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Abstract

Including sophisticated aerosol schemes in the models of the sixth Coupled Model
Inter-comparison Project (CMIP6) has not improved historical climate simulations. In
particular, the models underestimate the surface air temperature anomaly (SATa) when
anthropogenic sulfur emissions increased in 1960-1990, making the reliability of the
CMIP6 projections questionable. Biases in cooling among the models are correlated
with sulfate burden anomaly and the total sulfur sink (including both sulfate and SO>
depositions) is the process responsible. Accordingly, we define a diagnostic tool, named
Sulfur Assessment Metric for Earth system models (ts4me), for model evaluation and
improvement. Reducing the SATa biases to within the observational uncertainty is
consistent with a physically plausible 74, Of around 1.35 days, which is
overestimated by most of the CMIP6 models. Based on targeting a reduction of 7¢;e,
two post-CMIP6 models show greatly improved SATa reproduction. The
systematically underestimated sulfate turnover time (zgs,,) in CMIP6 models suggests
that modifying SO deposition rather than sulfate deposition would be a more scientific
approach. The strong correlations between sulfate burden anomaly and both SATa and
Tso,, as Well as between SATa and 74, persist before, during and after the 1960-
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1990 period. This temporal persistence confirms the dominant influence of sulfate

physical processes across all examined time periods.

1. Introduction

Atmospheric aerosols have rapidly increased since the Industrial Revolution. Over
this time period, the total aerosol effective radiative forcing (ERF) was dominated by
the sulfate cooling effect, and offset a substantial portion of global-mean forcing from
well-mixed greenhouse gases (IPCC, 2023). Without this historical aerosol ERF, the
Paris Agreement’s target of limiting global warming to 1.5°C above pre-industrial
levels would have already been missed in 2015 (Hienola et al., 2018). Similarly,
stopping all present-day anthropogenic aerosol emissions is estimated to induce a
global-mean surface heating of 0.5-1.1°C (Samset et al., 2018). The year 2024 has been
confirmed as the hottest year in human history, and was the first year to breach the
1.5°C warming limit (Bevacqua et al., 2025). Moreover, recent accelerated temperature
trends may be attributable to reductions in atmospheric aerosols, particularly from
reduced commercial shipping emissions. Hansen et al. (2025) suggest that even small
emissions in relatively pristine air have substantial effects, highlighting the crucial need
to improve the representation of aerosol effects in global climate models for more

reliable projections.

The observed temporal evolution of historical surface air temperature (SAT) is one
of the major metrics used for evaluating the performance of climate models. However,
the SAT anomalies (SATa) in the CMIP6 models are systematically lower than was
observed for the 1960-1990 period, whereas the CMIP5 models, on average, track the
instrumental record quite well (e.g., Flynn and Mauritsen, 2020). The 1960-1990
period, when the cooling bias prevailed, is coincident with the so-called Great
Acceleration period, during which human activities intensified remarkably and led to
global-scale impacts on the Earth System (Steffen et al., 2007). Recent studies
hypothesized that aerosol forcing in CMIP6 is stronger than in CMIP5 and is
responsible for the suppressed late 20™-century warming (e.g., Dittus et al., 2020; Smith
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and Forster, 2021).

The cooling anomaly points towards a problem with the sulfur cycle in recent ESMs
or the emissions data (Hardacre et al., 2021; Wang et al., 2021). Considering the
importance of the sulfur cycle in historical aerosol ERF, we examine the sulfur-related
processes in eleven CMIP6 models with aerosol schemes in this study. All the models
are forced with CMIP6 historical anthropogenic aerosol emissions (Hoesly etal., 2018),
and therefore differences in their sulfate burdens are mainly due to different

representations of the sulfur cycle in the models.

We will identify the key processes that determine sulfate burden in these models,
and introduce a simple index for measuring the level of activity in the sulfur cycle in
the models on the global scale. This index is mainly an effective diagnostic tool for
global cycling of atmospheric sulfate, which can be easily calculated from time series
of global means only, without the need for complex diagnostics of the sulfur-cycle
processes. Our results demonstrate that the index exhibits strong correlation with both

sulfate burden anomalies and SATa, allowing each model’s sulfur cycle to be calibrated

using historical temperature biases.
2. Model, data, and method
2.1 CMIP6 models and data
Table 1. Information of the eleven CMIP6 models with aerosol schemes.
Model Country Interactive Members Reference
Chemistry
BCC-ESM1 China Yes 3 Wu et al,

(2020); Zhang
etal., (2021b)

CESM2 us No 11 Danabasoglu et
al. (2020)

CESM2-FV2 us No 3 Danabasoglu et
al. (2020)

EC-Earth3-AerChem European consortium  Yes 2 Dscher et al.
(2021)

GFDL-ESM4 us Yes 3 Dunne et al.
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(2020)

MIROCS6 Japan No 50 Tatebeet al.
(2019)

MIROC-ES2L Japan No 30 Hajima et al.
(2020)

MPI-ESM-1-2-HAM Germany Yes 3 Mauritsen et al.
(2019)

MRI-ESM2-0 Japan Yes 10 Yukimoto et al.
(2019)

NorESM2-LM Norway Yes 3 Seland et al.
(2020)

UKESM1-0-LL UK Yes 19 Sellar et al.
(2019)

Eleven CMIP6 climate models with interactive aerosol schemes are utilized in this
study, including seven models with interactive chemistry and four without (Table 1).
The outputs from two CMIP6 experiments are used: (1) the historical experiment of
climate change over the period 1850-2014, forced by time-varying external forcings
that are based on observations of natural processes (e.g., solar activity, volcanic
eruptions) and human-induced changes (e.g., greenhouse gas, aerosol emissions, land-
use changes). All the available realizations for each model were used to minimize the
uncertainty from internal variability in the climate system; (2) the 1pctCO2 simulations,
in which COz is gradually increased at a rate of 1% per year. The 1pctCO2 experiment
is designed for studying model responses to CO> and is somewhat more realistic than
rapidly increasing COa, such as in the abrupt-4x<CO2 experiment. The historical
experiment outputs from two post-CMIP6 models (BCC-ESM1-1 and UKESM1-1-LL)

with revised SO» deposition parameterizations are also included.

Model outputs used in this study comprise SAT and five key sulfur-cycle
variables: sulfate burden (B,,,), sulfate wet deposition and dry deposition rate (R,4),
sulfur-dioxide (SO2) wet deposition and dry deposition rate (R,,,). For these sulfur-
cycle variables, the inter-member variability within the historical experiment is
substantially smaller than that of SAT. The standard deviation of B,,, in 1960-1990
across the 11 CESM2 members is only 4% of its interannual variability, compared to
approximately 21% for SAT. Similar results are also evident in the 19 UKESM1
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members, where the standard deviation of Bg,, is 3% of its interannual variability,
versus 32% for SAT. Therefore, given the relatively small inter-member variability in
sulfur-cycle variables compared to their interannual fluctuations and to SAT variability,
we utilize the first realization of the historical simulations and neglect inter-member

differences for these sulfur-related quantities.

The monthly mean SAT from the Met Office Hadley Centre/Climatic Research
Unit global surface temperature (HadCRUT) data version 5 from 1850 to 2014 is used
for model evaluations (Morice et al., 2021). Considering the lack of long-term reliable
observations in polar regions, we focus on SAT changes between 60°S to 65°N and the

‘global” mean is calculated as the area-weighted mean in this latitudinal belt.

2.2 The Sulfur Assessment Metric for ESMSs (7,m.) and sulfate turnover time

Atmospheric sulfate concentrations are determined by the emission and oxidation
of sulfate precursors, as well as deposition processes. Anthropogenic SO emissions are
the major source of sulfate aerosol over land in polluted regions. Given that all CMIP6
models use identical anthropogenic SO. emissions, the inter-model differences in
simulating atmospheric sulfate concentrations primarily arise from differences in SO»-
to-sulfate oxidation rates and sulfate deposition velocities. Enhanced SO: deposition
limits precursor availability for sulfate formation, while accelerated sulfate deposition
directly reduces atmospheric loading. This dual mechanism demonstrates how
deposition processes govern sulfate concentrations through direct and indirect

pathways.

Here we define the Sulfur Assessment Metric for ESMSs (7, ) as the ratio of the
sulfate burden anomaly and sulfur deposition anomaly, relative to preindustrial period.
Sulfur deposition comprises the deposition fluxes of sulfate aerosol and its major

precursor SO2:

T _ BaSO4 (1)
same Rgso,+ Raso, '
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where B,so, is the total sulfate burden anomaly in the atmosphere; R,so, and
Raso, denotes the total (wet plus dry) sulfate and SO. deposition rate anomaly,
respectively. We use the anomaly of to mitigate the influence of different model

climatologies.

Sulfate turnover time is a physically meaningful index. It reflects the atmospheric
residence time of sulfate aerosols in the atmosphere before being scavenged by wet or

dry deposition. Sulfate turnover time is defined as:

Bso
Tso, = Rsoj (2),

where 75, denotes the sulfate turnover time; Bg,, is the total sulfate burden in the

atmosphere; and Rs, is the total sulfate deposition.

2.3 The transient Climate Response (TCR) index

The transient Climate Response (TCR) index is calculated as the mean SAT
anomaly of a 1pctCO2 simulation in a 20-year period centered on year-number 70, by
which a doubling CO2 concentration has occurred. It is an important metric representing
COo-related historical warming and has been widely used for model evaluations and

comparisons (Bevacqua et al., 2025; O'neill et al., 2016).

3. Results
3.1 SAT and sulfate burden

The historical evolutions of near-global mean (60°S to 65°N) SATa in the eleven
CMIP6 models with interactive aerosol schemes are shown in Fig. 1la. All the models
tend to underestimate SATa since the 1930s. The cooling anomaly in CMIP6 model
marked a notable departure from earlier model generations, which can effectively
capture the instrumental SAT record with observation falling well within model spread

(e.g., Flynn and Mauritsen, 2020; Hegerl, et al., 2007).
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The cooling bias is most pronounced from 1960 to 1990. The SATa is about
0.34°C in the observations. However, the multi-model mean (MMM) SATa is about
0.3°C lower with a large model spread. The SATa ranges from -0.24°C in EC-Earth3-
AerChem to 0.19°C in GFDL-ESM4 and MIROCS6. The cooling is noticeable at the
mid to high latitude in the Northern Hemisphere (as shown in the attached SATa map
in Fig.1a). The sudden drop in SATa in the early 1960s and 1990s may be due to the
stronger model responses to large volcanic eruptions, Mount Agung in 1963 and Mount
Pinatubo in 1991, than in the observations (Chylek et al., 2020). The cooling biases
diminish in later periods corresponding to the generally high model sensitivity to

greenhouse gas forcing (Smith and Forster, 2021).
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Figure 1. (a) Historical surface air temperature anomalies (SATa) relative to 1850-1900 mean for
HadCRUTS5 (thick black line), the ensemble mean for each CMIP6 model (solid color lines), and
multi-model mean (MMM, dashed black line). The numbers in brackets are the mean results in
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1960-1990, together with the inter-member spread for each model. Units: °C. (b) is the same as ()
but for sulfate burden anomalies for the first realization from each CMIP6 model (solid color lines)
and MMM (dashed black line). Units: Tg S.

The cooling bias coincides with increased anthropogenic emissions, particularly
of sulfate precursors such as SO: (Zhang et al., 2021a). Global emissions of SO grew
steadily after the 1950s and peaked in the 1970s at 180Tg yr, which is about 3.6 times
the 1950s” emissions (Hoesly et al., 2018). The increasing emissions of SO, as the
primary precursor of atmospheric sulfate, have directly contributed to elevated sulfate
concentrations in the troposphere. The temporal evolution of sulfate burden
demonstrates significant growth trajectories with the anthropogenic emission (Fig.1b),
initially driven by industrialization and further accelerated post-1950s mainly due to
intensified anthropogenic SO, emission from industries and the energy-transformation
sectors (e.g., Ohara et al., 2007; Vestreng et al., 2007). The increased sulfate burden
interrupted a decades-long warming trend via the cooling effects of sulfate aerosols on
climate, even though carbon dioxide emissions continued to rise (Wilcox et al., 2013).
Because of the emission control policies in Europe and North America (Hand et al.,
2012; Vestreng et al., 2007), such as the Gothenburg Protocol (Eb, 1999) and the 1990
Clean Air Act Amendments in the U.S. (Likens et al., 2001), global anthropogenic SO-
emissions were suppressed after the 1980s and SAT started to increase rapidly in the
observations (Aas et al., 2019). Anthropogenic SO2 emission continued to increase
across Asia due to industrial developments, but has decreased since 2006 in East Asia
(Wang et al., 2021). The CMIP6 emission inventory fails to represent the early 21%
century SO2 emission reductions in East Asia. But it is outside of the 1960-1990 period,

and the impact on SAT reproduction is beyond the main scope of this paper.

In the 11 CMIP6 models, sulfate concentrations increased rapidly in 1960-1990
(Fig.1b). The systematically underestimated SATa indicate excessively strong sulfate-
induced cooling effect in CMIP6 models. The MIROC models exhibit the lowest sulfate
burden (0.21 Tg S) and smallest cooling bias (0.15<C below HadCRUT5), while EC-
Earth3-AerChem approximately doubles the sulfate loading (0.45 Tg S) and nearly four

8
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times the cooling bias (0.58<C below HadCRUT5). Generally, models with larger
sulfate burden anomalies also show more pronounced SATa underestimations. As
shown in Fig. 2a, the correlation coefficient between sulfate burden anomaly and SATa
in 1960-1990 is -0.92, significant at the 1% level using a Student’s t-test. Interactive
chemistry may have an impact on sulfate formation and affect the sulfate aerosol
burdens in the atmosphere (Mulcahy et al., 2020). As shown in Fig.2a, models with
interactive chemistry (color dots) seem to have higher sulfate burden anomaly and
lower SATa than models without (color circles). However, the relationship between
sulfate burden anomaly and SATa is consistent among models with and without
interactive chemistry. That is, there is no obvious difference in the relationship between

sulfate burden anomaly and SATa for models with and without interactive chemistry.
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Figure 2. Scatter plots of (a) sulfate burden anomaly in 1960-1990 (Tg S, x-axis) in historical
experiments, and (b) the transient climate response (TCR, °C) versus SATa in 1960-1990 (°C, y-
axis) for each model. The corresponding correlation coefficient (cor) is shown at the top-left corner



216
217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

of each panel. The anomalies are relative to 1850-1900 mean. Models with and without interactive
chemistry are marked by color dots and color circles, respectively.

Greenhouse gases (GHGs) also show a rapidly increasing trend in 1960-1990.
However, TCR, which can generally indicate the impact of GHGs, is insignificantly
correlated with SAT anomalies in CMIP6 models, and the correlation coefficient across
models is even negative (Fig.2b). Therefore, the biases of atmospheric sulfate burden
and the associated sulfate aerosol cooling effects play an essential role in the cooling

biases in the CMIP6 models.

It should be noticed that there are fast and slow components of global warming in
response to radiative forcing changes (Held et al., 2010). A fast component with an
exponential decay time scale of less than 5 years, primarily driven by rapid adjustments
in the upper ocean layers. A slow component that evolves over centuries, associated
with heat uptake by deeper ocean layers. The lagged oceanic and dynamical feedbacks
will delay and modulate warming rates (Chen et al., 2016; Watterson and Dix, 2005).
In this study, the fast response to sulfate forcing can be rapidly detected by SATa,
especially when the sulfate forcing is sustained in 1960-1990. The study's global mean
perspective makes the results insensitive to the impact of spatial redistribution of

temperature anomalies caused by dynamical feedbacks.

3.2 Sulfur deposition and a metric for the global sulfur cycle diagnostic (s4me)
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Figure 3. (a) Sulfate deposition anomaly (Rs0,), (b) SO- deposition anomaly (RaSOZ), and (c)
total sulfur sink anomaly (R,s0, + Rgso,) versus sulfate burden anomaly (Tg S, y-axis) in each
model during 1960-1990. (d) R,sp, (x-axis) versus R,sq, (y-axis) during 1960-1990. Units for
deposition anomalies are Tg S yr.

Fig. 3 shows the inter-model relationship between global mean anomalies of total
sulfate burdens and sulfur deposition during 1960-1990, relative to the 1850-1900
baseline period. As shown in Fig.3a, the sulfate burden anomaly (B,so,) is negatively
correlated with sulfate deposition anomaly (R,s0,). However, the correlation is not
statistically significant, partly attributable to a subset of five models characterized by
low sulfate deposition and low sulfate burden. These models degrade the robustness of
the linear fit derived from the remaining models. There is no clear statistical
relationship between B,so, and SO deposition anomaly (R,s0,, Fig. 3b). However,
the correlation between Bgso, and total sulfur sink anomaly (Ruso, + Raso, )

increases to -0.65, significant at the 5% level using a Student’s t-test (Fig.3c). Notably,
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within the subset of five models exhibiting both low B,s,, and low R,s,, most
display higher R0, in relative to the ensemble mean. This high R,s,, compensates
for their low R,s,, influencing the total sulfur deposition magnitude sufficiently to
sustain a significant correlation with B, in these models. Higher SO: deposition
rates result in reduced atmospheric SO availability for oxidation to sulfate. That is,
both the sulfate deposition and the SO deposition are responsible for the sulfate burden
anomalies. Further examination indicates that the SO2 deposition rate anomaly among
the models is highly negatively correlated with the sulfate deposition rate anomaly with

a correlation coefficient of -0.79 (Fig.3d).
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Figure 4. (a) Scatter plots of yearly total sulfur sink anomaly (Tg S yr?, x-axis) versus sulfate burden
anomaly (Tg S, y-axis) in 1960-1990. Number in legend shows the mean and standard deviation of
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the ratio between sulfate burden anomaly and total sulfur sink anomaly (T, days). (b) The mean
SATa (°C, x-axis) versus Tqame (days, y-axis) in 1960-1990 for each model. The black solid line
is the linear fitting. The blue and red curves are the corresponding 95% confidence interval (CI) and
95% prediction interval (Pl). SATa in HadCRUTS and its 0.175°C boundaries are shown by the red
dashed line and parallel gray dashed lines. The red and blue asterisks are the results in the two post-
CMIP6 models (BCC-ESM1-1 and UKESM1-1-LL).

Considering the significant influence of total sulfur sink anomalies on sulfate
burden anomalies, Fig.4a examines their interannual variability during 1960-1990 in
each model. Generally, the sulfate burden anomalies and total sink anomalies are
positively correlated and co-vary almost linearly in all the models. The ratio between
sulfate burden anomalies and total sulfur sink anomalies is defined as 74, in Section
2.2. The mean Tgyume in 1960-1990 ranges from 1.1 days in MIROC models to 2.86
days in EC-Earth3-AerChem. 7., IS generally longer in models with interactive

chemistry (color dot) than without (color circle).

The standard deviation of tg,,,. for each model in 1960-1990 ranges from 0.03
to 0.12 days, about 3.0% of the mean t,,n.. That is, although the sulfate burden
increased significantly in 1960-1990, t4,,,. hardly changed. This is an important sign
that 744, 1S @ robust index for evaluating the sulfur cycle in model development.
Fig. 4b shows t4,me and SATa in 1960-1990 in each model. The SATa is highly
correlated with t,,,. with a correlation coefficient of -0.90. That is, .,y IS Capable
of characterizing the cooling anomaly for each model, making it a convenient target for

model tuning.

3.3 The recommended T4, range and performances in the two post-CMIP6

models

Tuning based on 74, requires an empirical best-estimate 744, t0 aim for.
Therefore, a further question is how to estimate the reasonable values for t,.,.. Here
we try to constrain tgq.,. USiNg the SATa in observations. The SATa in 1960-1990 is

0.34°C. Considering the internal variability in the climate system and the uncertainty in
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observation, the observed uncertainty is suggested to be 0.175°C. The observed
uncertainty is estimated as the standard deviation of the observed annual mean globally
averaged SAT in HadCRUTS5 from 1850 to 2014 after removing the least squares linear
trend. SATa in seven CMIP6 models falls beyond the observational range. SATa
closely approaches the lower bound of observation in the remaining four models, giving

arange of 7.,,,. between 1.1 to 1.58 days.

Here we use this metric to modify the sulfur cycle in BCC-ESM1, more
specifically, we quadruple the SO dry deposition over land and multiply the SO, dry
deposition over the ocean by 1.5. This effect is similar to that in UKESM1-0-LL by
modifying SO dry deposition parameterization (Hardacre et al., 2021; Mulcahy et al.,
2023). The impact of changes to the SO> dry deposition parameterization in UKESM1-
0-LL is an increase of SO> dry deposition by a factor of 2 to 4. As indicated by the red
and blue asterisks in Fig.4b, 74,me reduced from 2.51 to 1.43 days in BCC-ESM1-1
accompanied by a 0.45°C SATa increase, and reduced from 2.19 to 1.71 days in
UKESM1-1-LL with a concurrent 0.25°C SATarise. The SATa from both post-CMIP6

models falls within the observational uncertainty ranges.

We perform linear fitting between SATa and 7., (black line in Fig. 4b), along
with the 95% confidence interval (CI, blue curves), and the 95% prediction interval (P,
red curves) across the eleven CMIP6 models. Given that most models underestimate
SATa relative to observations, extrapolating 7.,y for SATa exceeding the lower
bound of observation becomes highly uncertain. Results from BCC-ESM1-1 suggest
that the rate of decrease in 7.,y predicted by the regression line may not hold for
SATavalues above the observed lower bound (0.165<C). Therefore, we estimate g4,
by the linear fitting at the observed lower bound, yielding a central 7, estimate of

1.35 days. Critically, this value carries inherent uncertainties that must be quantified:
- The 95% confidence interval (CI) of 20.25 days (i.e., 1.10-1.60 days).
- The wider 95% prediction interval (PI) of 0.6 days (i.e., 0.75-1.95 days).

The substantial difference between the Cl and PI ranges underscores the challenge
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in precisely constraining ts.me. We advise using the Pl for applications requiring

robustness against individual model deviations.

SATa *C
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Figure 5. Evolutions of SATa relative to 1850-1900 mean for HadCRUT5, BCC-ESM models, and
UKESM models. The numbers in legend are the corresponding correlation coefficients with
HadCRUTS.

As demonstrated by the global mean SATa in BCC-ESM1-1 and UKESM1-1-LL
models (Fig.5), both models on average tracked the instrumental record quite well with
statistically higher correlation coefficients with observation (HadCRUTS5). That is,
improvements in sulfur deposition parameterizations, which reduced g4, improved

the representation of historical surface temperature evolution.

3.4  Sulfate turnover time and dominant sulfur deposition

Teame Can be derived from fundamental model output variables, ensuring
straightforward calculation across all models. While we recognize that t,;m. IS a
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339 composite metric incorporating both SO and sulfate deposition rather than a physical
340 timescale, here we examine two metrics with clear physical interpretations to identify

341 the dominant physical processes.
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343  Figure 6. (a) Sulfate deposition versus sulfate burden in 1960-1990. (b) Sulfate turnover time versus
344  sulfate burden anomaly in 1960-1990. (c) Sulfate turnover time versus SATa in 1960-1990.

16



345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

Figure 6 presents the sulfate deposition and sulfate burden in 1960-1990. A weak
negative correlation (-0.15) indicates that sulfate deposition alone cannot fully explain
sulfate burden differences in these simulations. Sulfate turnover time is critical for
validating the model capability in representing the sulfate cycle. It is quantified
following Eqg. (2) in Section 2.2 as the ratio of sulfate burden to sulfate deposition,
representing the average atmospheric residence time of sulfate aerosols. The sulfate
turnover time exhibits considerable inter-model variability, ranging from 1.67 days in
MIROC-ES2L to 6.57 days in EC-Earth3-AerChem. These results generally agree
with most aerosol models, which typically simulate sulfate lifetimes of around 4 days
(e.g., Textor et al.,2006; Liu et al., 2012; Matsui and Mahowald, 2017; Tegen et al.,
2019). However, sulfate turnover time in models is notably shorter than observational
estimates, 7.3 days (0.02 yr) in Charlson et al. (1992) and 10-14 days in Kristiansen et
al. (2012). This discrepancy may stem from premature removal processes, inadequate

poleward transport, or incomplete chemical representations (e.g., Croft et al., 2014).

The inter-model variations in sulfate turnover time exhibit a strong correlation with
sulfate burden anomalies and SAT anomaly during the 1960-1990 period, with a
correlation coefficient of 0.84 and -0.78 (Fig.6b and Fig.6c). This suggests that
differences in sulfate turnover time may account for both the sulfate burden anomaly
variations and the consequent surface temperature differences among models.
However, CMIP6 models systematically overestimate sulfate burden anomalies,
implying that these models should exhibit shorter lifetimes to produce lower sulfate
burden anomalies (Fig.6¢). This would further exacerbate the existing underestimation
of sulfate turnover time in CMIP6 models. Thus, enhancing sulfate deposition to

mitigate burden anomalies is not an appropriate solution.

Sulfate turnover time in the two post-CMIP6 models, 8.53 days in BCC-ESM1-1
and 5.77 days in UKESM1-1-LL, is generally longer than that of their CMIPG6 versions.

The longer sulfate lifetimes in the two post-CMIP6 models may be due to lower SO; in
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373  these revised models, but also could be due to physical climate changes (e.g.,
374  temperatures, clouds, rainfall).
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376  Figure 7. Evolution of (a) the SO, deposition rate (Rs,), and (b) the sulfate deposition rate (Rso,).
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Figure 8. (a) SO deposition rate (Rs,) versus sulfate deposition rate (Rse,) in 1960-1990. (b)
Ratio between Rg,, and Rso, (6, x-axis) versus sulfate burden anomaly (y-axis) in 1960-1990.

Considering the importance of sulfate and SO. deposition to sulfate burden
changes, we further examine their dominance in CMIP6 models. The temporal
evolutions of SO. and sulfate depositions exhibit a clear dependence on the
anthropogenic SO: emission across the 11 CMIP6 models (Fig.7). Notably, models
with higher sulfate deposition rates generally show lower SO- deposition rates. Their

correlation is significant with a correlation coefficient of -0.83 in 1960-1990 (Fig. 8a).
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We examine the dominance of sulfate and SO deposition by their ratio:

0= (3),

Rso,

where Rgo, and Rs,, denotes the deposition rate of SOz and sulfate, respectively.
The ratio between SO- deposition and sulfate deposition (6) also varies across CMIP6
models (Fig.8b). In 5 out of 11 models, sulfate removal dominates over SO. removal,
while the opposite is true in the remaining four. The ratio 4, which reflects the relative
dominance of sulfur deposition, does not exhibit a clear relationship with sulfate
burden anomalies. This suggests that & is not a major source of inter-model

discrepancy in sulfate burden anomalies.

Sulfur oxidation rate is also a physically meaningful metric, which quantifies the
efficiency of atmospheric conversion of SO: to sulfate and indicates the degree of
secondary aerosol formation. However, it cannot be evaluated precisely since this

variable is not available for most CMIP6 models.

4. Relative changes preceding and following the 1960-1990 period

Our analysis reveals a robust correlation between sulfate burden anomalies and
SATa in 1960-1990 (Fig. 2a). To assess temporal consistency, we examined these
relationships before and after this period. Since their relationship reflects clear
underlying physics, we expected similar correlations across periods. As shown in Fig.9,
statistically significant correlations are evident in both periods, suggesting that sulfate
burden anomaly was overestimated prior to the 1960-1990 interval, and this
overestimation continued to influence SATa in subsequent years. The SATa is
underestimated by 0.11<C during 1930-1959 and by 0.31<C during 1991-2014 in MMM
relative to HadCRUTS. The correlations between sulfate burden anomaly and SATa (-
0.79 and -0.78) are weaker than that in 1960-1990 (-0.91). This may be potentially due
to the smaller sulfate burden bias during the 1930-1959 interval. The combined effects
of high model sensitivity in CMIP6 models (Hausfather et al., 2022) and the

atmospheric CO. accumulation since the Industrial Revolution may partially offset the
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416  cooling bias during the 1991-2014 period.
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418  Figure 9. Correlate sulfate burden anomalies with SATa in (a) 1930-1959, and (b) 1991-2014.
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420  Figure 10. Correlation between sulfate turnover time (zg,,) and: (a, b) sulfate burden anomalies,
421  and (c, d) SATa for the periods 1930-1959 and 1991-2014.

422

423 Sulfate turnover time serves as a key parameter influencing sulfate burden
424  variations and exhibits a strong correlation with SATa in 1960-1990 (Figs. 6b and 6¢).
425  Significant correlations between sulfate turnover time and both sulfate burden
426 anomalies and SATa persist both before and after this period (Fig. 10), confirming the

427  dominant role of sulfate physical processes across all examined time periods.
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denote mean g0, Vvalue during 1930-1959, 1960-1990, and 1991-2014.

We also examine the temporal evolution of sulfate turnover time (Fig.11). Its

temporal variability, indicated by the standard deviation (¢ < 0.5 days), is substantially

smaller than the inter-model spread. For 1930-1959, models exhibit divergent changes

with 5 of 11 models simulating reduced turnover times in the following period.

Conversely, all models show prolonged turnover times during 1991-2014 relative to

earlier periods. This may be partly due to the shift in the regional distribution of sulfur

emissions, with an increasing proportion of emissions from Asia and stringent emission

control policies in Europe and North America.
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The T44me In CMIP6 models show comparable magnitudes between 1930-1959
and 1960-1990, followed by a modest amplification during 1991-2014 (Fig. 12). This
may partially reflect spatial shifts in emission sources, analogous to sulfate turnover

time (Fig.11). Notably, 74, Maintains more significant correlations with SATa in
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both periods (-0.76 and -0.72) compared to sulfate turnover time (-0.65 and -0.49 in
Fig.10c and Fig.10d), mirroring the relationship seen during the 1960-1990 period (-
0.90 in Fig.4b versus -0.78 in Fig. 6c¢).

5. Conclusions

Aerosol cooling effect is considered to be the second most important
anthropogenic forcing over the 20" Century. Our study, based on the 11 CMIP6 models
with aerosol schemes, demonstrates that the cooling bias in 1960-1990 is closely related
to the sulfate burden changes in the atmosphere. Sulfate burden anomaly in the models,
and hence the strength of the cooling bias, is determined by sulfur deposition. We
introduce a metric, called t4,me., Which incorporates the effects of sulfur removal
processes on sulfate concentration. The index is highly correlated with cooling and can
be used to constrain sulfur removal processes in models, on a global scale. Sulfate
turnover time is critical for validating the model's physical realism and is further
examined to ensure model credibility. Analysis of sulfate turnover time compared with
observational measurement demonstrates that increasing sulfate deposition to reduce

sulfate burden anomalies is not a reasonable approach.

A constraint on .., derived from observed SATa, is used to improve SO>
deposition parameterizations in models. The modifications in BCC-ESM1 and
UKESM1-0-LL lead to shortened t,,,. Values and improved SATa simulations. The
optimal 74,me 1S 1.35 days, with a 95% confidence interval (Cl) of #0.25 days and a
95% prediction interval (PI) of #0.6 days.

Analyses both preceding and following the 1960-1990 period indicate the
persistent dominance of sulfate physical processes across all examined time periods.
Therefore, the models are likely to underestimate the rate of warming in future climate
projections. This has potential implications for the use of CMIP6 in scenarios that
incorporate clean-air measures to inform the Paris Agreement goals of limiting

warming to below 2 or 1.5°C, i.e., SSP1-2.6 and SSP1-1.9 in CMIP6 (O'neill et al.,
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2016). Generally, ts.me introduced in this study provides a tunable measurement,
which can be directly calculated from basic model output. It can effectively guide
modifications to sulfur processes, ensuring that models do not overestimate the sulfate
cooling effect over the historical period, as was the case in CMIP6 and is a current

concern for model performance in the upcoming CMIP7.
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