OIB campaigns during April 2019. S1 EW images collected around April 8th are shown in the background, with the black boxes
outlining the images used for statistical analysis between C-band backscatter and sea ice freeboard. The solid box marks the boundary of the
S1 image on April 8th, while the dashed (dot-dashed) ones mark those on April 7th (9th). The OIB ground tracks of the 4 days are marked
by red lines, and the location of the *£V:9 km sample segments are shown by the asterisks. The thick yellow line delineates the boundary

between the MYI and the FYI regions according to the sea ice type product provided by the Ocean and Sea Ice Satellite Application Facility
(OSI-SAF).
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effective spatial resolution is significantly coarser due to SAR speckle filtering and textural processing. Sea ice classification is
carried out for all the S1 images and the results are used for further analysis.

By default, the S1 images are projected to 40%="": m spatial resolution, which is the nominal pixel spacing of the ST EW
medium GRDM mode data, though the effective resolution is approximately 90%“V: m. In addition, the processing steps in
SNAP may further degrade the resolution of the oy map. This is because a Single Product Speckle Filter with a sliding window
of 7x7 pixels wash applied during the speckle filtering process (Mansourpour et al., 2006). We use the following notations for

the coarsened values: E(S) and CTO(S), where s denotes the coarsening scale.
2.3 ICESat2 products

The official IS2 products (version 6) are accessed for the collocating tracks with OIB campaigns on April 8th and 12th (see
Data Availability for details). Each of the beam segments are of about 150 aggregated photons, and the mean sea ice elevation
of each segment is provided in ATLO7. Due to the variable photon rates over the sea ice, the along-track length of the beam
segment is not constant, around 10~16%#V": m. It is also different between strong and weak beams, with the beam segment
length of the weak beams at about 50" m. In this study, we use the footprints of both the strong and weak beam segments

to study practical issues limiting the upscaling of IS2 measurements, extending our analysis from OIB to lower freeboard

resolution £/ putlarger coverage.

2.4 Ancillary datasets

The climate data record of global sea ice drift from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF, version
OSI-455) is used as the reference to the collocation of the different datasets. The OSI-455 product is available for the period of
1991-2020, and is derived from various passive microwave sensors (SSM/I, SSMIS, AMSR-E, and AMSR?2) and wind field
data from an atmospheric reanalysis. The sea ice drift vectors are provided on the Equal-Area Scalable Earth (EASE) grid with
the spatial resolution of 75%": km. However, they are not available near the shoreline (i.e., part of the campaign on April
8th near the Canadian Arctic Archipelago). The temporal scale of the drift vectors is 24-hour, starting/ending at 12:00 UTC
(Lavergne and Down, 2023).

2.5 Collocation between OIB and S1 images

The collocation between the F; maps and o in the HH-polarization channel is carried out to correct for potential sea ice drift

and geocoding uncertainties between the two measurements. £V The OIB flight on April 8th was approximately 40 minutes

apart from its corresponding S1 image acquisition, whereas the OIB flight on April 12th was about 4 hours apart from its re-

spective S1 image acquisition. For the OIB flight on April 8th, the ice surveyed was relatively immobile, while that covered by

the campaign on April 12th experienced a drift of approximately 0.02%*"": m /s according to the OSI-455 product. We coarsen
the 17EV": m-scale Fs maps to the nominal pixel size of S1 EW images (i.e., 40*"": m), and maximize the correlation (Pearson’s

r) between the two fields by locally adjusting the relative location between the two. The increments of the local adjustments is
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20%EV": m (i.e., half of S1 EW pixel spacing). **"*When collocating OIB tracks with S1 images, we divided the OIB tracks into

9 km segments. Collocation is performed independently for each 9 km outbound and inbound segment, in both the along-track

and cross-track directions. In order to compare to the drift corrections during the correlation maximization(see Fig. 4.a and

Fig. 5.a), the daily OSI-SAF drift vectors are scaled to the time interval between the acquisition time of the SAR image and
that of the OIB. Afterwards, bilinear interpolation is carried out in the spatial domain to attain the drift vector at each location

along the OIB flight path.

3 REVZMethods
3.1 The statistical fitting between the F; and o

To analyze the statistical relationship between F and C-band backscatter, we employed a linear regression model for each
9 km segment (both outbound and inbound), defined as: Fi = a- oo+ b. Sea ice type maps, which classify the sea ice into
LFYI, DFYI, and MYT, were used. During the classification, a sliding window of 11 pixels was applied in the classification
process; if all pixels within an 11x11 window were of the same type, the central pixel was classified as a pure pixel (indicated
by solid circles in Fig. 2 and 3, panel d-i); otherwise, it was labeled as a mixture(indicated by square symbols in Fig. 2 and
3, panel d-i). We specifically examined the relationship between F; and backscatter for pure MYI pixels. Due to the limited
number of pure FYI and DFYT pixels, these were not included in further analysis.

Backscatter values were binned into 1 dB intervals. For each bin, the mean F; value within the interquartile range (IQR) was
calculated. The representative backscatter value for each bin was determined as the mean of the bin boundaries. The statistical
relationship between these mean F values and representative backscatter values was then analyzed.

Since the effective resolution of the backscatter used in this study is larger than 40%*V": m, coarser spatial scales adopted for

the computation of Fy, including 100rEV! - m (Fig. 2, panel e and h) and 200%*"": m (Fig. 2, panel f and i).
3.2 F; distribution prediction

The prediction of F} distribution is based on 1m-scale samples for OIB and beam-segment scale for IS2. The training of the

prediction algorithm is carried out as follows:
1. Bins backscatter values into 1 dB intervals.
2. For each bin, calculates the mean F; value within the IQR.

3. Uses the three-component Log-Logistic mixture distribution to fit the F sample probability density function (PDF)
within each o bin. The probability density function of the three-component Log-Logistic mixture distribution is given

by:

3 .
_ (Bifoui) (/)P
p(w) *;wi. (1—|—(x/04i)5i)2

where w; is the weight, 3; is the shape parameter, and «; is the scale parameter for the i-th Log-Logistic component.
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4. Applies the maximum likelihood estimation (MLE) method to fit the Log-Logistic mixture model. MLE identifies the
optimal parameter estimates by maximizing the likelihood function of the sample data under the hypothesized Log-
Logistic mixture distribution. We transform the problem of maximizing the likelihood function into minimizing the
negative of the likelihood function. The sequential quadratic programming (SQP) algorithm is then used to solve this

optimization problem.

To evaluate the goodness-of-fit between the sample distribution p(z) and the fitted three-component log-logistic mixture

distribution p(z), we employed the Kolmogorov-Smirnov (K-S) distance, defined as:

sup|P(z) ~ P(a)

Here, P(z) and ]B(ac) denote the cumulative density function of the sample and the fitted distributions, respectively, and sup,,
the supremum of the difference between the two. The K-S distance ranges between 0 and 1, with higher value indicating larger
discrepancy between the distributions. We further used the k-means algorithm for the clustering analysis of these components
in all oy bins, and related them to different sea ice types.

For the test of the prediction algorithm, we train the prediction model with the inbound segment, and carry out the prediction
and validation on the corresponding outbound segment. For OIB tracks, the 9 km segment length is adopted, while for IS2,
due to limited beam segment samples, the longer segment length of 27 km is adopted. For each o on the outbound segment,
we use the fitted Fs distribution on the corresponding o bin on the inbound segment for the prediction. The predicted F
distribution for each o sample is combined for all SAR pixels on the outbound segment. Finally, the prediction is validated
by computing its K-S distance to the observed F distribution on the outbound segment. For comparison, the baseline for the
validation is the K-S distance between the observed F distribution on the corresponding segment pair on the inbound and the

outbound flight.

4 Results and analysis
4.1 Sample segments

We first examine tworE"": pairs of 9 km OIB segments and collocate them with SAR images (oo in HH-polarization), their
locations shown in Figure 1. For the segment®"’:s on April 8th, the mean F; was 1.0%*"" m with a standard deviation of
0.45%EV: m, and the mean o was -10.46%V": dB with a standard deviation of 2.77*EV!: REVI: dB. In contrast, the segment*“/:s
on April 12th had a mean F; of 0.57%"": m and a standard deviation of 0.18"": m, with a mean o of -12.67%"": dB and a
standard deviation of 1.52%EV/: dB. While the®*V": 9 km segment**V':s covered on April 8th mainly consisted of thick MY, that

on April 12th features relatively thinner MYI, mixed with FYT and young ice.
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4.1.1 Sample segment*="":s on April 8th

The first®?V": 9 km sample segment®""s is shown in Figure 2. The three OIB outbound flight passes are separated by about 75
minutes: 2019-Apr-8 12:34 (middle pass), 2019-Apr-8 13:48 (left pass), and 2019-Apr-8 15:01 (right pass), respectively. The
inbound flight passes are: 2019-Apr-8 13:21 (middle pass), 2019-Apr-8 14:34 (left pass), and 2019-Apr-8 15:46 (right pass),

respectively. For both the outbound and the inbound passes, the central pass overlaps with the left (or right) pass by approxi-
mately 100%#": m in the cross-pass direction. The collocation between the passes indicates minimum correction (1~28EV/: m),
very high correlations (Pearson’s  over 0.95) and a decorrelation length of less than 5%2V: m (Fig. S2).

For comparison, the collocation between the merged Fs map and the SAR image on the same day (details in Tab. B1) shows
statistically significant but lower correlation coefficients (Fig. 2.b). The decorrelation length is much longer than that for 1REV":
m-scale Fy (i.e. Fig. S2), mainly due to that correlation between F and oy is carried out at the scale of 40%#V/: m. Besides, the
statistical relationship between F and o in the HV-polarization channel is also significant #2V/:__although the backscatter is-weaker by
mere-than-5-dB-(Fig-$3)(details in Appendix C).

REV2: A ¢ ot

As shown, the variability of F} is drastically attenuated, but the statistical correlation between F and o (at original reso-
lution) sharpens at larger scales. Specifically, for the segment on the outbound (inbound) flight, the Pearson’s r increases from
0.61 (0.66) for the correlation at the 40F="": m-scale F)s to 0.81 (0.84) for that at the 200%"": m-scale F}. For both cases, the

slope of the linear fit also reduces slightly as the scale increases.
4.1.2  Sample segment*=V:s on April 12th

The other two*e¥: 9 km sample segments are from the campaign on April 12th, shown in Figure 3. The major differences
from the sample segments on April 8th (Fig. 2) are as follows: (1) according to the OIB F; map, the MYI is much thinner;
(2) it contains higher areal fraction of FYI, and (3) the surrounding sea ice has undergone more evident drift and deformation
between the observations by OIB and S1, as indicated by the OSI-455 product.

Although sea ice is generally much thinner (1%¥¥": m-scale F; mostly under 27#V: m), a statistically significant relationship is

also present between F, and o (Fig. 3 and Fig. C2). #2>’For comparison, we also applied a 2nd-order polynomial regression:

F,=a-02+b-0q+ c. The nonlinear model yields slightly better fitting compared to the linear regression model (see Fig. S8

and S9). For both the outbound and the inbound segments, OIB has attained sufficient sampling of M Y1, but the representation

of FYT is not even. Specifically, on the outbound segment, SAR pixels with o7# under 18REVE: dB are scarce, and no level
FYI is detected in the area sampled by OIB. For the inbound segment, an apparent nonlinear relationship between F; and oy is
observed for FYI, due to the effect of ice with different levels of development. LFYT has a consistently low F around 20 cm
but corresponds to o that varies over a large range of 5%V dB, whereas DFYI has strongly varying F, up to around 1 REV/ ‘m
over a small range of o around 2~ dB. The linear fitting for MY is comparable to that for all sea ice types for the inbound

flight (lower panels of Fig. 3). At both 100%#": m- and 200%#"": m-scale, the linear regressions of F, to o show lower fitting
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slopes for MYT than for those based on all samples. The variability of F at 40-m scale diminishes considerably as the scale
increases. In comparison, MYI always has much steeper regression lines for the sample case on April 8th across all analyzed
scales (Fig. 2). This result, although potentially affected by the accuracy of the sea ice type map, highlights the importance of
the sufficient sampling of various sea ice types to ensure their representation in the study of the statistical relationship.
Interestingly, for MYI which is well observed by both sample segments on April 8th and 12th, the statistical fittings between
F, and oy show large differences. For the sample segmentrE! ‘s on April 8th, the regressions (40%:V": m-scale) are steeper
at: I, = 0.139 - 0 + 2.443 with Pearson’s r = 0.410 (outbound) and F, = 0.126 - 0 + 2.236 with the regression’s R =0.458
(inbound). In comparison, on April 12th, the fitting slopes are shallower by about 50%: F, = 0.06 - oo + 1.338 with the re-
gression’s R = 0.281 (outbound at 40*"": m-scale) and F, =0.051-0¢ + 1.204 with the regression’s R = 0.263 (inbound).
After binning the samples to oy, the regression lines (i.e., between the mean values of F§ in each o bin and ogy’s) become

flatter on April 12th: mean(Fy) = 0.051-mean(og)+ 1.244, compared with mean(F,) = 0.105-mean(og) +2.123 on April

8th. The potential causes of the different fittings include both: (1) differences in C-band backscatter sensitivity to macro-scale
topography due to different ice/snow properties of the two regions, and (2) different imaging configurations of the SAR images.

Related issues, such as the effect of IA on the statistical relationships are further discussed in Section 5.1.
4.2 Statistics of all segments on April 8th and 12th

For each of the *V:9 km OIB segment on April 8th and 12th, we generate a merged F; map and collocate it with the SAR
images on the same day. The statistical correlations are shown in Figure 4 and 5, respectively.

On April 8th, the local corrections for collocating F and oq are all within 4072V m (Fig. 4.a). The OSI-SAF drift product
indicates about 100%E"”: m drift within the northern part of the OIB track, although the drift vectors are not significant given the
respective product uncertainties. SAR images from the surrounding days (i.e., from April 7th and 9th, listed in Appendix B)
also show little drift in the sea ice pack surveyed by the OIB campaign (details not shown). In addition, we have attained meter-
scale corrections for the collocation of OIB passes (see Fig. Al). Given the relatively coarser resolution of the SAR images,
we assume that sea ice drift and deformation can be ignored when collocating F and og. The detected local corrections in
Fig. 4.a may not indicate actual sea ice drifts, but may be due to geolocating uncertainties, such as those induced by geometric
corrections of the SAR images. The correlation between F and o at 20072/ “m scale is statistically significant for all segments

(Fig. 4, panel b and d). After binning®*"% F; samples to o, the correlation coefficients*”"* the mean values of F5 and oy within

the bins are mostly over 0.9 (Fig. 4, panel c and e).

For the OIB campaign on April 12th, statistically significant large-scale sea ice drift are observed in the surveyed region (see
Fig. 5.a). The lengths of the local corrections for collocating Fy; and o are about 250" m. The corrections are consistent
between the local segment pairs on the inbound and the outbound flights, and they also agree with the large-scale drift in terms
of both direction (north-east) and magnitude. Therefore, these local corrections correspond to the actual sea ice drift between
the visits by the OIB campaign and S1.

After the corrections, the correlation coefficients are higher and statistically significant for all segments (p = 0.05 level).

Moreover, the correlation coefficients after binning are mostly over 0.9 (Fig. 5, panels c and e).
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The 9km sample segments on 2019-Apr-12
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In Figure 6 we show the linear regressions between o and 200%:"”: m-scale F for all segments on April 8th and 12th.
The results indicate that with o and the regression relationships, we can estimate the 2007V m-scale F; with high statistical
confidence (regressions’ [2-values over 0.3 for ®2V/:mestall 9*EV": km segments). Furthermore, the regression parameters show
significant variability among different segments, indicating the physical relationship between F and o varies locally. Despite
this variation, the regression parameters from the inbound and outbound tracks are very similar. We further examine the
relations for 27V km-long segments. As shown in Figure 6, the regression parameters for 27 km segments are much less
variant, although certain variability still exists on different parts of the flight track. Specifically, for the segments on April
8th, the variance of a (b) has decreased by 48.6% (36.5%) when comparing 27%V/: km-long segments to 9%V km-long
segments. For the segments on April 12th, the variance of a (b) decreased even more significantly, by 76.8% (78.7%). Besides,
the regressions’ [2-values are also higher for 27%2V: km-long segments for segments on both April 8th and April 12th. This
implies that, small-scale inhomogeneity of the sea ice cover or errors in data co-location, which cause large variability of a’s
and b’s in Figure 6, are effectively attenuated at larger scales. The regression relationships in Figure 6 can be further used
for the prediction and construction of 200%2" m-sclae F; maps based on SAR (Fig. S10 and S11). In particular, given to the
locality of the relationships, the prediction of F; map should also be carried out adjacent to the collocating observations by

SAR and altimetic scans.
4.3 Prediction of F distribution with oo map

Given that the altimetric scans by OIB (and IS2) have a finer resolution than available SAR images, the regression in Section
4.2 is inherently limited in the spatial resolution of the predicted Fs. Moreover, although there is a significant correlation
between Fs and o, the variability of F is considerable, and no single predictor based on backscatter effectively captures this
variability. Therefore, we focus on the prediction of meter-scale F distribution (i.e., at the full resolution of the altimeter data)

with SAR images based on their collocating observations of Fs and relatively coarser o data.
4.3.1 Study of sample segments

We first study the®”V’: 9 km sample segments in Section 4.1.1 and 4.1.2. *FV>;

o in. The distributions of F in typical o bins of these
twoREV: 9 km sample segments are shown in Figure 7 and 8, respectively. The sample F distributions after binning all show
the following characteristics. First, F; follows a long-tailed, skewed distribution, which is consistent with various findings in

existing studies (Xu et al., 2020; Duncan and Farrell, 2022). Second, *£V3:

g for larger
0 bins, the mean value and the variability of F)s are both higher. Third, the F distributions are multimodal, especially for o
bins that contain both FYT and MYI samples (e.g., left panels in Fig. 7 and 8).

To capture the complex shape of the F probability density function (PDF), we use the three-component Log-Logistic
mixture distribution to fit the sample PDF in each o bin. The fitting results (i.e., Fig. 7 and 8) indicate that the different
PDF modes are well captured with very low **'* Kelmegerov-Smisnov-k-$3K-S distance to the sample PDF. We further carry out

clustering analysis of the various components, based on the modal Fs values and the corresponding o (right panels of Fig.

13



Collocation between F, and o, for all 9km OIB segments on 2019-Apr-8
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Figure 4. Statistical relationship between Fs and o for OIB segments on April 8th, 2019. The local corrections to maximize the correlation
between F and oq are shown for allfEV’: 9 kim segments with valid data on the outbound flight (blue) and the inbound flight (dark red). The
correlation coefficients before and after collocation are shown for the outbound (panel b and c¢) and the inbound flights (panel d and e) for

allf®V’: 9 km segments, together with those after binning. Statistically insignificant correlations are shown by crosses (x) in the lower panels
(p = 0.05 significance level).
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Collocation between F. and o, for all 9km OIB segments on 2019-Apr-12
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Figure 5. Same as Fig. 4, but for OIB segments on April 12th, 2019.
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The linear regressions between o, and 200m-scale F; for all segments on 2019-Apr-8
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Figure 6. The linear regression from 40fEV": m-scale oo to the 200%E"": m-scale Fy for all segments on April 8th (a, b and ¢) and April 12th
(d, e and f): F, = a- o + b. The regression’s parameters, including a (panel a and d), b (panel b and ), and the R-value (c and f) are shown,

respectively. Two segment lengths are adopted: 9FEV": km and 27REVT: km.
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7 and 8). The three clusters indicate continuous changes of the PDF parameter with respect to o, and they generally show a
good correspondence to these sea ice types: FYI, thin MYI and thick MYI. For example, for the sample segment*:"”:s on April
8th, there is prominent presence of MY with F of over 3F5V": m and oq of over —5 ®EV7: REVI: dB (Fig. 7). This is captured by a
separate Log-Logistic component which we manually categorize as the thick MYI. This could corresponds to sea ice of higher
age than that of the thinner MYI which corresponds to the second component. Another example is that components with very
small modal values of Fs manifest even at very large o bins (Fig. 7 and 8, lower panels). Due to the relatively coarse resolution
of S1 images, thin FYI may be present in pixels with otherwise large values of both mean F; and 0. These components are
captured by the PDF fitting, and we further manually categorize them as FYL. It is important to note that these categorizations
are introduced to interpret the fitting results, as the specific categories (FYI, thin MY, and thick MYI) were not previously
defined in our analysis. Based on the per-bin Fj fittings on the inbound sample segments, we carry out the prediction of Fj
distribution on the corresponding outbound segments. Specifically, based on the observed oy map on the outbound segment,
we: (1) formulate the distribution of o, (2) compute the F distribution according to the sample probability of each of the o
bin, and (3) construct the overall F; distribution on the outbound segment. For the®*": 9 km sample segments on April 8th,
the per-bin Log-Logistic mixture fittings demonstrate a high degree of accuracy in fitting the observations for both the inbound
and the outbound segments, with K-S distances of 0.002 for each segment. However, the inbound and the outbound segments
differ in the sample F distribution (Fig. 9.b), primarily attributed to variations in the thickness of FYI and MYI, as well as
differences in their respective proportions. Notably, the modal thickness values of both the thin MYT and the thick MYT are
0.17EV: m higher on the outbound segment than on the inbound segment. As a result, the predicted F; distribution also shows
lower modal F values (Fig. 9.a). Despite the underestimation of the modal Fj, the prediction is closer to the observation, with
lower K-S distance: 0.072, compared with 0.076 between the inbound and the outbound segment.

For the®®V": 9 km sample segments on April 12th, the prediction also shows lower K-S distance with the observed F

distribution on the outbound flight (K-S distance from 0.094 to 0.074). The major improvement is due to different portions
of thin FYI on the outbound and the inbound segments (see also Fig. 3). By using the oy map on the outbound segment, we

achieve the correct representation of thin ice in the predicted F distribution.

4.3.2 Validation of prediction for all segments

We carry out the prediction of 1%/ m-scale F distribution for all the®="”: 9 km outbound segments. “*"?Fhe-validation-is-based

the-inbound-and-the-outbound-segments. Figure 10 shows that the predicted F; PDF is close to the observation, with the mean K-S
distance at 0.077. There is a 10% reduction of the baseline K-S distance, which indicates that the predicted F distribution
better matches the observations. Especially, large K-S distances are effectively attenuated with the prediction: 3 (10) out of the

total 91%EV: 9 km segments show a K-S distance over 0.15 between the predicted (inbound) Fs with the outbound observations.

Moreover, there exists a significant positive correlation (Pearson’s r: 0.72, p-value: 2.48 x 10~16) between the K-S distance
sequences in Figure 10. This indicates that when the F elevation is similar between the inbound and the outbound segments,

the prediction is generally better. On the contrary, if the F distribution is more different between the two segments, the
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The 9km sample segment on 2019-Apr-8 (inbound)
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Figure 7. Distribution of 1%/ m-scale Fy in typical oo bins of the inbound sample segment on April 8th, 2019. F; sample PDFs, as well as

the fitted three Log-Logistic mixture components are shown for typical o bins (left panels). Statistical PDF fitting (black solid line) based
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Figure 8. Same as Fig. 7, but for the inbound sample segment on April 12th, 2019.
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The 9km sample segments on 2019-Apr-8 The 9km sample segments on 2019-Apr-12
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Figure 9. Statistical prediction of F distributions on the outbound segment with: (1) the per-oo bin Log-Logistic mixture fittings on the

corresponding inbound segment, and (2) the oo map on the outbound segment. The observed and the predicted Fs distribution, as well as the

K-S distance between the two are shown for the sample outbound segment on April 8th (panel a) and April 12th (panel c). The F sample

distribution on the inbound and the outbound segments are also shown for comparison (b and d).
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Figure 10. K-S distance between the predicted and the sample F; distribution on all the?Y”* 9 km outbound segments on April 8th (top panel)

and 12th (bottom panel). The prediction on each®""* 9 km outbound segment is carried out with the PDF fittings on the corresponding

REVI:

9 km inbound segment. The K-S distance between the inbound and the outbound sample F distributions are also shown.

prediction also deteriorates. Therefore, in order to obtain better predictions, the observed F; should contain sufficient sampling

of different sea ice types in the range of the prediction. Representation issues for large-scale retrievals are further discussed in

335 Section 5.
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5 Discussions and Summary

In this study we investigate the statistical relationship between sea ice freeboard and C-band microwave backscatter, by using
collocated OIB observations and S1 images. Stronger SAR backscatter is observed for higher snow freeboard, which is at-
tributed to the sensitivity of backscatter to both the sea ice type, with generally high volume scattering for MYT in winter, and
ice topographic features such as ridges, with older ice having experienced stronger deformation (Krumpen et al., 2025). More-
over, the scale-dependency of this statistical relationship, along with its spatial and temporal locality, is further studied. An
algorithm for predicting and extrapolating sea ice topographic measurements with SAR images is introduced that incorporates

both: (1) the ICESat2 footprint size, and (2) the higher variability for larger sea ice total freeboard.
5.1 Physical mechanisms behind the statistical relationship between oo and F

The statistical relationship between sea ice freeboard and C-band microwave backscatter is rooted in the different microwave
backscatter mechanisms of various ice surface features. Thin, level ice typically exhibits low backscatter, with two primary
scattering mechanisms contributing to this: surface scattering from the ice surface and volume scattering from air voids (Man-
ninen, 1992). However, with thicker ice and larger Fj, both the backscatter and F variability are higher, as evidenced by
the larger spread of I **"¥interquariilesIQR in higher o bins in Fig. 2. This suggests that more complex physical mechanisms
govern the C-band backscatter variations in thicker ice. In the case of older, rougher ice, the presence of thicker snow cover and
more extensive ice deformation cause increased diffuse reflection and refraction of the incident radar signal (Onstott, 1992).

In addition to the wavelength-scale roughness, several other factors can also influence backscatter, such as the effective radar
incidence angle, radar azimuth which are greatly affected by ridge geometry (Krumpen et al., 2025). For level ice, the effective
incidence angle is relatively constant, equal to the radar incidence angle. However, for ridges, the local IA varies depending on
the radar and ridge geometries, including the incident radar angle, the ridge slope, and the orientation of the ridge. Even with
constant ice properties, these geometric differences alone can lead to higher surface backscatter from ridges compared to level
ice (Manninen, 1992). Consequently, the radar backscatter and its IA dependency are highly dependent on the ice type and the
observational geometry (Geldsetzer and Howell, 2023; Lohse et al., 2021, 2020; Guo et al., 2022).

It is important to note that in this study we did not apply IA corrections to the SAR images. There are several reasons: First,
the IA dependency is type-dependent, with deformed ice showing lower sensitivity to IA than level ice (Makynen et al., 2003).
Given the variant ridge density within the SAR’s footprint (~100%2¥": m), a simple correction for IA is insufficient in our study.
Second, for the SAR image on April 8th, the IA change was within 10° along the whole OIB track, and on April 12th, IA
values were within 5°. Since the range of IA is small, the correction has potentially limited effect on our study. Third, the
best angle for the IA correction should be chosen to maximize the differentiation among different ice types. What is the best
angle remains an open question and requires more systematic study. We further explore the influence of IA on the statistical
relationship for the OIB track on April 8th (no evident deformation or synoptic events around April 8th). By matching SAR
images from April 7th, 8th, and 9th to the OIB track on April 8th, we obtain the statistical relationships between F; at different
IAs. In general, the statistical fitting becomes steeper with decreasing IA (Fig. S4). This trend is driven by the higher (lower)

20



370

375

380

385

390

395

400

sensitivity of o level (ridged) ice to changes in IA (note the weaker o’s at larger IAs in Fig. S4). Therefore, when IA changes,
the statistically significant relationship still holds, but IA has limited effect on this relationship than other factors, such as the
localized sea ice conditions.

Furthermore, snow cover properties such as snow density and wetness can also modulate the C-band scattering signatures
(Kim et al., 1984). For example, the change in snow density affects the effective wavelength of the microwave signals, therefore
impacting the scattering at the snow-ice interface. Since the OIB campaigns were carried out during later winter/early spring,
the snow cover is dry and therefore largely transparent to C-band signals. In order to apply the statistical prediction algorithm for
other seasons (i.e., late autumn or spring), the snow conditions should be taken into account to better use the SAR measurements

(Livingstone and Drinkwater, 1991).
5.2 Scale-dependency of the statistical relationship

Based on the OIB tracks on April 8th and 12th, we further explore the scale-dependent characteristics of the statistical relation-
ship. Specifically, both F; and o maps are coarsened to three spatial resolutions: 100" m, 200%2¥": m and S00*Y": m. This
coarsening was achieved by calculating the average values of F and the S1 intensity within each coarsening grid cell at the
respective resolutions, rather than coarsening the OIB F alone as previously shown in Section 4. By analyzing the coarsened
oo and F; maps, we find that the relationship becomes more stable at large scales (Fig. 11). In several®2"”: 9 km segments, the
Pearson correlation coefficient at 500%%¥": m scale is lower than that at 40%*¥: m and 200*="": m scale. This is likely because
FYI fraction diminishes for some segments after coarsening to the S00*="": m scale. On the OIB tracks on April 8th, there is
a special segment ( 55V km in along-track direction) where the Pearson correlation coefficient drops drastically across all
three scales. These segments are dominated by deformed and thick ice, with a mean Fs of 1.04f5V: m, a F std of 0.56%FV" m,

and MY coverage reaching 97.3%. REV*

D SITE =i

Various studies have explored the relationships between sea ice topography and microwave backscatter on different scales,
ranging from SAR-related scales (Macdonald et al., 2024; Kortum et al., 2024) to scatterometry scale (Petty et al., 2017). In
Macdonald et al. (2024), the Radarsat Constellation Mission (RCM, also C-band SAR) images and ICESat-2 products are used
to study the relationship between sea ice roughness and backscatter over land-fast sea ice in the Canadian Arctic Archipelago.
In particular, the statistical relationship based on HV polarization is stronger, and therefore used to predict FYI roughness and
the height of MYI. In our study, we also find statistically significant relationships on the HV channel (**/‘e.g—Fig-$3-and-S5see
Appendix C). Although the HV-channel usually has a lower SNR than the HH-channel, the higher correlations with sea ice
topography statistics may arise from the higher dynamic range of oy.

In Kortum et al. (2024) the authors explored the extrapolation of IS2 freeboard (ATL10) *EV7:swith-temporally-coincident-S1-images:,

allowing for a time difference of up to 24 hours between S1 and IS2 measurements.

Similarly, in Macdonald et al. (2024), the HV-channel oy maps are also utilized. The prediction is carried out with the
pairing CDFs of F; and og, and the Pearson correlation coefficient at 400%2"": m scale reaches 0.82. In our study, the regression

model in Section 4.2 can also be used to predict Fs maps at similar scales. To ensure consistency with (Macdonald et al., 2024;
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Figure 11. The statistical correlation between F and o at three spatial scales: 40fEV": m, 2008EV": m, and 500%EV": m. The coarsening is
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order to accumulate enough samples, especially at the 500%EY”: m scale, both the inbound and the outbound segments are used to compute
the correlation coefficients. Note that in order to accommodate the effective resolution of o9 maps, in Fig. 2 and 3, we only applied spatial

averaging to F’s but not to .

Kortum et al., 2024), ®2*we aligned the scale of statistical relationships and performed a quantitative analysis, with results

presented in Tab. S1. However, compared to Kortum et al. (2024) and Macdonald et al. (2024), our study focuses mainly on the

prediction of meter-scale F distributions (Sec. 4.3). In addition, we explored the effect of sea ***ice drift and deformation on
the correlation between altimetric scans and SAR images. As shown in Section 4.2, third-party, large-scale drift products and
local adjustments can be used to facilitate the collocation between the two. Related representation issues are further discussed
in Section 5.3.

In Petty et al. (2017) the authors studied the statistical relationship between C-band backscatter measured by ASCAT and
the variability of sea ice topography. The relationship is further used to estimate the atmospheric form drag coefficients based
on backscatter maps. Although the scatterometers have relatively coarser resolution (25%#¥: km for ASCAT), the underlying
mechanism of the topography-to-backscatter relationship is similar to our study. The macro-scale roughness of the sea ice cover
(i.e., topography) and the sea ice type dependent surface properties affect microwave backscatter, resulting in the statistically

significant relationship between the two.
5.3 Spatial and temporal locality of the statistical relationship between F; and o

The statistical relationships between F; and o in Section 4.1.1 and 4.1.2 are based on OIB data and SAR images acquired
on the same day. Furthermore, in Section 4.2, we demonstrated that there is large variability in this relationship, potentially

caused by differences in sea ice/snow conditions and practical factors such as different observational geometries. Therefore,
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the statistical relationship is spatially localized, which implies that the extrapolation of freeboard measurements (e.g., Sec. 4.3)
should be carried out locally.

Furthermore, we explore the temporal transferability of this relationship, by matching SAR images collected 1 week from the
OIB campaigns. Correspondingly, sea ice may undergo significant drift and deformation, as well as thermodynamic changes
during a week-long interval between the OIB and SAR observations.

For the®=": 9 km sample segment®="":s on April 8th (Sec. 4.1.1), we use SAR images from April 1st and April 15th, and
collocate both with the F; map on April 8th (Fig. S5). The analysis of the drift corrections indicates that there is negligible sea
ice movement between April 8th and April 15th, and the statistical relationships between F and o are consistent (Fig. S5,
lower panels). However, the maximum correlation coefficient between Fs and o is much lower at 0.4 for the SAR image on
April 1st, as compared to 0.6 for April 8th (Fig. S5, upper panels). The drift corrections obtained from SAR images on April
Ist and April 8th confirm significant sea ice deformation, leading to suboptimal collocation between not only SAR images, but
also SAR and OIB (note the scattered samples in Fig. S5, panels b and c).

For the®®V": 9 km sample segment*:"”:s on April 12th (Sec. 4.1.2), SAR images from April 5th and April 19th are used for a
similar analysis. Between April 5th and 12th, significant sea ice drift and deformation is present for the sea ice cover around
the sample segment®*""'s (Fig. S6.a). Correspondingly, the correlation coefficients between F and oq also witness significant
drops: from 0.28 to 0.15 for the outbound segment, and from 0.54 to 0.45 for the inbound segment. On the contrary, between
April 12th and 19th, sea ice drift is evident, but very small deformation is present, as indicated by the collocation of SAR
images (Fig. S6.d). The correlation coefficients between Fs on April 12th and oy on April 19th largely remain the same as that
based on April 12th. Specifically, the coefficient is 0.27 for the outbound segment and 0.54 for the inbound segment.

Both cases indicate that the collocation between OIB and SAR deteriorates at longer time intervals, and there are corre-
sponding drops in the statistical relationships. This is presumably caused by synoptic scale forcings that drive sea ice drift
and deformations, which compromise the collocation. As indicated by both observations and modeling studies (Marsan et al.,
2004; Rampal et al., 2008; Ning et al., 2024), sea ice deformation is localized, and multi-fractal both spatially and temporally.
More importantly, there is strong coupling between the spatial and the temporal domain. At longer time intervals, there is lower
spatial localization of sea ice deformation, which potentially complicates the collocating of SAR and altimetry scans. Further-
more, thermodynamic changes such as snowfall events, snow stratigraphic changes, as well as newly formed sea ice ridges
and leads, can also greatly modulate both F; and/or C-band backscatter(Tsai et al., 2019; Manninen, 1992). These changes are
usually associated with synoptic events, which potentially co-occur with sea ice drift and deformation. In summary, there is a
strong locality in the statistical relationship between F and o(. The spatial and temporal windows for collocating SAR and

altimetry scans and further upscaling the freeboard measurements is an important research topic for future studies.
5.4 On the upscaling of IS2 measurements

Compared with the 1% m-scale F; maps from OIB, the standard sea ice elevation (ATL07) and freeboard (ATL10) products
of IS2 are provided in beam segments. Since each beam segment consists of ~150 aggregated photons, the nominal resolution

is between 10 and 20" m in the along-track direction for the three strong beams and ~11 m in the across-track direction,
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the laser footprint’s diameter (Neumann et al., 2020). For weak beams, the beam segment resolution is even coarser by approx-
imately 4 times. By constraining and coarsening OIB F maps to the footprints of IS2 strong and weak beam segments, we
find that the correlation maps between Fs and S1 backscatter is in good agreement with those based on the full OIB segment
(results for the sample segments shown in Fig. S7). Therefore, the collocation with S1 images can also be carried out with 1S2
elevation measurements.

We re-apply the prediction algorithm in Section 4.3 to IS2 footprints of the®®"": 9 km sample segments. Specifically, the
prediction is trained and validated on the IS2 beam segments on the inbound and the the outbound OIB segments, which
cover the IS2 beam pairs #1-#2 and #3-#4, respectively. However, compared to the 1% m-scale OIB F; map, the following
limitations of IS2 are present: First, the IS2 beam segments are coarser, especially for the weak beams. Second, the IS2 ground
coverage is much narrower at 11%V: m, compared with the ~1.5%"" km width of the F; map. As a result, on the 9%V m
sample segments, there is a very limited number of IS2 beam segments (i.e., F, samples). Therefore, in order to accumulate
enough samples for prediction, we extend the sample segments in both directions to 27*Y": km (equivalent to the length scale
used in Fig. 6).

Specifically, we follow the three-step routine for the prediction and evaluation of F. First, by using IS2 beam segments
on the inbound segment (i.e., the #1-#2 beam pair), we bin the F; samples to o, and further carry out the PDF fitting with
3-component Log-Logistic mixture model within each oy bin. Second, we predict the F distribution on the corresponding
outbound segment, using the oy observations on the IS2 footprints (i.e., the #3-#4 beam pair). Finally, we validate the prediction
with the observed Fs samples.

Figure 12 shows the results for the®*V": 27 km sample segments on April 8th and 12th. Similar to the validation of the 1%#V":
m-scale Fy in Figure 9, the prediction on IS2 footprint also yields a good match with the observed F distribution. In addition,
the K-S distance is effectively reduced with the prediction: from 0.189 to 0.123 for the sample segment on April 8th, and from
0.182 to 0.119 for that on April 12th. Using the 0y map on Beams #3 and #4, we produce the F}; distribution that better matches
the observation than t he default F distribution on Beams #1 and #2. Especially, the representation of thin ice (less than 307V’

cm thick) has greatly improved for both cases, which is the major reason for the reduction in the K-S distance.

REV3:

For future work, we plan to further explore the freeboard-backscatter relationship under various conditions. First, a more
extensive coverage of sea ice types is planned, including FYI and thin ice at different stages of development. The historical
records of OIB in the Arctic contain many surveys over various ice conditions especially in the western Arctic. The concurrent
SAR campaigns including S1 can be used to extend the study with more complex ice types and mixtures. Second, the statistical
relationship and its variability under different weather conditions need more investigation. Factors such as melt conditions and
heavy snowfall could potentially alter both the microwave backscatter and the overall snow budgets. As pointed out in Section
5.3, we need to account for potential changes in the sea ice under synoptic events, and further obtain the optimal spatial and
temporal window to derive the relationship and the upscaling of altimetry measurements.

For the upscaling of IS2 observations at basin scale, concurrent and spatially collocated SAR images should be used, such

as those from S1 and the RadarSat Constellation Mission (RCM, see: MDA, 2021). Specifically, we have demonstrated both
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Figure 12. Same as Fig. 9, but for I on IS2 beam segments on the sample segments on April 8th (panel a and b) and April 12th (panel ¢

and d). Since there are limited number of IS2 beam segments, the length of the sample segments is enlarged to 278V km.

spatial and temporal locality of the derived statistical relationships. For altimetry and SAR observations that are separated by
long temporal intervals, thermodynamic and dynamic processes within the ice and overlying snow can degrade the relationships
between macro-scale topography and C-band backscatter. Another key factor is the spatial scale for the upscaling of IS2

measurements. In Section 4.3 the prediction is designed to incorporate meter-scale Fs maps. 7" The photon-based-elevationsrepre-

also-be-accountedfor. The photon-level elevation measurements represent a similarly fine spatial scale to the OIB ATM, but contain

higher uncertainty than that of the beam segment elevations (ATL07). The proper temporal and spatial scales for matching

SAR images and upscaling of IS2 measurements should be the subject of detailed studies in the future.

The sea ice topographic roughness and the statistical fittings are dependent on the scale of altimetric observations (Sec.
4). Beyond the OIB ATM scans (1%£Y": m-scale) and the 1S2 beam segments (**'20-~30mforthe-swong-beamsfootprint size
~11 m), various historical and future campaigns feature drastically different payload design and resolutions. For example, the
nominal footprint size of ICESat is 65%°¥": m (Farrell et al., 2009), and at this scale there also exist statistically significant
relationships between F and the C-band backscatter (Kortum et al., 2024; Macdonald et al., 2024). Besides, the concurrent
SAR observations at both C- and L-bands, such as ALOS (Advanced Land Observing Satellite) and ALOS-2 (Shimada et al.,
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2009; Kankaku et al., 2013), can be further used for the study of the relationships and the upscaling of altimeter measurements.
For ICESat, by combining with data from SAR satellite payloads such as ESA’s EnviSat ASAR (Miranda et al., 2013), the

upscaling of ICESat can be carried out for constructing a wider coverage record of sea ice freeboard for the period 2003—-2008.

Data availability. The data from OIB campaigns in April, 2019 are available from the National Snow and Ice Data Center: https://nsidc.org/
data/ilatm1b/versions/2, and https://nsidc.org/data/ilnsalb/versions/2 (last access: 6 September 2024). S1 EW images are accessed from the
Copernicus Data Space Ecosystem (available at https://browser.dataspace.copernicus.eu/, last access: 6 September 2024) and processed them
using the ESA Sentinel Application Platform (SNAP) toolbox. The complete list of used SAR images are provided in the supplement with
public access. The ATLO7 and ATL10 product from ICESat-2 (version 6) are accessed at the National Snow and Ice Data Center through
https://nsidc.org/data/atl07/versions/6 and https://nsidc.org/data/atl10/versions/6 (last access: 6 September 2024). The OSI-SAF sea ice drift
product is available at: https://osi-saf.eumetsat.int/products/osi-455 (last access: 6 September 2024). DTU15MSS_1min can be found at:
https://www.space.dtu.dk/ (last access: 12 February 2025).

The interpolated and stitched 17*V”: m-resolution total freeboard fields (in 3*2V”: m segments) of the sample segments on 2019-Apr-8 and
2019-Apr-12 are achieved at: https://zenodo.org/records/14930672 (last access: 26 February 2025). Additionally, the sea ice type maps based

on Sentinel-1 EW images can also be accessed at the same URL.

Appendix A: Processing of OIB ATM elevations

The elevations of the original ATM samples are converted into the total freeboard (or the snow freeboard, denoted F). For OIB

flights on April 8th and 12th which were organized #£"'intoracetracksin a racetrack pattern(Fig. 1), we merge all OIB samples to

construct a merged map of F}s for both the northbound and the southbound flight passes. Specifically, two steps are carried out,

as follows.
Al Construction of the per-pass 1%V': m-scale F; map

As the first step, for each OIB pass, we converted OIB ATM samples into the F; map which covers over 500" m across
the OIB flight path. Both wide scan and the narrow scan of the OIB ATM are utilized. For a local segment along the OIB
flight (e.g., 10" m in length), we first project each ATM sample under the polar stereographic projection according to its
geolocation (i.e., its latitude and longitude). Then, we interpolate the samples into a 1%£"": m-scale elevation map, using linear

interpolation. *FV% eb-Af-

terwards, we apply mean sea surface (MSS) geophysical height corrections to the elevation based on mean sea-surface height

(DTU15 MSS model). Finally, we treat the corrected elevation as elevation anomalies, and apply the lowest elevation method

to retrieve the freeboard. Specifically, the lowest 1% of elevation samples within each 10*"": m segment are extracted and
linearly interpolated to construct the local water level (also at 1*E"": m-scale) using the Inverse Distance Weighting (IDW)
method. The final 1%V m-scale F; map is further validated with the standard 40%"": m-scale F; product from IDCSI (Fig.
S1).
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A2 Collocation between OIB passes and the construction of the merged F’s field

We further merge the three OIB passes to form the F; map that covers over 1.4%*¥: km across the flight path. Since the central
pass and the left pass were separated by 1~2 hours, and the central pass and the right pass by 3~4 hours, the sea ice cover
potentially had undergone drift and deformation. Therefore, we first search for corrections between each of the two pairs of
OIB passes. For each 3%2V": km segment, we maximize the correlation of the overlapping part of the Fs maps of the central
and the left (or the right) pass, by adjusting the relative location of the left (or the right) pass with respect to the central pass.
After the maximum correlation is attained, we record the corrections in both the along-track and the cross-track directions, and
further merge the left and the right pass to the central pass, in order to form a unified Fs map. In Figure 2.a (3.a) we show the
merged Fs maps for the sample segment®™""'s on April 8th (12th), and in Figure S2 (S3) the correlation maps between OIB
passes.

For certain segments, the central pass and the left (or right) pass do not overlap, and therefore they are not included in further
analysis (especially in Fig. 5). Figure A1 and A2 show the corrections and the maximized correlation of F; maps between OIB
passes for all 3%V km segments on April 8th and 12th, respectively. For April 8th, very high correlation coefficients were
attained for all segments (Pearson’s 7 all over 0.94). Besides, meter-scale corrections were required, which potentially arise
from locating uncertainties. On the contrary, on April 12th, evident corrections with length over 100*"": m were needed
to maximize the correlation, which are also consistent with the large-scale drift provided by OSI-SAF (details not shown).
Therefore, we consider these corrections are associated with sea ice drifts. Evident changes of the sea ice drift at the location
of 120%2V": km along the OIB flight path is detected for both the inbound and the outbound flights, indicting the presence of sea
ice deformation. Especially, the correlation coefficients for the 3%V km segments also dropped to lower than 0.9 where the
deformation is detected. Collocation and the resulting correlation coefficients at the scale of 500" m around the location of
of the deformation further indicate that the deformation are localized (i.e., within 500" m) and present at several along-track

locations (Fig. A2).

Appendix B: S1 EW images used for analysis for OIB campaigns

REV2:
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Collocation between different OIB flight passes for the segments on 2019-Apr-8
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Figure A1. Collocation between different OIB flight passes on April 8th, 2019. The along-track segment length is 3%Y”: km. The local
corrections of the left and the right pass with respect to the middle pass for each segment on the outbound (inbound) flights is shown in panel
aand b (g and h), respectively. The correlation coefficients (Pearson’s r) after the collocation between the left and the middle pass and that
between the right and the middle are shown in panel ¢ and d the for the outbound flight, respectively. Similarly, panel e and f show the results

for the inbound flights.
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Collocation between different OIB flight passes for the segments on 2019-Apr-12
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Figure A2. Same as Fig. A1, but for the OIB campaign on April 12th, 2019. Correlation coefficients lower than 0.8 are marked by filled
symbols in panel c, d, g and h. For segments around the apparent deformation (at ~ 120%*V”: km along the track), the local drift correction is
further refined to 500" m in the along-track direction. The 500%Y/: m-scale drift corrections and the correlation coefficients are marked

by circles and thin lines.
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Table B1. ®2V2QOIB campaign and the corresponding S1 images. The corresponding ICESat2 ground tracks’ information, including its visit

times are shown in the last column.

OIB ATM 2019-Apr-08: 2019-Apr-12:
data 12:24:18 to 15:51:59 13:11:18 to 15:49:17
2019-Apr-08: 2019-Apr-12:
RGT 0157 RGT 0218
Beam 1,2,3,4 Beam 1,2,3.4
13:09:59 to 13:10:39 13:03:21 to 13:03:54

2019-Apr-07:
S1B_EW_GRDM_1SDH_20190407T150052_20190407T150152_015702_01D768_1E98
2019-Apr-07:
S1B_EW_GRDM_1SDH_20190407T145952_20190407T150052_015702_01D768_0AEC
2019-Apr-08:
S1B_EW_GRDM_1SDH_20190408T140254_20190408T140354_015716_01D7D4_334A
2019-Apr-09:
S1B_EW_GRDM_1SDH_20190409T144345_20190409T144445 015731_01D856_468A
2019-Apr-01:
S1B_EW_GRDM_1SDH_20190401T141105_20190401T141205_015614_01D465_4CC6
2019-Apr-15:
S1A_EW_GRDM_1SDH_20190415T144457 20190415T144602_026802_030317 2C1F
2019-Apr-12:
S1B_EW_GRDM_1SDH_20190412T182436_20190412T182536_015777_01D9D0_7AB9
2019-Apr-11:
S1B_EW_GRDM_1SDH_20190411T174333_20190411T174433_015762_01D955_0683
2019-Apr-13:
S1B_EW_GRDM_1SDH_20190413T190536_20190413T190636_015792_01DAS51_7539
2019-Apr-05:
S1B_EW_GRDM_1SDH_20190405T201050_20190405T201154_015676_01D68A_61C3
2019-Apr-19:
S1B_EW_GRDM_1SDH_20190419T195430 20190419T195534 015880_01DD4B_40E2

IS2RGT

S-1 Images

Appendix C: *EVI:Statistical relationship between Fs and o'(I){ V for the segments on April 8th and 12th

For the two pairs of sample segments on April 8th and April 12th, the statistical relationship between Fs and the C-band
backscatter in the HV-channel are shown below in Figure C1 and C2. Our results show general consistency with previous
studies (Macdonald et al., 2024; Kortum et al., 2024), that freeboard generally correlates slightly better with the HV-channel
than with the HH-channel backscatter. The statistical relationship between freeboard and backscatter in the HV-channel for all
the OIB segments are also analyzed in this section (see Fig. C3).

The HV-channel backscatter is generally much weaker than the HH-channel. This is particularly evident for FYI, where HV
backscatter often falls below the nominal noise floor (Segal et al., 2020). Additionally, the sub-swath artifacts are more evident
in the HV-channel (i.e., abrupt transition of o across the sub-swath boundaries) for Sentinel-1 EW mode images (Lohse et al.,
2021). Despite the stronger correlation observed in the HV band, the qualitative statistical relationship between freeboard and
backscatter is similar when using either the HH or HV channel. Given these consideration, this work primarily concentrates on

the S1 HH-channel.
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The 9km sample segments on 2019-Apr-8

Outbound:40m-scale Outbound:100m-scale Outbound:200m-scale )
4 | @=0.064(0.063,0.066) 4 | @=0.063(0.062,0.065) 4| @=0.06(0.059,0.061) Mixture
b = 2.23(2.194,2.266) b =2.2(2.173,2.226) b =2.133(2.112,2.153) MYI
Regression's R = 0.607 Regression's R = 0.721 Regression's R = 0.801 = DFYI
3 3 3 o LFYI
Pure pixel
2 — MY
+ DFYI
1 o LFYI
= o (©)
0
§g -30 -20 -10
<
g Inbound:40m-scale Inbound:100m-scale Inbound:200m-scale
8= 0.08(0.078,0.082) AL 0.078(0.076,0.079) 42 0.072(0.071,0.073)
b = 2.415(2.376,2.453) b = 2.364(2.336,2.392) b = 2.258(2.238,2.279)
Regression's R = 0.66 Regression's R = 0.768 Regression's R = 0.846
3 3 3
2
1
()
0
-30 -20 -10 -30 -20 -10

Sentinel-1 o (dB)

Figure C1. Scattered plot of the relationship between F)s and the Sentinel-1 C-band backscatter (o) in the HV polarization channel for the
sample segment®EV"'s on April 8th, 2019. Same as in Fig. 2, three spatial scales of F\ are adopted for matching to the 40m-resolution oq

product: 40m (left column), 100m (middle column) and 200m (right column).
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The 9km sample segments on 2019-Apr-12
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Figure C2. Same as Fig. C1, but for the sample segment®EV’:s on April 12th, 2019.
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The linear regressions between o, and 200m-scale F; for all sesgments on 2019-Apr-8
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Figure C3. Same as Fig. 6, but for HV channel
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