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Abstract

Including sophisticated aerosol schemes in the models of the sixth Coupled Model
Inter-comparison Project (CMIP6) has not improved historical climate simulations. In
particular, the models underestimate the surface air temperature anomaly (SATa) when
anthropogenic sulfur emissions increased in 1960-1990, making the reliability of the
CMIP6 projections questionable. This cooling bias is largely attributable to the
unreasonable simulated atmospheric sulfate burden changes. Sulfate burden anomaly
are closely linked to both sulfate and SO. deposition processes. Intensified sulfate
deposition directly reduces atmospheric sulfate loading, while enhanced SO- deposition
limits precursor availability for sulfate formation by oxidation. These deposition
processes regulate sulfate concentrations directly and indirectly. The systematically
underestimated sulfate turnover time in CMIP6 models suggests that refining SO:
deposition process rather than sulfate deposition would be a more scientific approach
for model improvement. This is supported by two post-CMIP6 models that show better
SATa reproduction after improving the SO deposition parameterizations. Strong
correlations between sulfate burden anomaly and SATa persist before, during, and after
the 1960-1990 period. Such temporal consistency confirms the dominant role of sulfate-
related physical processes across all examined time intervals.
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1. Introduction

Atmospheric aerosols have rapidly increased since the Industrial Revolution. Over
this time period, the total aerosol effective radiative forcing (ERF) was dominated by
the sulfate cooling effect, which offsets a substantial portion of global-mean forcing
from well-mixed greenhouse gases (IPCC, 2023). Without this historical aerosol ERF,
the Paris Agreement’s target of limiting global warming to 1.5<C above pre-industrial
levels would have already been missed in 2015 (Hienola et al., 2018). Similarly,
stopping all present-day anthropogenic aerosol emissions is estimated to induce a
global-mean surface heating of 0.5-1.1°C (Samset et al., 2018). The year 2024 has been
confirmed as the hottest year in human history and was the first year to breach the 1.5°C
warming limit (Bevacqua et al., 2025). Moreover, recent accelerated temperature trends
may be attributable to reductions in atmospheric aerosols, particularly from reduced
commercial shipping emissions. Hansen et al. (2025) suggest that even small emissions
in relatively pristine air have substantial effects, highlighting the crucial need to
improve the representation of aerosol effects in global climate models for more reliable

projections.

The observed temporal evolution of historical surface air temperature (SAT) is one
of the major metrics used for evaluating the performance of climate models. However,
the SAT anomalies (SATa) in the CMIP6 models are systematically lower than
observations during the 1960-1990 period, whereas the CMIP5 models, on average,
track the instrumental record quite well (e.g., Flynn and Mauritsen, 2020). The 1960-
1990 period, when the cooling bias prevailed, is coincident with the so-called Great
Acceleration period, during which human activities intensified remarkably and led to
global-scale impacts on the Earth System (Steffen et al., 2007). Recent studies
hypothesized that aerosol forcing in CMIP6 is stronger than in CMIP5 and is
responsible for the suppressed late 20""-century warming (e.g., Dittus et al., 2020; Smith

and Forster, 2021).

Given that all CMIP6 models use identical anthropogenic SO. emissions (Hoesly et

al., 2018), the cooling anomaly points towards a problem with the sulfur cycle in recent
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earth system models or the emissions data (Hardacre et al., 2021; Wang et al., 2021).
In this study, we examine the sulfate-related processes in eleven CMIP6 models with
aerosol schemes. We will identify the key processes governing sulfate burden in these

models and provide recommendations for further model improvements.

2. Model, data, and method
2.1 CMIP6 models and data

Table 1. Information of the eleven CMIP6 models with aerosol schemes.

Model Country Interactive Members Reference
Chemistry
BCC-ESM1 China Yes 3 Wu et al,

(2020); Zhang
etal., (2021b)

CESM2 us No 11 Danabasoglu et
al. (2020)
CESM2-FVv2 us No 3 Danabasoglu et
al. (2020)
EC-Earth3-AerChem European consortium  Yes 2 Dé&scher et al.
(2021)
GFDL-ESM4 us Yes 3 Dunne et al.
(2020)
MIROC6 Japan No 50 Tatebe et al.
(2019)
MIROC-ES2L Japan No 30 Hajima et al.
(2020)
MPI-ESM-1-2-HAM Germany Yes 3 Mauritsen et al.
(2019)
MRI-ESM2-0 Japan Yes 10 Yukimoto et al.
(2019)
NorESM2-LM Norway Yes 3 Seland et al.
(2020)
UKESM1-0-LL UK Yes 19 Sellar et al.
(2019)
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Eleven CMIP6 climate models with interactive aerosol schemes are employed in
this study, including seven models with interactive chemistry and four without (Table
1). The outputs from two CMIP6 experiments are used: (1) the historical experiment,
which simulates climate evolution from 1850 to 2014, forced by time-varying external
forcings from natural processes (e.g., solar activity, volcanic eruptions) and
anthropogenic factors (e.g., greenhouse gas, aerosol emissions, land-use changes). All
the available realizations for each model were used to minimize the uncertainty from
internal variability in the climate system; (2) the 1pctCO2 simulations, in which CO> is
gradually increased at a rate of 1% per year. The 1pctCO2 experiment is designed for
studying model responses to CO> and is somewhat more realistic than rapidly
increasing COz, such as in the abrupt-4><CO2 experiment. Historical experiment outputs
from two post-CMIP6 models, BCC-ESM1-1 and UKESM1-1-LL, with revised SO:

deposition parameterizations are also included in this study.

The model outputs used in this study include SAT and eight key sulfur-cycle
variables: sulfate aerosol concentration, sulfate wet and dry deposition rates, sulfur
dioxide concentration (SO2), SO- wet and dry deposition rates, gas-phase and aqueous-
phase oxidations of SO- to sulfate particles. For these sulfur-cycle variables, the inter-
member variability within the historical experiment is substantially smaller than that of
SAT. For instance, across the 11 CESM2 members, the standard deviation of sulfate
burden is only about 4% of its interannual variability during 1960-1990, whereas the
corresponding value for SAT is approximately 21%. Similar results are also evident in
the 19 UKESM1 members, where the standard deviation of sulfate burden is 3% of its
interannual variability, compared to 32% for SAT. Given that inter-member variability
in sulfur-cycle variables is relatively small relative to their interannual fluctuations, we
therefore use the first realization of the historical simulations and neglect inter-member

differences for these sulfur-cycle variables.

Monthly mean SAT from the Met Office Hadley Centre/Climatic Research Unit
global surface temperature dataset version 5 (HadCRUT5) from 1850 to 2014 are used

for model evaluations (Morice et al., 2021). Considering the scarcity of long-term
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reliable observations in polar regions, we focus on SAT changes within the latitudinal
belt from 60°S to 65°N. The ‘global’ mean SAT is calculated as the area-weighted

average over this latitudinal belt.

2.2 SO:; turnover time and sulfate turnover time

Atmospheric sulfate concentrations are governed by the emission and oxidation of
its precursors, as well as deposition processes. Anthropogenic SO. emissions are the
major source of sulfate aerosol over land in polluted regions. Given that CMIP6 models
typically employ identical anthropogenic SO. emission inventories, the inter-model
spread in simulated sulfate concentrations primarily stems from discrepancies in SO.-
to-sulfate oxidation rates and sulfate deposition velocities. Here we define the

atmospheric residence time of SO and sulfate aerosols as follows.

SO: turnover time is determined by its atmospheric burden and its total loss rate,

which includes both deposition and chemical oxidation to sulfate. It is defined as:

Bso,
Tgp, = ————=—— 1
502 (Raso,* Rosoy) @,

where 750, isthe SO:turnovertime, Bgo, isthe global mean atmospheric SO- burden,
Rgs0,1s the total SO- deposition rate including both wet and dry depositions, and R,so,

is the oxidation rate of SO: to sulfate via gas-phase and aqueous-phase chemistry.

Sulfate turnover time is defined as:

_ Bso
Tso, = ?5044 2),

where 740, is the sulfate turnover time, Bg,, is the global mean atmospheric sulfate
burden, and R,s, is the global mean total sulfate deposition rate including both wet

and dry depositions.

2.3 The transient Climate Response (TCR) index
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The Transient Climate Response (TCR) index is calculated as the mean SAT
anomaly over a 20-year period centered on the year when atmospheric CO:
concentration has doubled in the 1pctCO2 simulation. It is an important metric for
quantifying CO»-induced historical warming and has been widely used for model
evaluations and intercomparison studies (e.g., Bevacqua et al., 2025; O'neill et al.,

2016).

3. Results
3.1 SATa and sulfate burden anomaly

The historical evolutions of global mean SATa in the eleven CMIP6 models with
interactive aerosol schemes are shown in Fig. 1a. All the models tend to underestimate
SATa since the 1930s. The cooling anomaly in the CMIP6 model marked a notable
departure from earlier model generations, which can effectively capture the
instrumental SAT record with observations falling well within model spread (e.g.,

Flynn and Mauritsen, 2020; Hegerl, et al., 2007).

The cooling bias is most pronounced from 1960 to 1990. The SATa is about
0.34°C in the observations. However, the multi-model mean (MMM) SATa is about
0.3°C lower with a large model spread. The SATa ranges from -0.24°C in EC-Earth3-
AerChem to 0.19°C in GFDL-ESM4 and MIROCS6. The cooling is noticeable at the
mid to high latitude in the Northern Hemisphere (as shown in the attached SATa map
in Fig.1a). The sudden drop in SATa in the early 1960s and 1990s may be due to the
stronger model responses to large volcanic eruptions, Mount Agung in 1963 and Mount
Pinatubo in 1991, than in the observations (Chylek et al., 2020). The cooling biases
diminish in later periods, corresponding to the generally high model sensitivity to

greenhouse gas forcing (Smith and Forster, 2021).
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Figure 1. (a) Historical surface air temperature anomalies (SATa) relative to 1850-1900 mean from
HadCRUTS5 (thick black line), the ensemble mean of each CMIP6 model (solid colored lines), and
the multi-model mean (MMM; dashed black line). Numbers in parentheses indicate the mean SATa
for each model during 1960-1990, with the inter-member spread shown as =one standard deviation.
Units: °C. (b) Same as (a), but for sulfate burden anomalies for the first realization of each CMIP6

model (colored lines) and the MMM (dashed black line). Units: Tg S.

The cooling bias in CMIP6 models coincides with the rapid increase in
anthropogenic emissions, particularly of SO, the primary precursor of atmospheric
sulfate (Zhang et al., 2021a). Global SO. emissions grew steadily after the 1950s and
peaked in the 1970s at approximately 180Tg yr?, about 3.6 times the level of the 1950s
(Hoesly et al., 2018). The rise in SO. emissions has directly contributed to elevated
sulfate concentrations in the troposphere. The temporal evolution of sulfate burden
shows a significant upward trend aligned with the anthropogenic emission (Fig.1b),
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initially driven by industrialization and further accelerated after the 1950s mainly due
to intensified anthropogenic SO. emission from industries and the energy-
transformation sectors (e.g., Ohara et al., 2007; Vestreng et al., 2007). The increased
sulfate burden interrupted a decades-long warming trend through the cooling effect of
sulfate aerosols, even as atmospheric CO, concentrations continued to rise (Wilcox et

al., 2013).

Due to emission-control policies implemented in Europe and North America (Aas
etal., 2019; Hand et al., 2012; Vestreng et al., 2007), such as the Gothenburg Protocol
(Eb, 1999) and the 1990 Clean Air Act Amendments in the U.S. (Likens et al., 2001),
global anthropogenic SO- emissions were suppressed after the 1980s and SAT started
to rise rapidly in both observation and model simulations. It should be noted that the
CMIP6 emission inventory does not fully capture the early 21% century SO- emission
reductions in East Asia (Wang et al., 2021). However, this period lies outside the 1960-
1990 focus of the present study, and its impact on SAT reproduction is beyond the main

scope of this paper.

The systematically underestimated SATa suggests an excessively strong sulfate-
induced cooling effect in CMIP6 models, as indicated by the contrasting performance
of individual models. For instance, the MIROC models exhibit the lowest sulfate
burden (0.21 Tg S) and smallest cooling bias relative to observation (0.15<C below
HadCRUTD5) during 1960-1990, while EC-Earth3-AerChem generates a sulfate burden
approximately double that value (0.45 Tg S) and nearly four times the cooling bias
(0.58<C below HadCRUT5). Analysis across the 11 CMIP6 models reveals a
statistically significant negative correlation of -0.92 between sulfate burden anomalies
and SATa (Fig. 2a). This relationship highlights the potential role of overestimated

sulfate-induced cooling in driving the inter-model spread of SATa biases.
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Figure 2. (a) Scatter plots of sulfate burden anomaly versus SATa, and (b) scatter plot of TCR
versus SATa during 1960-1990 from historical experiments. Anomalies are calculated relative to
the 1850-1900 mean. Models with and without interactive chemistry are denoted by colored dots
and colored circles, respectively. The corresponding correlation coefficient (cor) for each panel is

shown in the upper-left corner. The red dashed line refers to SATa in HadCRUTS.

Interactive chemistry may affect sulfate formation and sulfate aerosol burdens in
the atmosphere (Mulcahy et al., 2020). Models with interactive chemistry (colored dots
in Fig.2a) generally show higher sulfate burdens and lower SATa than non-interactive

models (colored circles). However, the relationship between sulfate burden anomaly
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and SATa is a robust feature across CMIP6 models, independent of their chemical

complexity.

Greenhouse gases (GHGS) also increased rapidly during 1960-1990. However,
TCR, which can generally indicate the impact of GHGs, is insignificantly correlated
with SATa in CMIP6 models, and the correlation coefficient across models is even
negative (Fig.2b). Therefore, the inter-model spread in cooling biases can substantially

be attributed to discrepancies in simulated sulfate aerosol burden.

It should be noticed that there are fast and slow components of global warming in
response to radiative forcing changes (Held et al., 2010). The fast component,
characterized by an exponential decay timescale of less than 5 years, is primarily driven
by rapid adjustments in the upper ocean layers. In contrast, the slow component evolves
over centuries and is associated with heat uptake by deeper ocean layers. Lagged
oceanic and dynamical feedbacks will further delay and modulate warming rates (Chen
etal., 2016; Watterson and Dix, 2005). In this study, the fast response to sulfate forcing
can be rapidly detected by SATa, especially when the sulfate forcing is sustained during
1960-1990. Moreover, the global mean perspective in this study makes the results
insensitive to the impact of spatial redistribution of temperature anomalies caused by

dynamical feedbacks.

3.2 Sulfur Deposition rates and SO- oxidation rate

SO: deposition, sulfate deposition, and SO. oxidation to sulfate are the key
processes governing the atmospheric sulfur cycle. About half of the SO. emission is
removed by dry deposition at the surface and through wet scavenging by precipitation
(e.g., Chin et al., 1996). The remaining fraction is oxidated to sulfate, mainly through
two pathways: gas-phase reaction with the hydroxyl radical (OH), and aqueous-phase
oxidation within cloud and fog droplets, where reactions with ozone (Os) and hydrogen
peroxide (H20:) are dominant. These processes are critical determinants of atmospheric

sulfate burden.

10
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Figure 3. (a) Sulfate deposition anomaly, (b) SO- deposition anomaly, and (c) total sulfur sink
anomaly (x-axis) versus sulfate burden anomaly (Tg S, y-axis) in each model during 1960-1990. (d)
Sulfate deposition anomaly (x-axis) versus SO: deposition anomaly (y-axis) during 1960-1990.

Units for deposition anomalies are Tg S yr'.

Fig. 3 shows the inter-model relationship between global mean anomalies of
sulfate burdens and sulfur depositions during 1960-1990, relative to the pre-industrial
baseline (1850-1900). The sulfate burden anomaly is negatively correlated with sulfate
deposition anomaly. However, the correlation is statistically insignificant. This may be
partly attributable to a subset of five models characterized by both low sulfate burden
and low sulfate deposition anomalies. These models degrade the robustness of the linear
fit derived from the remaining models. There is no clear statistical relationship between
sulfate burden anomaly and SO. deposition anomaly (Fig. 3b). However, when

considering the total sulfur sink anomaly, including both sulfate and SO. deposition
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anomalies, the correlation with sulfate burden anomaly strengthens to -0.65, significant
at the 5% level using a Student’s t-test (Fig.3c). Notably, within the subset of five
models, most show higher SO. deposition anomaly in relative to the multi-model mean.
This high SO: deposition anomaly compensates for their low sulfate deposition
anomaly, influencing the total sulfur deposition magnitude sufficiently to sustain a
significant correlation with sulfate burden anomaly in these models. Further analysis
reveals a strong negative correlation (-0.79) between SO. deposition rate anomaly and
sulfate deposition rate anomaly, suggesting a compensatory relationship between these

two sulfur removal pathways (Fig.3d).
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Figure 4. (a) SO: deposition anomaly versus SO oxidation anomaly, and (b) SO oxidation

anomaly versus sulfate burden anomaly in each model during 1960-1990.
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The formation of atmospheric sulfate aerosol is governed by the balance between
the loss of its precursor, SO-, and its chemical transformation. As shown in Fig.4a,
inter-model comparisons show a significant anti-correlation between SO. deposition
anomaly and the oxidation rate anomaly across the six models for which relevant data
are available for calculation (-0.88). That is, enhanced SO- deposition rate, particularly
through dry deposition processes, limits the availability of SO. for oxidation to sulfate.
The relationship between oxidation rate anomalies and the sulfate burden anomalies is
negative but not statistically robust within this limited model subset. A more
comprehensive analysis with a larger model ensemble is needed to robustly quantify

the relative contributions of oxidation pathways to the sulfate aerosol burden.

Therefore, biases in sulfate burden simulations arise either directly from sulfate
deposition or indirectly from SO deposition, which limits the availability of SO for

oxidation.

3.3 SO: turnover time and sulfate turnover time

SO: deposition, sulfate deposition, and SO oxidation rate determine the respective
turnover times for SO- and sulfate, which quantify their mean atmospheric residence
times before removal. Here we examine SO- turnover time and sulfate turnover time,
quantities with clear physical interpretations, to identify the dominant physical and

chemical processes responsible for the sulfate burden biases.
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Figure 5. (2) SO- loss rate versus SO burden in 1960-1990. SO: loss rate includes SO- deposition
and oxidation. (b) SO: turnover time versus SO burden anomaly in 1960-1990. (c) SO- turnover

time versus sulfate burden anomaly in 1960-1990.

The correlations between SO: burden and its total loss rate, including both
deposition and chemical oxidation, are notably weak (Fig.5a). Given that the models
share identical anthropogenic SO emission inventories, this poor correlation likely
stems from substantial inter-model differences in the representation of natural SO-

precursor emissions (e.g., from oceanic dimethyl sulfide) and their subsequent
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atmospheric processing. The SO- turnover time (zs,,) as defined in Eq. 1, ranges from

1.05to 2.24 days in the CMIP6 models. The 750, is highly correlated with SO- burden

anomaly with a correlation coefficient of 0.81 (Fig.5b). However, its correlation with

the sulfate burden anomaly is weak (Fig.5c).
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Figure 6. (a) Sulfate deposition rate versus sulfate burden during 1960-1990. (b) Sulfate turnover

time versus sulfate burden anomaly during 1960-1990. (c) Sulfate turnover time versus SATa during

1960-1990. The red dashed line refers to SATa in HadCRUTS.

15



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

Figure 6 presents the simulated sulfate deposition and sulfate burden in 1960-1990.
The weak negative correlation (-0.15) indicates that sulfate deposition alone cannot
fully explain inter-model differences in sulfate burden. Sulfate turnover time is
quantified following Eq. (2) in Section 2.2 as the ratio of sulfate burden to sulfate
deposition, representing the average atmospheric residence time of sulfate aerosols.
The sulfate turnover time exhibits considerable inter-model variability, ranging from
1.67 days in MIROC-ES2L to 6.57 days in EC-Earth3-AerChem. These results
generally agree with most aerosol models, which typically simulate sulfate lifetimes
of around 4 days (e.g., Textor et al.,2006; Liu et al., 2012; Matsui and Mahowald,
2017; Tegen et al., 2019). However, sulfate turnover times in models are notably
shorter than observational estimates, such as 7.3 days (0.02 yr) in Charlson et al.
(1992) and 10-14 days in Kristiansen et al. (2012). This discrepancy may stem from
premature removal processes, inadequate poleward transport, or incomplete chemical

representations (e.g., Croft et al., 2014).

The inter-model variations in sulfate turnover time exhibit a strong correlation with
sulfate burden anomalies and SATa during the 1960-1990 period, with a correlation
coefficient of 0.84 and -0.78 (Fig.6b and Fig.6c¢). This suggests that differences in
sulfate turnover time may account for both the sulfate burden anomaly variations and
the consequent surface temperature differences among models. CMIP6 models
systematically overestimate sulfate burden anomalies, implying that these models
should exhibit shorter lifetimes to produce lower sulfate burden anomalies and higher
SATa (Fig.6¢c). However, enhancing sulfate deposition to reduce burden anomalies is
not a physically reasonable solution, as it would worsen the already too-short

simulated sulfate aerosol lifetime.

Therefore, as indicated by section 3.2, model improvement efforts should
prioritize SO: deposition process refinement rather than sulfate deposition adjustment

as a more scientifically sound approach.
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3.4 The performances in the two post-CMIP6 models

To suppress the substantial cold bias in the BCC-ESM1 model, which
underestimates the observed SATa by 0.45<C during the 1960-1990 period, we increase
the dry deposition velocity of SO- by a factor of four over land surface and by a factor
of 1.5 over the ocean to reduce the availability of SO: for oxidation. This effect is
similar to that in UKESM1-0-LL by improving SO- dry deposition parameterization
(Hardacre et al., 2021; Mulcahy et al., 2023). The impact of changes to the SO- dry
deposition parameterization in UKESM1-0-LL is an increase of SO. dry deposition by
a factor of 2 to 4. Accordingly, SATa increases to 0.45°C in BCC-ESM1-1 and rises to
0.25°C in UKESM1-LL. Sulfate turnover time in the two post-CMIP6 models, 8.53
days in BCC-ESM1-1 and 5.77 days in UKESM1-1-LL, is generally longer than that
of their CMIP6 versions. The longer sulfate lifetimes in the two post-CMIP6 models
may be due to lower SO: in these revised models, but also could be due to physical

climate changes (e.g., temperatures, clouds, rainfall).

SATa °C
1 .2 I L L I | 1 I | 1 l . | . L I
. HadCRUTS i
| |——BCC-ESM1 (cor =0.65) ) I
0.9 - ——— BCC-ESM1-1 (cor =0.88) |
: UKESM1-0-LL (cor =0.76) N' .\‘

1 |—— UKESM1-1-LL (cor =0.83) ‘

06 - NW

0.3

I T T I T T I T T I T T I T T I
1860 1890 1920 1950 1980 2010

Figure 7. Evolutions of SATa relative to 1850-1900 mean for HadCRUT5, BCC-ESM models, and
UKESM models. The numbers in legend are the corresponding correlation coefficients with

HadCRUTS.
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As demonstrated by the global mean SATa in BCC-ESM1-1 and UKESM1-1-LL

(Fig.7), both models on average tracked the instrumental record quite well with

statistically higher correlation coefficients with observation (HadCRUTS5). That is,

improvements in SO: deposition parameterizations have contributed to better model

performances in reproducing historical surface temperature evolution.

3.5 Relative changes preceding and following the 1960-1990 period
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Figure 8. Scatter plots of sulfate burden anomalies versus SATa in (a) 1930-1959, and (b) 1991-

2014.

Our analysis reveals a robust correlation between sulfate burden anomalies and

SATa during 1960-1990 (Fig. 2a). To evaluate the temporal consistency of this
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relationship, we examined its behavior before and after this period. Given that the
relationship reflects clear underlying physics, similar correlations were expected across
different periods. As shown in Fig.8, statistically significant correlations are evident in
both periods, suggesting that sulfate burden anomalies were overestimated prior to
1960-1990, and this overestimation continued to influence SATa in subsequent
decades. Compared to HadCRUTS5, the models on average underestimate SATa by
0.11<C during 1930-1959 and by 0.31<C during 1991-2014. The correlations between
sulfate burden anomalies and SATa are -0.79 and -0.78 for these two periods,
respectively, which are weaker than the correlation of -0.91 during 1960-1990. This
weakening may be partly attributable to the smaller biases in the 1930-1959 interval.
Furthermore, the combined effects of increasing atmospheric CO- concentrations since
the Industrial Revolution and the high climate sensitivity in CMIP6 models may have

partially offset the cooling bias during 1991-2014 (Hausfather et al., 2022).
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Figure 9. Sulfate turnover time (zg0,) versus (a, b) sulfate burden anomalies, and (c, d) SATa for

the periods 1930-1959 and 1991-2014.
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Sulfate turnover time is a key parameter governing sulfate burden and shows
strong correlations with sulfate burden anomalies and SATa during 1960-1990 (Figs.
6b and 6¢). Statistically significant correlations persist before and after this period (Fig.
9), confirming the dominant role of sulfate-related physical processes across all

examined time intervals.
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Figure 10. Temporal evolution of sulfate turnover time (z50,) in CMIP6 models. Numerical labels

denote mean 754, Value during 1930-1959, 1960-1990, and 1991-2014.

We also analyze the temporal evolution of sulfate turnover time (Fig.10). Its
temporal variability, characterized by a standard deviation (o < 0.5 days), is notably
smaller than the inter-model spread. During 1930-1959, models exhibit a divergent
trend, with 5 out of 11 models simulating reduced turnover times in the subsequent
period. In contrast, all models show prolonged turnover times during 1991-2014
compared to earlier periods. This shift may be partly attributable to changes in the
regional distribution of sulfur emissions, including an increasing proportion of
emissions from Asia and the implementation of stringent emission control policies in

Europe and North America.
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Figure 11. Same as Fig.4, but for (a, c) 1930-1959, and (b, d) 1991-2014.

SO: deposition maintains a strong negative correlation with SO. oxidation both

before and after the 1960-1990 period (Fig.11), with coefficients of -0.88 and -0.82,

respectively. Meanwhile, the anomaly in SO: oxidation exhibits a negative but

statistically insignificant correlation with the sulfate burden anomaly.

4. Conclusions

The aerosol cooling effect is considered as the second most important

anthropogenic forcing during the 20" Century. Based on the 11 CMIP6 models with

interactive aerosol schemes, our study demonstrates that the cooling bias during 1960-
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1990 is closely related to the sulfate burden changes in the atmosphere. Sulfate aerosol
represents the terminal product of a complex chain of physicochemical processes that
convert sulfur emissions into sulfate particles. Our findings indicate that sulfate burden
anomalies in these models are governed by two key processes: the removal of its
gaseous precursor SO and sulfate deposition itself. Higher SO deposition rates limit
the availability of SO. for subsequent oxidations. Sulfate turnover time is critical for
evaluating the physical realism of models. Comparative analysis with observational
measurements reveals that increasing sulfate deposition to reduce sulfate burden
anomalies is not a reasonable approach. Biases in sulfate burden anomalies may be
driven by discrepancies in simulating upstream SO- deposition and oxidation processes,
rather than downstream processes. This is further supported by improvements in two

post-CMIP6 models with refined SO- deposition parameterizations.

Analyses for periods preceding and following 1960-1990 confirm the persistent
influence of sulfate-related physical processes across all examined time periods.
Therefore, CMIP6 model projections should be interpreted with caution, as they may
underestimate future warming rates. It is therefore also essential to evaluate the
reliability of sulfate-related processes in upcoming model intercomparisons before
applying them to future climate projections. We encourage future intercomparison
initiatives to archive sulfur cycle relevant outputs from a wider range of participating

models, thereby enabling more robust and comprehensive process-oriented evaluations.
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