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Abstract. In this paper we use statistical complexity and information theory metrics to study structure within solar wind time

series. We explore this using entropy-complexity and information planes, where the measure for entropy is formed using either

permutation entropy or the degree distribution of a horizontal visibility graph (HVG). The entropy is then compared to the

Jensen complexity (Jensen-Shannon complexity plane) and Fisher information measure (Fisher-Shannon information plane),

formed both from permutations and the HVG approach. Additionally we characterise the solar wind time series by studying5

the properties of the HVG degree distribution. Four types of solar wind intervals have been analysed, namely fast streams, slow

streams, magnetic clouds and sheath regions, all of which have distinct origins and interplanetary characteristics. Our results

show that, overall, different metrics give similar results but Fisher-Shannon, which gives a more local measure of complexity,

leads to a larger spread of values in the entropy-complexity plane. Magnetic cloud intervals stood out in all approaches, in

particular when analysing the magnetic field magnitude. Differences between solar wind types (except for magnetic clouds)10

were typically more distinct for larger time lags, suggesting universality in fluctuations for small scales. The fluctuations within

the solar wind time series were generally found to be stochastic, in agreement with previous studies. The use of information

theory tools in the analysis of solar wind time series can help to identify structures and provide insight into their origin and

formation.

1 Introduction15

The solar wind is permeated by multi-scale fluctuations in its magnetic field and plasma parameters (e.g. Verscharen et al., 2019; Bruno and Carbone, 2013)

:::::::::::::::::::::::::::::::::::::::::
(Verscharen et al., 2019; Bruno and Carbone, 2013). These fluctuations play a pivotal role in shaping the evolution and dynam-

ics of the solar wind, driving heliospheric turbulence and facilitating energy transfer across scales. Furthermore, solar wind fluc-

tuations contribute to the transport and acceleration of charged particles, and can strengthen the coupling between the solar wind

and planetary magnetospheres, therefore leading to stronger space weather effects (e.g., Oughton and Engelbrecht, 2021; Borovsky and Funsten, 2003; Osmane et al., 2015; Telloni et al., 2021; Kilpua et al., 2017b)20

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Oughton and Engelbrecht, 2021; Borovsky and Funsten, 2003; Osmane et al., 2015; Telloni et al., 2021; Kilpua et al., 2017b)

.

The solar wind exhibits large-scale organisation
:::::::
structure, characterized by alternating fast (≳ 600 km/s) streams coming

primarily from coronal holes, and slower (∼ 300−400 km/s) streams with variable sources, such as release of initially confined

plasma from the streamer belt region or outflows from the edges of coronal holes (e.g. Zirker, 1977; McComas et al., 2003; Cranmer, 2009; Brooks et al., 2015; Bale et al., 2019)25
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zirker, 1977; McComas et al., 2003; Cranmer, 2009; Brooks et al., 2015; Bale et al., 2019). Interaction between streams of dif-

ferent speeds form compressive structures known as stream interaction regions (SIRs; Richardson, 2018), which often repeat

in 27-day intervals as the coronal holes from which they originate are relatively long-lived structures. Another key category of

large-scale heliospheric structures are the interplanetary counterparts of coronal mass ejections (ICMEs; e.g., Kilpua et al., 2017a)

::::::::::::::::::::::::
(ICMEs; Kilpua et al., 2017a). During solar maximum, ICMEs can comprise up to 40-60% of the ecliptic solar wind near30

the Earth’s orbit (Richardson and Cane, 2012). A typical ICME in the solar wind consists of a leading shock wave, a tur-

bulent sheath region and an ejecta, provided that the ejecta propagates sufficiently fast with respect to the preceding solar

wind. Approximately one-third of the ICME ejecta shows signatures consistent with an underlying flux rope configuration

(e.g., Richardson and Cane, 2004)
::::::::::::::::::::::::
(Richardson and Cane, 2004), i.e., enhanced magnetic field magnitude, smooth rotation of

the magnetic field direction over a large angle, and depressed proton beta. Such events are commonly referred to as magnetic35

clouds
:::::
(MCs)

:
(Burlaga et al., 1981). In contrast

:
to

:::::
MCs, ICME sheathsas compressed structuresmore resemble SIRs with

:
,

::::
being

:::::::::::
compressive

:::::::::
structures,

::
are

:::::
more

::::::
similar

::
to

::::
SIRs

::
in
:::::
their

::::
solar

::::
wind

:::::::::
properties,

:::::::::
exhibiting large-amplitude magnetic field

variations , and relatively high densities and temperatures(Kilpua et al., 2017a).
:
.

Due to their distinct origins and formation, the various types of solar wind discussed previously (slow, fast, SIRs, sheath and

ejecta) are expected to feature significant differences in their fluctuation and turbulence characteristics (e.g., Kilpua et al., 2017b)40

:::::::::::::::::
(Kilpua et al., 2017b). Several studies have already indicated that normalized magnetic field fluctuations are higher during the

compressive sheaths and SIRs than in the unperturbed solar wind, while magnetic clouds represent the lowest fluctuation levels

(e.g., Kilpua et al., 2017a; Borovsky et al., 2019; Moissard et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kilpua et al., 2017a; Borovsky et al., 2019; Moissard et al., 2019)

.

Fluctuations in large-scale solar wind structures can arise from multiple sources. In the fast wind, the most common fluc-45

tuations are anti-sunward propagating Alfvén waves, believed to originate from the convective motions of the solar photo-

sphere (Belcher and Davis, 1971). In the corona, sunward propagating Alfvén waves are generated from reflected outward

waves and via parametric decay instability (e.g., Shoda and Yokoyama, 2016; Tenerani and Velli, 2013; Sishtla et al., 2022)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Shoda and Yokoyama, 2016; Tenerani and Velli, 2013; Sishtla et al., 2022), leading to an active turbulent cascade of energy

from large to smaller scales. There is evidence that turbulence is also actively generated further out in the heliosphere, suggest-50

ing that inward Alfvén waves must also be generated in the heliosphere (e.g. Chen et al., 2020)
:::::::::::::::
(Chen et al., 2020). Moreover,

some of the fluctuations in the solar wind arise from intermittent coherent structures that may be unrelated to the turbulent

cascade. Examples include current sheets, flux tubes
:
, and small-scale flux ropes, which may originate either from the Sun or

be created in interplanetary space via magnetic reconnection (Borovsky, 2008; Li et al., 2011; Sanchez-Diaz et al., 2017; Zhao

et al., 2021; Ruohotie et al., 2022).55

An important question regarding solar wind fluctuations is whether they are stochastic, periodic or chaotic in nature. This

distinction can provide insights into the origin of the fluctuations and mechanisms that generated them. Understanding the

nature of solar wind fluctuations is also an important aspect for space weather applications, for example with regard to building

better numerical models and forecasting schemes, given that stochastic (random) fluctuations are difficult to predict.
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The nature of solar wind fluctuations can be assessed using
:
In
::::
this

:::::
study

::
we

:::::
apply

:::::::::
complexity

:::::::
analysis

::
to

:::::
study

::::::::::
fluctuations

::
in60

::
the

:::::
solar

:::::
wind,

:::::
which

:::::
offers

::
a

:::::::::::::
complementary

:::::::
approach

::
to
:::::
more

:::::::::
traditional

:::::::
analysis

:::::::::
techniques.

::::::
Using

:::::::::
complexity

:::::::
analysis

:::
we

:::
can

:::::::
explore

:::::::::
phenomena

:::::
such

::
as

::::::::::
cross-scale

::::::
effects,

::::::::::
emergence,

::::
and

:::::::::::::
self-organising

::::::::
behaviour

:::::::::::::::::::
(McGranaghan, 2024).

:::::
This

:
is
::::::::::

particularly
::::::::

relevant
::
to

:::
the

::::::
study

::
of

:::
the

:::::
solar

:::::
wind,

::::::
where

::
a
:::::::
plethora

:::
of

:::::::::::
fundamental

::::::
plasma

:::::::::
processes

:::
are

::
in
:::::::

action.

:::::
These

::::::::
processes

:::::
cause

:::::::::
structures

:::::
from

:::::::::
small-scale

::::::::
turbulent

::::::::::
fluctuations

:::
to

:::::::::
large-scale

::::::::::
phenomena

:::::
such

::
as

:::::::
ICMEs.

::::::
While

:::::::::
complexity

::::::
science

:::
or

::::::::::
information

:::::
theory

::::
may

:::
not

:::::::
directly

::::::
explain

:::
the

:::::::::
underlying

::::::::
physical

::::::::
processes

::
of

:::
the

:::::::
analysed

::::::::
systems,65

:::
they

::::
can

::::::
provide

::::::::
valuable

::::::
insights

::::
into

:::::::
patterns

:::
and

:::::::::
structures

::
in

::::
solar

:::::
wind

::::
time

::::::
series,

::::
help

::
to

::::::
identify

:::
the

:::::::::
combined

::::::
effects

::
of

:::::::::
interacting

::::::::::
subsystems,

::::
and

::::::::::
differentiate

::::::::
between

::::
solar

:::::
wind

::::::::
structures

:::
of

:::::::
different

::::::
origin

:::::::::::::::::
(Kilpua et al., 2024).

::::
Our

::::
aim

:
is
:::

to
::::::
explore

::::::::::
techniques

::::
that

:::
are

::::
new

::
to

:::::
solar

:::::
wind

::::::
studies

::::::
(HVG

:::::::
analysis

::::
and

:::
the

:::::::::::::
Fisher-Shannon

:::::::::::
information

:::::
plane)

:::
in

::::::::::
combination

::::
with

::
a

::::::::
technique

::::
that

:::
has

::::
been

:::::
used

:::::::::
previously

::
in

:::
the

::::
field,

::::::::::::::
Jensen-Shannon

::::::::::
complexity.

:::::
These

::::::::
methods,

::::::
which

:::
will

::
be

::::::::::
introduced

::
in

:::
the

:::
next

::::::::::
paragraphs,

:::
are

:::::::::::::
complementary

::
to

::::
each

:::::
other.

:
70

:::
The

:
Jensen-Shannon complexity analysis (Rosso et al., 2007) , which

:::
has

:::::::
recently

:::::::
become

:::::
more

::::::
widely

::::
used

::
in
::::

the
::::
field

::
of

:::::
space

::::::
plasma

:::::::
physics.

::
It is based on the concept of permutation entropy, i.e., on finding how different permutation patterns

occur in a time series (Bandt and Pompe, 2002). Permutations at different time lags can be determined for the fluctuations,

straightforwardly allowing for a multi-scale analysis.

This analysis technique has recently become more widely applied in space plasma physics. Previous studies using it
:::
the75

:::::::::::::
Jensen-Shannon

::::::
entropy

:
have found solar wind magnetic field fluctuations to be stochastic in nature (e.g., Weck et al., 2015; Weygand and Kivelson, 2019; Good et al., 2020; Kilpua et al., 2022; Raath et al., 2022; Kilpua et al., 2024

; cf. Bandyopadhyay et al., 2024
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Weck et al., 2015; Weygand and Kivelson, 2019; Good et al., 2020; Kilpua et al., 2022; Raath et al., 2022; Kilpua et al., 2024

). In particular, Kilpua et al. (2024) performed an extensive permutation entropy and complexity analysis study of different

types of solar wind using 1 au measurements for the period 1997-2022. They found that at large scales (i.e. fluctuations at time

lags of a few minutes), magnetic clouds clearly exhibited the lowest entropies and highest
:::::::::::::
Jensen-Shannon complexities, while80

fast wind streams were the most stochastic. At smaller scales, turbulent features were more similar. In their analysis of fractal

dimenisons
:::::::::
dimensions, Muñoz et al. (2018) found that magnetic clouds similarly stood out from other solar wind types, with

the clouds displaying a distinctive monofractal behaviour.
::::::::::::
Macek (2010)

:::::::::
investigated

:::
the

::::::
fractal

::::::
nature

::
of

:::
the

::::
solar

:::::
wind,

::::
and

:::::
argued

::::
that

::::
solar

:::::
wind

:::::::::
fluctuations

:::::::
showed

::::::::
signatures

::
of

::::::::::::::
low-dimensional

::::::::
attractor.

::::::::
However,

:::
the

::::::
studies

::::
using

::::::::::::::
Jensen-Shannon

:::::::::
complexity

::::
have

::::
thus

:::
far

:::::
found

::
no

:::::::::
signatures

::
of

::::
low

::::::::::
dimensional

:::::::
attractor

::::::::
structure

:::::
within

:::::
solar

:::::
wind.85

The Jensen-Shannon complexity analysis is only one of a number of methods to investigate the nature of fluctuations. Others

include the visibility graph (VG) (Lacasa et al., 2008), a method that transforms the analysed time series into a graph that

permits investigation of underlying patterns and estimation of complexity. The method is based on determining whether two

values in the time series are ‘visible’, i.e. connected. A special case of the VG method is the horizontal visibility graph (HVG)

(Luque et al., 2009), where connections are made based on a more simple rule for ‘visibility’ than in the traditional VG. The90

HVG technique can be used in combination with the Fisher information measure (FIM; Fisher, 1925; Ravetti et al., 2014) to

study the complexity of a time series. The FIM is a more local measure than Shannon entropy as it compares consecutive

values to each other. Thus, the ordering of the distribution is important in Fisher’s approach.
::::
FIM

:::
has

:::::::::
previously

::::
been

:::::
used

::
in
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::
the

:::::
field

::
of

::::::::::
heliophysics

:::
by

:::::::::::::::::::::::
Balasis et al. (2016, 2023b)

:::
who

:::::
used

::::::
entropy

::::
and

:::::
Fisher

::::::::::
information

:::
to

::::
study

:::::::::::
geomagnetic

:::::
jerks

:::
and

:::::::::::
geomagentic

::::::
activity

:::::::
indices,

::::::::::
respectively.

:
95

:::::
Other

:::::::
methods

:::
that

::::
have

::::
been

::::
used

::
in

:::::::::::
heliophysics

:::
are,

:::
for

:::::::
example,

:::
the

:::::::::
recurrence

:::::::::::
quantification

:::::::
analysis

:::::::::::::::::
(Donner et al., 2019)

:
,
::::::
network

:::::::
analysis

::::::::::::::
(Orr et al., 2021)

:
,
:::
and

:::::::
maximal

:::::::::
Lyapunov

:::::::::
exponents,

::::::::::
approximate

::::::
entropy

::::::::
analysis,

:::
and

:::::
delay

:::::
vector

:::::::
variance

::::::::::::::::::::
(Oludehinwa et al., 2021)

:
.
::
A

::::::::::::
comprehensive

::::::
review

::
of

:::::::::
complexity

:::::::
science

:::::::::
approaches

:::
and

:::::::::
techniques

::
in

::::::::::
heliophysics

::
is
::::::::
provided

::
by

::::::::::::::::::
McGranaghan (2024),

:::::
while

::::::::::::::::::
Balasis et al. (2023a)

::::::
focuses

:::::::::
specifically

:::
on

:::::::
complex

:::::::
methods

:::
and

::::
their

:::::
usage

::
in

:::
the

:::::::::
Near-Earth

:::::::::::
environment.

::::::
Finally,

::::::::::::::::
Chian et al. (2022)

::::::
review

::::::::
nonlinear

::::::::
dynamics

::::
and

::::::
plasma

::::::::::
turbulence,

:::::::::
expanding

::
on

:::
the

::::::::
concepts

::::
also100

::::::::
discussed

::
in

:::
this

:::::
study,

::::
such

:::
as

::::::
chaotic

:::
and

:::::::::
stochastic

::::::::
dynamics

:::
and

::::::::::
complexity.

:

The key purpose of the analysis presented in this paper has been to investigate how different complexitymeasures compare

for different solar wind types presented above. We
::
this

::::::::
analysis

::
is

::
to

::::::::
examine

::::
how

:::
the

::::::::::::::
Jensen-Shannon

::::::::::
complexity,

::::
the

:::::::::::::
Fisher-Shannon

::::::::::
information

:::::
plane,

::::
and

::::::::::::
HVG-analysis

:::::::
capture

:::
the

:::::::::
fluctuation

:::::::::
signatures

::
of

:::::::
distinct

::::
solar

:::::
wind

:::::::::
structures.

::
It

:::
can

::
be

::::::::
expected

:::
that

::::::::
different

:::::
types

::
of

::::
solar

:::::
wind

:::::
could

:::::
show

:::::::
different

:::::
types

::
of

::::::::::
fluctuations

:::::::
perhaps

::::::
relating

::
to
:::

the
:::::::::

processes105

:::
that

:::::
cause

::::
their

:::::::::
formation.

:::
We

::::
thus analyse in detail a few selected events that are representative of four large-scale solar wind

categories, namely slow wind, fast wind, magnetic clouds and sheaths. The paper is organised as follows: in Section 2 we

present the data and analysis methods, including detailed descriptions of each of the complexity measures used; in Section 3

the results are presented; and in Sections 4 and 5 we discuss and conclude.

2 Data and Methods110

2.1 Spacecraft data

The
::::
solar

:::::
wind data used in this study comes from the Wind spacecraft. We used the 3-second resolution data from the

Magnetic Field Investigation (MFI) instrument, which is a boom-mounted dual triaxial fluxgate magnetometer (Lepping et al.,

1995). Measurements are given in geocentric solar ecliptic (GSE) coordinates. Three intervals of data were considered for

each solar wind type, each consisting of 12 hours of measurements.
::
For

::::
fast

:::::
wind

:::::::
intervals

:::::
were

::
1)

:::::::::
28.12.2005

:::::::::::
00:39-12.38115

:::
UT,

::
2)

::::::::
9.4.2006

:::::
22:33

::::
UT

:
-
:::::::::
10.4.2006

:::::
10:32

::::
UT,

::
3)

:::::::::
14.3.2007

::::::::::
4.23-16.22

:::
UT.

::::
For

::::
slow

::::::
wind:

::
1)

::::::::::
26.12.2005

:::::
14:11

:::
UT

::
-

:::::::::
27.12.2005

::::
2:10

:::
UT,

:::
2)

:::::::
8.4.2006

:::::::::
7:21-19.20

::::
UT,

::
3)

::::::::
10.3.2007

:::::
17.05

:::
UT

::
-
::::::::
11.3.2007

::::
5:04

:::
UT.

::::
For

:::::
sheath

:::::::
regions:

::
1)

:::::::::
17.9.2011

:::::::::
3:02-15:01

::::
UT,

::
2)

:::::::::
26.2.2012

:::::
21:04

::::
UT

:
-
:::::::::
27.2.2012

::::
9:03

::::
UT,

:::
3)

::::::::
27.6.2013

::::::
13.56

:::
UT

::
-
::::::::
28.6.2013

:::::
1:55

:::
UT.

::::
For

:::::
MCs:

:::
1)

::::::::
15.5.2005

::::::::::
10:00-21:59

::::
UT,

::
2)

:::::::::
20.5.2005

:::::
18:00

::::
UT

:
-
::::::::
21.5.2005

:::::
5:59

:::
UT,

:::
3)

::::::::
12.6.2005

:::::
22:00

::::
UT

::::::::
13.6.2005

:::::
9:59

:::
UT.

:
These

intervals were chosen from the data set of Kilpua et al. (2024), with the requirement that there should be as few data gaps as120

possible in the data to robustly calculate the complexity measures. All of the time series we analysed had less than 2.4% of

missing data points. Time series plots of the magnetic field magnitudes and components during these intervals are included in

the Appendix, Figures A1, A2, A3 and A4.

Due to the differences between the various techniques used to estimate the complexity, we have applied two different ap-

proaches to account for data gaps in the time series. For the HVG approach, data was concatenated into a final time series such125

that all data gaps were closed. When calculating the permutation entropy, we followed the suggestion presented in Olivier et al.
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(2019), i.e., we excluded all those permutation patterns (of the chosen length) from the calculation of the permutation entropy

that contained missing data. This resulted in excluding less than 3 percent of the intervals in all cases except for the third sheath

region, and the first magnetic cloud, where 6.3 and 12.2 percent were excluded, respectively.

2.2 Horizontal visibility graphs130

The visibility graph (VG) was first introduced by Lacasa et al. (2008) as a way of converting time series into networks. The

method is based on studying the ‘visibility’ of data points to each other, e.g
::
i.e. the amplitude of values in a time series. Two

data points of small magnitude separated by a high magnitude data point do not ’see’ each other and are hence not connected,

while two large magnitude data points separated by many lower magnitude data points are visible to each other. Each point in

the original time series corresponds to a node in the resulting graph. Studying time series in network form enables the use of135

network analysis methods that are powerful tools to assess the nature of time series; i.e., whether the processes that create them

are chaotic, periodic or stochastic in nature. The horizontal visibility graph (HVG) is a simplification of the VG, introduced

by Luque et al. (2009). In the HVG, connections between data points (i.e. nodes) are made based on how different points in

the data set are ‘visible’ to each other in the horizontal direction. Two points xa and xb in a time series will be connected (i.e.

visible) if:140

xa,xb > xn (1)

for all n such that

a < n < b. (2)

Each point in the series will be connected at least to its two neighbours, which makes the resulting graph fully connected.145

The connections in the map can be studied statistically by forming a degree distribution of the graph. The degree (k) of a node

measures how many connections a given node has with the other nodes in the series. For example, if a data point/node is only

connected to its neighbours, its degree will be two. The degree distribution therefore gives the number of nodes that have k

connections for the range of possible k values.

As the relation for connecting the points in the investigated time series is rather simple, some analytical solutions can be150

derived to describe the properties of the final graph if considering purely uncorrelated (i.e. random walk) time series data (Luque

et al., 2009), an example of which being regular Brownian motion. Lacasa and Toral (2010) tested the method for uncorrelated

as well as for chaotic and stochastic data with correlations (e.g.
:::::::::
correlation, fractional Brownian motion )

::::
being

::::
one

:::::::
example.

They found that all of the tested time series (i.e. not only uncorrelated data) follow an exponential equation for P (k) in the

tail of the degree distribution: P (k)∼ exp(−λk). Lacasa and Toral (2010) then classified some of the known chaotic and155

stochastic processes by forming HVGs and determining the λ values of the distributions. The λ value can be estimated by the

exponential fitting to the degree distribution. The authors show that λ= ln(3/2) is the threshold between chaotic and stochastic

processes. The values λ < ln(3/2) correspond to chaotic processes and λ > ln(3/2) to correlated stochastic processes. When

λ∼ ln(3/2) the process is uncorrelated.
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The above described classification method by Lacasa and Toral (2010) was tested with a more comprehensive set of chaotic160

and stochastic processes by Ravetti et al. (2014). The authors identified several issues with the method. For example, the

fractional Gaussian noise, which is a stochastic process, was incorrectly classified by the method in some cases. Another issue

identified by Ravetti et al. (2014) was that the obtained degree distributions did not always exhibit exponential regions where

the fitting could be performed. It should be also noted that even in cases where the exponential region does exist, it is not

always clear what k-range should be fitted. The fitting is expected to be applied to the tail of the distribution, but, as discussed165

by Ravetti et al. (2014), it is ambiguous as to what degree the fitting should be started from. In any case, the part of the

distribution at low degree numbers is excluded from the fitting, and as such some information about the connections within the

graph is not utilized.

2.3 Shannon entropy

Shannon entropy, first proposed by Shannon (1948), is a measure of the information that can be gathered from a set of data.170

For any discrete probability distribution, the Shannon entropy is given by:

S[P ] =−
N∑
j=1

pj · ln(pj), (3)

where P = {pj ;j = 1, ...,N} is a discrete probability distribution with N possible states. In the case when Shannon entropy is

zero it is possible to predict with certainty which of the possible outcomes j will take place. Conversely, the maximal entropy

is achieved by a set of data where it is very difficult to predict the outcome, i.e the probability distribution is uniform or close

to uniform. The maximal entropy for a system can be used to normalize the Shannon entropy (Martin et al., 2006):

H[P ] = S[P ]/Smax

The probability distribution function (PDF) used in calculating the Shannon entropy can be formed in several ways.

2.4 Permutation entropy

Bandt and Pompe (2002) define a measure of complexity, permutation entropy, based on studying neighbouring values in a175

time series. The approach is similar to Shannon entropy but with a specific PDF that is based on the magnitudes of points in a

time series. Permutation entropy for a series {xt}t=1,..N is defined as:

S(P ) =−
d!∑
i=1

pilog2pi, (4)

where P is the probability distribution of the patterns found in the time series, pi is the probability of a pattern where i=

1,2,3, ...,d!, and d is the embedding dimension, i.e. the length of the subset where the permutations are found. The normalized180

entropy is defined as:

H(P ) =−S(P )/log2d! (5)
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and the PDF, i.e. the probability of each permutation (amplitude ordering) for a time series of length N is:

p(π) =
#{t | t≤N − d,(xt+1, ...xt+n)has type π}

N − d+1
(6)

where # indicates number.185

The form of the permutation entropy equation is the same as the Shannon entropy, but here the PDF is specifically the

permutation distribution. In the context of this study, permutation refers to the relative ordering of the data points in the

selected sample from the investigated time series.

The analysis is restricted by the choice of embedded dimension d, which is the length of the subsection of the time series

that is studied, i.e. the number of data points in a sample. Additionally, a time lag τ can be applied. This results in choosing190

every nth value of the series instead of consecutive values when forming the patterns. Olivier et al. (2019) found that H values

become stable when choosing a τ value of ∼ 20 or higher for the data where averaging has been applied.

2.5 Jensen-Shannon plane

Martin et al. (2006) introduce the Jensen-Shannon statistical complexity, which can be used in combination with Shannon

entropy:195

Cjs =−2
S
(

P+Pe

2

)
− 1

2S(P )− 1
2S(Pe)

d!+1
d! ln(d! + 1)− 2ln(2d!) + ln(d!)

H(P ) (7)

where Pe is the maximum permutation entropy.

Jensen-Shannon complexity is a measure of order in a system. It indicates how different the probability distribution is from

a uniform distribution for a given value of normalized entropy H . The value of Cjs is the largest for the case where the

distribution is most varied and the smallest both for high order and high disorder.200

The ‘complexity plane’ refers to a plane where Jensen-Shannon complexity Cjs is plotted against normalized permuta-

tion entropy H . It was first introduced by Rosso et al. (2007), who showed that chaotic, stochastic and periodic series fall

in different areas of the plane. There are also clearly defined maximum and minimum values of complexity for each entropy

value that correspond to disorder and perfect order (Martin et al., 2006). The robustness of the analysis can be evaluated

with the following tests: N/d!> 10 and
√
d!/N − (d− 1)r < 0.2 (e.g. Weygand and Kivelson, 2019; Osmane et al., 2019)205

::::::::::::::::::::::::::::::::::::::::::
(Weygand and Kivelson, 2019; Osmane et al., 2019), where r is the sub-sampling rate, which relates to the time lag: τ = r∆t,

where ∆t is the data resolution.

2.6 Fisher-Shannon plane

Fisher’s information measure (FIM), first introduced by Fisher (1925), is another parameter to estimate the nature of time

series and embedded structures. Compared to Shannon entropy, FIM is more of a local measure. In FIM, consecutive values210

of the distribution are compared to each other, while the Shannon entropy is a measure of the full probability distribution

(e.g., Ravetti et al., 2014)
:::::::::::::::::
(Ravetti et al., 2014)).
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In this study, the discrete form for FIM, following e.g. Gonçalves et al. (2016), will be used:

FIM= F0

N−1∑
i=1

((pi+1)
1/2 − (pi)

1/2)2 (8)

where the constant F0 is:215

F0 =

1 pi∗ = 1 for i∗ = 1 or if i∗ =N and pi = 0 ∀ i ̸= i∗

1/2 otherwise
(9)

Frieden and Soffer (1995) expand on the FIM and its uses in physics. They relate the FIM to the gradient of the the dis-

tribution it is applied to, and write that for a uniform PDF the FIM will be small. Such a distribution will describe a highly

unpredictable system. Conversely, for a highly predictable system the PDF will have higher gradient and larger FIM. For ex-

ample, in the case of a delta distribution, FIM is equal to 1, as the probability is zero everywhere except at x= 0. Conversely,220

for a uniform distribution FIM is zero, as there is no gradient in the distribution. Unlike in Shannon entropy, the ordering of

the distribution is important for FIM, as it takes into account adjacent values in the PDF.

Plotting FIM and Shannon entropy on a plane gives the Fisher-Shannon information plane (Vignat and Bercher, 2003). This

plane has been studiede.g.
:
,
::::::
among

::::::
others, by Olivares et al. (2012a). The authors plotted FIM and Shannon entropy of the

investigated data in a Fisher-Shannon plane and found that chaotic and noisy stochastic data fall into different regions. They225

calculated FIM and entropy using the Bandt and Pompe (2002) permutation distribution as the PDF.

The effect of ordering of the patterns on the Fisher-Shannon plane when calculating FIM from the permutation distribution

has been studied by Olivares et al. (2012a), Olivares et al. (2012b), and Spichak et al. (2021). Olivares et al. (2012a) find that

the Lehmer protocol i.e. lexicographic order gives more structure than the other tested pattern, namely the Keller order. In this

study we use the lexicographic order for sorting the permutations as it is widely used in various applications.230

The Fisher-Shannon information plane can also be formed from the HVG degree distribution as the PDF, as was done

by Ravetti et al. (2014) and Gonçalves et al. (2016). Ravetti et al. (2014) introduce this approach as a way of reducing the

previously mentioned problems related to the classification using λ values. With the Fisher-Shannon plane, the full degree

distribution is taken into account, and no information is therefore left out of the analysis. Ravetti et al. (2014) find that chaotic

and stochastic processes fall into different areas on the plane.235

3 Results

For this study, we formed Jensen-Shannon and Fisher-Shannon complexity/information planes for four types of solar wind

time series (Sect. 2.1). For the Jensen-Shannon plane the permutation entropy technique was used to form the PDF, while for

the Fisher-Shannon plane we used both the permutation entropy technique and the HVG degree distributions to form the plane,

in order to study the differences between the two ways of forming the probability distribution.240

When using permutation entropy to form the Jensen-Shannon and Fisher-Shannon planes, the effect of time lag τ on permu-

tation entropy was calculated for two subsampling rates r = 20 s and r = 300 s; with the 3 s cadence data, these correspond to

8



Figure 1. The Jensen-Shannon complexity plane showing the placement of data points calculated for different solar wind types (fast, slow,

sheath and magnetic cloud). The data points that are calculated for subsampling rate r = 300 are surrounded by grey circles and those without

the surrounding circle are calculated for r = 20. The maximum and minimum curves are given for r=300.
:::::::
r = 300.

time lags of τ = 60 s
::::::
seconds

:
and 15 minutes, respectively. The embedded

:::::::::
embedding

:
dimension d was kept as 5, similar to

most previous studies of the solar wind (see Section 1). Likewise the solar wind results on the complexity/information planes

are compared to the fractional Brownian motion (fBm), as in previous studies. The fBm curves were formed by generating 100245

samples of fBm noise for nine Hurst exponent values ranging from 0.1 to 0.9, calculating the placements of those series on the

planes, and then taking the average of those results to form the final curves that are given in the figures.

Finally, we have tested the λ-classification proposed by Lacasa and Toral (2010) on the selected solar wind data intervals.

3.1 Jensen-Shannon plane

Figure 1 shows the Jensen-Shannon complexity plane for the magnetic field magnitude and the GSE field components. For250

most of the investigated cases the data points fall onto or close to the fBm curves. Additionally, most of the data points are

clustered at the lower right corner of the map, i.e. at the high entropy and low complexity region characteristic of a highly

stochastic process. We also note that for most of the studied events there is no significant change in the placement of the data

points from r = 20 to r = 300.

The most notable difference between r = 20 and r = 300 is found for the magnetic field magnitude, B, of magnetic cloud255

(MC) 1 in the top left corner in Figure 1. The r = 300 data point for MC1 is placed at the bottom left corner of the plane,

indicating entropy ∼ 0 and complexity ∼ 0. For r = 20 the same magnetic cloud is placed close to the middle of the plane at

9



Figure 2. A zoom-in to the bottom right corner of the Jensen-Shannon complexity-entropy plane. The symbols and curves are the same as in

Figure 1.

entropy ∼ 0.6 and complexity ∼ 0.3. Large differences between the r = 20 and r = 300 data points are present also for MC1

for Bx, and both for MC1 and MC2 for By . In these cases the r = 300 data points have considerably larger complexity and

smaller entropy than the r = 20 data points. The MC1 data points are also the ones that deviate most from the fBm curve.260

For the magnetic clouds, increasing r results in lower values for entropy and higher values for complexity, with the exception

of MC1. We note that complexity is zero both for perfectly ordered and random processes. Most low complexity data points

shown in Figure 1 are associated with high entropy and likely represent random time series, while the r = 300 data point for

MC1 has entropy close zero and thus presents a perfectly ordered time series.

Figure 2 shows a zoom-in at the lower right corner of the complexity-entropy plane. This allows for a more detailed com-265

parison of the ordering of the data points clustered in that region. It is now evident that for the magnetic field magnitude B

(top left corner), the fast solar wind has the highest entropy and the lowest complexity. For fast solar wind interval 1 (fast1) the

r = 20 and r = 300 markers overlap. For fast wind interval 3 (fast3) there is also only a very small change between the data

points. The fact that entropy and complexity do not change significantly with the sub-sampling rate (i.e. with the time lag) is

a signature of a highly stochastic process (Osmane et al., 2019). Next to the fast solar wind on the fBm curve are the sheath270

regions and slow solar wind. For the fast and slow solar wind and sheath regions, the r = 300 data points have lower entropy

and higher complexity than the r = 20 data points in all cases. This is opposite to what was found for magnetic clouds. The

most drastic change between the r = 20 and r = 300 markers are for the slow wind interval 2 (slow2) and sheath 1. In both of

these cases, the r = 300 marker has moved considerably up along the fBm curve. We also note that two of the sheath r = 300
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Figure 3. The Fisher-Shannon information plane. The solar wind events not marked with a grey circle have r = 20, and those marked with

the circle are calculated for r = 300.

data points are above the fBm curve. This signifies that they have higher complexity than the fBm process and are associated275

with more structure.

For the individual magnetic field components, the most distinct finding is that the fast wind again has higher entropies and

lower complexities for r = 300 than for r = 20. For Bx and τ = 300, two of the magnetic clouds (MC1 and MC2) have quite

high entropies and low complexities. The sheath regions and slow wind are placed between these magnetic clouds and MC3

with the lowest entropy that is visible in the figure with the full plane. For By the order of the events is approximately similar280

to previously discussed trends in Bx, and for Bz , and all the time series have in general higher entropy than is found in the

other magnetic field components.

3.2 Fisher-Shannon plane

3.2.1 Permutation entropy

Next we will investigate the Fisher-Shannon information plane. When permutation entropy is used to calculate the entropy,285

the horizontal axis is the same as in the previous section for the Jensen-Shannon complexity plane. The vertical axis is now

the Fisher Information Measure (FIM). As a result, there are some changes in the vertical placements of the markers on the

plane. In general, the data points are spread out more on the plane when using FIM instead of Jensen complexity. This can be

seen also in the fBm curves, where increasing the subsampling rate (time lag) results in a considerably larger change in the

11



Figure 4. A zoomed-in section of the Fisher-Shannon plane. The top dotted curve is the fBm curve with r = 300, and the lower curve is the

fBm curve with r = 300.

placement of the curve than on the Jensen-Shannon plane. Similarly to the Jensen-Shannon plane, the MC time series stand290

out in the FIM plane.

Looking at the magnetic field magnitude B, the MCs have lowest entropies and highest FIM values. For Bx and By the

same MC (MC1) deviates from the cluster of markers at the bottom right corner as in the Jensen-Shannon plane. For Bz , one

of the slow solar wind events (slow1) has clearly the highest FIM, standing out from the other events and significantly away

from the fBm curve.295

Figure 4 shows a zoomed-in section of the bottom right hand corner of the plane and the spread of the markers can be seen

more clearly. For B, the fast solar wind markers are again clustered close to the corner of the plane both for r = 20 and r = 300.

Increasing r appears to increase the FIM values for the events. For the magnetic field components, the markers are clustered

along the fBm line with no apparent order for r = 20, but increasing the subsampling rate to 300 results in considerably spread

in the points. For r = 300, fast solar wind has the highest entropy and lowest FIM in almost all cases. For Bx and By MC 1300

stands out from the rest of the markers, with higher FIM and lower entropy than the other solar wind time series. Similarly to

the Jensen-Shannon plane, the events are placed closer to the corner of the plane for Bz than for the other components.

3.2.2 HVG degree distribution

Next, we will consider the Fisher-Shannon information plane when it is formed from the Horizontal Visibility Graph (HVG)

degree distribution. We remind that therefore there is no subsampling performed. The entropies have been normalized with a305
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Figure 5. The Fisher-Shannon information plane formed from the HVG degree distribution.

maximal entropy, following Ravetti et al. (2014). The maximal entropy is calculated from a series of fractional Gaussian noise

with the same length as the studied solar wind series. In this version of the information plane, B again stands out from the

individual magnetic field components. In the figures for Bx, By , and Bz all solar wind markers are placed in a cluster below

the fBm curve. For B, the magnetic cloud data is placed away from the curve, and the rest of the solar wind events are located

along the curve or under it.310

Figure 6 again gives a zoomed-in section of the bottom right corner of the information plane. The highest entropies for B

are with the fast solar wind and one of the slow solar wind events (Slow3). The MC events have the lowest entropies. For

the magnetic field components, the entropy and FIM values are very similar for all events, and there appears no clear order

between different types of solar wind data.

3.3 λ classification315

In addition to forming the information planes, we tested the HVG degree-distribution based classification proposed by Lacasa

and Toral (2010). The method is based on the assumption that the tail of the degree distribution follows an exponential rule

P (k)∼ exp(−λk). In our study, the fitting in the degree distribution was done from the fourth to the 14th degree for all

distributions. After the 14th degree, some of the distributions began to deviate strongly from the exponential form. The results

of the fitting are given in Table 1. The standard deviation error given is obtained as the error from the fitting.320

In general, all of the analysed time series are classified as stochastic, as the λ values are higher than the limit of ln(3/2)≈
0.405. For the magnetic field components Bx, By , and Bz there are no clear trends between the different solar wind types
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Figure 6. A zoomed-in section of the Fisher-Shannon information plane for the HVG degree distribution.

in the λ values or the sizes of the errors. For B, the highest λ values are found for the MC time series. The highest value

is for the first magnetic cloud, which also consistently had the lowest entropy out of the analysed time series in all of the

complexity/information planes. Thus this technique appears to catch the same structure that is detected by the other methods.325

The fast solar wind time series have the lowest λ values, closest to the limiting value of ln(3/2). Lacasa and Toral (2010)

suggest that a smaller value in the stochastic region (> ln(3/2)) is an indication of decreasing correlations.

4 Discussion

We have applied several methods from information theory and complex networks to study four distinct types of solar wind

intervals (fast and slow streams, sheaths and magnetic clouds). In all analysed cases, the most significant differences between330

the solar wind types occurred when examining the magnetic field magnitude B. This finding can likely be attributed to B time

series being generally less noisy than the time series for the individual magnetic field components (see the Appendix).

For the approaches using the Jensen-Shannon complexity-entropy plane , and the Fisher-Shannon plane with permutation

entropy, two values of subsampling rate r were tested. It was found that the higher r value (r = 300, corresponding 15 minute

time lag between the points used to build the ordinal patterns) causes clearer separation of the solar wind intervals on the335

planes, with the events spreading out to a larger range of entropies, complexities and FIM values. In particular, for r = 300

the fast solar wind events had clearly the highest entropies out of the analysed time series, while for .
::::
For r = 20 they did not
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sw type, B λ stde

fast1 0.433 0.008

fast2 0.444 0.01

fast3 0.435 0.015

slow1 0.485 0.009

slow2 0.498 0.009

slow3 0.446 0.009

sheath1 0.48 0.012

sheath2 0.479 0.009

sheath3 0.477 0.009

MC1 0.617 0.024

MC2 0.525 0.014

MC3 0.5 0.018

sw type, Bx λ stde

fast1 0.477 0.005

fast2 0.517 0.014

fast3 0.486 0.008

slow1 0.486 0.004

slow2 0.505 0.008

slow3 0.486 0.007

sheath1 0.467 0.015

sheath2 0.489 0.01

sheath3 0.469 0.02

MC1 0.465 0.013

MC2 0.477 0.012

MC3 0.508 0.012

sw type, By λ stde

fast1 0.474 0.009

fast2 0.479 0.008

fast3 0.475 0.005

slow1 0.478 0.009

slow2 0.481 0.005

slow3 0.464 0.01

sheath1 0.479 0.013

sheath2 0.469 0.011

sheath3 0.47 0.008

MC1 0.479 0.011

MC2 0.484 0.014

MC3 0.476 0.005

sw type, Bz λ stde

fast1 0.486 0.006

fast2 0.492 0.008

fast3 0.487 0.009

slow1 0.479 0.005

slow2 0.473 0.009

slow3 0.484 0.01

sheath1 0.47 0.01

sheath2 0.506 0.009

sheath3 0.465 0.007

MC1 0.44 0.014

MC2 0.466 0.017

MC3 0.507 0.018
Table 1. λ values for the different solar wind types and components

separate from the other investigated interval. However, the lowest entropies were found in most cases during magnetic clouds

(MCs) both for
:::
solar

:::::
wind

:::::
types.

:

:::
The

:::::
effect

:::
of

:
r
::

is
:::

is
::::::::
consistent

:::::
with

:::
the

::::::
studies

:::
by

::::::::::::::::
Weck et al. (2015)

:::
and

::::::::::::::::
Olivier et al. (2019)

:
,
::::
who

::::::
studied

:::::::::::
permutation340

::::::
entropy

:::
for

:::
fast

:::
and

::::
slow

:::::
solar

::::
wind

:::
Bx,

::::
and

:::::
found

:::
that

:
a
:::::
larger

::
τ
:::::::::
(τ = r∆t)

::::::
resulted

::
in

:::::
larger

::::::
values

::
of

:::::::
entropy.

::::::::::::::::
Olivier et al. (2019)

:::::
found

:::
that

:::::
when

::::::::
increasing

::
τ ,

::::
past

:
a
:::::
value

::
of

:::
180

:
s
:::
the

:::::::
entropy

:::::
values

:::::::
become

:::::
stable.

:::::
Both

:::::::::::::::
Weck et al. (2015)

:::
and

:::::::::::::::::
Olivier et al. (2019)

:::::
found

:::
fast

::::
solar

:::::
wind

::
to

::::
have

::::::
higher

:::::::
entropy

:::
than

:::::
slow

::::
solar

:::::
wind,

:::::
when

:::::::
studying

:::
the

:::
Bx::::::::::

component.
::::::::
Looking

::
at

:::::
Figure

::
2
:::
we

:::
see

:::
that

:::
for

:::
Bx::::

with
:
r = 300 and

::
the

:::
fast

:::::
solar

:::::
wind

:::
has

:::
the

::::::
highest

:::::::::
entropies,

::::
with

:::
the

::::
slow

:::::
solar

::::
wind

:::::::
settling

:::
on

:::
the

::::
fBm

::::
curve

:::::
with

:::::
lower

:::::::
entropy,

::
in

:::::::::
agreement

::::
with

:::
the

::::::
studies

:::
by

::::::::::::::::
Weck et al. (2015)

::
and

:::::::::::::::::
Olivier et al. (2019).

::::::
When

:::::
using r = 20 .345
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Increasing r appeared to increase entropy in all cases
::
the

:::::::::
separation

::
of

:::
the

::::
two

:
is
:::
not

:::
as

::::
clear,

:::
but

:::::
rather

:::
the

::::
fast

:::
and

::::
slow

:::::
solar

::::
wind

::::
are

:::::
closer

:::::::
together

:::
on

:::
the

::::
fBm

:::::
curve.

:

::::::::::::::::
Kilpua et al. (2024)

:::
also

:::::::
studied

:::
the

::::::
effect

::
of

:::::::::
increasing

::
τ
:::

on
:::::::
entropy

::::
and

::::::
Jensen

::::::::::
complexity

::::::
values,

:::::::::
analysing

::::::
sheath

::::::
regions,

:::::
SIRs,

::::
fast

:::::
solar

:::::
wind,

::::
slow

:::::
solar

:::::
wind,

::::
and

:::::
MCs.

::::
They

::::::
found

:::
that

:::::::::
increasing

::
τ
:::::::
resulted

::
in
:::::::::

relatively
:::::
stable

::::::
values

::
of

::::::
entropy

::::
and

:::::::::
complexity

:::
for

:::
all

::::
solar

::::
wind

:::::
types

:
except for MCs, where the opposite was true. These findings are consistent350

with Kilpua et al. (2024) Jensen-Shannon complexity-entropy plane analysis, and demonstrate that they hold also for the FIM

approach. Similar to
:::::::::
increasing

:
τ
:::::::
resulted

::
in

::::::
smaller

:::::::
entropy

:::::
values

:::
and

::::::
higher

:::::::::
complexity.

:::
In

:::
our

:::::
study,

::::
when

:::::::::
increasing

:
τ
:::::
from

:
1
::::::
minute

:::::::
(r = 20)

::
to

:::
15

::::::
minutes

::::::::
(r = 300)

:::
we

:::
see

::::::
change

::
in

:::
all

::::
solar

::::
wind

:::::
types,

::
in
:::::
some

:::::
cases

::
to

:::::
higher

:::::::::::::::::::
entropies/complexities

:::
and

::
in

:::::
some

:::::
cases

::
to

:::::
lower

::::::::::::::::::::
entropies/complexities.

:::
The

:::::
most

:::::::::
significant

:::::::
change,

::::::::
however,

::
is

::
in

:::
the

:::::
MCs,

:::::
which

::::
are

::::::
always

:::::
moved

:::::::
towards

::::::
lower

::::::::
entropies

::::
and

::::::
higher

:::::::::::
complexities,

::::::::
similarly

::
to

:::::::::::::::::
Kilpua et al. (2024).

:::
As

::::
was

::::::
found

::
by

:
Kilpua et al.355

(2024), these results also refer to the universality of fluctuations at smaller time scales, except in the case highly-ordered

magnetic clouds.

In our data set, one magnetic cloud (MC1)stood clearly out when field magnitude

:::::::::::::::::::::::::
Weygand and Kivelson (2019)

:::
also

::::
used

:::
the

:::::::::::::
Jensen-Shannon

::::::
plane,

:::::::::
classifying

:::::::
turbulent

::::::::
intervals

:::
and

:::::
ICME

::::
and

:::::::::
co-rotating

:::::::::
interaction

::::::
regions

:::::::
(CIRs).

:::::
They

:::::
found

::::
that

::::::::
turbulent

:::::::
intervals

::::::::::
(containing

:::::
both

:::
fast

::::
and

::::
slow

:::::
solar

:::::
wind

:::::::::
intervals),

:::::
when360

:::::::
studying

::::::::
magnetic

::::
field

:::::::::
magnitude,

::::::::
clustered

:::::
close

::
to

:::
the

:::::::::
fBm-curve

::::::::
indicating

::
a

::::::::
stochastic

::::::
nature.

::::
This

::
is

::::
also

:::
the

:::
case

:::
in

:::
our

::::::
results,

::::::
though

::::
with

:::
the

:::::
higher

:::::::::::
subsampling

:::
rate

::
r
:::::
some

::
of

:::
the

::::
slow

::::
wind

::::
and

:::::
sheath

::::::
region

:::::::
intervals

:::::
move

::::
into

::::::
slightly

::::::
higher

:::::::::
complexity,

:::::::
possibly

:::::::::
indicating

::::
some

:::::::
chaotic

:::::::
structure

:::::::::::::::::::::::::::::::::::::
(see Figure 1 in Weygand and Kivelson, 2019)

:
.
:::::::::::::::::::::::::
Weygand and Kivelson (2019)

:::
also

::::::::
analysed

:::
the

:::
Bz::::::::::

component
::
of

::::::
ICMEs

::::
and

:::::
CIRs,

::::::
finding

::::
that

:::
the

::::::::
analysed

::::::
events

::::::
cluster

:::::
below

:::
the

::::
fBm

:::::
curve

:::
at

::::
high

:::::::
entropies

::::
and

:::
low

:::::::::::
complexities.

::::::
When

:::
we

::::::
analyse

:::
the

:::
Bz:::::::::

component
:::
of

::::
MCs,

:::
we

::::
also

:::
see

:::
the

::::::
values

::::::
settling

:::::
close

::
to

:::
the

::::
fBm365

:::::
curve,

::::
with

:::
the

:::::::
r = 300

:::::
results

::::::
closely

::::::::
matching

:::::
those

::
of

:::::::::::::::::::::::::
Weygand and Kivelson (2019),

:::
and

::::::
r = 20

::::::::
resulting

::
in

:::::
higher

:::::::
entropy

:::
and

:::::
lower

::::::::::
complexity.

:
A
:::::::

feature
::
of

:::
the

::::::::::::::
Jensen-Shannon

:::::
plane

::
is

::::
that

::::::
Jensen

:::::::::
complexity

::
is
:::::::
defined

::
as

::::::
having

:::::
small

::::::
values

:::
for

:::::
either

::::::::::
completely

::::::
ordered

::
or

:::::::::
disordered

::::::
series.

::::
This

:
is
:::::::::
illustrated

:::
for

::::
MC1

::
in

:
B was analysed, exhibiting the lowest entropy, highest FIM and low

Jensen complexity
::
for

:::::::
r = 300

:::::::
(Figure

:::
1),

:::::
which

::
is

::::::
placed

::
at

::::
zero

::::::::::
complexity

:::
and

:::::::
entropy

:::
on

:::
the

:::::::::::::
Jensen-Shannon

:::::
plane

::::
due370

::
to

::
its

::::
very

::::::
regular

::::::::
structure.

:::
On

:::
the

::::::::::::::
Fisher-Shannon

:::::
plane,

:::
this

:::::
event

:::
has

:::::
FIM

::
of

:::::
∼ 0.5. Furthermore, this MC event also had

the highest λ value when the exponential fitting introduced by Lacasa and Toral (2010) was applied to the tail of the degree

distribution of the HVG that is formed from the time series. A visual inspection of the time series (given in Figure A4) shows

that this event clearly has the smoothest signal out of all the analysed events. The two other MC events also stand out from the

rest of the solar wind data when B is studied,
:
but not so distinctly.375

Using the FIM in combination with permutation entropy instead of Jensen complexity resulted in the solar wind events

spreading more along the vertical axis of the information plane. This could be useful in differentiating between different

structures within the solar wind time series. However, a benefit of the Jensen-Shannon plane is that is has clearly defined

minimum and maximum values, and has been used previously in several space physics studies.
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Another feature of the Jensen-Shannon plane is that Jensen complexity is defined as having small values for either completely380

ordered or disordered series. This is illustrated for
::::::::
Compared

::
to

::::::
Jensen

::::::::::
complexity,

:::
FIM

::
is
::
a

::::
more

::::
local

:::::::
measure

::
of
:::::::::::
fluctuations.

::::
Even

:::
so,

:::
the

::::::::
magnetic

::::::
cloud

::::
with

:::
the

:::::::
clearest

::::::
global

:::::::
structure

::
(MC1in B for τ = 300 (Figure 1), which is placed at zero

complexity and entropy on the
:::
has

::::
close

:::
to

::::
zero

:::::
Jensen

::::::::::
complexity,

::::
and

:
a
::::
very

::::::::
coherent

:::::
global

::::::::
structure,

::::
has

:::
also

:::
the

:::::::
highest

::::
FIM

::::
value

:::
out

::
of

:::
all

::
of

:::
the

:::::::
analysed

:::::
data.

:::
We

:::::
cannot

:::::::
directly

:::::::
compare

:::
our

::::::
results

::::
with

:::
the

:::::::::::::
Fisher-Shannon

::::::::::
information

:::::
plane

::
to

:::::::
previous

::::::
studies,

::
as
:::
to

:::
our

:::::::::::
understanding

:::
we

:::
are

:::
the

::::
first

::
to

:::::
utilise

::
it

::
to

::::
study

:::::
solar

::::
wind

:::::::::::
fluctuations.

::::::::
However,

:::
the

::::::::::
permutation385

:::
axis

::
is
:::
the

:::::
same

::
as

:::
in

:::
the Jensen-Shannon plane due to its very regular structure. On the

:::::
plane,

:::
and

:::
so

:::
the

:::::
points

:::::::::
discussed

::::
about

::::::::
previous

::::::::::
permutation

:::::::
entropy

::::::
results

::::
hold

::::
also

:::
for

::::
these

:::::::
results.

::
A

::::
more

::::::::
statistical

:::::
study

:::
of

:::::
Fisher

::::::::::
information

::::
and

:::
the

:::::
effect

::
of

:
τ
:::
on

:
it
::::::
would

:::::::
possibly

:::::
yield

:::::::::
interesting

::::::::::
information

::
of

:::
the

::::::::
behaviour

::
of

:::::
solar

::::
wind

:::
on

:::
this

::::::
plane.

::
In

:::
our

:::::
study

:::
we

:::
see

:::
that

:::::::::
increasing

:
r
::::
and

:
τ
::::

also
::::
had

::
an

:::::
effect

:::
on

:::
the

::::
FIM

:::::
value,

::
in
:::::
most

:::::
cases

:::::::
resulting

::
in

::
a
:::::
higher

:::::
FIM

:::::
value.

::
In

:::::::
general,

:::
on

:::
the

Fisher-Shannon plane, this event has FIM of ∼ 0.5.390

For the solar wind data that are placed at higher entropies there is some change in the ordering on the vertical (complexity)

axis between FIM and Jensen complexity, which might be due to these methods picking up different structures from the time

series. However, these differences could also stem from how the methods are designed to detect minimal versus maximal

structures
:::::
plane,

::::::::
increasing

::
r
:::
led

::
to

::::::
motion

::::::
further

:::::
away

::::
from

:::
the

::::
fBm

:::::
curve.

In addition to forming the Fisher-Shannon information planes using permutation entropy, we formed them from the HVG395

degree distribution for each solar wind type. In these figures, the most notable feature is that for all of the magnetic field

components
::::::::::
(Bx,By,Bz)

:
the solar wind events cluster below the fBm curve, while there

:
.
:::::
There is again more deviation in the

placements for Bwith MCs placed furthers from ,
::::
with

:::::
MCs

:::::
being

:::::
placed

::::::
above the fBm curve. The rest of the analysed events

are placed closer to the curve, with the highest entropies found for the fast solar wind and for one of the slow solar wind series.

The fact that most of the solar wind series are placed very close to each other indicates that the HVG degree distributions of400

the series are very similar to each other.
::::::
Again,

:::
we

:::::
cannot

:::::::
directly

::::::::
compare

:::
our

::::::
results

::
to

:::::::
previous

:::::::
studies

:::::
using

::::
solar

:::::
wind

::::
data.

::::::::
However,

::
to

:::::
study

:::
the

:::::::::
technique,

:::::::::::::::::
Ravetti et al. (2014)

:::::::
analysed

::::::
several

::::::
known

::::::
chaotic

:::
and

:::::::::
stochastic

::::::::
processes

:::::
using

:::
the

:::::::::::::
Fisher-Shannon

::::
plane

:::::::
formed

::::
with

::::
HVG

::::::
degree

:::::::::::
distributions.

::
In

::::
their

::::::
results,

:::
the

:::::::::
stochastic

::::
maps

:::::
were

:::::
placed

:::::
close

::
to

:::
the

::::
fBm

:::::
curve,

:::::
while

::::::
chaotic

:::::::::
processes

:::
had

::::::
higher

::::
FIM

::::::
values

:::
and

:::::
were

::::::
placed

::::::
further

:::::
away

::::
from

:::
the

::::::
curve.

::
In

::::
our

:::::
study

:::
the

:::::
MCs,

::::
when

::::::::
analysing

::::::::
magnetic

::::
field

::::::::::
magnitude,

::::
were

::::::
placed

::
in

:::
this

::::::
region

::::
close

::
to

::::::
chaotic

:::::::::
processes.

:::::
When

::::::::
analysing

:::
the

:::::::::
individual405

:::::::
magnetic

::::
field

:::::::::::
components

::
of

::::
solar

:::::
wind,

:::
the

::::
FIM

::::::
values

:::
are

:::::
lower

::::
than

:::::
those

::
of

:::
the

::::
fBm

::::::
curve.

:::::
There

:::
are

::
no

::::::
clearly

:::::::
defined

::::::
regions

:::
for

::::::::
stochastic

::
or

:::::::
chaotic

:::::
values

:::
for

::::
this

:::::
plane,

:::
but

:::
the

::::::
results

:::
for

:::
the

::::
MC

:::
are

:::::::::::
encouraging,

::
as

::::
they

:::
are

::
in

::::
line

::::
with

:::
the

::::
other

:::::::
methods

:::::
used

::
in

:::
this

:::::
study

:::
that

:::::::
indicate

::::
less

::::::::::
stochasticity

:::
for

::::
MCs

:::::
when

::::::::
analysing

::::::::
magnetic

::::
field

::::::::::
magnitude.

Lastly, we performed an exponential fit to the tails of the HVG degree distributions. This fitting, following an exponential

model, gives an indication of the internal structure of the time series (Lacasa and Toral, 2010). Again, for the magnetic field410

components there were no clear trends in the values between solar wind types. For B, the magnetic clouds had the highest

values, indicating most internal structure
:
a
:::::::::
correlated

::::::::
stochastic

:::::::
process. The highest λ value was obtained by the magnetic

cloud that stood out from the rest
::
of

:::
the

::::
time

:::::
series on the information planes.
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::
To

:::
our

:::::::::::::
understanding,

:::
the

::::::
method

:::
has

:::
not

:::::
been

:::::::::
previously

::::::
applied

::
to

::::
solar

:::::
wind

::::
time

::::::
series.

::::::::
However,

:::
the

:::::
results

:::::::
indicate

::
a

::::::::
stochastic

:::::
nature

:::
of

::::
solar

:::::
wind

:::::
which

::
is

::
in

:::
line

:::::
with

:::::::
previous

::::::::
research.

::
As

::::
was

:::::::::
mentioned

::
in

:::::::
Section

::
1,

::::
there

:::
are

:::::
some

::::::
known415

:::::
issues

::::
with

:::
the

:::::::
method.

::
In

::::
our

:::::
study

:::
we

:::::::
perform

:::
the

::::::::::
exponential

:::::
fitting

:::::
from

:::
the

:::::
fourth

::
to
:::

the
:::::

14th
::::::
degree,

::::
thus

:::::::
leaving

:::
out

::
the

::::
first

:::::::
degrees

::
of

:::
the

::::::::::
distribution.

:::
By

:::::
doing

::::
this,

::::::::::
information

:::::
about

:::
the

::::::::::
connections

::
in

:::
the

:::::::
network

::
is

::::::::
invariably

::::
left

:::
out.

::::
The

::::::::
technique

::
is

:::::::
perhaps

::::
most

::::::
useful

::
as

:::::::::
companion

:::
to

::::
other

::::::::
methods

::
of

::::::::::
complexity

:::::::
analysis,

:::
as

:
it
:::::
does

:::
not

:::::
make

:::
full

:::
use

:::
of

:::
the

:::::
degree

::::::::::
distribution.

:

5 Conclusions420

Our study shows that different complexity measures gave overall similar results for the analysed time series of solar wind

measurements. We analysed four types of solar wind data (fast, slow, sheath regions and magnetic clouds) using the Jensen-

Shannon complexity plane and the Fisher-Shannon information plane. Additionally we made use of the horizontal visibility

graph (HVG) method in combination with the Fisher-Shannon plane, and via studying the degree distribution of the HVG

graphs derived from the time series. All of these methods pointed to the solar wind fluctuations being stochastic for the most425

part. The λ
:::::
degree

::::::::::
distribution

:
classification was also in agreement with the other methodsthat the fluctuations in the solar wind

data are stochastic. However, as mentioned previously, the technique does not make use of the full degree distribution, and has

some known issues.

The most significant finding of our study is that the magnetic cloud data consistently stood out from the other types of solar

wind. The analysed magnetic clouds had more internal structure
:::::
global

::::::::
structure

::::
and

::::::
internal

::::::::
cohesion

:
than the other solar430

wind data types, which is physically consistent with how they are created. A more robust statistical study with a larger sample

size could be useful for examining the methods used here in more detail. The Jensen-Shannon complexity plane has already

been used within the solar physics field in several studies, but the Fisher-Shannon information plane in combination with the

HVG approach has not been widely used, and could provide interesting insight into the internal structure of solar wind.

Data availability. The data and scripts used to produce the files can be accessed via Zenodo (Koikkalainen et al., 2025).435

Appendix A: Solar wind data

Author contributions. The research was planned primarily by VK and EK. VK performed the main analysis and wrote main part of the text.

EK contributed to the writing of the text. SG and AO also contributed to the writing of the paper, commented the manuscript and provided

insight into the methods and results. The Jensen - Shannon complexity algorithm used here was originally coded by AO, VK prepared the

other used codes.440
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Figure A1. The fast solar wind data from WIND.
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Figure A2. The slow solar wind data from WIND.
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Figure A3. The sheath regions from WIND data.
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Figure A4. The magnetic clouds from WIND data.
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