

1 **Unveiling the Dominant Control of the Systematic Cooling Bias in**
2 **CMIP6 Models: Quantification and Corrective Strategies**

3 Jie Zhang^{1,2*}, Kalli Furtado^{3*}, Steven T. Turnock^{4,5}, Yixiong Lu^{1,2}, Tongwen Wu^{1,2},
4 Fang Zhang^{1,2}, Xiaoge Xin^{1,2}, Yuyun Liu⁶

5

6 1. *State Key Laboratory of Disaster Weather Science and Technology, CMA EMPC*
7 2. *CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing,*
8 *China*
9 3. *Centre for climate research Singapore, Singapore*
10 4. *Met Office Hadley Centre, Exeter, UK*
11 5. *University of Leeds Met Office Strategic (LUMOS) Research Group, University of Leeds, Leeds, UK*
12 6. *Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of*
13 *Sciences, Beijing, China*

14

15 Corresponding to: Jie ZHANG (jiezhang@cma.gov.cn) & Kalli Furtado (Kalli_FURTADO@nea.gov.sg)

16

17 **Abstract**

18 Including sophisticated aerosol schemes in the models of the sixth Coupled Model
19 Inter-comparison Project (CMIP6) has not improved historical climate simulations. In
20 particular, the models underestimate the surface air temperature anomaly (SATa) when
21 anthropogenic sulfur emissions increased in 1960-1990, making the reliability of the
22 CMIP6 projections questionable. This cooling bias is largely attributable to the
23 unreasonable simulated atmospheric sulfate burden changes. Sulfate burden anomaly
24 are closely linked to both sulfate and SO₂ deposition processes. Intensified sulfate
25 deposition directly reduces atmospheric sulfate loading, while enhanced SO₂ deposition
26 limits precursor availability for sulfate formation by oxidation. These deposition
27 processes regulate sulfate concentrations directly and indirectly. The systematically
28 underestimated sulfate turnover time in CMIP6 models suggests that refining SO₂
29 deposition process rather than sulfate deposition would be a more scientific approach
30 for model improvement. This is supported by two post-CMIP6 models that show better
31 SATa reproduction after improving the SO₂ deposition parameterizations. Strong
32 correlations between sulfate burden anomaly and SATa persist before, during, and after
33 the 1960-1990 period. Such temporal consistency confirms the dominant role of sulfate-
34 related physical processes across all examined time intervals.

36 **1. Introduction**

37 Atmospheric aerosols have rapidly increased since the Industrial Revolution. Over
38 this time period, the total aerosol effective radiative forcing (ERF) was dominated by
39 the sulfate cooling effect, and offset a substantial portion of global-mean forcing from
40 well-mixed greenhouse gases (IPCC, 2023). Without this historical aerosol ERF, the
41 Paris Agreement's target of limiting global warming to 1.5°C above pre-industrial
42 levels would have already been missed in 2015 (Hienola et al., 2018). Similarly,
43 stopping all present-day anthropogenic aerosol emissions is estimated to induce a
44 global-mean surface heating of 0.5-1.1°C (Samset et al., 2018). The year 2024 has been
45 confirmed as the hottest year in human history, and was the first year to breach the
46 1.5°C warming limit (Bevacqua et al., 2025). Moreover, recent accelerated temperature
47 trends may be attributable to reductions in atmospheric aerosols, particularly from
48 reduced commercial shipping emissions. Hansen et al. (2025) suggest that even small
49 emissions in relatively pristine air have substantial effects, highlighting the crucial need
50 to improve the representation of aerosol effects in global climate models for more
51 reliable projections.

52 The observed temporal evolution of historical surface air temperature (SAT) is one
53 of the major metrics used for evaluating the performance of climate models. However,
54 the SAT anomalies (SATa) in the CMIP6 models are systematically lower than was
55 observed for the 1960-1990 period, whereas the CMIP5 models, on average, track the
56 instrumental record quite well (e.g., Flynn and Mauritzen, 2020). The 1960-1990
57 period, when the cooling bias prevailed, is coincident with the so-called Great
58 Acceleration period, during which human activities intensified remarkably and led to
59 global-scale impacts on the Earth System (Steffen et al., 2007). Recent studies
60 hypothesized that aerosol forcing in CMIP6 is stronger than in CMIP5 and is
61 responsible for the suppressed late 20th-century warming (e.g., Dittus et al., 2020; Smith
62 and Forster, 2021).

63 Given that all CMIP6 models use identical anthropogenic SO₂ emissions (Hoesly et
64 al., 2018), the cooling anomaly points towards a problem with the sulfur cycle in recent

65 ESMs or the emissions data (Hardacre et al., 2021; Wang et al., 2021). In this study,
66 we examine the sulfate-related processes in eleven CMIP6 models with aerosol
67 schemes. We will identify the key processes governing sulfate burden in these models
68 and provide recommendations for model further improvement.

69

70 **2. Model, data, and method**

71 **2.1 CMIP6 models and data**

72 **Table 1.** Information of the eleven CMIP6 models with aerosol schemes.

Model	Country	Interactive Chemistry	Members	Reference
BCC-ESM1	China	Yes	3	Wu et al., (2020); Zhang et al., (2021b)
CESM2	US	No	11	Danabasoglu et al. (2020)
CESM2-FV2	US	No	3	Danabasoglu et al. (2020)
EC-Earth3-AerChem	European consortium	Yes	2	Döscher et al. (2021)
GFDL-ESM4	US	Yes	3	Dunne et al. (2020)
MIROC6	Japan	No	50	Tatebe et al. (2019)
MIROC-ES2L	Japan	No	30	Hajima et al. (2020)
MPI-ESM-1-2-HAM	Germany	Yes	3	Mauritsen et al. (2019)
MRI-ESM2-0	Japan	Yes	10	Yukimoto et al. (2019)
NorESM2-LM	Norway	Yes	3	Seland et al. (2020)
UKESM1-0-LL	UK	Yes	19	Sellar et al. (2019)

73

74 Eleven CMIP6 climate models with interactive aerosol schemes are employed in
75 this study, including seven models with interactive chemistry and four without (Table
76 1). The outputs from two CMIP6 experiments are used: (1) the historical experiment of
77 climate change over the period 1850-2014, forced by time-varying external forcings
78 that are based on observations of natural processes (e.g., solar activity, volcanic
79 eruptions) and human-induced changes (e.g., greenhouse gas, aerosol emissions, land-
80 use changes). All the available realizations for each model were used to minimize the
81 uncertainty from internal variability in the climate system; (2) the 1pctCO₂ simulations,
82 in which CO₂ is gradually increased at a rate of 1% per year. The 1pctCO₂ experiment
83 is designed for studying model responses to CO₂ and is somewhat more realistic than
84 rapidly increasing CO₂, such as in the abrupt-4×CO₂ experiment. Historical experiment
85 outputs from two post-CMIP6 models, BCC-ESM1-1 and UKESM1-1-LL, with
86 revised SO₂ deposition parameterizations are also included in this study.

87 The model outputs used in this study include SAT and eight key sulfur-cycle
88 variables: sulfate aerosol concentration, sulfate wet and dry deposition rates, sulfur
89 dioxide concentration (SO₂), SO₂ wet and dry deposition rates, gas-phase and aqueous-
90 phase oxidations of SO₂ to sulfate particles. For these sulfur-cycle variables, the inter-
91 member variability within the historical experiment is substantially smaller than that of
92 SAT. For instance, across the 11 CESM2 members, the standard deviation of sulfate
93 burden is only about 4% of its interannual variability during 1960-1990, whereas the
94 corresponding value for SAT is approximately 21%. Similar results are also evident in
95 the 19 UKESM1 members, where the standard deviation of sulfate burden is 3% of its
96 interannual variability, compared to 32% for SAT. Given that inter-member variability
97 in sulfur-cycle variables is relatively small relative to their interannual fluctuations than
98 SAT, we therefore use the first realization of the historical simulations and neglect
99 inter-member differences for these sulfur-cycle variables.

100 Monthly mean SAT from the Met Office Hadley Centre/Climatic Research Unit
101 global surface temperature dataset version 5 (HadCRUT5) from 1850 to 2014 are used
102 for model evaluations (Morice et al., 2021). Considering the scarcity of long-term

103 reliable observations in polar regions, we focus on SAT changes within the latitudinal
104 belt from 60°S to 65°N. The ‘global’ mean SAT is calculated as the area-weighted
105 average over this latitudinal belt.

106

107 **2.2 SO₂ turnover time and sulfate turnover time**

108 Atmospheric sulfate concentrations are governed by the emission and oxidation of
109 its precursors, as well as deposition processes. Anthropogenic SO₂ emissions are the
110 major source of sulfate aerosol over land in polluted regions. Given that CMIP6 models
111 typically employ identical anthropogenic SO₂ emission inventories, the inter-model
112 spread in simulated sulfate concentrations primarily stems from discrepancies in SO₂-
113 to-sulfate oxidation rates and sulfate deposition velocities. Here we define the
114 atmospheric residence time of SO₂ and sulfate aerosols as follows.

115 SO₂ turnover time is determined by its atmospheric burden and its total loss rate,
116 which includes both deposition and chemical oxidation to sulfate. It is defined as:

117
$$\tau_{SO_2} = \frac{B_{SO_2}}{(R_{dSO_2} + R_{oSO_2})} \quad (2),$$

118 where τ_{SO_2} is the SO₂ turnover time, B_{SO_2} is the global mean atmospheric SO₂ burden,
119 R_{dSO_2} is the total SO₂ deposition rate including both wet and dry depositions, and
120 R_{oSO_2} is the oxidation rate of SO₂ to sulfate via gas-phase and aqueous-phase chemistry.

121 Sulfate turnover time is defined as:

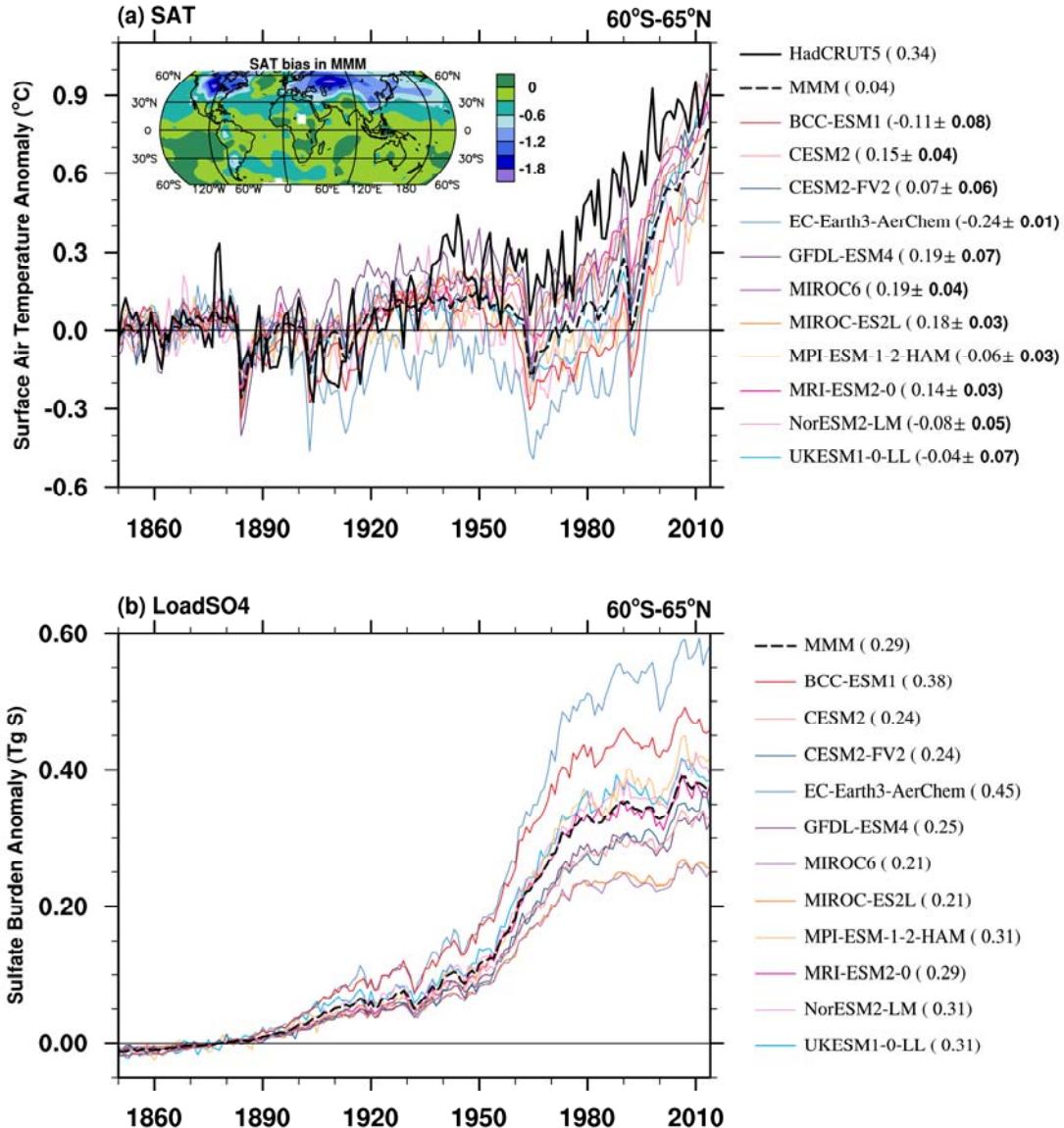
122
$$\tau_{SO_4} = \frac{B_{SO_4}}{R_{dSO_4}} \quad (1),$$

123 where τ_{SO_4} is the sulfate turnover time, B_{SO_4} is the global mean atmospheric sulfate
124 burden, and R_{dSO_4} is the global mean total sulfate deposition rate including both wet
125 and dry depositions.

126

127 **2.3 The transient Climate Response (TCR) index**

128 The Transient Climate Response (TCR) index is calculated as the mean SAT
129 anomaly over a 20-year period centered on the year when atmospheric CO₂
130 concentration has doubled in the 1pctCO₂ simulation. It is an important metric for
131 quantifying CO₂-induced historical warming and has been widely used for model
132 evaluations and intercomparison studies (e.g., Bevacqua et al., 2025; O'neill et al.,
133 2016).


134

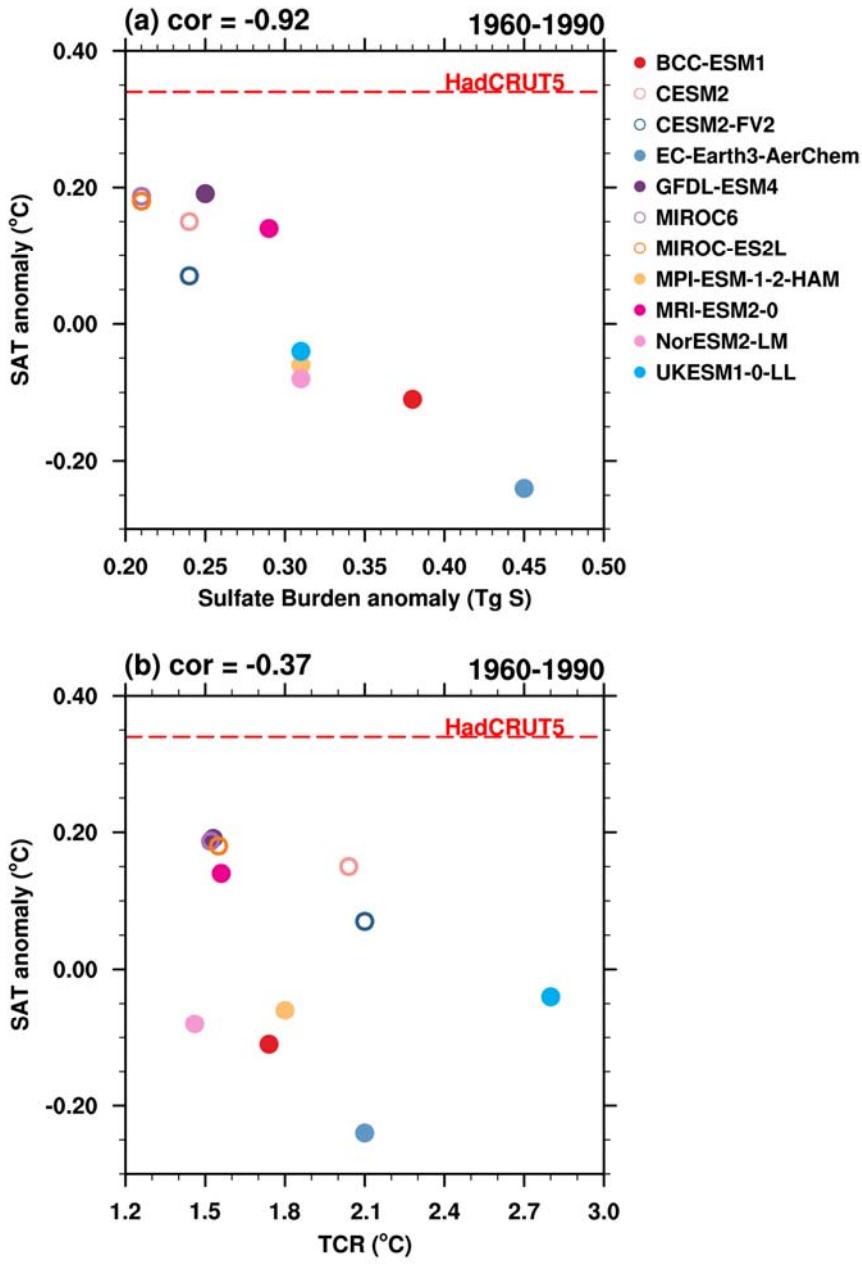
135 **3. Results**

136 **3.1 SATa and sulfate burden anomaly**

137 The historical evolutions of global mean SATa in the eleven CMIP6 models with
138 interactive aerosol schemes are shown in Fig. 1a. All the models tend to underestimate
139 SATa since the 1930s. The cooling anomaly in CMIP6 model marked a notable
140 departure from earlier model generations, which can effectively capture the
141 instrumental SAT record with observation falling well within model spread (e.g., Flynn
142 and Mauritsen, 2020; Hegerl, et al., 2007).

143 The cooling bias is most pronounced from 1960 to 1990. The SATa is about
144 0.34°C in the observations. However, the multi-model mean (MMM) SATa is about
145 0.3°C lower with a large model spread. The SATa ranges from -0.24°C in EC-Earth3-
146 AerChem to 0.19°C in GFDL-ESM4 and MIROC6. The cooling is noticeable at the
147 mid to high latitude in the Northern Hemisphere (as shown in the attached SATa map
148 in Fig.1a). The sudden drop in SATa in the early 1960s and 1990s may be due to the
149 stronger model responses to large volcanic eruptions, Mount Agung in 1963 and Mount
150 Pinatubo in 1991, than in the observations (Chylek et al., 2020). The cooling biases
151 diminish in later periods corresponding to the generally high model sensitivity to
152 greenhouse gas forcing (Smith and Forster, 2021).

153


154 **Figure 1.** (a) Historical surface air temperature anomalies (SATa) relative to 1850-1900 mean from
 155 HadCRUT5 (thick black line), the ensemble mean of each CMIP6 model (solid colored lines), and
 156 the multi-model mean (MMM; dashed black line). Numbers in parentheses indicate the mean SATa
 157 for each model during 1960-1990, with the inter-member spread shown as \pm one standard deviation.
 158 Units: $^{\circ}\text{C}$. (b) Same as (a), but for sulfate burden anomalies for the first realization of each CMIP6
 159 model (colored lines) and the MMM (dashed black line). Units: Tg S.

160 The cooling bias in CMIP6 models coincides with the rapidly increase in
 161 anthropogenic emissions, particularly of SO_2 , the primary precursor of atmospheric
 162 sulfate (Zhang et al., 2021a). Global SO_2 emissions grew steadily after the 1950s and
 163 peaked in the 1970s at approximately 180Tg yr^{-1} , about 3.6 times the level of the 1950s
 164 (Hoesly et al., 2018). The rise in SO_2 emissions has directly contributed to elevated

165 sulfate concentrations in the troposphere. The temporal evolution of sulfate burden
166 shows significant upward trend align with the anthropogenic emission (Fig.1b), initially
167 driven by industrialization and further accelerated after the 1950s mainly due to
168 intensified anthropogenic SO₂ emission from industries and the energy-transformation
169 sectors (e.g., Ohara et al., 2007; Vestreng et al., 2007). The increased sulfate burden
170 interrupted a decades-long warming trend through the cooling effect of sulfate aerosols,
171 even as atmospheric CO₂ concentrations continued to rise (Wilcox et al., 2013).

172 Due to emission-control policies implemented in Europe and North America (Aas
173 et al., 2019; Hand et al., 2012; Vestreng et al., 2007), such as the Gothenburg Protocol
174 (Eb, 1999) and the 1990 Clean Air Act Amendments in the U.S. (Likens et al., 2001),
175 global anthropogenic SO₂ emissions were suppressed after the 1980s and SAT started
176 to rise rapidly in both observation and model simulations. It should be noted that the
177 CMIP6 emission inventory does not fully capture the early 21st century SO₂ emission
178 reductions in East Asia (Wang et al., 2021). However, this period lies outside the 1960-
179 1990 focus of the present study, and its impact on SAT reproduction is beyond the main
180 scope of this paper.

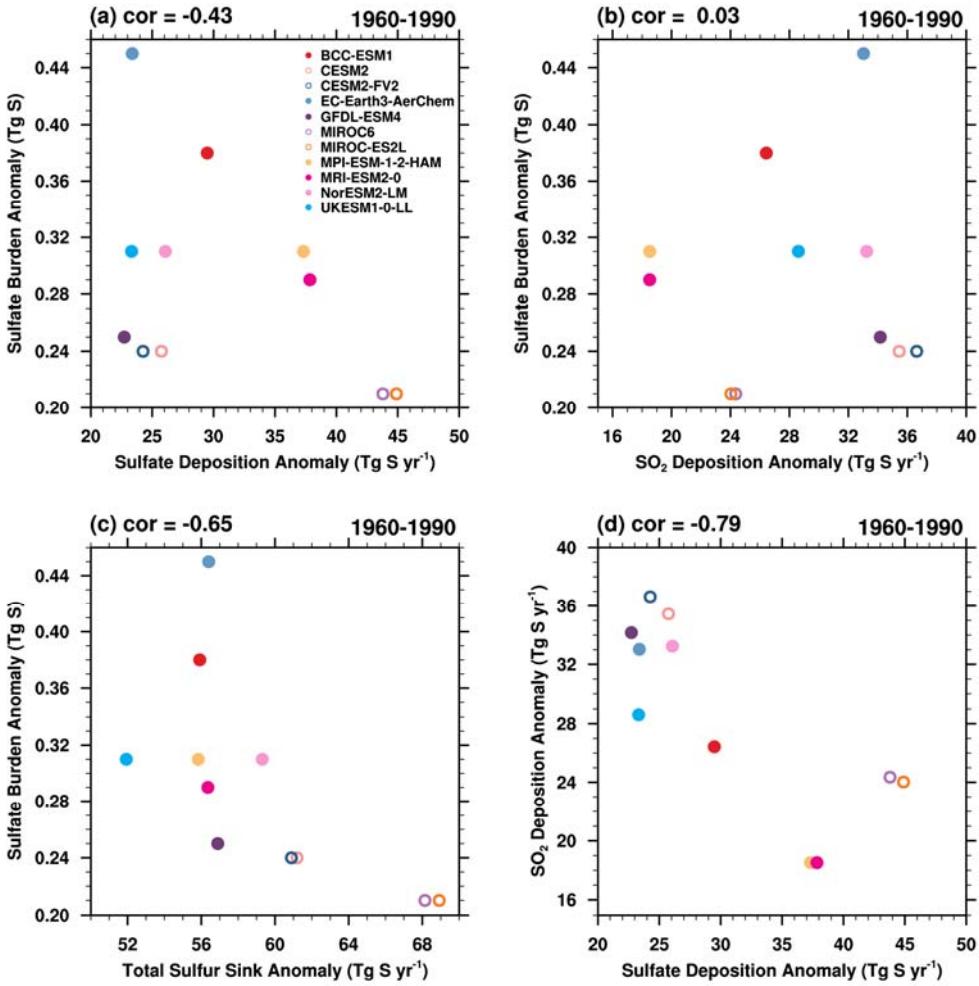
181 The systematically underestimated SATa suggests an excessively strong sulfate-
182 induced cooling effect in CMIP6 models, as indicated by the contrasting performance
183 of individual models. For instance, the MIROC models exhibit the lowest sulfate
184 burden (0.21 Tg S) and smallest cooling bias relative to observation (0.15°C below
185 HadCRUT5), while EC-Earth3-AerChem generate a sulfate burden approximately
186 doubles that value (0.45 Tg S) and nearly four times the cooling bias (0.58°C below
187 HadCRUT5). Analysis across the 11 CMIP6 models reveals a statistically significant
188 negative correlation of -0.92 between sulfate burden anomalies and SATa
189 underestimation during 1960-1990 (Fig. 2a). This relationship highlights the potential
190 role of overestimated sulfate-induced cooling in driving the inter-model spread of SATa
191 biases.

192

193 **Figure 2.** (a) Scatter plots sulfate burden anomaly versus SATa during 960-1990 from historical
 194 experiments. (b) Scatter plot of TCR versus SATa during 1960-1990. Anomalies are calculated
 195 relative to the 1850-1900 mean. Models with and without interactive chemistry are denoted by
 196 colored dots and colored circles, respectively. The corresponding correlation coefficient (cor) for
 197 each panel is shown in the upper-left corner.

198 Interactive chemistry may affect sulfate formation and sulfate aerosol burdens in
 199 the atmosphere (Mulcahy et al., 2020). Models with interactive chemistry (colored dots
 200 in Fig.2a) generally show higher sulfate burdens and lower SATa than non-interactive
 201 models (colored circles). However, the relationship between sulfate burden anomaly

202 and SATa is a robust feature across CMIP6 models, independent of their chemical
203 complexity.

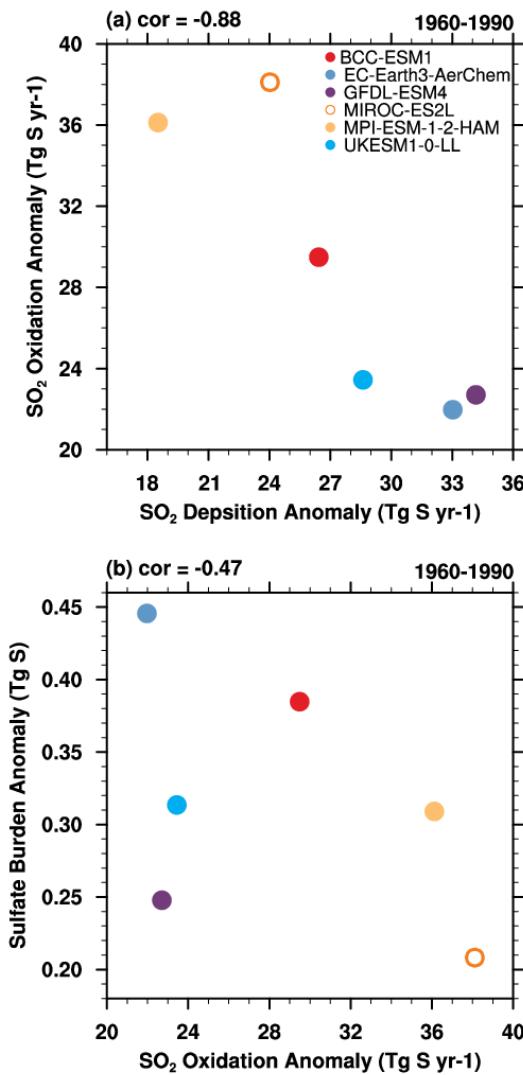

204 Greenhouse gases (GHGs) also increased rapidly during 1960-1990. However,
205 TCR, which can generally indicate the impact of GHGs, is insignificantly correlated
206 with SATa in CMIP6 models, and the correlation coefficient across models is even
207 negative (Fig.2b). Therefore, the inter-model spread in cooling biases can substantially
208 be attributed to discrepancies in simulated sulfate aerosol burden.

209 It should be noticed that there are fast and slow components of global warming in
210 response to radiative forcing changes (Held et al., 2010). The fast component,
211 characterized by an exponential decay timescale of less than 5 years, is primarily driven
212 by rapid adjustments in the upper ocean layers. In contrast, the slow component evolves
213 over centuries and is associated with heat uptake by deeper ocean layers. Lagged
214 oceanic and dynamical feedbacks will further delay and modulate warming rates (Chen
215 et al., 2016; Watterson and Dix, 2005). In this study, the fast response to sulfate forcing
216 can be rapidly detected by SATa, especially when the sulfate forcing is sustained during
217 1960-1990. Moreover, the global mean perspective in this study makes the results
218 insensitive to the impact of spatial redistribution of temperature anomalies caused by
219 dynamical feedbacks.

220

221 **3.2 Sulfur Deposition rates and SO₂ oxidation rate**

222 SO₂ deposition, sulfate deposition, and SO₂ oxidation to sulfate are the key
223 processes governing the atmospheric sulfur cycle. About half of the SO₂ emission is
224 removed by dry deposition at surface and through wet scavenging by precipitation (e.g.,
225 Chin et al., 1996). The remaining fraction is oxidized to sulfate, mainly through two
226 pathways: gas-phase reaction with the hydroxyl radical (OH), and aqueous-phase
227 oxidation within cloud and fog droplets, where reactions with ozone (O₃) and hydrogen
228 peroxide (H₂O₂) are dominant. These processes are critical determinants of atmospheric
229 sulfate burden.



230

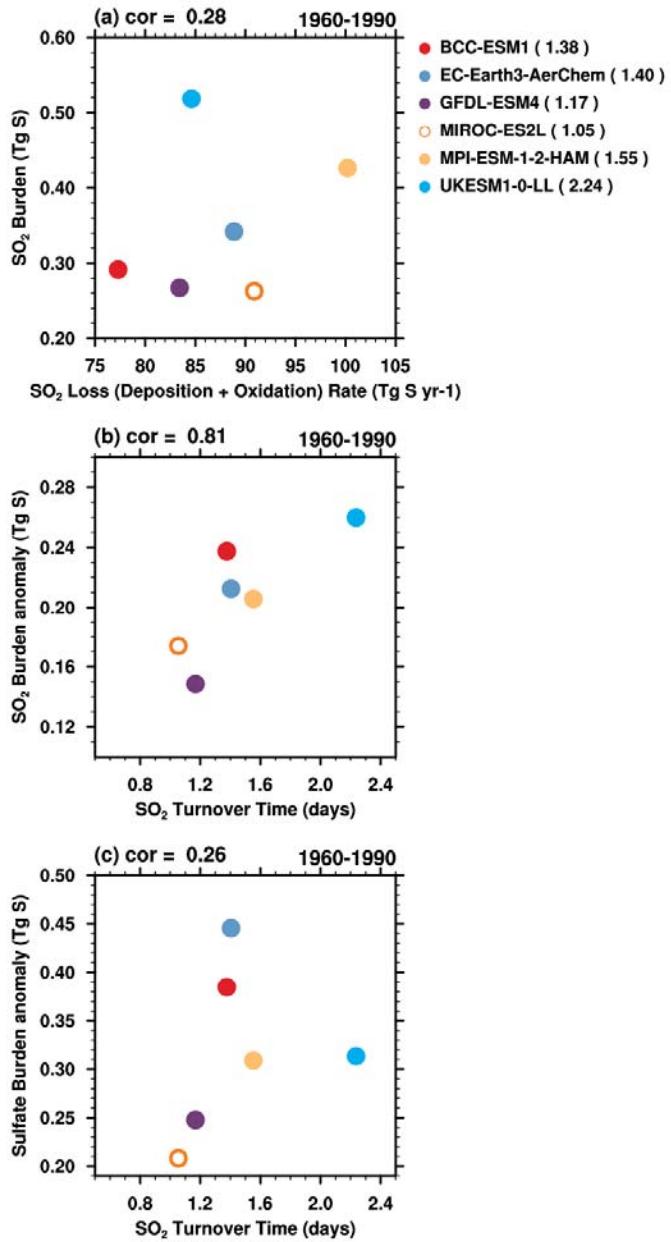
231 **Figure 3.** (a) Sulfate deposition anomaly, (b) SO₂ deposition anomaly, and (c) total sulfur sink
 232 anomaly versus sulfate burden anomaly (Tg S, y-axis) in each model during 1960-1990. (d) Sulfate
 233 deposition anomaly (x-axis) versus SO₂ deposition anomaly (y-axis) during 1960-1990. Units for
 234 deposition anomalies are Tg S yr⁻¹.

235 Fig. 3 shows the inter-model relationship between global mean anomalies of
 236 sulfate burdens and sulfur depositions during 1960-1990, relative to the pre-industrial
 237 baseline (1850-1900). The sulfate burden anomaly is negatively correlated with sulfate
 238 deposition anomaly. However, the correlation is statistically insignificant. This may be
 239 partly attributable to a subset of five models characterized by both low sulfate burden
 240 and low sulfate deposition anomalies. These models degrade the robustness of the linear
 241 fit derived from the remaining models. There is no clear statistical relationship between
 242 sulfate burden anomaly and SO₂ deposition anomaly (Fig. 3b). However, when
 243 considering the total sulfur sink anomaly, including both sulfate and SO₂ deposition

244 anomalies, the correlation with sulfate burden anomaly strengthens to -0.65, significant
 245 at the 5% level using a Student's t-test (Fig.3c). Notably, within the subset of five
 246 models, most show higher SO_2 deposition anomaly in relative to the multi-model mean.
 247 This high SO_2 deposition anomaly compensates for their low sulfate deposition
 248 anomaly, influencing the total sulfur deposition magnitude sufficiently to sustain a
 249 significant correlation with sulfate burden anomaly in these models. Further analysis
 250 reveals a strong negative correlation (-0.79) between SO_2 deposition rate anomaly and
 251 sulfate deposition rate anomaly, suggesting a compensatory relationship between these
 252 two sulfur removal pathways (Fig.3d).

253

254 **Figure 4.** (a) SO_2 deposition anomaly versus SO_2 oxidation anomaly, and (b) SO_2 oxidation
 255 anomaly versus sulfate burden anomaly in each model during 1960-1990.

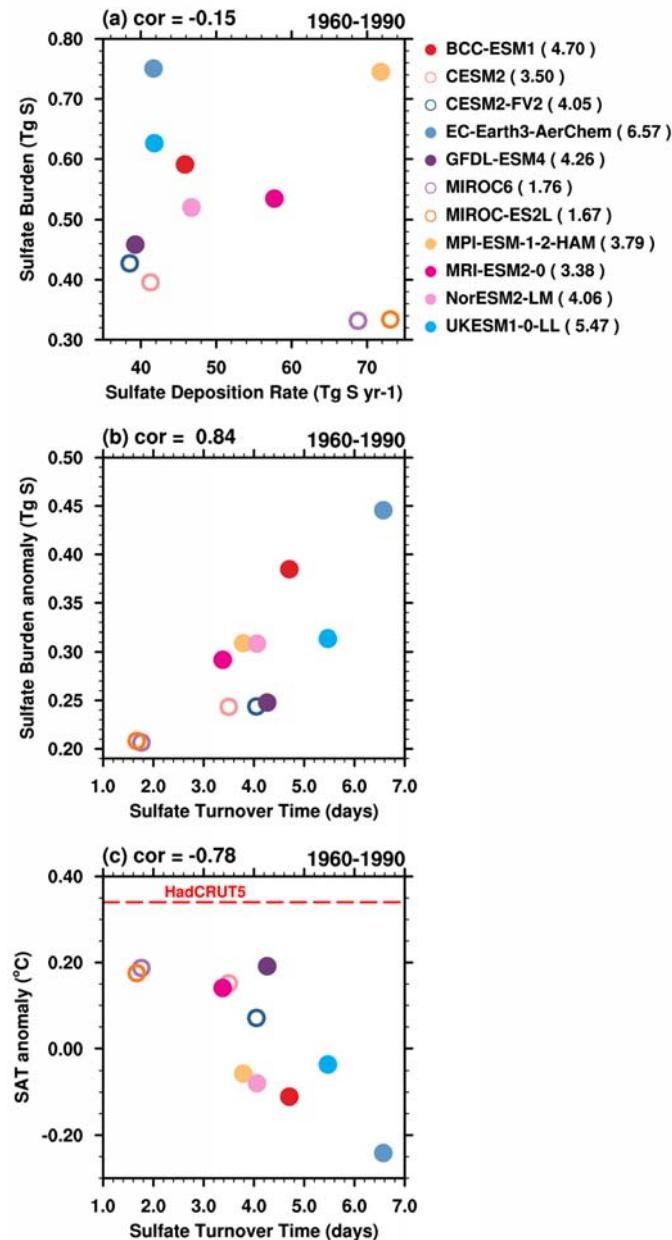

256 The formation of atmospheric sulfate aerosol is governed by the balance between
257 the loss of its precursor, SO₂, and its chemical transformation. As shown in Fig.4a,
258 inter-model comparisons show a significant anti-correlation between SO₂ deposition
259 anomaly and the oxidation rate anomaly across the six models for which relevant data
260 are available for calculation (-0.88). That is, enhanced SO₂ deposition rate, particularly
261 through dry deposition processes, limits the availability of SO₂ for oxidation to sulfate.
262 The relationship between oxidation rate anomalies and the sulfate burden anomalies is
263 negative but not statistically robust within this limited model subset. A more
264 comprehensive analysis with a larger model ensemble is needed to robustly quantify
265 the relative contributions of oxidation pathways to the sulfate aerosol burden.

266 Therefore, biases in sulfate burden simulations arise either directly from sulfate
267 deposition or indirectly from SO₂ deposition, which limits the availability of SO₂ for
268 oxidation.

269

270 **3.3 SO₂ turnover time and sulfate turnover time**

271 SO₂ deposition, sulfate deposition, and SO₂ oxidation rate determine the respective
272 turnover times for SO₂ and sulfate, which quantify their mean atmospheric residence
273 times before removal. Here we examine SO₂ turnover time and sulfate turnover time,
274 quantities with clear physical interpretations, to identify the dominant physical and
275 chemical processes responsible for the sulfate burden biases.



276

277 **Figure 5.** (a) SO_2 loss rate versus SO_2 burden in 1960-1990. SO_2 loss rate includes SO_2 deposition
 278 and oxidation. (b) SO_2 turnover time versus SO_2 burden anomaly in 1960-1990. (c) SO_2 turnover
 279 time versus SATa in 1960-1990.

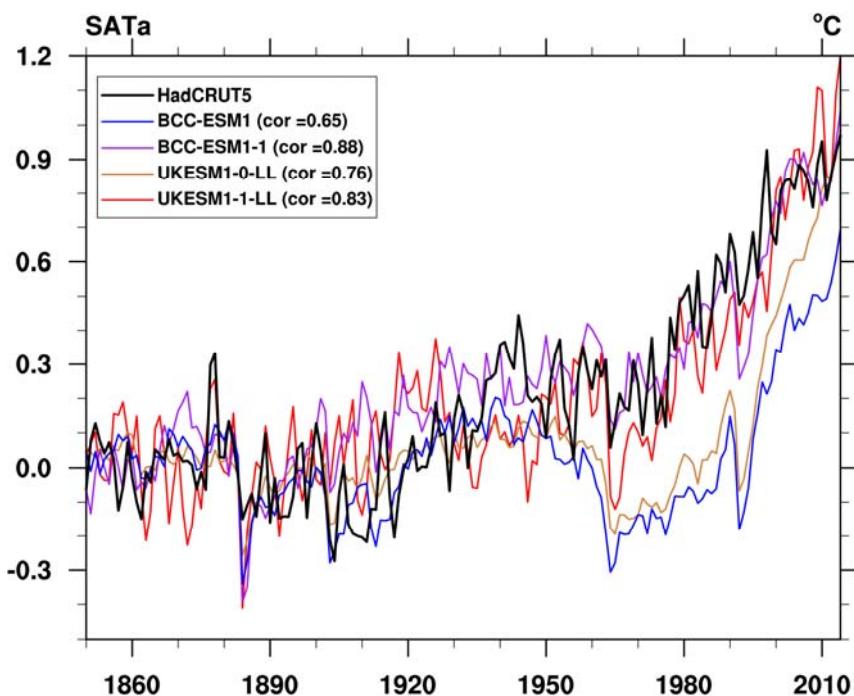
280 The correlations between SO_2 burden and its total loss rate, including both
 281 deposition and chemical oxidation, are notably weak (Fig.5a). Given that the models
 282 share identical anthropogenic SO_2 emission inventories, this poor correlation likely
 283 stems from substantial inter-model differences in the representation of natural SO_2
 284 precursor emissions (e.g., from oceanic dimethyl sulfide) and their subsequent

285 atmospheric processing. The SO_2 turnover time (τ_{SO_2}) as defined in Eq. 1, ranges from
 286 1.05 to 2.24 days in the CMIP6 models. The τ_{SO_2} is highly correlated with SO_2 burden
 287 anomaly with correlation coefficient of 0.81 (Fig.5b). However, its correlation with the
 288 sulfate burden anomaly is weak (Fig.5c).

289

290 **Figure 6.** (a) Sulfate deposition versus sulfate burden during 1960-1990. (b) Sulfate turnover time
 291 versus sulfate burden anomaly during 1960-1990. (c) Sulfate turnover time versus SATa during
 292 1960-1990.

293 Figure 6 presents the simulated sulfate deposition and sulfate burden in 1960-1990.
294 The weak negative correlation (-0.15) indicates that sulfate deposition alone cannot
295 fully explain inter-model differences in sulfate burden. Sulfate turnover time is
296 quantified following Eq. (2) in Section 2.2 as the ratio of sulfate burden to sulfate
297 deposition, representing the average atmospheric residence time of sulfate aerosols.
298 The sulfate turnover time exhibits considerable inter-model variability, ranging from
299 1.67 days in MIROC-ES2L to 6.57 days in EC-Earth3-AerChem. These results
300 generally agree with most aerosol models, which typically simulate sulfate lifetimes
301 of around 4 days (e.g., Textor et al., 2006; Liu et al., 2012; Matsui and Mahowald,
302 2017; Tegen et al., 2019). However, sulfate turnover times in models are notably
303 shorter than observational estimates, such as 7.3 days (0.02 yr) in Charlson et al. (1992)
304 and 10-14 days in Kristiansen et al. (2012). This discrepancy may stem from premature
305 removal processes, inadequate poleward transport, or incomplete chemical
306 representations (e.g., Croft et al., 2014).

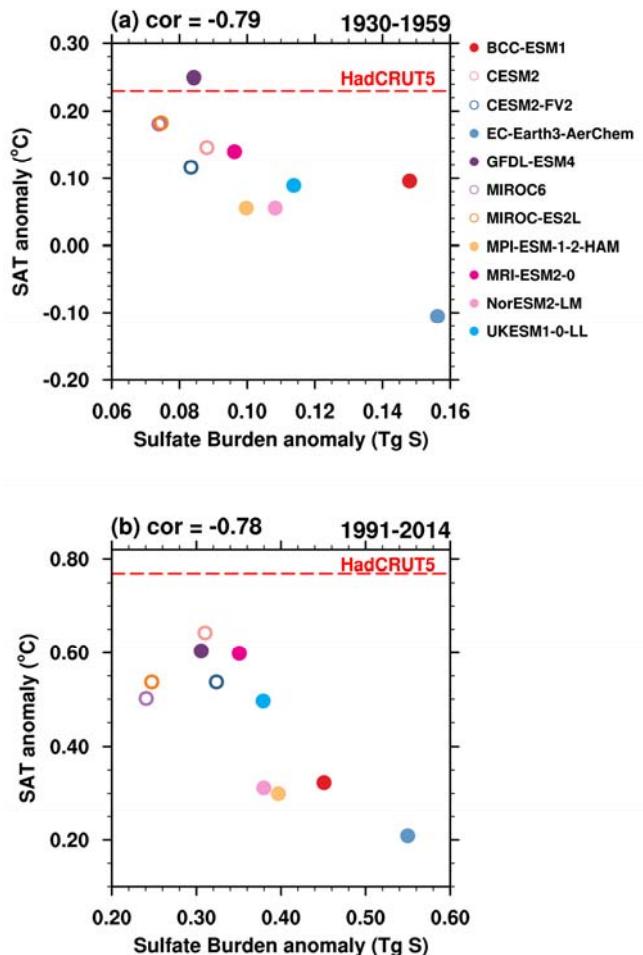

307 The inter-model variations in sulfate turnover time exhibit a strong correlation with
308 sulfate burden anomalies and SATa during the 1960-1990 period, with a correlation
309 coefficient of 0.84 and -0.78 (Fig.6b and Fig.6c). This suggests that differences in
310 sulfate turnover time may account for both the sulfate burden anomaly variations and
311 the consequent surface temperature differences among models. CMIP6 models
312 systematically overestimate sulfate burden anomalies, implying that these models
313 should exhibit shorter lifetimes to produce lower sulfate burden anomalies (Fig.6c).
314 However, enhancing sulfate deposition to reduce burden anomalies is not a physically
315 consistent solution, as it would worsen the already too-short simulated sulfate aerosol
316 lifetime.

317 Therefore, as indicated by section 3.2, model improvement efforts should prioritize
318 SO₂ deposition process refinement over sulfate deposition adjustments as a more
319 scientifically sound approach.

320

321 **3.4 The performances in the two post-CMIP6 models**

322 To suppress the substantial cold bias in the BCC-ESM1 model, which
323 underestimates the observed SATa by 0.45°C , we increase the dry deposition velocity
324 of SO_2 by a factor of four over land surfaces and by a factor of 1.5 over the ocean to
325 reduce the availability of SO_2 for oxidation. This effect is similar to that in UKESM1-
326 0-LL by improving SO_2 dry deposition parameterization (Hardacre et al., 2021;
327 Mulcahy et al., 2023). The impact of changes to the SO_2 dry deposition
328 parameterization in UKESM1-0-LL is an increase of SO_2 dry deposition by a factor of
329 2 to 4. Accordingly, SATa increases to 0.45°C in BCC-ESM1-1 and rises to 0.25°C in
330 UKESM1-LL. Sulfate turnover time in the two post-CMIP6 models, 8.53 days in BCC-
331 ESM1-1 and 5.77 days in UKESM1-1-LL, is generally longer than that of their CMIP6
332 versions. The longer sulfate lifetimes in the two post-CMIP6 models may be due to
333 lower SO_2 in these revised models, but also could be due to physical climate changes
334 (e.g., temperatures, clouds, rainfall).

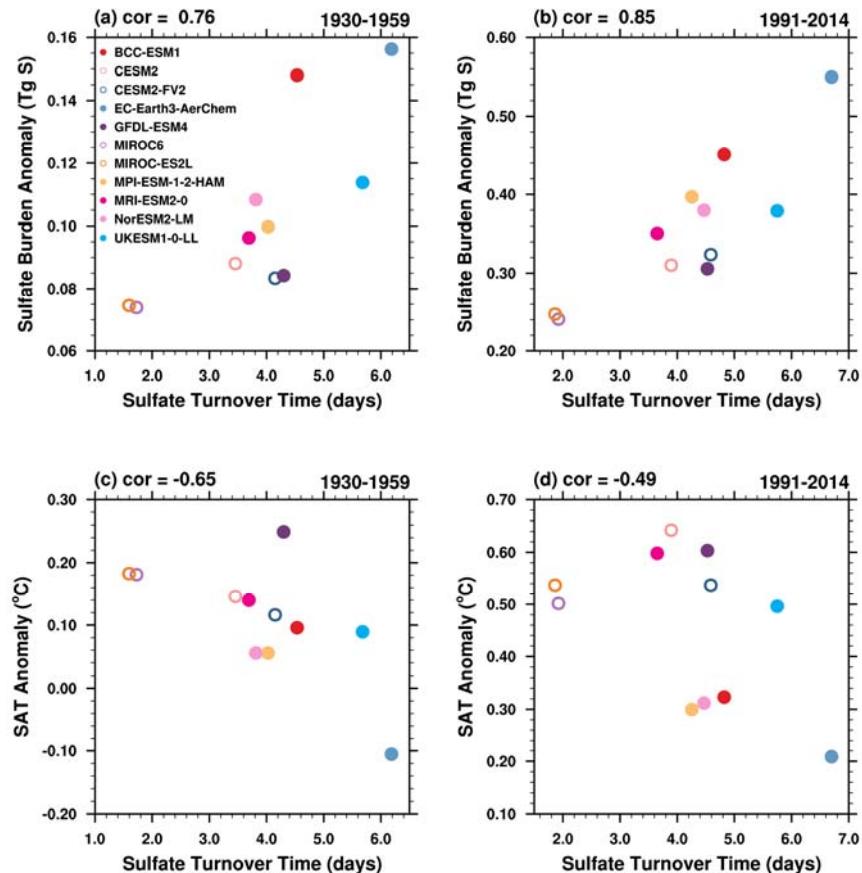


336 **Figure 7.** Evolutions of SATa relative to 1850-1900 mean for HadCRUT5, BCC-ESM models, and
337 UKESM models. The numbers in legend are the corresponding correlation coefficients with
338 HadCRUT5.

339 As demonstrated by the global mean SATa in BCC-ESM1-1 and UKESM1-1-LL
340 models (Fig.7), both models on average tracked the instrumental record quite well with
341 statistically higher correlation coefficients with observation (HadCRUT5). That is,
342 improvements in SO_2 deposition parameterizations have contributed to better model
343 performances in reproducing historical surface temperature evolution.

344

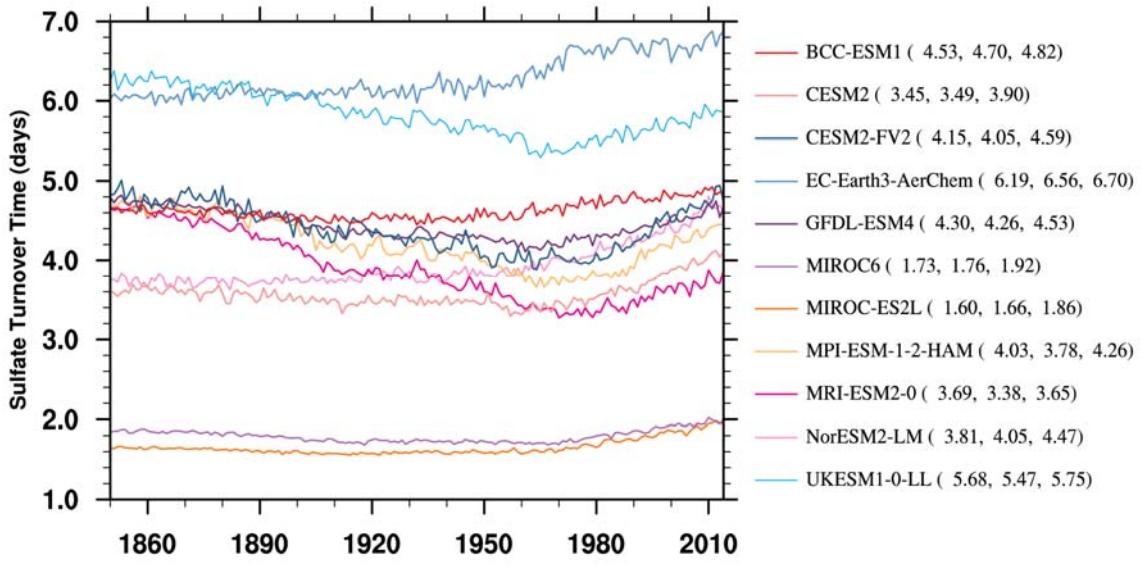
345 3.5 Relative changes preceding and following the 1960-1990 period



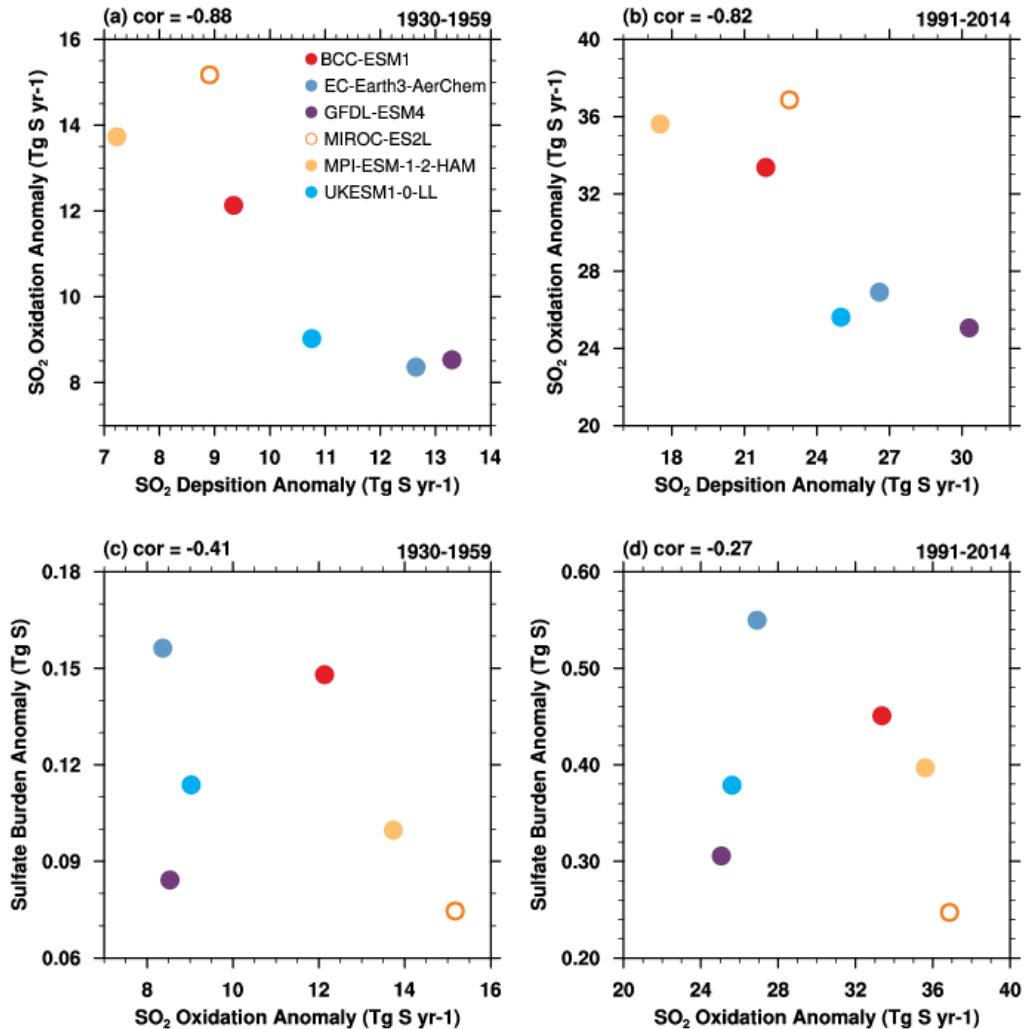
346

347 **Figure 8.** Correlate sulfate burden anomalies with SATa in (a) 1930-1959, and (b) 1991-2014.

348 Our analysis reveals a robust correlation between sulfate burden anomalies and
349 SATa during 1960-1990 (Fig. 2a). To evaluate the temporal consistency of this
350 relationship, we examined its behavior before and after this period. Given that the


351 relationship reflects clear underlying physics, similar correlations were expected across
 352 different periods. As shown in Fig.8, statistically significant correlations are evident in
 353 both periods, suggesting that sulfate burden anomalies were overestimated prior to
 354 1960-1990, and this overestimation continued to influence SATA in subsequent
 355 decades. Compared to HadCRUT5, the models on average underestimate SATA by
 356 0.11°C during 1930-1959 and by 0.31°C during 1991-2014. The correlations between
 357 sulfate burden anomalies and SATA are -0.79 and -0.78 for these two periods (Fig.8),
 358 respectively, which are weaker than the correlation of -0.91 during 1960-1990. This
 359 weakening may be partly attributable to the smaller biases in the 1930-1959 interval.
 360 Furthermore, the combined effects of increasing atmospheric CO₂ concentrations since
 361 the Industrial Revolution and the high climate sensitivity in CMIP6 models may have
 362 partially offset the cooling bias during 1991-2014 (Hausfather et al., 2022).

363


364 **Figure 9.** Correlation between sulfate turnover time (τ_{SO_4}) and: (a, b) sulfate burden anomalies, and
 365 (c, d) SATA for the periods 1930-1959 and 1991-2014.

367 Sulfate turnover time is a key parameter governing sulfate burden and shows
 368 strong correlations with sulfate burden anomalies and SATa during 1960-1990 (Figs.
 369 6b and 6c). Statistically significant correlations persist before and after this period (Fig.
 370 9), confirming the dominant role of sulfate-related physical processes across all
 371 examined time intervals.

372 **Figure 10.** Temporal evolution of sulfate turnover time (τ_{SO_4}) in CMIP6 models. Numerical labels
 373 denote mean τ_{SO_4} value during 1930-1959, 1960-1990, and 1991-2014.

376 We also analyze the temporal evolution of sulfate turnover time (Fig.10). Its
 377 temporal variability, characterized by a standard deviation ($\sigma < 0.5$ days), is notably
 378 smaller than the inter-model spread. During 1930-1959, models exhibit divergent trend,
 379 with 5 out of 11 models simulating reduced turnover times in the subsequent period. In
 380 contrast, all models show prolonged turnover times during 1991-2014 compared to
 381 earlier periods. This shift may be partly attributable to changes in the regional
 382 distribution of sulfur emissions, including an increasing proportion of emissions from
 383 Asia and the implementation of stringent emission control policies in Europe and North
 384 America.

385

386 **Figure 11.** Same as Fig.4, but for (a, c) 1930-1959, and (b, d) 1991-2014.

387 The relationships among anomalies of SO_2 deposition, sulfate depositions, and SO_2
 388 oxidation persist consistently over time (Fig.11). SO_2 deposition maintains a strong
 389 negative correlation with SO_2 oxidation both before and after the 1960-1990 period,
 390 with coefficients of -0.88 and -0.82 , respectively. Meanwhile, the anomaly in SO_2
 391 oxidation exhibits a negative but statistically insignificant correlation with sulfate
 392 burden anomaly.

393

394 **4. Conclusions**

395 The aerosol cooling effect is considered as the second most important
 396 anthropogenic forcing during the 20th Century. Based on the 11 CMIP6 models with

397 aerosol schemes, our study demonstrates that the cooling bias during 1960-1990 is
398 closely related to the sulfate burden changes in the atmosphere. Sulfate aerosol
399 represents the terminal product of a complex chain of physicochemical processes that
400 convert sulfur emissions into sulfate particles. Our findings indicate that sulfate burden
401 anomalies in these models are governed by two key processes: the removal of its
402 gaseous precursor SO_2 and sulfate deposition itself. Higher SO_2 deposition rates limit
403 the availability of SO_2 for subsequent oxidations. Sulfate turnover time is critical for
404 evaluating the physical realism of models. Comparative analysis with observational
405 measurements reveals that increasing sulfate deposition to reduce sulfate burden
406 anomalies is not a reasonable approach. Biases in sulfate burden anomalies may be
407 driven by discrepancies in simulating upstream SO_2 deposition and oxidation processes,
408 rather than downstream processes. This is further supported by improvements in two
409 post-CMIP6 models with refined SO_2 deposition parameterizations.

410 Analyses for periods preceding and following 1960-1990 confirm the persistent
411 influence of sulfate-related physical processes across all examined time periods.
412 Therefore, CMIP6 model projections should be interpreted with caution, as they may
413 underestimate future warming rates. It is therefore also essential to evaluate the
414 reliability of sulfate-related processes in upcoming model intercomparisons before
415 applying them to future climate projections. We encourage future intercomparison
416 initiatives to archive sulfur cycle relevant outputs from a wider range of participating
417 models, thereby enabling more robust and comprehensive process-oriented evaluations.

418

419 **Code availability**

420 All data processing codes are available if a request is sent to the corresponding authors.

421

422 **Data availability**

423 The HadCRUT5 dataset is accessible through Met Office Hadley Centre observations
424 database (<https://www.metoffice.gov.uk/hadobs/hadcrut5/>). All the model data can be
425 freely downloaded from the Earth System Grid Federation (ESGF) nodes

426 (<https://aims2.llnl.gov/search/cmip6/>).

427

428 **Author contributions**

429 The main ideas were formulated by J.Z. and K.F. J.Z. wrote the original draft. The
430 results were supervised by K.F. and S.T.T. All the authors discussed the results and
431 contributed to the final manuscript.

432

433 **Competing interests**

434 The authors declare no competing financial and/or non-financial interests.

435

436 **Acknowledgements**

437 We sincerely appreciate the constructive and insightful comments from Dr. Stephen E.
438 Schwartz and anonymous reviewers, which significantly improved the quality of this
439 manuscript. We acknowledge all data developers, their managers, and funding agencies
440 for the datasets used in this study, whose work and support are essential to us.

441

442 **Financial support**

443 This work was jointly supported by the National Natural Science Foundation of China
444 (Grant no. U2542212 and 42230608) and the UK–China Research and Innovation
445 Partnership Fund through the Met Office Climate Science for Service Partnership
446 (CSSP) China as part of the Newton Fund.

447

448 **References**

449 Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J.,
450 Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié,
451 D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein,
452 A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of
453 atmospheric sulfur, *Scientific Reports*, 9, 953, 10.1038/s41598-018-37304-0, 2019.

454 Bevacqua, E., Schleussner, C., and Zscheischler, J.: A year above 1.5 °C signals that
455 Earth is most probably within the 20-year period that will reach the Paris Agreement
456 limit, *Nature Climate Change*, 1-4, 10.1038/s41558-025-02246-9, 2025.

457 Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E.
458 and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, *Science*, 255,
459 423-430. 1992.

460 Chen, J. P., Chen, I. J. and Tsai, I. C.: Dynamic Feedback of Aerosol Effects on the
461 East Asian Summer Monsoon, *Journal of Climate*, 29, 6137-6149. 2016.

462 Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., Spiro, P. A. and Savoie,
463 D. L.: A global three-dimensional model of tropospheric sulfate, *Journal of
464 Geophysical Research: Atmospheres*, 101, 18667-18690. 1996.

465 Chylek, P., Folland, C., Klett, J. D., and Dubey, M. K.: CMIP5 Climate Models
466 Overestimate Cooling by Volcanic Aerosols, *Geophysical Research Letters*, 47,
467 e2020GL087047, <https://doi.org/10.1029/2020GL087047>, 2020.

468 Croft, B., Pierce, J. R. and Martin, R. V.: Interpreting aerosol lifetimes using the GEOS-
469 Chem model and constraints from radionuclide measurements, *Atmospheric
470 Chemistry and Physics*, 14, 4313-4325. 2014.

471 Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
472 Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C.,
473 Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T.
474 M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-
475 Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein,
476 M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E.,
477 Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J.

478 K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community
479 Earth System Model Version 2 (CESM2), *J. Adv. Model. Earth Syst.*, 12, 35,
480 10.1029/2019ms001916, 2020.

481 Dittus, A. J., Hawkins, E., Wilcox, L. J., Sutton, R. T., Smith, C. J., Andrews, M. B.,
482 and Forster, P. M.: Sensitivity of Historical Climate Simulations to Uncertain
483 Aerosol Forcing, *Geophysical Research Letters*, 47, e2019GL085806,
484 10.1029/2019gl085806, 2020.

485 Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T.,
486 Bergmann, T., Bernadello, R., Boussetta, S., Caron, L. P., Carver, G., Castrillo, M.,
487 Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier,
488 D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J.,
489 Hieronymus, J., Karami, M. P., Keskinen, J. P., Koenigk, T., Makkonen, R.,
490 Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L.,
491 van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P.,
492 Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P.,
493 Schmitt, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian,
494 T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U.,
495 Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System
496 Model for the Climate Model Intercomparison Project 6, *Geosci. Model Dev.*
497 *Discuss.*, 2021, 1-90, 10.5194/gmd-2020-446, 2021.

498 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G.,
499 Krasting, J. P., Malyshев, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A.,
500 Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin,
501 R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He,
502 J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonorov, S., Paynter, D. J.,
503 Poshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf,
504 D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg,
505 A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth System Model Version
506 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation
507 Characteristics, *J. Adv. Model. Earth Syst.*, 12, 10.1029/2019ms002015, 2020.

508 EB, U.: Protocol to Abate Acidification, Eutrophication and Ground-level Ozone, 1999.

509 Flynn, C. M. and Mauritzen, T.: On the climate sensitivity and historical warming

510 evolution in recent coupled model ensembles, *Atmos. Chem. Phys.*, 20, 7829-7842,

511 10.5194/acp-20-7829-2020, 2020.

512 Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M.,

513 Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K.,

514 Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system

515 model and the evaluation of biogeochemical processes and feedbacks, *Geoscientific*

516 *Model Development*, 13, 2197-2244, 10.5194/gmd-13-2197-2020, 2020.

517 Hand, J. L., Schichtel, B. A., Malm, W. C., and Pitchford, M. L.: Particulate sulfate ion

518 concentration and SO₂ emission trends in the United States from the early 1990s

519 through 2010, *Atmos. Chem. Phys.*, 12, 10353-10365, 10.5194/acp-12-10353-2012,

520 2012.

521 Hansen, J., Kharecha, P., Sato, M., Tselioudis, G., Kelly, J., Bauer, S., Ruedy, R., Jeong,

522 E., Jin, Q., Rignot, E., Velicogna, I., Schoeberl, M., Schuckmann, K., Amponsem,

523 J., Cao, J., Keskinen, A., Li, J., and Pokela, A.: Global Warming Has Accelerated:

524 Are the United Nations and the Public Well-Informed?, *Environment: Science and*

525 *Policy for Sustainable Development*, 67, 6-44, 10.1080/00139157.2025.2434494,

526 2025.

527 Hardacre, C., Mulcahy, J. P., Pope, R. J., Jones, C. G., Rumbold, S. T., Li, C., Johnson,

528 C., and Turnock, S. T.: Evaluation of SO₂, SO₄²⁻ and an updated SO₂ dry deposition

529 parameterization in the United Kingdom Earth System Model, *Atmospheric*

530 *Chemistry and Physics*, 21, 18465-18497, 10.5194/acp-21-18465-2021, 2021.

531 Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. and Zelinka, M.:

532 Climate simulations: recognize the 'hot model' problem, *Nature*, 605, 26-29. 2022.

533 Hegerl, G.C., F. W. Zwiers, P. Braconnot, N.P. Gillett, Y. Luo, J.A. Marengo Orsini,

534 N. Nicholls, J.E. Penner and P.A. Stott, 2007: Understanding and Attributing

535 Climate Change. In: Climate Change 2007: The Physical Science Basis.

536 Contribution of Working Group I to the Fourth Assessment Report of the

537 Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z.

538 Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge
539 University Press, Cambridge, United Kingdom and New York, NY, USA.

540 Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F. R. and Vallis, G. K.:
541 Probing the Fast and Slow Components of Global Warming by Returning Abruptly
542 to Preindustrial Forcing, *Journal of Climate*, 23, 2418-2427. 2010.

543 Hienola, A., Partanen, A.-I., Pietikäinen, J.-P., O'Donnell, D., Korhonen, H., Matthews,
544 H. D., and Laaksonen, A.: The impact of aerosol emissions on the 1.5 °C pathways,
545 *Environmental Research Letters*, 13, 044011, 10.1088/1748-9326/aab1b2, 2018.

546 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,
547 T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L.,
548 Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P.
549 R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive
550 gases and aerosols from the Community Emissions Data System (CEDS), *Geosci.
551 Model Dev.*, 11, 369-408, 10.5194/gmd-11-369-2018, 2018.

552 IPCC. Climate Change 2021 – The Physical Science Basis: Working Group I
553 Contribution to the Sixth Assessment Report of the Intergovernmental Panel on
554 Climate Change, 10.1017/9781009157896, 2023.

555 Kristiansen, N. I., Stohl, A. and Wotawa, G.: Atmospheric removal times of the aerosol-
556 bound radionuclides ^{137}Cs and ^{131}I measured after the Fukushima Dai-ichi nuclear
557 accident – a constraint for air quality and climate models, *Atmos. Chem.
558 Phys.*, 12, 10759-10769. 2012.

559 Likens, G. E., Butler, T. J., and Buso, D. C.: Long- and short-term changes in sulfate
560 deposition: Effects of the 1990 Clean Air Act Amendments, *Biogeochemistry*, 52,
561 1-11, 10.1023/a:1026563400336, 2001.

562 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F.,
563 Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C.,
564 Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton,
565 C. S., Flanner, M. G. and Mitchell, D.: Toward a minimal representation of aerosols
566 in climate models: description and evaluation in the Community Atmosphere Model
567 CAM5, *Geoscientific Model Development*, 5, 709-739. 2012.

568 Matsui, H. and Mahowald, N.: Development of a global aerosol model using a two-
569 dimensional sectional method: 2. Evaluation and sensitivity simulations, *Journal of*
570 *Advances in Modeling Earth Systems*, 9, 1887-1920. 2017.

571 Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V.,
572 Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Flaeschner, D., Gayler, V.,
573 Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C.,
574 Ilyina, T., Jahns, T., Jimenez-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster,
575 S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J.,
576 Matei, D., Meraner, K., Mikolajewicz, U., Modalı, K., Moebis, B., Muellner, W. A.,
577 Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
578 Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler,
579 R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R.,
580 Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S.,
581 Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and
582 Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-
583 ESM1.2) and Its Response to Increasing CO₂, *J. Adv. Model. Earth Syst.*, 11, 998-
584 1038, 10.1029/2018ms001400, 2019.

585 Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E.,
586 Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An Updated
587 Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5
588 Data Set, *Journal of Geophysical Research-Atmospheres*, 126,
589 10.1029/2019jd032361, 2021.

590 Mulcahy, J. P., Jones, C. G., Rumbold, S. T., Kuhlbrodt, T., Dittus, A. J., Blockley, E.
591 W., Yool, A., Walton, J., Hardacre, C., Andrews, T., Bodas-Salcedo, A., Stringer,
592 M., de Mora, L., Harris, P., Hill, R., Kelley, D., Robertson, E., and Tang, Y.:
593 UKESM1.1: development and evaluation of an updated configuration of the UK
594 Earth System Model, *Geosci. Model Dev.*, 16, 1569-1600, 10.5194/gmd-16-1569-
595 2023, 2023.

596 Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock,
597 S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse,

598 J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P.,
599 Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Molland, J.,
600 O'Connor, F. M., Palmieri, J., Reddington, C., Rumbold, S. T., Richardson, M.,
601 Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and
602 Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1
603 CMIP6 historical simulations, *Geoscientific Model Development*, 13, 6383-6423,
604 10.5194/gmd-13-6383-2020, 2020.

605 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G.,
606 Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi,
607 K., and Sanderson, B. M.: The Scenario Model Intercomparison Project
608 (ScenarioMIP) for CMIP6, *Geosci. Model Dev.*, 9, 3461-3482, 10.5194/gmd-9-
609 3461-2016, 2016.

610 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka,
611 T.: An Asian emission inventory of anthropogenic emission sources for the period
612 1980-2020, *Atmospheric Chemistry and Physics*, 7, 4419-4444, 10.5194/acp-7-
613 4419-2007, 2007.

614 Samset, B. H., Sand, M., Smith, C. J., Bauer, S. E., Forster, P. M., Fuglestvedt, J. S.,
615 Osprey, S., and Schleussner, C.-F.: Climate Impacts From a Removal of
616 Anthropogenic Aerosol Emissions, *Geophysical Research Letters*, 45, 1020-1029,
617 <https://doi.org/10.1002/2017GL076079>, 2018.

618 Seland, Ø., Bentsen, M., Olivié, D., Tonizzo, T., Gjermundsen, A., Graff, L. S.,
619 Debernard, J. B., Gupta, A. K., He, Y. C., Kirkevåg, A., Schwinger, J., Tjiputra, J.,
620 Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset,
621 I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C.,
622 Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the
623 Norwegian Earth System Model (NorESM2) and key climate response of CMIP6
624 DECK, historical, and scenario simulations, *Geosci. Model Dev.*, 13, 6165-6200,
625 10.5194/gmd-13-6165-2020, 2020.

626 Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor,
627 F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T.,

628 Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L.,
629 Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley,
630 E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P.
631 T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D.,
632 Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E.,
633 Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and
634 Zerroukat, M.: UKESM1: Description and Evaluation of the UK Earth System
635 Model, *J. Adv. Model. Earth Syst.*, 11, 4513-4558, 10.1029/2019ms001739, 2019.

636 Smith, C. J. and Forster, P. M.: Suppressed Late-20th Century Warming in CMIP6
637 Models Explained by Forcing and Feedbacks, *Geophysical Research Letters*, 48,
638 10.1029/2021gl094948, 2021.

639 Steffen, W., Crutzen, P. J., and McNeill, J. R.: The Anthropocene: Are humans now
640 overwhelming the great forces of nature, *Ambio*, 36, 614-621, 10.1579/0044-
641 7447(2007)36[614:taahno]2.0.co;2, 2007.

642 Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K.,
643 Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N.,
644 Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'Ishi, R., Yamazaki, D.,
645 Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description
646 and basic evaluation of simulated mean state, internal variability, and climate
647 sensitivity in MIROC6, *Geoscientific Model Development*, 12, 2727-2765,
648 10.5194/gmd-12-2727-2019, 2019.

649 Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens,
650 N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H.,
651 Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B. and Lohmann,
652 U.: The global aerosol-climate model ECHAM6.3-HAM2.3-Part 1: Aerosol
653 evaluation, *Geoscientific Model Development*, 12, 1643-1677. 2019.

654 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
655 Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H.,
656 Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Kristjansson, J. E., Krol, M., Lauer,
657 A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy,

658 S., Seland, O., Stier, P., Takemura, T. and Tie, X.: Analysis and quantification of
659 the diversities of aerosol life cycles within AeroCom, *Atmospheric Chemistry and*
660 *Physics*, 6, 1777-1813. 2006.

661 Vestreng, V., Myhre, G., Fagerli, H., Reis, S., and Tarrasón, L.: Twenty-five years of
662 continuous sulphur dioxide emission reduction in Europe, *Atmos. Chem. Phys.*, 7,
663 3663-3681, 10.5194/acp-7-3663-2007, 2007.

664 Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Zhang, H., Dong, W., Wang, C., Gui,
665 K., and Xie, B.: Incorrect Asian aerosols affecting the attribution and projection of
666 regional climate change in CMIP6 models, *Npj Climate and Atmospheric Science*,
667 4, 10.1038/s41612-020-00159-2, 2021.

668 Watterson, I. G. and Dix, M. R.: Effective sensitivity and heat capacity in the response
669 of climate models to greenhouse gas and aerosol forcings, *Quarterly Journal of the*
670 *Royal Meteorological Society*, 131, 259-279. 2005.

671 Wilcox, L. J., Highwood, E. J., and Dunstone, N. J.: The influence of anthropogenic
672 aerosol on multi-decadal variations of historical global climate, *Environmental*
673 *Research Letters*, 8, 10.1088/1748-9326/8/2/024033, 2013.

674 Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu,
675 X., Tan, H., Zhang, L., Wang, J., and Hu, A.: Beijing Climate Center Earth System
676 Model version 1 (BCC-ESM1): model description and evaluation of aerosol
677 simulations, *Geosci. Model Dev.*, 13, 977-1005, 10.5194/gmd-13-977-2020, 2020.

678 Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino,
679 H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E.,
680 Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The Meteorological Research
681 Institute Earth System Model Version 2.0, *MRI-ESM2.0: Description and Basic*
682 *Evaluation of the Physical Component*, *Journal of the Meteorological Society of*
683 *Japan*, 97, 931-965, 10.2151/jmsj.2019-051, 2019.

684 Zhang, J., Furtado, K., Turnock, S. T., Mulcahy, J. P., Wilcox, L. J., Booth, B. B.,
685 Sexton, D., Wu, T., Zhang, F., and Liu, Q.: The role of anthropogenic aerosols in
686 the anomalous cooling from 1960 to 1990 in the CMIP6 Earth System Models,
687 *Atmos. Chem. Phys. Discuss.*, 1-39, 10.5194/acp-2021-570, 2021a.

688 Zhang, J., Wu, T., Zhang, F., Furtado, K., Xin, X., Shi, X., Li, J., Chu, M., Zhang, L.,
689 Liu, Q., Yan, J., Wei, M., and Ma, Q.: BCC-ESM1 Model Datasets for the CMIP6
690 Aerosol Chemistry Model Intercomparison Project (AerChemMIP), Advances in
691 Atmospheric Sciences, 38, 317-328, 10.1007/s00376-020-0151-2, 2021b.