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Abstract. In this study, we evaluate the statistical relationship between sea ice freeboard and C-band microwave backscatter.

By collocating observations between Sentinel-1 images and Operation IceBridge (OIB) measurements in April 2019, we eval-

uate their relationship under various sea ice types and thickness regimes. We show that, at various spatial scales relevant to

synthetic aperture radar (SAR) observations, there exists an apparent significant correlation between C-band backscatter and

sea ice freeboard. This relation depends on physical parameters of the sea ice, including the ice type, as well as sensor-specific5

parameters such as the observational incidence angle of the SAR satellite. As a result, there is considerable variability in this

apparent relationship and its fitted parameters. Using the fitted relationship, two-dimensional freeboard maps can be predicted

at the scale of SAR images’ effective resolution (i.e., ∼200REV1: m). More importantly, we demonstrate that although the reso-

lution of SAR images are relatively lower than OIB freeboard maps, we can predict the high-resolution, meter-scale freeboard

distribution where altimetry measurements are not available. Thus the representation of altimetric measurements can be im-10

proved with the upscaling based on the SAR image. The proposed method can be further utilized for the upscaling of satellite

based sea ice topography measurements by the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). Related issues, including

the limitation to spring data, scale dependency and the locality of the statistical relationship, as well as the upscaling of current

and historical satellite campaigns, are further discussed.
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1 Introduction

Polar sea ice has undergone drastic changes in response to global climate change (Kwok, 2018). As Arctic sea ice coverage

diminishes at a substantial rate, there has also been a rapid decrease in ice thickness and volume (Sumata et al., 2023). In

particular, sea ice topography, characterized by the small-scale sea ice height variability, has become smoother (Krumpen

et al., 2025). Satellite altimetry serves as the backbone for observations of the circumpolar sea ice freeboard and thickness.20

For both laser and radar altimeters, the signals are sent from the satellites to Earth. By measuring the time difference between

the emitted pulse from the satellite and the returned echo, the range between the satellite and the reflecting surface on Earth

is estimated. The differentiation of the range of echoes returned from sea ice floes versus interstitial leads gives the radar or

laser freeboard, and the sea ice thickness is then calculated from hydrostatic assumptions and the buoyancy relationship. In

particular, NASA’s ICESat-2 (IS2) satellite is a photon-counting laser altimeter that has carried out continuous observations25

in both polar regions since 2018 (Markus et al., 2017). Six laser beams of IS2 form into three strong-weak pairs, providing

continuous ground coverage in the satellite’s flight direction. Validation efforts with airborne campaigns that collocate with IS2

beam segments, including NASA’s Operation IceBridge (MacGregor et al., 2021, OIB) and MOSAiC (Nicolaus et al., 2022),

show that IS2 is able to achieve highly accurate measurements of the sea ice topography (Kwok et al., 2019; Ricker et al.,

2023).30

Despite their advantages, satellite altimeters have limited coverage over the sea ice cover. The spatial sampling is inherently

confined within the nadir of the satellite’s track. For example, the three IS2 beam pairs are within ∼3REV1: km of its ground

track. In order to attain basin-scale coverage, samples collected throughout the whole month are usually needed. However,

within a month’s time, the sea ice may have undergone significant changes due to both thermodynamic and dynamic processes.

These changes cannot be represented by the aggregated monthly freeboard and thickness maps. Furthermore, the altimetric35

scans only cover limited area within typical passive microwave imagers’ footprints, thus hindering the synergy with these

observations (Xu et al., 2017). REV3: For example, L-band passive microwave radiometer such as the one onboard the Soil Moisture and Ocean Salinity

(SMOS) satellite have complementary observational capabilities to altimeters, and they can be physically synergized for the simultaneous retrieval of sea ice

thickness and snow depth (Xu et al., 2017; Zhou et al., 2018; 40 Ricker et al., 2017). However, compared with SMOS’s daily basin coverage, much longer

periods are needed to obtain an overlapping wide geographic coverage from altimeters such as IS2. Also, small-scale features such as sea ice (refrozen) leads40

greatly modulate the L-band brightness temperature (TB, see Zhou et al., 2017), but they are potentially not sampled by line scans of altimeters. For example,

previous studies (e.g., Fig. A2 of Zhou et al., 2018) show that a remarkable reduction of the TB uncertainty can be achieved with better coverage of freeboard

measurements within the SMOS’s footprint.

In this paper we explore the potential of improving the laser altimeter’s representation through a synergy with microwave

backscatter measurements by synthetic aperture radars (SAR). In particular, the C-band SAR payloads onboard European Space45

Agency’s (ESA’s) Sentinel-1 (S1) satellites provide pan-Arctic coverage since 2014 through the Extra-Wide (EW) swath mode

scans. In this study, we establish statistical relationships between OIB-based sea ice topographic and freeboard measurements

and SAR backscatter normalized radar cross section (σ0) from S1 scenes using collocated observations during April, 2019. OIB

flights during this month, in particular the Airborne Topographic Mapper (ATM) measurements, were intentionally collocated
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with IS2 tracks. The ATM measurements feature higher resolution and wider swaths than IS2 measurements, enabling the50

analysis of co-variability between freeboard and σ0 at multiple scales. Therefore, they are used to study the upscaling of

IS2 measurements. In Section 2 we introduce details of the data used and the processing protocols. Using these statistical

relationships, we further design an algorithm prototype for SAR-based prediction and upscaling of laser altimetryREV2:, as com-

prehensively described in Section 3. And Section 4 covers the statistical analysis under various sea ice conditions. The locality

and limitations of the prediction algorithm are also investigated, along with other related issues in Section 5. REV2:Finally, Section55

5 includes a summary and the outlook to future work.

2 Data and protocols

2.1 OIB campaigns in April, 2019

During April 2019 four OIB campaigns were carried out in the Arctic (Fig. 1), which were collocated with IS2 and consequently

provided validation data for the sea ice elevation (ATL07, see also: Kwok et al., 2019) and freeboard products (ATL10). In60

particular, the flights on April 8th and 12th were organized REV1:into racetracksin a racetrack pattern and cover more than 200REV1:

km along the corresponding IS2 ground tracks, with outbound (i.e., northbound) and inbound (i.e., southbound) flight passes

covering beam pair of #3-#4 and #1-#2, respectively. Two different types of conic scans of ATM onboard these OIB campaigns

were carried out: the 15◦ wide swath scan that covers about 500REV1: m across the flight pass, and the 2.5◦ narrow swath scan

that covers about REV3:8060REV1: m. The scan angle of the wide-swath scanners is 15◦, resulting in a swath width of 500REV1: m.65

The scan angle of the narrow-swath scanners is 2.5◦, which enhances the shot density in the central part of the wide swath.

In addition, there are three flight passes of the racetrack, and together they cover over 1REV1: km in the cross-track/flight path

direction. Furthermore, the campaign on April 8th dominantly covered areas with thick multi-year ice (MYI), while that on

April 12th sampled more interstitial first-year ice (FYI) within the MYI. Two other flights on April 19th and 22nd are longer

tracks that traverse both MYI and FYI (Fig. 1). REV2:Based on ERA5 data for the study period, the large-scale atmospheric con-70

ditions were typical of the late-winter conditions in the respective regions. There were no sudden warming events or significant

precipitation that potentially changes the SAR backscatter signature of the sea ice.

In order to fully utilize the ATM measurements on April 8th and 12th, we construct a merged sea ice freeboard map using

all three OIB passes.REV1: The left and middle passes were about 1.25 hours apart, while the right and middle passes were

about 2.5 hours apart. Full details of the processing are covered in Appendix A. Briefly, first, we retrieve the total freeboard75

(denoted Fs) within the entire ATM swath for each pass, using the raw elevation measurements by ATM. Second, we obtain

the 1REV1: m-scale Fs map for each pass through spatial linear interpolation. The scan pattern of the ATM results in a variable

number of shot spacings within the scan swath, with relatively lower shot density in the middle (Petty et al., 2016). To mitigate

uncertainty introduced by this spatial sampling non-uniformity, the irregularly spaced ATM elevation data are converted to a

regularly spaced 1REV1: mFs map. Finally, the Fs maps of the three passes are stitched together after collocation, producing the80

Fs map that covers ∼1500REV1: m in the cross-flight direction.
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REV3:The standard OIB Level4 (L4) product includes Fs parameter derived from ATM measurements and geolocated aerial

photography. It employs a lead discrimination algorithm, which utilizes geolocated aerial photography to identify local sea

surface height, thereby enhancing the quality and number of sea surface height determinations. The final product is gridded to

a 40 m along-track resolution and can serve as a validation reference for the newly constructed 1 m-scale Fs maps. REV3:The85

newly constructed 1m-scale Fs maps are validated with the standard OIB Level4 (L4) product. Specifically, we coarsen the Fs map to match the

40REV1: m resolution and the location (nadir to the flight) of the L4 product. Validations show strong agreement, with RMSE

of 0.15REV1: m on April 8th and 0.1REV1: m on April 12th at 40REV1: m scale. At 400REV1: m scale, RMSE further decreased to

0.04REV1: m on April 8th and 0.03REV1: m on April 12th (Fig. S1). Hence the 1REV1: m-scale Fs maps are used further for the

statistical analysis with SAR images.90

2.2 S1 EW images and sea ice type maps

Both S1A and S1B data are available during the study period of April 2019. EW mode images with dual polarization channels

(HH and HV) are accessed and collocated with the aforementioned OIB observations. The SAR incidence angles (IA) across

the swath range from 20◦ to 46◦ for S1’s EW mode. EW mode images use TOPSAR techniques to achieve a very large

swath coverage (∼ 400 km), but TOPSAR acquisitions are affected by the “scalloping effect” (De Zan and Guarnieri, 2006).95

Additionally, the noise floor varies with range position, creating discontinuous sharp intensity changes known as the “banding

effect” (Lohse et al., 2021; Sun and Li, 2021). These issues are particularly prominent in the HV channel due to its low

signal-to-noise ratio (SNR) (Segal et al., 2020). Details of the SAR images, including the image identifiers and the acquisition

times, are provided in Tab. B1. Each image is preprocessed using ESA’s Sentinel Application Platform (SNAP, version 11.0.0).

Processing steps include the application of precise orbit files, thermal noise correction, radiometric calibration, and terrain100

correction. Finally, we convert the backscatter intensities into σ0.
REV2:Sea ice type information is derived from S1 images using a classifier specifically accommodating per-class IA dependencies of SAR intensities (HH

and HV) and gray-level co-occurrence matrix (GLCM) textures (Lohse et al., 2020; Guo et al., 2023). Details of this classifier are introduced in Appendix

B. REV2:Sea ice type information is derived from S1 images and the sea ice classification algorithm used in this study is based

on: Lohse et al. (2020) and Guo et al. (2025). Lohse et al. (2020) developed a supervised algorithm that accounts for the105

class-dependent IA effects, known as the GIA classifier. While this classifier performs well in addressing IA sensitivity, some

misclassifications and ambiguities remain. To address these issues, Guo et al. (2025) enhanced the algorithm by incorporating

GLCM texture features, resulting in improved class separation. This study uses this classification approach to produce sea ice

type maps on the selected S1 scenes.

In the classification process, seven GLCM textures are derived from the HH channel of each SAR image, with a texture110

window size of 11 pixels. Then, SAR intensities (HH and HV) and GLCM textures (HH) are used as input to the GIA classifier,

which incorporates their IA dependencies. Sea ice is classified into three types: level first-year ice (LFYI), deformed first-year

ice (DFYI), and multiyear ice (MYI). To further refine the results, a Markov Random Field based contextual smoothing process

is applied with a window size of 3 pixels (Doulgeris, 2015). The final sea ice type maps have a pixel size of 40 REV1: m, but their
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Figure 1. OIB campaigns during April 2019. S1 EW images collected around April 8th are shown in the background, with the black boxes

outlining the images used for statistical analysis between C-band backscatter and sea ice freeboard. The solid box marks the boundary of the

S1 image on April 8th, while the dashed (dot-dashed) ones mark those on April 7th (9th). The OIB ground tracks of the 4 days are marked

by red lines, and the location of the REV1:9 km sample segments are shown by the asterisks. The thick yellow line delineates the boundary

between the MYI and the FYI regions according to the sea ice type product provided by the Ocean and Sea Ice Satellite Application Facility

(OSI-SAF).
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effective spatial resolution is significantly coarser due to SAR speckle filtering and textural processing. Sea ice classification is115

carried out for all the S1 images and the results are used for further analysis.

By default, the S1 images are projected to 40REV1: m spatial resolution, which is the nominal pixel spacing of the S1 EW

medium GRDM mode data, though the effective resolution is approximately 90REV1: m. In addition, the processing steps in

SNAP may further degrade the resolution of the σ0 map. This is because a Single Product Speckle Filter with a sliding window

of 7×7 pixels wash applied during the speckle filtering process (Mansourpour et al., 2006). We use the following notations for120

the coarsened values: Fs
(s)

and σ0
(s), where s denotes the coarsening scale.

2.3 ICESat2 products

The official IS2 products (version 6) are accessed for the collocating tracks with OIB campaigns on April 8th and 12th (see

Data Availability for details). Each of the beam segments are of about 150 aggregated photons, and the mean sea ice elevation

of each segment is provided in ATL07. Due to the variable photon rates over the sea ice, the along-track length of the beam125

segment is not constant, around 10∼16REV1: m. It is also different between strong and weak beams, with the beam segment

length of the weak beams at about 50REV1: m. In this study, we use the footprints of both the strong and weak beam segments

to study practical issues limiting the upscaling of IS2 measurements, extending our analysis from OIB to lower freeboard

resolution REV1:but larger coverage.

2.4 Ancillary datasets130

The climate data record of global sea ice drift from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF, version

OSI-455) is used as the reference to the collocation of the different datasets. The OSI-455 product is available for the period of

1991–2020, and is derived from various passive microwave sensors (SSM/I, SSMIS, AMSR-E, and AMSR2) and wind field

data from an atmospheric reanalysis. The sea ice drift vectors are provided on the Equal-Area Scalable Earth (EASE) grid with

the spatial resolution of 75REV1: km. However, they are not available near the shoreline (i.e., part of the campaign on April135

8th near the Canadian Arctic Archipelago). The temporal scale of the drift vectors is 24-hour, starting/ending at 12:00 UTC

(Lavergne and Down, 2023).

2.5 Collocation between OIB and S1 images

The collocation between the Fs maps and σ0 in the HH-polarization channel is carried out to correct for potential sea ice drift

and geocoding uncertainties between the two measurements. REV1:The OIB flight on April 8th was approximately 40 minutes140

apart from its corresponding S1 image acquisition, whereas the OIB flight on April 12th was about 4 hours apart from its re-

spective S1 image acquisition. For the OIB flight on April 8th, the ice surveyed was relatively immobile, while that covered by

the campaign on April 12th experienced a drift of approximately 0.02REV1: m/s according to the OSI-455 product. We coarsen

the 1REV1: m-scale Fs maps to the nominal pixel size of S1 EW images (i.e., 40REV1: m), and maximize the correlation (Pearson’s

r) between the two fields by locally adjusting the relative location between the two. The increments of the local adjustments is145
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20REV1: m (i.e., half of S1 EW pixel spacing). REV3:When collocating OIB tracks with S1 images, we divided the OIB tracks into

9 km segments. Collocation is performed independently for each 9 km outbound and inbound segment, in both the along-track

and cross-track directions. In order to compare to the drift corrections during the correlation maximization(see Fig. 4.a and

Fig. 5.a), the daily OSI-SAF drift vectors are scaled to the time interval between the acquisition time of the SAR image and

that of the OIB. Afterwards, bilinear interpolation is carried out in the spatial domain to attain the drift vector at each location150

along the OIB flight path.

3 REV2:Methods

3.1 The statistical fitting between the Fs and σ0

To analyze the statistical relationship between Fs and C-band backscatter, we employed a linear regression model for each

9 km segment (both outbound and inbound), defined as: Fs = a ·σ0 + b. Sea ice type maps, which classify the sea ice into155

LFYI, DFYI, and MYI, were used. During the classification, a sliding window of 11 pixels was applied in the classification

process; if all pixels within an 11×11 window were of the same type, the central pixel was classified as a pure pixel (indicated

by solid circles in Fig. 2 and 3, panel d-i); otherwise, it was labeled as a mixture(indicated by square symbols in Fig. 2 and

3, panel d-i). We specifically examined the relationship between Fs and backscatter for pure MYI pixels. Due to the limited

number of pure FYI and DFYI pixels, these were not included in further analysis.160

Backscatter values were binned into 1 dB intervals. For each bin, the mean Fs value within the interquartile range (IQR) was

calculated. The representative backscatter value for each bin was determined as the mean of the bin boundaries. The statistical

relationship between these mean Fs values and representative backscatter values was then analyzed.

Since the effective resolution of the backscatter used in this study is larger than 40REV1: m, coarser spatial scales adopted for

the computation of Fs, including 100REV1: m (Fig. 2, panel e and h) and 200REV1: m (Fig. 2, panel f and i).165

3.2 Fs distribution prediction

The prediction of Fs distribution is based on 1m-scale samples for OIB and beam-segment scale for IS2. The training of the

prediction algorithm is carried out as follows:

1. Bins backscatter values into 1 dB intervals.

2. For each bin, calculates the mean Fs value within the IQR.170

3. Uses the three-component Log-Logistic mixture distribution to fit the Fs sample probability density function (PDF)

within each σ0 bin. The probability density function of the three-component Log-Logistic mixture distribution is given

by:

p(x) =

3∑
i=1

ωi ·
(βi/αi)(x/αi)

βi−1

(1+ (x/αi)βi)2

where ωi is the weight, βi is the shape parameter, and αi is the scale parameter for the i-th Log-Logistic component.
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4. Applies the maximum likelihood estimation (MLE) method to fit the Log-Logistic mixture model. MLE identifies the

optimal parameter estimates by maximizing the likelihood function of the sample data under the hypothesized Log-

Logistic mixture distribution. We transform the problem of maximizing the likelihood function into minimizing the

negative of the likelihood function. The sequential quadratic programming (SQP) algorithm is then used to solve this175

optimization problem.

To evaluate the goodness-of-fit between the sample distribution p(x) and the fitted three-component log-logistic mixture

distribution p̃(x), we employed the Kolmogorov-Smirnov (K-S) distance, defined as:

sup
x

|P (x)− P̃ (x)|

Here, P (x) and P̃ (x) denote the cumulative density function of the sample and the fitted distributions, respectively, and supx

the supremum of the difference between the two. The K-S distance ranges between 0 and 1, with higher value indicating larger180

discrepancy between the distributions. We further used the k-means algorithm for the clustering analysis of these components

in all σ0 bins, and related them to different sea ice types.

For the test of the prediction algorithm, we train the prediction model with the inbound segment, and carry out the prediction

and validation on the corresponding outbound segment. For OIB tracks, the 9 km segment length is adopted, while for IS2,

due to limited beam segment samples, the longer segment length of 27 km is adopted. For each σ0 on the outbound segment,185

we use the fitted Fs distribution on the corresponding σ0 bin on the inbound segment for the prediction. The predicted Fs

distribution for each σ0 sample is combined for all SAR pixels on the outbound segment. Finally, the prediction is validated

by computing its K-S distance to the observed Fs distribution on the outbound segment. For comparison, the baseline for the

validation is the K-S distance between the observed Fs distribution on the corresponding segment pair on the inbound and the

outbound flight.190

4 Results and analysis

4.1 Sample segments

We first examine twoREV1: pairs of 9 km OIB segments and collocate them with SAR images (σ0 in HH-polarization), their

locations shown in Figure 1. For the segmentREV1:s on April 8th, the mean Fs was 1.0REV1: m with a standard deviation of

0.45REV1: m, and the mean σ0 was -10.46REV1: dB with a standard deviation of 2.77REV1: REV1: dB. In contrast, the segmentREV1:s195

on April 12th had a mean Fs of 0.57REV1: m and a standard deviation of 0.18REV1: m, with a mean σ0 of -12.67REV1: dB and a

standard deviation of 1.52REV1: dB. While theREV1: 9 km segmentREV1:s covered on April 8th mainly consisted of thick MYI, that

on April 12th features relatively thinner MYI, mixed with FYI and young ice.
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4.1.1 Sample segmentREV1:s on April 8th

The firstREV1: 9 km sample segmentREV1:s is shown in Figure 2. The three OIB outbound flight passes are separated by about 75200

minutes: 2019-Apr-8 12:34 (middle pass), 2019-Apr-8 13:48 (left pass), and 2019-Apr-8 15:01 (right pass), respectively. The

inbound flight passes are: 2019-Apr-8 13:21 (middle pass), 2019-Apr-8 14:34 (left pass), and 2019-Apr-8 15:46 (right pass),

respectively. For both the outbound and the inbound passes, the central pass overlaps with the left (or right) pass by approxi-

mately 100REV1: m in the cross-pass direction. The collocation between the passes indicates minimum correction (1∼2REV1: m),

very high correlations (Pearson’s r over 0.95) and a decorrelation length of less than 5REV1: m (Fig. S2).205

For comparison, the collocation between the merged Fs map and the SAR image on the same day (details in Tab. B1) shows

statistically significant but lower correlation coefficients (Fig. 2.b). The decorrelation length is much longer than that for 1REV1:

m-scale Fs (i.e. Fig. S2), mainly due to that correlation between Fs and σ0 is carried out at the scale of 40REV1: m. Besides, the

statistical relationship between Fs and σ0 in the HV-polarization channel is also significant REV1:, although the backscatter is weaker by

more than 5 dB (Fig. S3)(details in Appendix C).210

REV2:As mentioned earlier, the effective resolution of the backscatter used in this study is coarser than 40 m. Therefore, larger spatial scales are also adopted

for the computation of Fs, i.e. 100 m (Fig. 2, panel e and h) and 200 m (Fig. 2, panel f and i).

As shown, the variability of Fs is drastically attenuated, but the statistical correlation between Fs and σ0 (at original reso-

lution) sharpens at larger scales. Specifically, for the segment on the outbound (inbound) flight, the Pearson’s r increases from

0.61 (0.66) for the correlation at the 40REV1: m-scale Fs to 0.81 (0.84) for that at the 200REV1: m-scale Fs. For both cases, the215

slope of the linear fit also reduces slightly as the scale increases.

4.1.2 Sample segmentREV1:s on April 12th

The other twoREV1: 9 km sample segments are from the campaign on April 12th, shown in Figure 3. The major differences

from the sample segments on April 8th (Fig. 2) are as follows: (1) according to the OIB Fs map, the MYI is much thinner;

(2) it contains higher areal fraction of FYI, and (3) the surrounding sea ice has undergone more evident drift and deformation220

between the observations by OIB and S1, as indicated by the OSI-455 product.

Although sea ice is generally much thinner (1REV1: m-scale Fs mostly under 2REV1: m), a statistically significant relationship is

also present between Fs and σ0 (Fig. 3 and Fig. C2). REV2:For comparison, we also applied a 2nd-order polynomial regression:

Fs = a ·σ2
0 + b ·σ0 + c. The nonlinear model yields slightly better fitting compared to the linear regression model (see Fig. S8

and S9). For both the outbound and the inbound segments, OIB has attained sufficient sampling of MYI, but the representation225

of FYI is not even. Specifically, on the outbound segment, SAR pixels with σHH
0 under 18REV1: dB are scarce, and no level

FYI is detected in the area sampled by OIB. For the inbound segment, an apparent nonlinear relationship between Fs and σ0 is

observed for FYI, due to the effect of ice with different levels of development. LFYI has a consistently low Fs around 20 cm

but corresponds to σ0 that varies over a large range of 5REV1: dB, whereas DFYI has strongly varying Fs up to around 1 REV1: m

over a small range of σ0 around 2∼ dB. The linear fitting for MYI is comparable to that for all sea ice types for the inbound230

flight (lower panels of Fig. 3). At both 100REV1: m- and 200REV1: m-scale, the linear regressions of Fs to σ0 show lower fitting

9



Figure 2. Total freeboard (Fs, colored) and the S1 HH backscatter (σ0, background) over sample segments on April 8th, 2019 (a). Contour

lines delineate the boundary between different sea ice types, including MYI, level FYI (LFYI) and deformed FYI (DFYI). The ICESat-2

ground tracks of the three strong beams (#1, #3 and #5) are also shown as thin black lines. Two REV1:10-km9 km segments on the outbound

(i.e., northbound) and the inbound flights are marked out by the solid and dashed red boxes, respectively. REV2:The correlation map (Pearson’s

r) between σ0 and Fs are shown with local corrections in 20 m steps in both the cross-track and the along-track direction (b and c). The

yellow plus sign indicate the displacements to maximize the correlation between S1 and OIB. The scatter plots between Fs and σ0 after

collocation for the outbound (inbound) flights are shown in panels d, e and f (g, h and i). Three spatial scales for computing Fs based on the

1REV1: m-scale Fs maps are adopted: 40REV1: m (S1 image resolution, d and g), 100REV1: m (e and h), and 200REV1: m (f and i). In panels d to

i, the dots are color coded according to their ice types, with the solid (dashed) lines showing the linear fitting lines of Fs = a ·σ0 + b for all

samples (only MYI pixels) and the fitted parameters. Also shown in each panel are the mean values of Fs and the REV3:interquartilesIQR after

binning with σ0 (1 REV1: dB per bin).
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slopes for MYI than for those based on all samples. The variability of Fs at 40-m scale diminishes considerably as the scale

increases. In comparison, MYI always has much steeper regression lines for the sample case on April 8th across all analyzed

scales (Fig. 2). This result, although potentially affected by the accuracy of the sea ice type map, highlights the importance of

the sufficient sampling of various sea ice types to ensure their representation in the study of the statistical relationship.235

Interestingly, for MYI which is well observed by both sample segments on April 8th and 12th, the statistical fittings between

Fs and σ0 show large differences. For the sample segmentREV1:s on April 8th, the regressions (40REV1: m-scale) are steeper

at: Fs = 0.139 ·σ0 +2.443 with Pearson’s r = 0.410 (outbound) and Fs = 0.126 ·σ0 +2.236 with the regression’s R =0.458

(inbound). In comparison, on April 12th, the fitting slopes are shallower by about 50%: Fs = 0.06 ·σ0 +1.338 with the re-

gression’s R = 0.281 (outbound at 40REV1: m-scale) and Fs = 0.051 ·σ0 +1.204 with the regression’s R = 0.263 (inbound).240

After binning the samples to σ0, the regression lines (i.e., between the mean values of Fs in each σ0 bin and σ0’s) become

flatter on April 12th: mean(Fs) = 0.051 ·mean(σ0)+1.244, compared with mean(Fs) = 0.105 ·mean(σ0)+2.123 on April

8th. The potential causes of the different fittings include both: (1) differences in C-band backscatter sensitivity to macro-scale

topography due to different ice/snow properties of the two regions, and (2) different imaging configurations of the SAR images.

Related issues, such as the effect of IA on the statistical relationships are further discussed in Section 5.1.245

4.2 Statistics of all segments on April 8th and 12th

For each of the REV1:9 km OIB segment on April 8th and 12th, we generate a merged Fs map and collocate it with the SAR

images on the same day. The statistical correlations are shown in Figure 4 and 5, respectively.

On April 8th, the local corrections for collocating Fs and σ0 are all within 40REV1: m (Fig. 4.a). The OSI-SAF drift product

indicates about 100REV1: m drift within the northern part of the OIB track, although the drift vectors are not significant given the250

respective product uncertainties. SAR images from the surrounding days (i.e., from April 7th and 9th, listed in Appendix B)

also show little drift in the sea ice pack surveyed by the OIB campaign (details not shown). In addition, we have attained meter-

scale corrections for the collocation of OIB passes (see Fig. A1). Given the relatively coarser resolution of the SAR images,

we assume that sea ice drift and deformation can be ignored when collocating Fs and σ0. The detected local corrections in

Fig. 4.a may not indicate actual sea ice drifts, but may be due to geolocating uncertainties, such as those induced by geometric255

corrections of the SAR images. The correlation between Fs and σ0 at 200REV1: m scale is statistically significant for all segments

(Fig. 4, panel b and d). After binningREV3: Fs samples to σ0, the correlation coefficientsREV3: the mean values of Fs and σ0 within

the bins are mostly over 0.9 (Fig. 4, panel c and e).

For the OIB campaign on April 12th, statistically significant large-scale sea ice drift are observed in the surveyed region (see

Fig. 5.a). The lengths of the local corrections for collocating Fs and σ0 are about 250REV1: m. The corrections are consistent260

between the local segment pairs on the inbound and the outbound flights, and they also agree with the large-scale drift in terms

of both direction (north-east) and magnitude. Therefore, these local corrections correspond to the actual sea ice drift between

the visits by the OIB campaign and S1.

After the corrections, the correlation coefficients are higher and statistically significant for all segments (p= 0.05 level).

Moreover, the correlation coefficients after binning are mostly over 0.9 (Fig. 5, panels c and e).265
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Figure 3. Same as Fig. 2, but for sample segments on April 12th.

.
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In Figure 6 we show the linear regressions between σ0 and 200REV1: m-scale Fs for all segments on April 8th and 12th.

The results indicate that with σ0 and the regression relationships, we can estimate the 200REV1: m-scale Fs with high statistical

confidence (regressions’ R-values over 0.3 for REV1:mostall 9REV1: km segments). Furthermore, the regression parameters show

significant variability among different segments, indicating the physical relationship between Fs and σ0 varies locally. Despite

this variation, the regression parameters from the inbound and outbound tracks are very similar. We further examine the270

relations for 27REV1: km-long segments. As shown in Figure 6, the regression parameters for 27 km segments are much less

variant, although certain variability still exists on different parts of the flight track. Specifically, for the segments on April

8th, the variance of a (b) has decreased by 48.6% (36.5%) when comparing 27REV1: km-long segments to 9REV1: km-long

segments. For the segments on April 12th, the variance of a (b) decreased even more significantly, by 76.8% (78.7%). Besides,

the regressions’ R-values are also higher for 27REV1: km-long segments for segments on both April 8th and April 12th. This275

implies that, small-scale inhomogeneity of the sea ice cover or errors in data co-location, which cause large variability of a’s

and b’s in Figure 6, are effectively attenuated at larger scales. The regression relationships in Figure 6 can be further used

for the prediction and construction of 200REV1: m-sclae Fs maps based on SAR (Fig. S10 and S11). In particular, given to the

locality of the relationships, the prediction of Fs map should also be carried out adjacent to the collocating observations by

SAR and altimetic scans.280

4.3 Prediction of Fs distribution with σ0 map

Given that the altimetric scans by OIB (and IS2) have a finer resolution than available SAR images, the regression in Section

4.2 is inherently limited in the spatial resolution of the predicted Fs. Moreover, although there is a significant correlation

between Fs and σ0, the variability of Fs is considerable, and no single predictor based on backscatter effectively captures this

variability. Therefore, we focus on the prediction of meter-scale Fs distribution (i.e., at the full resolution of the altimeter data)285

with SAR images based on their collocating observations of Fs and relatively coarser σ0 data.

4.3.1 Study of sample segments

We first study theREV1: 9 km sample segments in Section 4.1.1 and 4.1.2. REV2:Since the backscatter are binned at intervals of 1 dB, and

then we perform statistical fittings of the 1 m-scale Fs distribution for each 1 dB σ0 bin. The distributions of Fs in typical σ0 bins of these

twoREV1: 9 km sample segments are shown in Figure 7 and 8, respectively. The sample Fs distributions after binning all show290

the following characteristics. First, Fs follows a long-tailed, skewed distribution, which is consistent with various findings in

existing studies (Xu et al., 2020; Duncan and Farrell, 2022). Second, REV3:there is strong heteroskedasticity associated with Fs: for larger

σ0 bins, the mean value and the variability of Fs are both higher. Third, the Fs distributions are multimodal, especially for σ0

bins that contain both FYI and MYI samples (e.g., left panels in Fig. 7 and 8).

To capture the complex shape of the Fs probability density function (PDF), we use the three-component Log-Logistic295

mixture distribution to fit the sample PDF in each σ0 bin. The fitting results (i.e., Fig. 7 and 8) indicate that the different

PDF modes are well captured with very low REV2: Kolmogorov-Smirnov (K-S)K-S distance to the sample PDF. We further carry out

clustering analysis of the various components, based on the modal Fs values and the corresponding σ0 (right panels of Fig.
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Figure 4. Statistical relationship between Fs and σ0 for OIB segments on April 8th, 2019. The local corrections to maximize the correlation

between Fs and σ0 are shown for allREV1: 9 km segments with valid data on the outbound flight (blue) and the inbound flight (dark red). The

correlation coefficients before and after collocation are shown for the outbound (panel b and c) and the inbound flights (panel d and e) for

allREV1: 9 km segments, together with those after binning. Statistically insignificant correlations are shown by crosses (×) in the lower panels

(p= 0.05 significance level).
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Figure 5. Same as Fig. 4, but for OIB segments on April 12th, 2019.
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Figure 6. The linear regression from 40REV1: m-scale σ0 to the 200REV1: m-scale Fs for all segments on April 8th (a, b and c) and April 12th

(d, e and f): Fs = a ·σ0+ b. The regression’s parameters, including a (panel a and d), b (panel b and e), and the R-value (c and f) are shown,

respectively. Two segment lengths are adopted: 9REV1: km and 27REV1: km.
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7 and 8). The three clusters indicate continuous changes of the PDF parameter with respect to σ0, and they generally show a

good correspondence to these sea ice types: FYI, thin MYI and thick MYI. For example, for the sample segmentREV1:s on April300

8th, there is prominent presence of MYI with Fs of over 3REV1: m and σ0 of over −5 REV1: REV1: dB (Fig. 7). This is captured by a

separate Log-Logistic component which we manually categorize as the thick MYI. This could corresponds to sea ice of higher

age than that of the thinner MYI which corresponds to the second component. Another example is that components with very

small modal values of Fs manifest even at very large σ0 bins (Fig. 7 and 8, lower panels). Due to the relatively coarse resolution

of S1 images, thin FYI may be present in pixels with otherwise large values of both mean Fs and σ0. These components are305

captured by the PDF fitting, and we further manually categorize them as FYI. It is important to note that these categorizations

are introduced to interpret the fitting results, as the specific categories (FYI, thin MYI, and thick MYI) were not previously

defined in our analysis. Based on the per-bin Fs fittings on the inbound sample segments, we carry out the prediction of Fs

distribution on the corresponding outbound segments. Specifically, based on the observed σ0 map on the outbound segment,

we: (1) formulate the distribution of σ0, (2) compute the Fs distribution according to the sample probability of each of the σ0310

bin, and (3) construct the overall Fs distribution on the outbound segment. For theREV1: 9 km sample segments on April 8th,

the per-bin Log-Logistic mixture fittings demonstrate a high degree of accuracy in fitting the observations for both the inbound

and the outbound segments, with K-S distances of 0.002 for each segment. However, the inbound and the outbound segments

differ in the sample Fs distribution (Fig. 9.b), primarily attributed to variations in the thickness of FYI and MYI, as well as

differences in their respective proportions. Notably, the modal thickness values of both the thin MYI and the thick MYI are315

0.1REV1: m higher on the outbound segment than on the inbound segment. As a result, the predicted Fs distribution also shows

lower modal Fs values (Fig. 9.a). Despite the underestimation of the modal Fs, the prediction is closer to the observation, with

lower K-S distance: 0.072, compared with 0.076 between the inbound and the outbound segment.

For theREV1: 9 km sample segments on April 12th, the prediction also shows lower K-S distance with the observed Fs

distribution on the outbound flight (K-S distance from 0.094 to 0.074). The major improvement is due to different portions320

of thin FYI on the outbound and the inbound segments (see also Fig. 3). By using the σ0 map on the outbound segment, we

achieve the correct representation of thin ice in the predicted Fs distribution.

4.3.2 Validation of prediction for all segments

We carry out the prediction of 1REV1: m-scale Fs distribution for all theREV1: 9 km outbound segments. REV2:The validation is based

on the K-S distance between the observed Fs sample distribution and the predicted PDF. The baseline is the K-S distance between the observed samples on325

the inbound and the outbound segments. Figure 10 shows that the predicted Fs PDF is close to the observation, with the mean K-S

distance at 0.077. There is a 10% reduction of the baseline K-S distance, which indicates that the predicted Fs distribution

better matches the observations. Especially, large K-S distances are effectively attenuated with the prediction: 3 (10) out of the

total 91REV1: 9 km segments show a K-S distance over 0.15 between the predicted (inbound) Fs with the outbound observations.

Moreover, there exists a significant positive correlation (Pearson’s r: 0.72, p-value: 2.48×10−16) between the K-S distance330

sequences in Figure 10. This indicates that when the Fs elevation is similar between the inbound and the outbound segments,

the prediction is generally better. On the contrary, if the Fs distribution is more different between the two segments, the

17



Figure 7. Distribution of 1REV1: m-scale Fs in typical σ0 bins of the inbound sample segment on April 8th, 2019. Fs sample PDFs, as well as

the fitted three Log-Logistic mixture components are shown for typical σ0 bins (left panels). Statistical PDF fitting (black solid line) based

on the 3-component Log-Logistic mixture model in each panel, along with each of the components (colored dash lines).

Figure 8. Same as Fig. 7, but for the inbound sample segment on April 12th, 2019.
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Figure 9. Statistical prediction of Fs distributions on the outbound segment with: (1) the per-σ0 bin Log-Logistic mixture fittings on the

corresponding inbound segment, and (2) the σ0 map on the outbound segment. The observed and the predicted Fs distribution, as well as the

K-S distance between the two are shown for the sample outbound segment on April 8th (panel a) and April 12th (panel c). The Fs sample

distribution on the inbound and the outbound segments are also shown for comparison (b and d).

Figure 10. K-S distance between the predicted and the sample Fs distribution on all theREV1: 9 km outbound segments on April 8th (top panel)

and 12th (bottom panel). The prediction on eachREV1: 9 km outbound segment is carried out with the PDF fittings on the correspondingREV1:

9 km inbound segment. The K-S distance between the inbound and the outbound sample Fs distributions are also shown.

prediction also deteriorates. Therefore, in order to obtain better predictions, the observed Fs should contain sufficient sampling

of different sea ice types in the range of the prediction. Representation issues for large-scale retrievals are further discussed in

Section 5.335
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5 Discussions and Summary

In this study we investigate the statistical relationship between sea ice freeboard and C-band microwave backscatter, by using

collocated OIB observations and S1 images. Stronger SAR backscatter is observed for higher snow freeboard, which is at-

tributed to the sensitivity of backscatter to both the sea ice type, with generally high volume scattering for MYI in winter, and

ice topographic features such as ridges, with older ice having experienced stronger deformation (Krumpen et al., 2025). More-340

over, the scale-dependency of this statistical relationship, along with its spatial and temporal locality, is further studied. An

algorithm for predicting and extrapolating sea ice topographic measurements with SAR images is introduced that incorporates

both: (1) the ICESat2 footprint size, and (2) the higher variability for larger sea ice total freeboard.

5.1 Physical mechanisms behind the statistical relationship between σ0 and Fs

The statistical relationship between sea ice freeboard and C-band microwave backscatter is rooted in the different microwave345

backscatter mechanisms of various ice surface features. Thin, level ice typically exhibits low backscatter, with two primary

scattering mechanisms contributing to this: surface scattering from the ice surface and volume scattering from air voids (Man-

ninen, 1992). However, with thicker ice and larger Fs, both the backscatter and Fs variability are higher, as evidenced by

the larger spread of Fs
REV3:interquartilesIQR in higher σ0 bins in Fig. 2. This suggests that more complex physical mechanisms

govern the C-band backscatter variations in thicker ice. In the case of older, rougher ice, the presence of thicker snow cover and350

more extensive ice deformation cause increased diffuse reflection and refraction of the incident radar signal (Onstott, 1992).

In addition to the wavelength-scale roughness, several other factors can also influence backscatter, such as the effective radar

incidence angle, radar azimuth which are greatly affected by ridge geometry (Krumpen et al., 2025). For level ice, the effective

incidence angle is relatively constant, equal to the radar incidence angle. However, for ridges, the local IA varies depending on

the radar and ridge geometries, including the incident radar angle, the ridge slope, and the orientation of the ridge. Even with355

constant ice properties, these geometric differences alone can lead to higher surface backscatter from ridges compared to level

ice (Manninen, 1992). Consequently, the radar backscatter and its IA dependency are highly dependent on the ice type and the

observational geometry (Geldsetzer and Howell, 2023; Lohse et al., 2021, 2020; Guo et al., 2022).

It is important to note that in this study we did not apply IA corrections to the SAR images. There are several reasons: First,

the IA dependency is type-dependent, with deformed ice showing lower sensitivity to IA than level ice (Makynen et al., 2003).360

Given the variant ridge density within the SAR’s footprint (∼100REV1: m), a simple correction for IA is insufficient in our study.

Second, for the SAR image on April 8th, the IA change was within 10◦ along the whole OIB track, and on April 12th, IA

values were within 5◦. Since the range of IA is small, the correction has potentially limited effect on our study. Third, the

best angle for the IA correction should be chosen to maximize the differentiation among different ice types. What is the best

angle remains an open question and requires more systematic study. We further explore the influence of IA on the statistical365

relationship for the OIB track on April 8th (no evident deformation or synoptic events around April 8th). By matching SAR

images from April 7th, 8th, and 9th to the OIB track on April 8th, we obtain the statistical relationships between Fs at different

IAs. In general, the statistical fitting becomes steeper with decreasing IA (Fig. S4). This trend is driven by the higher (lower)

20



sensitivity of σ0 level (ridged) ice to changes in IA (note the weaker σ0’s at larger IAs in Fig. S4). Therefore, when IA changes,

the statistically significant relationship still holds, but IA has limited effect on this relationship than other factors, such as the370

localized sea ice conditions.

Furthermore, snow cover properties such as snow density and wetness can also modulate the C-band scattering signatures

(Kim et al., 1984). For example, the change in snow density affects the effective wavelength of the microwave signals, therefore

impacting the scattering at the snow-ice interface. Since the OIB campaigns were carried out during later winter/early spring,

the snow cover is dry and therefore largely transparent to C-band signals. In order to apply the statistical prediction algorithm for375

other seasons (i.e., late autumn or spring), the snow conditions should be taken into account to better use the SAR measurements

(Livingstone and Drinkwater, 1991).

5.2 Scale-dependency of the statistical relationship

Based on the OIB tracks on April 8th and 12th, we further explore the scale-dependent characteristics of the statistical relation-

ship. Specifically, both Fs and σ0 maps are coarsened to three spatial resolutions: 100REV1: m, 200REV1: m and 500REV1: m. This380

coarsening was achieved by calculating the average values of Fs and the S1 intensity within each coarsening grid cell at the

respective resolutions, rather than coarsening the OIB Fs alone as previously shown in Section 4. By analyzing the coarsened

σ0 and Fs maps, we find that the relationship becomes more stable at large scales (Fig. 11). In severalREV1: 9 km segments, the

Pearson correlation coefficient at 500REV1: m scale is lower than that at 40REV1: m and 200REV1: m scale. This is likely because

FYI fraction diminishes for some segments after coarsening to the 500REV1: m scale. On the OIB tracks on April 8th, there is385

a special segment ( 55REV1: km in along-track direction) where the Pearson correlation coefficient drops drastically across all

three scales. These segments are dominated by deformed and thick ice, with a mean Fs of 1.04REV1: m, a Fs std of 0.56REV1: m,

and MYI coverage reaching 97.3%. REV3:Moreover, the footprint size of NASA’s first ICESat satellite is about 65m, and the statistical relationship

with its concurrent SAR payloads (e.g., ESA’s ENVISAT ASAR) can be explored for the prediction of large-scale Fs.

Various studies have explored the relationships between sea ice topography and microwave backscatter on different scales,390

ranging from SAR-related scales (Macdonald et al., 2024; Kortum et al., 2024) to scatterometry scale (Petty et al., 2017). In

Macdonald et al. (2024), the Radarsat Constellation Mission (RCM, also C-band SAR) images and ICESat-2 products are used

to study the relationship between sea ice roughness and backscatter over land-fast sea ice in the Canadian Arctic Archipelago.

In particular, the statistical relationship based on HV polarization is stronger, and therefore used to predict FYI roughness and

the height of MYI. In our study, we also find statistically significant relationships on the HV channel (REV1:e.g., Fig. S3 and S5see395

Appendix C). Although the HV-channel usually has a lower SNR than the HH-channel, the higher correlations with sea ice

topography statistics may arise from the higher dynamic range of σ0.

In Kortum et al. (2024) the authors explored the extrapolation of IS2 freeboard (ATL10) REV1:with temporally coincident S1 images.,

allowing for a time difference of up to 24 hours between S1 and IS2 measurements.

Similarly, in Macdonald et al. (2024), the HV-channel σ0 maps are also utilized. The prediction is carried out with the400

pairing CDFs of Fs and σ0, and the Pearson correlation coefficient at 400REV1: m scale reaches 0.82. In our study, the regression

model in Section 4.2 can also be used to predict Fs maps at similar scales. To ensure consistency with (Macdonald et al., 2024;
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Figure 11. The statistical correlation between Fs and σ0 at three spatial scales: 40REV1: m, 200REV1: m, and 500REV1: m. The coarsening is

applied to both Fs and σ0 at these scales. The results for the OIB track on April 8th and 12th are shown in panel a and b, respectively. In

order to accumulate enough samples, especially at the 500REV1: m scale, both the inbound and the outbound segments are used to compute

the correlation coefficients. Note that in order to accommodate the effective resolution of σ0 maps, in Fig. 2 and 3, we only applied spatial

averaging to Fs but not to σ0.

Kortum et al., 2024), REV1:we aligned the scale of statistical relationships and performed a quantitative analysis, with results

presented in Tab. S1. However, compared to Kortum et al. (2024) and Macdonald et al. (2024), our study focuses mainly on the

prediction of meter-scale Fs distributions (Sec. 4.3). In addition, we explored the effect of sea REV1:ice drift and deformation on405

the correlation between altimetric scans and SAR images. As shown in Section 4.2, third-party, large-scale drift products and

local adjustments can be used to facilitate the collocation between the two. Related representation issues are further discussed

in Section 5.3.

In Petty et al. (2017) the authors studied the statistical relationship between C-band backscatter measured by ASCAT and

the variability of sea ice topography. The relationship is further used to estimate the atmospheric form drag coefficients based410

on backscatter maps. Although the scatterometers have relatively coarser resolution (25REV1: km for ASCAT), the underlying

mechanism of the topography-to-backscatter relationship is similar to our study. The macro-scale roughness of the sea ice cover

(i.e., topography) and the sea ice type dependent surface properties affect microwave backscatter, resulting in the statistically

significant relationship between the two.

5.3 Spatial and temporal locality of the statistical relationship between Fs and σ0415

The statistical relationships between Fs and σ0 in Section 4.1.1 and 4.1.2 are based on OIB data and SAR images acquired

on the same day. Furthermore, in Section 4.2, we demonstrated that there is large variability in this relationship, potentially

caused by differences in sea ice/snow conditions and practical factors such as different observational geometries. Therefore,
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the statistical relationship is spatially localized, which implies that the extrapolation of freeboard measurements (e.g., Sec. 4.3)

should be carried out locally.420

Furthermore, we explore the temporal transferability of this relationship, by matching SAR images collected 1 week from the

OIB campaigns. Correspondingly, sea ice may undergo significant drift and deformation, as well as thermodynamic changes

during a week-long interval between the OIB and SAR observations.

For theREV1: 9 km sample segmentREV1:s on April 8th (Sec. 4.1.1), we use SAR images from April 1st and April 15th, and

collocate both with the Fs map on April 8th (Fig. S5). The analysis of the drift corrections indicates that there is negligible sea425

ice movement between April 8th and April 15th, and the statistical relationships between Fs and σ0 are consistent (Fig. S5,

lower panels). However, the maximum correlation coefficient between Fs and σ0 is much lower at 0.4 for the SAR image on

April 1st, as compared to 0.6 for April 8th (Fig. S5, upper panels). The drift corrections obtained from SAR images on April

1st and April 8th confirm significant sea ice deformation, leading to suboptimal collocation between not only SAR images, but

also SAR and OIB (note the scattered samples in Fig. S5, panels b and c).430

For theREV1: 9 km sample segmentREV1:s on April 12th (Sec. 4.1.2), SAR images from April 5th and April 19th are used for a

similar analysis. Between April 5th and 12th, significant sea ice drift and deformation is present for the sea ice cover around

the sample segmentREV1:s (Fig. S6.a). Correspondingly, the correlation coefficients between Fs and σ0 also witness significant

drops: from 0.28 to 0.15 for the outbound segment, and from 0.54 to 0.45 for the inbound segment. On the contrary, between

April 12th and 19th, sea ice drift is evident, but very small deformation is present, as indicated by the collocation of SAR435

images (Fig. S6.d). The correlation coefficients between Fs on April 12th and σ0 on April 19th largely remain the same as that

based on April 12th. Specifically, the coefficient is 0.27 for the outbound segment and 0.54 for the inbound segment.

Both cases indicate that the collocation between OIB and SAR deteriorates at longer time intervals, and there are corre-

sponding drops in the statistical relationships. This is presumably caused by synoptic scale forcings that drive sea ice drift

and deformations, which compromise the collocation. As indicated by both observations and modeling studies (Marsan et al.,440

2004; Rampal et al., 2008; Ning et al., 2024), sea ice deformation is localized, and multi-fractal both spatially and temporally.

More importantly, there is strong coupling between the spatial and the temporal domain. At longer time intervals, there is lower

spatial localization of sea ice deformation, which potentially complicates the collocating of SAR and altimetry scans. Further-

more, thermodynamic changes such as snowfall events, snow stratigraphic changes, as well as newly formed sea ice ridges

and leads, can also greatly modulate both Fs and/or C-band backscatter(Tsai et al., 2019; Manninen, 1992). These changes are445

usually associated with synoptic events, which potentially co-occur with sea ice drift and deformation. In summary, there is a

strong locality in the statistical relationship between Fs and σ0. The spatial and temporal windows for collocating SAR and

altimetry scans and further upscaling the freeboard measurements is an important research topic for future studies.

5.4 On the upscaling of IS2 measurements

Compared with the 1REV1: m-scale Fs maps from OIB, the standard sea ice elevation (ATL07) and freeboard (ATL10) products450

of IS2 are provided in beam segments. Since each beam segment consists of ∼150 aggregated photons, the nominal resolution

is between 10 and 20REV1: m in the along-track direction for the three strong beams and ∼11 m in the across-track direction,
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the laser footprint’s diameter (Neumann et al., 2020). For weak beams, the beam segment resolution is even coarser by approx-

imately 4 times. By constraining and coarsening OIB Fs maps to the footprints of IS2 strong and weak beam segments, we

find that the correlation maps between Fs and S1 backscatter is in good agreement with those based on the full OIB segment455

(results for the sample segments shown in Fig. S7). Therefore, the collocation with S1 images can also be carried out with IS2

elevation measurements.

We re-apply the prediction algorithm in Section 4.3 to IS2 footprints of theREV1: 9 km sample segments. Specifically, the

prediction is trained and validated on the IS2 beam segments on the inbound and the the outbound OIB segments, which

cover the IS2 beam pairs #1-#2 and #3-#4, respectively. However, compared to the 1REV1: m-scale OIB Fs map, the following460

limitations of IS2 are present: First, the IS2 beam segments are coarser, especially for the weak beams. Second, the IS2 ground

coverage is much narrower at 11REV1: m, compared with the ∼1.5REV1: km width of the Fs map. As a result, on the 9REV1: m

sample segments, there is a very limited number of IS2 beam segments (i.e., Fs samples). Therefore, in order to accumulate

enough samples for prediction, we extend the sample segments in both directions to 27REV1: km (equivalent to the length scale

used in Fig. 6).465

Specifically, we follow the three-step routine for the prediction and evaluation of Fs. First, by using IS2 beam segments

on the inbound segment (i.e., the #1-#2 beam pair), we bin the Fs samples to σ0, and further carry out the PDF fitting with

3-component Log-Logistic mixture model within each σ0 bin. Second, we predict the Fs distribution on the corresponding

outbound segment, using the σ0 observations on the IS2 footprints (i.e., the #3-#4 beam pair). Finally, we validate the prediction

with the observed Fs samples.470

Figure 12 shows the results for theREV1: 27 km sample segments on April 8th and 12th. Similar to the validation of the 1REV1:

m-scale Fs in Figure 9, the prediction on IS2 footprint also yields a good match with the observed Fs distribution. In addition,

the K-S distance is effectively reduced with the prediction: from 0.189 to 0.123 for the sample segment on April 8th, and from

0.182 to 0.119 for that on April 12th. Using the σ0 map on Beams #3 and #4, we produce the Fs distribution that better matches

the observation than t he default Fs distribution on Beams #1 and #2. Especially, the representation of thin ice (less than 30REV1:475

cm thick) has greatly improved for both cases, which is the major reason for the reduction in the K-S distance.
REV3:

For future work, we plan to further explore the freeboard-backscatter relationship under various conditions. First, a more

extensive coverage of sea ice types is planned, including FYI and thin ice at different stages of development. The historical

records of OIB in the Arctic contain many surveys over various ice conditions especially in the western Arctic. The concurrent480

SAR campaigns including S1 can be used to extend the study with more complex ice types and mixtures. Second, the statistical

relationship and its variability under different weather conditions need more investigation. Factors such as melt conditions and

heavy snowfall could potentially alter both the microwave backscatter and the overall snow budgets. As pointed out in Section

5.3, we need to account for potential changes in the sea ice under synoptic events, and further obtain the optimal spatial and

temporal window to derive the relationship and the upscaling of altimetry measurements.485

For the upscaling of IS2 observations at basin scale, concurrent and spatially collocated SAR images should be used, such

as those from S1 and the RadarSat Constellation Mission (RCM, see: MDA, 2021). Specifically, we have demonstrated both
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Figure 12. Same as Fig. 9, but for Fs on IS2 beam segments on the sample segments on April 8th (panel a and b) and April 12th (panel c

and d). Since there are limited number of IS2 beam segments, the length of the sample segments is enlarged to 27REV1: km.

spatial and temporal locality of the derived statistical relationships. For altimetry and SAR observations that are separated by

long temporal intervals, thermodynamic and dynamic processes within the ice and overlying snow can degrade the relationships

between macro-scale topography and C-band backscatter. Another key factor is the spatial scale for the upscaling of IS2490

measurements. In Section 4.3 the prediction is designed to incorporate meter-scale Fs maps. REV3:The photon-based elevations repre-

sent a similarly fine spatial scale to the OIB ATM, but contain considerable uncertainties. Also, the different photon rates over various sea ice surfaces should

also be accounted for.The photon-level elevation measurements represent a similarly fine spatial scale to the OIB ATM, but contain

higher uncertainty than that of the beam segment elevations (ATL07). The proper temporal and spatial scales for matching

SAR images and upscaling of IS2 measurements should be the subject of detailed studies in the future.495

The sea ice topographic roughness and the statistical fittings are dependent on the scale of altimetric observations (Sec.

4). Beyond the OIB ATM scans (1REV1: m-scale) and the IS2 beam segments (REV3:20 ∼ 30m for the strong beamsfootprint size

∼11 m), various historical and future campaigns feature drastically different payload design and resolutions. For example, the

nominal footprint size of ICESat is 65REV1: m (Farrell et al., 2009), and at this scale there also exist statistically significant

relationships between Fs and the C-band backscatter (Kortum et al., 2024; Macdonald et al., 2024). Besides, the concurrent500

SAR observations at both C- and L-bands, such as ALOS (Advanced Land Observing Satellite) and ALOS-2 (Shimada et al.,
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2009; Kankaku et al., 2013), can be further used for the study of the relationships and the upscaling of altimeter measurements.

For ICESat, by combining with data from SAR satellite payloads such as ESA’s EnviSat ASAR (Miranda et al., 2013), the

upscaling of ICESat can be carried out for constructing a wider coverage record of sea ice freeboard for the period 2003–2008.

Data availability. The data from OIB campaigns in April, 2019 are available from the National Snow and Ice Data Center: https://nsidc.org/505

data/ilatm1b/versions/2, and https://nsidc.org/data/ilnsa1b/versions/2 (last access: 6 September 2024). S1 EW images are accessed from the

Copernicus Data Space Ecosystem (available at https://browser.dataspace.copernicus.eu/, last access: 6 September 2024) and processed them

using the ESA Sentinel Application Platform (SNAP) toolbox. The complete list of used SAR images are provided in the supplement with

public access. The ATL07 and ATL10 product from ICESat-2 (version 6) are accessed at the National Snow and Ice Data Center through

https://nsidc.org/data/atl07/versions/6 and https://nsidc.org/data/atl10/versions/6 (last access: 6 September 2024). The OSI-SAF sea ice drift510

product is available at: https://osi-saf.eumetsat.int/products/osi-455 (last access: 6 September 2024). DTU15MSS_1min can be found at:

https://www.space.dtu.dk/ (last access: 12 February 2025).

The interpolated and stitched 1REV1: m-resolution total freeboard fields (in 3REV1: m segments) of the sample segments on 2019-Apr-8 and

2019-Apr-12 are achieved at: https://zenodo.org/records/14930672 (last access: 26 February 2025). Additionally, the sea ice type maps based

on Sentinel-1 EW images can also be accessed at the same URL.515

Appendix A: Processing of OIB ATM elevations

The elevations of the original ATM samples are converted into the total freeboard (or the snow freeboard, denoted Fs). For OIB

flights on April 8th and 12th which were organized REV1:into racetracksin a racetrack pattern(Fig. 1), we merge all OIB samples to

construct a merged map of Fs for both the northbound and the southbound flight passes. Specifically, two steps are carried out,

as follows.520

A1 Construction of the per-pass 1REV1: m-scale Fs map

As the first step, for each OIB pass, we converted OIB ATM samples into the Fs map which covers over 500REV1: m across

the OIB flight path. Both wide scan and the narrow scan of the OIB ATM are utilized. For a local segment along the OIB

flight (e.g., 10REV1: m in length), we first project each ATM sample under the polar stereographic projection according to its

geolocation (i.e., its latitude and longitude). Then, we interpolate the samples into a 1REV1: m-scale elevation map, using linear525

interpolation. REV3:Afterwards, we apply atmospheric and tidal corrections to the elevation based on mean sea-surface height (DTU15 MSS model).Af-

terwards, we apply mean sea surface (MSS) geophysical height corrections to the elevation based on mean sea-surface height

(DTU15 MSS model). Finally, we treat the corrected elevation as elevation anomalies, and apply the lowest elevation method

to retrieve the freeboard. Specifically, the lowest 1‰ of elevation samples within each 10REV1: m segment are extracted and

linearly interpolated to construct the local water level (also at 1REV1: m-scale) using the Inverse Distance Weighting (IDW)530

method. The final 1REV1: m-scale Fs map is further validated with the standard 40REV1: m-scale Fs product from IDCSI (Fig.

S1).
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A2 Collocation between OIB passes and the construction of the merged Fs field

We further merge the three OIB passes to form the Fs map that covers over 1.4REV1: km across the flight path. Since the central

pass and the left pass were separated by 1∼2 hours, and the central pass and the right pass by 3∼4 hours, the sea ice cover535

potentially had undergone drift and deformation. Therefore, we first search for corrections between each of the two pairs of

OIB passes. For each 3REV1: km segment, we maximize the correlation of the overlapping part of the Fs maps of the central

and the left (or the right) pass, by adjusting the relative location of the left (or the right) pass with respect to the central pass.

After the maximum correlation is attained, we record the corrections in both the along-track and the cross-track directions, and

further merge the left and the right pass to the central pass, in order to form a unified Fs map. In Figure 2.a (3.a) we show the540

merged Fs maps for the sample segmentREV1:s on April 8th (12th), and in Figure S2 (S3) the correlation maps between OIB

passes.

For certain segments, the central pass and the left (or right) pass do not overlap, and therefore they are not included in further

analysis (especially in Fig. 5). Figure A1 and A2 show the corrections and the maximized correlation of Fs maps between OIB

passes for all 3REV1: km segments on April 8th and 12th, respectively. For April 8th, very high correlation coefficients were545

attained for all segments (Pearson’s r all over 0.94). Besides, meter-scale corrections were required, which potentially arise

from locating uncertainties. On the contrary, on April 12th, evident corrections with length over 100REV1: m were needed

to maximize the correlation, which are also consistent with the large-scale drift provided by OSI-SAF (details not shown).

Therefore, we consider these corrections are associated with sea ice drifts. Evident changes of the sea ice drift at the location

of 120REV1: km along the OIB flight path is detected for both the inbound and the outbound flights, indicting the presence of sea550

ice deformation. Especially, the correlation coefficients for the 3REV1: km segments also dropped to lower than 0.9 where the

deformation is detected. Collocation and the resulting correlation coefficients at the scale of 500REV1: m around the location of

of the deformation further indicate that the deformation are localized (i.e., within 500REV1: m) and present at several along-track

locations (Fig. A2).

Appendix B: S1 EW images used for analysis for OIB campaigns555

REV2: The sea ice classification algorithm used in this study is based on: Lohse et al. (2020, 2021); Guo et al. (2023). Lohse et al. (2020) developed a supervised

algorithm that accounts for the class-dependent IA effects, known as the GIA classifier. While this classifier performs well in addressing IA sensitivity, some

misclassifications and ambiguities remain. To address these issues, Lohse et al. (2021) and Guo et al. (2023) enhanced the algorithm by incorporating GLCM

texture features, resulting in improved class separation. This study uses this classification approach to produce sea ice type maps on the selected S1 scenes.

In the classification process, seven GLCM textures are derived from the HH-channel of each SAR image, with a texture window size of 11 pixels. Then,560

SAR intensities (HH and HV) and GLCM textures (HH) are used as input to the GIA classifier, which incorporates their IA dependencies. Sea ice is classified

into three types: level first-year ice (LFYI), deformed first-year ice (DFYI), and multiyear ice (MYI). To further refine the results, a Markov Random Field

based contextual smoothing process is applied with a window size of 3 pixels (Doulgeris, 2015). The final sea ice type maps have a pixel size of 40 m, but

their effective spatial resolution is significantly coarser due to SAR speckle filtering and textural processing.
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Figure A1. Collocation between different OIB flight passes on April 8th, 2019. The along-track segment length is 3REV1: km. The local

corrections of the left and the right pass with respect to the middle pass for each segment on the outbound (inbound) flights is shown in panel

a and b (g and h), respectively. The correlation coefficients (Pearson’s r) after the collocation between the left and the middle pass and that

between the right and the middle are shown in panel c and d the for the outbound flight, respectively. Similarly, panel e and f show the results

for the inbound flights.
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Figure A2. Same as Fig. A1, but for the OIB campaign on April 12th, 2019. Correlation coefficients lower than 0.8 are marked by filled

symbols in panel c, d, g and h. For segments around the apparent deformation (at ∼ 120REV1: km along the track), the local drift correction is

further refined to 500REV1: m in the along-track direction. The 500REV1: m-scale drift corrections and the correlation coefficients are marked

by circles and thin lines.
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Table B1. REV2:OIB campaign and the corresponding S1 images. The corresponding ICESat2 ground tracks’ information, including its visit

times are shown in the last column.

Table B1 lists all the S1 EW images used in this study, specifically collected during the OIB campaigns on April 8th and 12th. Two types of images are565

included: those on the adjacent days of the campaigns, and those separated by about 1 week from the campaigns. The corresponding IS2 reference ground

tracks (RGT) are also shown.

Appendix C: REV1:Statistical relationship between Fs and σHV
0 for the segments on April 8th and 12th

For the two pairs of sample segments on April 8th and April 12th, the statistical relationship between Fs and the C-band

backscatter in the HV-channel are shown below in Figure C1 and C2. Our results show general consistency with previous570

studies (Macdonald et al., 2024; Kortum et al., 2024), that freeboard generally correlates slightly better with the HV-channel

than with the HH-channel backscatter. The statistical relationship between freeboard and backscatter in the HV-channel for all

the OIB segments are also analyzed in this section (see Fig. C3).

The HV-channel backscatter is generally much weaker than the HH-channel. This is particularly evident for FYI, where HV

backscatter often falls below the nominal noise floor (Segal et al., 2020). Additionally, the sub-swath artifacts are more evident575

in the HV-channel (i.e., abrupt transition of σ0 across the sub-swath boundaries) for Sentinel-1 EW mode images (Lohse et al.,

2021). Despite the stronger correlation observed in the HV band, the qualitative statistical relationship between freeboard and

backscatter is similar when using either the HH or HV channel. Given these consideration, this work primarily concentrates on

the S1 HH-channel.
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Figure C1. Scattered plot of the relationship between Fs and the Sentinel-1 C-band backscatter (σ0) in the HV polarization channel for the

sample segmentREV1:s on April 8th, 2019. Same as in Fig. 2, three spatial scales of Fs are adopted for matching to the 40m-resolution σ0

product: 40m (left column), 100m (middle column) and 200m (right column).
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Figure C2. Same as Fig. C1, but for the sample segmentREV1:s on April 12th, 2019.
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Figure C3. Same as Fig. 6, but for HV channel
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