

1 **Unveiling the Dominant Control of the Systematic Cooling Bias in**
2 **CMIP6 Models: Quantification and Corrective Strategies**

3 Jie Zhang^{1,2*}, Kalli Furtado^{3*}, Steven T. Turnock^{4,5}, Yixiong Lu^{1,2}, Tongwen Wu^{1,2},
4 Fang Zhang^{1,2}, Xiaoge Xin^{1,2}, Yuyun Liu⁶

5

6 1. *State Key Laboratory of Disaster Weather Science and Technology, CMA EMPC*
7 2. *CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing,*
8 *China*
9 3. *Centre for climate research Singapore, Singapore*
10 4. *Met Office Hadley Centre, Exeter, UK*
11 5. *University of Leeds Met Office Strategic (LUMOS) Research Group, University of Leeds, Leeds, UK*
12 6. *Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of*
13 *Sciences, Beijing, China*

14

15 Corresponding to: Jie ZHANG (jiezhang@cma.gov.cn) & Kalli Furtado (Kalli_FURTADO@nea.gov.sg)

16

17 **Abstract**

18 Including sophisticated aerosol schemes in the models of the sixth Coupled Model
19 Inter-comparison Project (CMIP6) has not improved historical climate simulations. In
20 particular, the models underestimate the surface air temperature anomaly (SATa) when
21 anthropogenic sulfur emissions increased in 1960-1990, making the reliability of the
22 CMIP6 projections questionable. Biases in cooling among the models are correlated
23 with sulfate burden anomaly and the total sulfur sink (including both sulfate and SO₂
24 depositions) is the process responsible. Accordingly, we define a diagnostic tool, named
25 Sulfur Assessment Metric for Earth system models (τ_{same}), for model evaluation and
26 improvement. Reducing the SATa biases to within the observational uncertainty is
27 consistent with a physically plausible τ_{same} of around 1.35 days, which is
28 overestimated by most of the CMIP6 models. Based on targeting a reduction of τ_{same} ,
29 two post-CMIP6 models show greatly improved SATa reproduction. The
30 systematically underestimated sulfate turnover time (τ_{SO_4}) in CMIP6 models suggests
31 that modifying SO₂ deposition rather than sulfate deposition would be a more scientific
32 approach. The strong correlations between sulfate burden anomaly and both SATa and
33 τ_{SO_4} , as well as between SATa and τ_{same} , persist before, during and after the 1960-

34 1990 period. This temporal persistence confirms the dominant influence of sulfate
35 physical processes across all examined time periods.

36

37 **1. Introduction**

38 Atmospheric aerosols have rapidly increased since the Industrial Revolution. Over
39 this time period, the total aerosol effective radiative forcing (ERF) was dominated by
40 the sulfate cooling effect, and offset a substantial portion of global-mean forcing from
41 well-mixed greenhouse gases (IPCC, 2023). Without this historical aerosol ERF, the
42 Paris Agreement's target of limiting global warming to 1.5°C above pre-industrial
43 levels would have already been missed in 2015 (Hienola et al., 2018). Similarly,
44 stopping all present-day anthropogenic aerosol emissions is estimated to induce a
45 global-mean surface heating of 0.5-1.1°C (Samset et al., 2018). The year 2024 has been
46 confirmed as the hottest year in human history, and was the first year to breach the
47 1.5°C warming limit (Bevacqua et al., 2025). Moreover, recent accelerated temperature
48 trends may be attributable to reductions in atmospheric aerosols, particularly from
49 reduced commercial shipping emissions. Hansen et al. (2025) suggest that even small
50 emissions in relatively pristine air have substantial effects, highlighting the crucial need
51 to improve the representation of aerosol effects in global climate models for more
52 reliable projections.

53 The observed temporal evolution of historical surface air temperature (SAT) is one
54 of the major metrics used for evaluating the performance of climate models. However,
55 the SAT anomalies (SATa) in the CMIP6 models are systematically lower than was
56 observed for the 1960-1990 period, whereas the CMIP5 models, on average, track the
57 instrumental record quite well (e.g., Flynn and Mauritsen, 2020). **The 1960–1990**
58 **period, when the cooling bias prevailed, is coincident with the so-called Great**
59 **Acceleration period, during which human activities intensified remarkably and led to**
60 **global-scale impacts on the Earth System (Steffen et al., 2007).** Recent studies
61 hypothesized that aerosol forcing in CMIP6 is stronger than in CMIP5 and is
62 responsible for the suppressed late 20th-century warming (e.g., Dittus et al., 2020; Smith

63 and Forster, 2021).

64 The cooling **anomaly** points towards a problem with the sulfur cycle in recent ESMs
65 or the emissions data (Hardacre et al., 2021; Wang et al., 2021). Considering the
66 importance of the sulfur cycle in historical aerosol ERF, we examine the sulfur-related
67 processes in eleven CMIP6 models with aerosol schemes in this study. All the models
68 are forced with CMIP6 historical anthropogenic aerosol emissions (Hoesly et al., 2018),
69 and therefore differences in their sulfate burdens are mainly due to different
70 representations of the sulfur cycle in the models.

71 We will identify the key processes that determine sulfate burden in these models,
72 and introduce a simple index for measuring the level of activity in the sulfur cycle in
73 the models on the global scale. **This index is mainly an effective diagnostic tool for**
74 **global cycling of atmospheric sulfate, which can be easily calculated from time series**
75 **of global means only, without the need for complex diagnostics of the sulfur-cycle**
76 **processes.** Our results demonstrate that the index exhibits strong correlation with both
77 sulfate burden anomalies and SATa, allowing each model's sulfur cycle to be calibrated
78 using historical temperature biases.

79

80 2. Model, data, and method

81 2.1 CMIP6 models and data

82 **Table 1.** Information of the eleven CMIP6 models with aerosol schemes.

Model	Country	Interactive Chemistry	Members	Reference
BCC-ESM1	China	Yes	3	Wu et al., (2020); Zhang et al., (2021b)
CESM2	US	No	11	Danabasoglu et al. (2020)
CESM2-FV2	US	No	3	Danabasoglu et al. (2020)
EC-Earth3-AerChem	European consortium	Yes	2	Döscher et al. (2021)
GFDL-ESM4	US	Yes	3	Dunne et al.

					(2020)
MIROC6	Japan	No	50	Tatebeet et al. (2019)	
MIROC-ES2L	Japan	No	30	Hajima et al. (2020)	
MPI-ESM-1-2-HAM	Germany	Yes	3	Mauritsen et al. (2019)	
MRI-ESM2-0	Japan	Yes	10	Yukimoto et al. (2019)	
NorESM2-LM	Norway	Yes	3	Seland et al. (2020)	
UKESM1-0-LL	UK	Yes	19	Sellar et al. (2019)	

83

84 Eleven CMIP6 climate models with interactive aerosol schemes are utilized in this
 85 study, including seven models with interactive chemistry and four without (Table 1).
 86 The outputs from two CMIP6 experiments are used: (1) the historical experiment of
 87 climate change over the period 1850-2014, forced by time-varying external forcings
 88 that are based on observations of natural processes (e.g., solar activity, volcanic
 89 eruptions) and human-induced changes (e.g., greenhouse gas, aerosol emissions, land-
 90 use changes). All the available realizations for each model were used to minimize the
 91 uncertainty from internal variability in the climate system; (2) the 1pctCO₂ simulations,
 92 in which CO₂ is gradually increased at a rate of 1% per year. The 1pctCO₂ experiment
 93 is designed for studying model responses to CO₂ and is somewhat more realistic than
 94 rapidly increasing CO₂, such as in the abrupt-4×CO₂ experiment. **The historical**
 95 **experiment outputs from two post-CMIP6 models (BCC-ESM1-1 and UKESM1-1-LL)**
 96 **with revised SO₂ deposition parameterizations are also included.**

97 Model outputs used in this study comprise SAT and five key sulfur-cycle
 98 variables: sulfate burden (B_{SO_4}), sulfate wet deposition and dry deposition rate (R_{SO_4}),
 99 sulfur-dioxide (SO₂) wet deposition and dry deposition rate (R_{SO_2}). For these sulfur-
 100 cycle variables, the inter-member variability within the historical experiment is
 101 substantially smaller than that of SAT. The standard deviation of B_{SO_4} in 1960-1990
 102 across the 11 CESM2 members is only 4% of its interannual variability, compared to
 103 approximately 21% for SAT. Similar results are also evident in the 19 UKESM1

104 members, where the standard deviation of B_{SO_4} is 3% of its interannual variability,
105 versus 32% for SAT. Therefore, given the relatively small inter-member variability in
106 sulfur-cycle variables compared to their interannual fluctuations and to SAT variability,
107 we utilize the first realization of the historical simulations and neglect inter-member
108 differences for these sulfur-related quantities.

109 The monthly mean SAT from the Met Office Hadley Centre/Climatic Research
110 Unit global surface temperature (HadCRUT) data version 5 from 1850 to 2014 is used
111 for model evaluations (Morice et al., 2021). Considering the lack of long-term reliable
112 observations in polar regions, we focus on SAT changes between 60°S to 65°N and the
113 ‘global’ mean is calculated as the area-weighted mean in this latitudinal belt.

114

115 **2.2 The Sulfur Assessment Metric for ESMs (τ_{same}) and sulfate turnover time**

116 Atmospheric sulfate concentrations are determined by the emission and oxidation
117 of sulfate precursors, as well as deposition processes. Anthropogenic SO_2 emissions are
118 the major source of sulfate aerosol over land in polluted regions. Given that all CMIP6
119 models use identical anthropogenic SO_2 emissions, the inter-model differences in
120 simulating atmospheric sulfate concentrations primarily arise from differences in SO_2 -
121 to-sulfate oxidation rates and sulfate deposition velocities. Enhanced SO_2 deposition
122 limits precursor availability for sulfate formation, while accelerated sulfate deposition
123 directly reduces atmospheric loading. This dual mechanism demonstrates how
124 deposition processes govern sulfate concentrations through direct and indirect
125 pathways.

126 Here we define the Sulfur Assessment Metric for ESMs (τ_{same}) as the ratio of the
127 sulfate burden anomaly and sulfur deposition anomaly, relative to preindustrial period.
128 Sulfur deposition comprises the deposition fluxes of sulfate aerosol and its major
129 precursor SO_2 :

$$130 \quad \tau_{same} = \frac{B_{aSO_4}}{R_{aSO_4} + R_{aSO_2}} \quad (1),$$

131 where B_{ASO_4} is the total sulfate burden anomaly in the atmosphere; R_{ASO_4} and
132 R_{ASO_2} denotes the total (wet plus dry) sulfate and SO₂ deposition rate anomaly,
133 respectively. We use the anomaly of to mitigate the influence of different model
134 climatologies.

135 Sulfate turnover time is a physically meaningful index. It reflects the atmospheric
136 residence time of sulfate aerosols in the atmosphere before being scavenged by wet or
137 dry deposition. Sulfate turnover time is defined as:

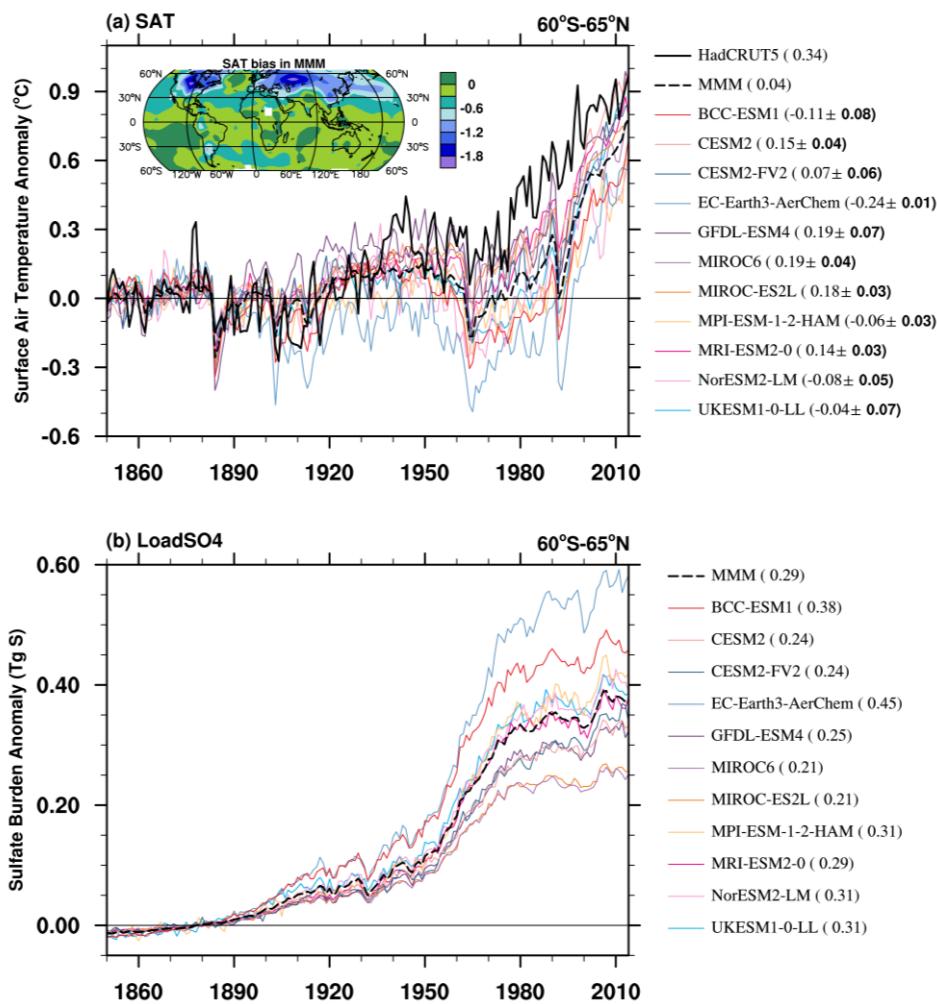
138
$$\tau_{SO_4} = \frac{B_{SO_4}}{R_{SO_4}} \quad (2),$$

139 where τ_{SO_4} denotes the sulfate turnover time; B_{SO_4} is the total sulfate burden in the
140 atmosphere; and R_{SO_4} is the total sulfate deposition.

141

142 2.3 The transient Climate Response (TCR) index

143 The transient Climate Response (TCR) index is calculated as the mean SAT
144 anomaly of a 1pctCO₂ simulation in a 20-year period centered on year-number 70, by
145 which a doubling CO₂ concentration has occurred. It is an important metric representing
146 CO₂-related historical warming and has been widely used for model evaluations and
147 comparisons (Bevacqua et al., 2025; O'neill et al., 2016).


148

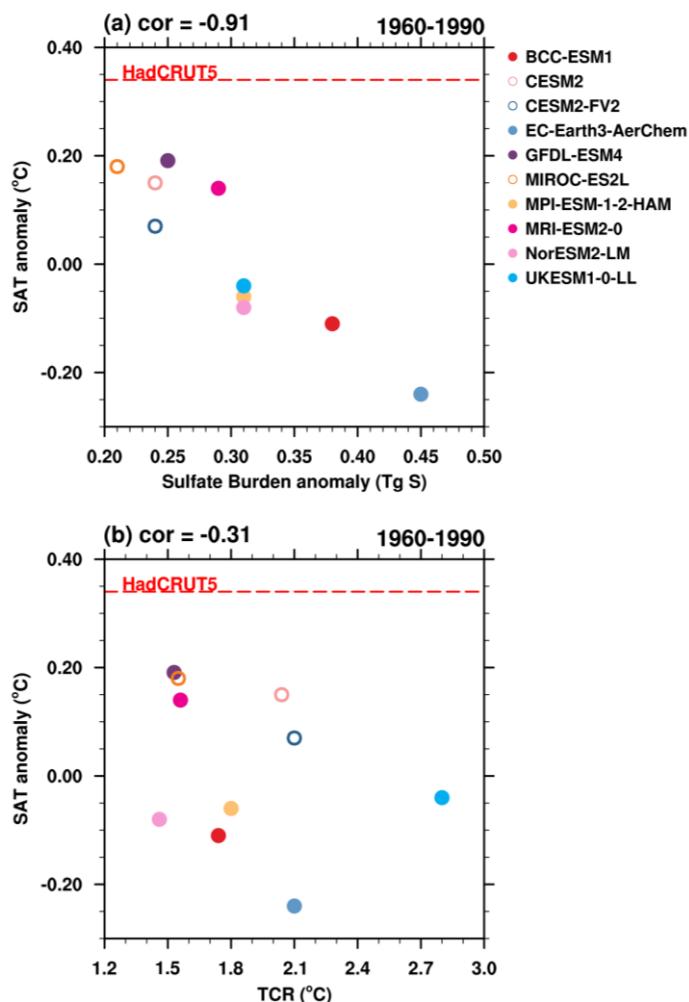
149 3. Results

150 3.1 SAT and sulfate burden

151 The historical evolutions of near-global mean (60°S to 65°N) SATa in the eleven
152 CMIP6 models with interactive aerosol schemes are shown in Fig. 1a. All the models
153 tend to underestimate SATa since the 1930s. The cooling anomaly in CMIP6 model
154 marked a notable departure from earlier model generations, which can effectively
155 capture the instrumental SAT record with observation falling well within model spread
156 (e.g., Flynn and Mauritsen, 2020; Hegerl, et al., 2007).

157 The cooling bias is most pronounced from 1960 to 1990. The SATa is about
 158 0.34°C in the observations. However, the multi-model mean (MMM) SATa is about
 159 0.3°C lower with a large model spread. The SATa ranges from -0.24°C in EC-Earth3-
 160 AerChem to 0.19°C in GFDL-ESM4 and MIROC6. The cooling is noticeable at the
 161 mid to high latitude in the Northern Hemisphere (as shown in the attached SATa map
 162 in Fig.1a). The sudden drop in SATa in the early 1960s and 1990s may be due to the
 163 stronger model responses to large volcanic eruptions, Mount Agung in 1963 and Mount
 164 Pinatubo in 1991, than in the observations (Chylek et al., 2020). The cooling biases
 165 diminish in later periods corresponding to the generally high model sensitivity to
 166 greenhouse gas forcing (Smith and Forster, 2021).

167
 168 **Figure 1.** (a) Historical surface air temperature anomalies (SATa) relative to 1850-1900 mean for
 169 HadCRUT5 (thick black line), the ensemble mean for each CMIP6 model (solid color lines), and
 170 multi-model mean (MMM, dashed black line). The numbers in brackets are the mean results in


171 1960-1990, together with the inter-member spread for each model. Units: $^{\circ}\text{C}$. (b) is the same as (a)
172 but for sulfate burden anomalies for the first realization from each CMIP6 model (solid color lines)
173 and MMM (dashed black line). Units: Tg S.

174

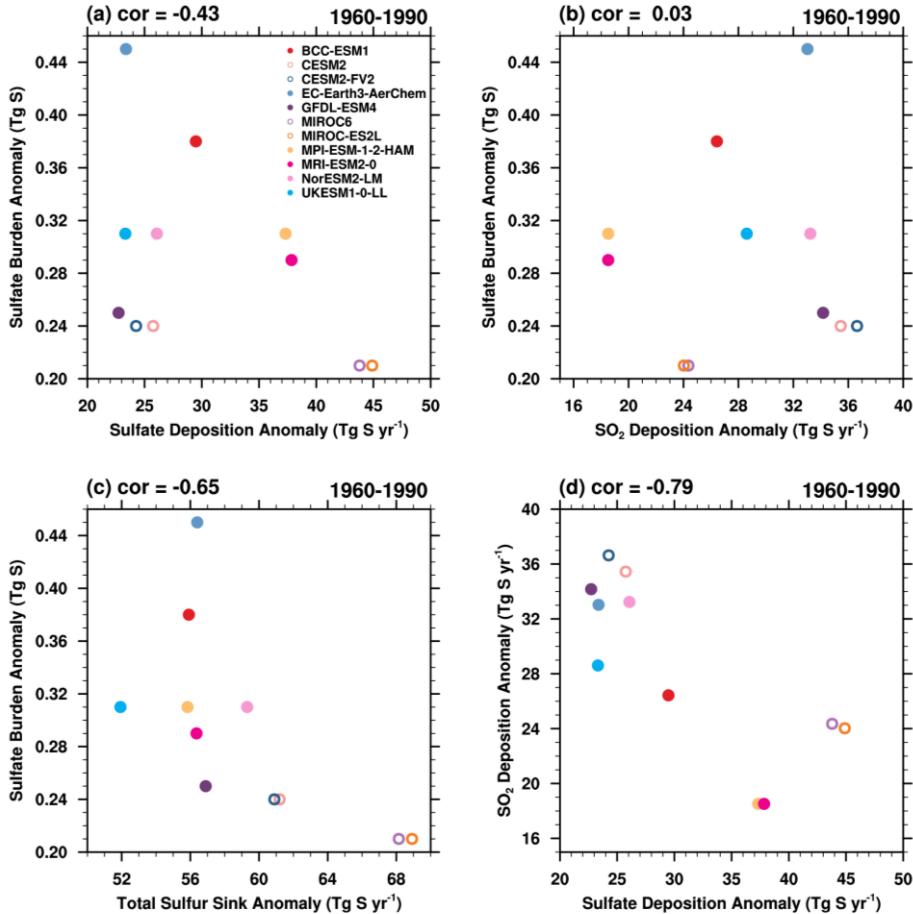
175 The cooling bias coincides with increased anthropogenic emissions, particularly
176 of sulfate precursors such as SO_2 (Zhang et al., 2021a). Global emissions of SO_2 grew
177 steadily after the 1950s and peaked in the 1970s at 180Tg yr^{-1} , which is about 3.6 times
178 the 1950s' emissions (Hoesly et al., 2018). The increasing emissions of SO_2 , as the
179 primary precursor of atmospheric sulfate, have directly contributed to elevated sulfate
180 concentrations in the troposphere. The temporal evolution of sulfate burden
181 demonstrates significant growth trajectories with the anthropogenic emission (Fig.1b),
182 initially driven by industrialization and further accelerated post-1950s mainly due to
183 intensified anthropogenic SO_2 emission from industries and the energy-transformation
184 sectors (e.g., Ohara et al., 2007; Vestreng et al., 2007). The increased sulfate burden
185 interrupted a decades-long warming trend via the cooling effects of sulfate aerosols on
186 climate, even though carbon dioxide emissions continued to rise (Wilcox et al., 2013).
187 Because of the emission control policies in Europe and North America (Hand et al.,
188 2012; Vestreng et al., 2007), such as the Gothenburg Protocol (Eb, 1999) and the 1990
189 Clean Air Act Amendments in the U.S. (Likens et al., 2001), global anthropogenic SO_2
190 emissions were suppressed after the 1980s and SAT started to increase rapidly in the
191 observations (Aas et al., 2019). Anthropogenic SO_2 emission continued to increase
192 across Asia due to industrial developments, but has decreased since 2006 in East Asia
193 (Wang et al., 2021). The CMIP6 emission inventory fails to represent the early 21st
194 century SO_2 emission reductions in East Asia. But it is outside of the 1960-1990 period,
195 and the impact on SAT reproduction is beyond the main scope of this paper.

196 In the 11 CMIP6 models, sulfate concentrations increased rapidly in 1960-1990
197 (Fig.1b). The systematically underestimated SATA indicate excessively strong sulfate-
198 induced cooling effect in CMIP6 models. The MIROC models exhibit the lowest sulfate
199 burden (0.21 Tg S) and smallest cooling bias (0.15°C below HadCRUT5), while EC-
200 Earth3-AerChem approximately doubles the sulfate loading (0.45 Tg S) and nearly four

201 times the cooling bias (0.58°C below HadCRUT5). Generally, models with larger
 202 sulfate burden anomalies also show more pronounced SATa underestimations. As
 203 shown in Fig. 2a, the correlation coefficient between sulfate burden anomaly and SATa
 204 in 1960-1990 is -0.92 , significant at the 1% level using a Student's t -test. Interactive
 205 chemistry may have an impact on sulfate formation and affect the sulfate aerosol
 206 burdens in the atmosphere (Mulcahy et al., 2020). As shown in Fig.2a, models with
 207 interactive chemistry (color dots) seem to have higher sulfate burden anomaly and
 208 lower SATa than models without (color circles). However, the relationship between
 209 sulfate burden anomaly and SATa is consistent among models with and without
 210 interactive chemistry. That is, there is no obvious difference in the relationship between
 211 sulfate burden anomaly and SATa for models with and without interactive chemistry.

212
 213 **Figure 2.** Scatter plots of (a) sulfate burden anomaly in 1960-1990 (Tg S, x-axis) in historical
 214 experiments, and (b) the transient climate response (TCR, $^{\circ}\text{C}$) versus SATa in 1960-1990 ($^{\circ}\text{C}$, y-
 215 axis) for each model. The corresponding correlation coefficient (cor) is shown at the top-left corner

216 of each panel. The anomalies are relative to 1850-1900 mean. Models with and without interactive
217 chemistry are marked by color dots and color circles, respectively.

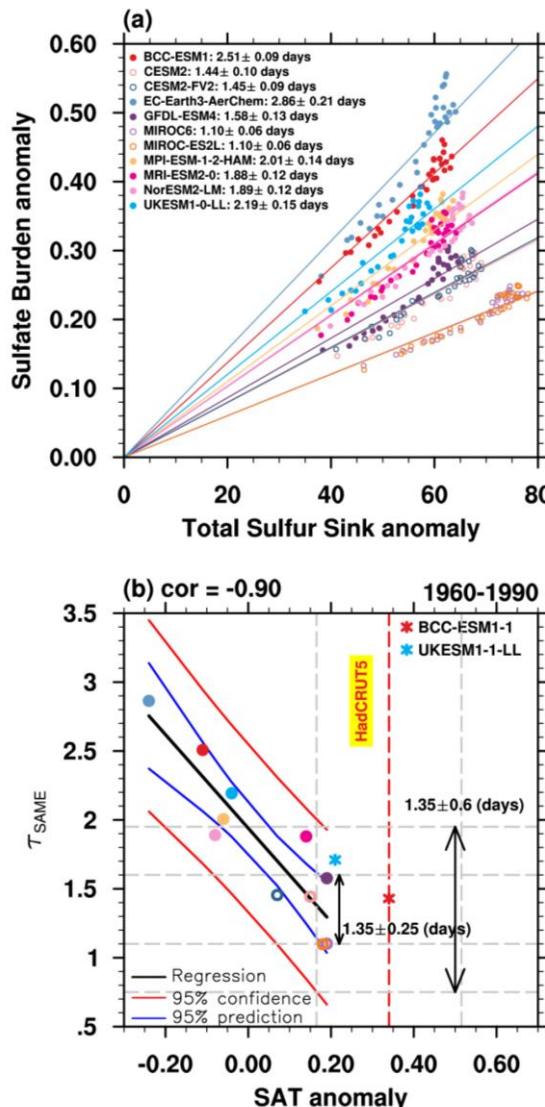

218

219 Greenhouse gases (GHGs) also show a rapidly increasing trend in 1960-1990.
220 However, TCR, which can generally indicate the impact of GHGs, is insignificantly
221 correlated with SAT anomalies in CMIP6 models, and the correlation coefficient across
222 models is even negative (Fig.2b). Therefore, the biases of atmospheric sulfate burden
223 and the associated sulfate aerosol cooling effects play an essential role in the cooling
224 biases in the CMIP6 models.

225 It should be noticed that there are fast and slow components of global warming in
226 response to radiative forcing changes (Held et al., 2010). A fast component with an
227 exponential decay time scale of less than 5 years, primarily driven by rapid adjustments
228 in the upper ocean layers. A slow component that evolves over centuries, associated
229 with heat uptake by deeper ocean layers. The lagged oceanic and dynamical feedbacks
230 will delay and modulate warming rates (Chen et al., 2016; Watterson and Dix, 2005).
231 In this study, the fast response to sulfate forcing can be rapidly detected by SATa,
232 especially when the sulfate forcing is sustained in 1960-1990. The study's global mean
233 perspective makes the results insensitive to the impact of spatial redistribution of
234 temperature anomalies caused by dynamical feedbacks.

235

236 **3.2 Sulfur deposition and a metric for the global sulfur cycle diagnostic (τ_{same})**


237

238 **Figure 3.** (a) Sulfate deposition anomaly (R_{aSO_4}), (b) SO₂ deposition anomaly (R_{aSO_2}), and (c)
239 total sulfur sink anomaly ($R_{aSO_4} + R_{aSO_2}$) versus sulfate burden anomaly (Tg S, y-axis) in each
240 model during 1960-1990. (d) R_{aSO_4} (x-axis) versus R_{aSO_2} (y-axis) during 1960-1990. Units for
241 deposition anomalies are Tg S yr⁻¹.

242

243 Fig. 3 shows the inter-model relationship between global mean anomalies of total
244 sulfate burdens and sulfur deposition during 1960-1990, relative to the 1850-1900
245 baseline period. As shown in Fig.3a, the sulfate burden anomaly (B_{aSO_4}) is negatively
246 correlated with sulfate deposition anomaly (R_{aSO_4}). However, the correlation is not
247 statistically significant, partly attributable to a subset of five models characterized by
248 low sulfate deposition and low sulfate burden. These models degrade the robustness of
249 the linear fit derived from the remaining models. There is no clear statistical
250 relationship between B_{aSO_4} and SO₂ deposition anomaly (R_{aSO_2} , Fig. 3b). However,
251 the correlation between B_{aSO_4} and total sulfur sink anomaly ($R_{aSO_4} + R_{aSO_2}$)
252 increases to -0.65, significant at the 5% level using a Student's t-test (Fig.3c). Notably,

253 within the subset of five models exhibiting both low B_{aSO_4} and low R_{aSO_4} , most
 254 display higher R_{aSO_2} in relative to the ensemble mean. This high R_{aSO_2} compensates
 255 for their low R_{aSO_4} , influencing the total sulfur deposition magnitude sufficiently to
 256 sustain a significant correlation with B_{aSO_4} in these models. Higher SO₂ deposition
 257 rates result in reduced atmospheric SO₂ availability for oxidation to sulfate. That is,
 258 both the sulfate deposition and the SO₂ deposition are responsible for the sulfate burden
 259 anomalies. Further examination indicates that the SO₂ deposition rate anomaly among
 260 the models is highly negatively correlated with the sulfate deposition rate anomaly with
 261 a correlation coefficient of -0.79 (Fig.3d).

262

263 **Figure 4.** (a) Scatter plots of yearly total sulfur sink anomaly ($Tg S yr^{-1}$, x-axis) versus sulfate burden
 264 anomaly ($Tg S$, y-axis) in 1960-1990. Number in legend shows the mean and standard deviation of

265 the ratio between sulfate burden anomaly and total sulfur sink anomaly (τ_{same} , days). (b) The mean
266 SATa (°C, x-axis) versus τ_{same} (days, y-axis) in 1960-1990 for each model. The black solid line
267 is the linear fitting. The blue and red curves are the corresponding 95% confidence interval (CI) and
268 95% prediction interval (PI). SATa in HadCRUT5 and its 0.175°C boundaries are shown by the red
269 dashed line and parallel gray dashed lines. The red and blue asterisks are the results in the two post-
270 CMIP6 models (BCC-ESM1-1 and UKESM1-1-LL).

271

272 Considering the significant influence of total sulfur sink anomalies on sulfate
273 burden anomalies, Fig.4a examines their interannual variability during 1960-1990 in
274 each model. Generally, the sulfate burden anomalies and total sink anomalies are
275 positively correlated and co-vary almost linearly in all the models. The ratio between
276 sulfate burden anomalies and total sulfur sink anomalies is defined as τ_{same} in Section
277 2.2. The mean τ_{same} in 1960-1990 ranges from 1.1 days in MIROC models to 2.86
278 days in EC-Earth3-AerChem. τ_{same} is generally longer in models with interactive
279 chemistry (color dot) than without (color circle).

280 The standard deviation of τ_{same} for each model in 1960-1990 ranges from 0.03
281 to 0.12 days, about 3.0% of the mean τ_{same} . That is, although the sulfate burden
282 increased significantly in 1960-1990, τ_{same} hardly changed. This is an important sign
283 that τ_{same} is a robust index for evaluating the sulfur cycle in model development.
284 Fig. 4b shows τ_{same} and SATa in 1960-1990 in each model. The SATa is highly
285 correlated with τ_{same} with a correlation coefficient of -0.90. That is, τ_{same} is capable
286 of characterizing the cooling anomaly for each model, making it a convenient target for
287 model tuning.

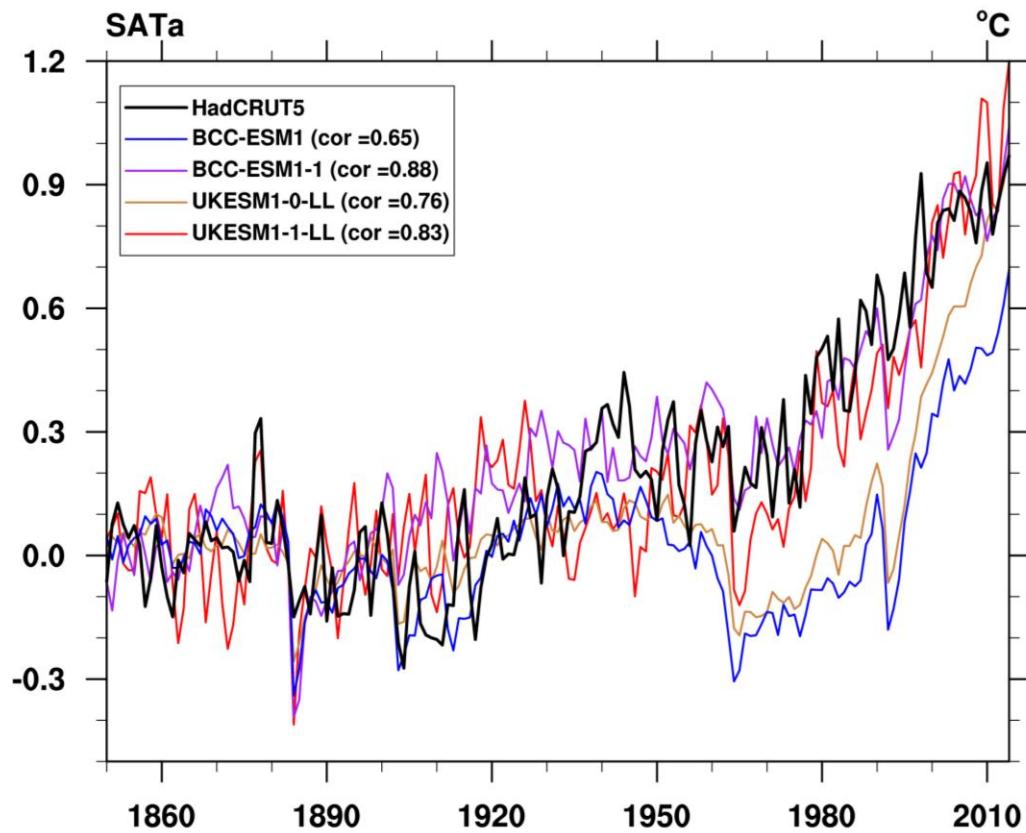
288

289 **3.3 The recommended τ_{same} range and performances in the two post-CMIP6
290 models**

291 Tuning based on τ_{same} requires an empirical best-estimate τ_{same} to aim for.
292 Therefore, a further question is how to estimate the reasonable values for τ_{same} . Here
293 we try to constrain τ_{same} using the SATa in observations. The SATa in 1960-1990 is
294 0.34°C. Considering the internal variability in the climate system and the uncertainty in

295 observation, the observed uncertainty is suggested to be 0.175°C . The observed
296 uncertainty is estimated as the standard deviation of the observed annual mean globally
297 averaged SAT in HadCRUT5 from 1850 to 2014 after removing the least squares linear
298 trend. SATa in seven CMIP6 models falls beyond the observational range. SATa
299 closely approaches the lower bound of observation in the remaining four models, giving
300 a range of τ_{same} between 1.1 to 1.58 days.

301 Here we use this metric to modify the sulfur cycle in BCC-ESM1, more
302 specifically, we quadruple the SO_2 dry deposition over land and multiply the SO_2 dry
303 deposition over the ocean by 1.5. This effect is similar to that in UKESM1-0-LL by
304 modifying SO_2 dry deposition parameterization (Hardacre et al., 2021; Mulcahy et al.,
305 2023). The impact of changes to the SO_2 dry deposition parameterization in UKESM1-
306 0-LL is an increase of SO_2 dry deposition by a factor of 2 to 4. As indicated by the red
307 and blue asterisks in Fig.4b, τ_{same} reduced from 2.51 to 1.43 days in BCC-ESM1-1
308 accompanied by a 0.45°C SATa increase, and reduced from 2.19 to 1.71 days in
309 UKESM1-1-LL with a concurrent 0.25°C SATa rise. The SATa from both post-CMIP6
310 models falls within the observational uncertainty ranges.


311 We perform linear fitting between SATa and τ_{same} (black line in Fig. 4b), along
312 with the 95% confidence interval (CI, blue curves), and the 95% prediction interval (PI,
313 red curves) across the eleven CMIP6 models. Given that most models underestimate
314 SATa relative to observations, extrapolating τ_{same} for SATa exceeding the lower
315 bound of observation becomes highly uncertain. Results from BCC-ESM1-1 suggest
316 that the rate of decrease in τ_{same} predicted by the regression line may not hold for
317 SATa values above the observed lower bound (0.165°C). Therefore, we estimate τ_{same}
318 by the linear fitting at the observed lower bound, yielding a central τ_{same} estimate of
319 1.35 days. Critically, this value carries inherent uncertainties that must be quantified:

320 - The 95% confidence interval (CI) of ± 0.25 days (i.e., 1.10–1.60 days).

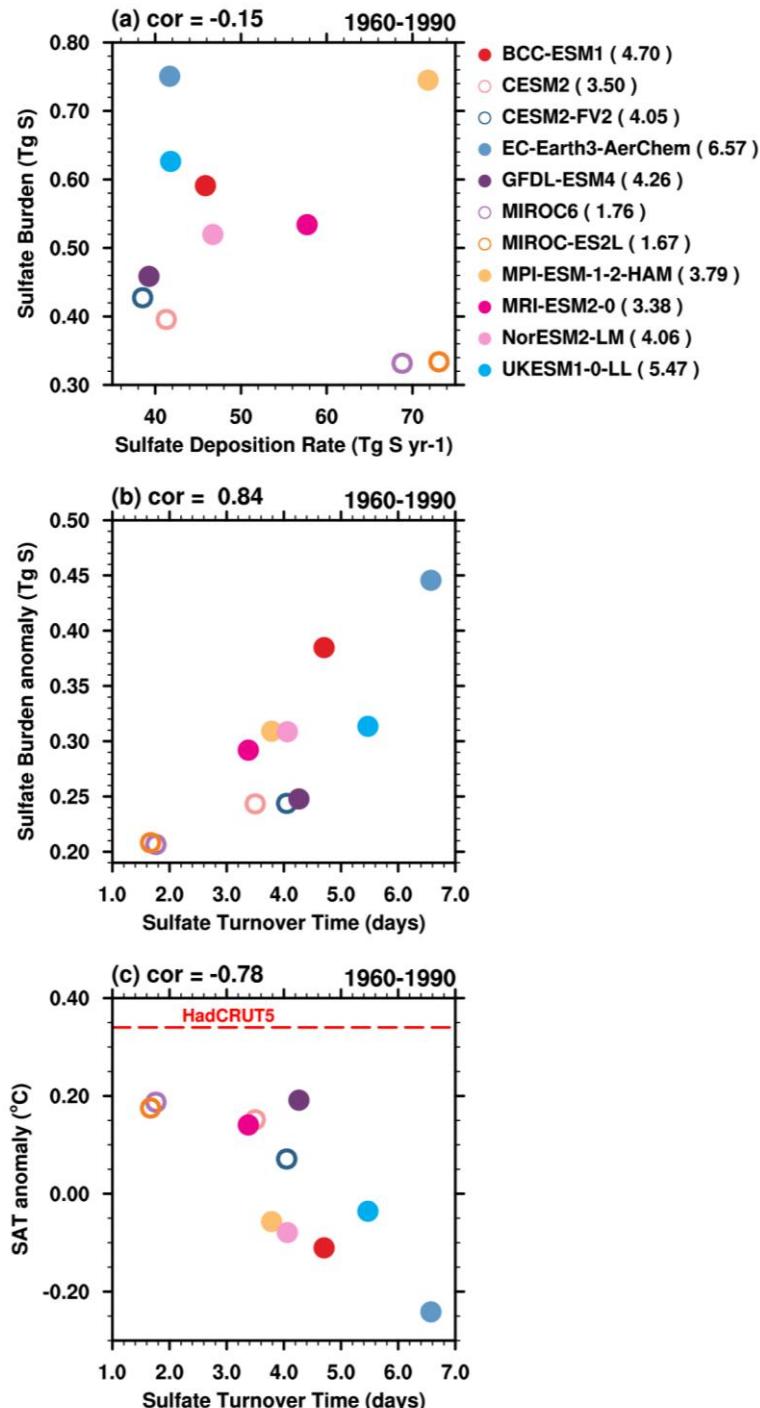
321 - The wider 95% prediction interval (PI) of ± 0.6 days (i.e., 0.75–1.95 days).

322 The substantial difference between the CI and PI ranges underscores the challenge

323 in precisely constraining τ_{same} . We advise using the PI for applications requiring
324 robustness against individual model deviations.

326 **Figure 5.** Evolutions of SATa relative to 1850-1900 mean for HadCRUT5, BCC-ESM models, and
327 UKESM models. The numbers in legend are the corresponding correlation coefficients with
328 HadCRUT5.

329


330 As demonstrated by the global mean SATa in BCC-ESM1-1 and UKESM1-1-LL
331 models (Fig.5), both models on average tracked the instrumental record quite well with
332 statistically higher correlation coefficients with observation (HadCRUT5). That is,
333 improvements in sulfur deposition parameterizations, which reduced τ_{same} , improved
334 the representation of historical surface temperature evolution.

335

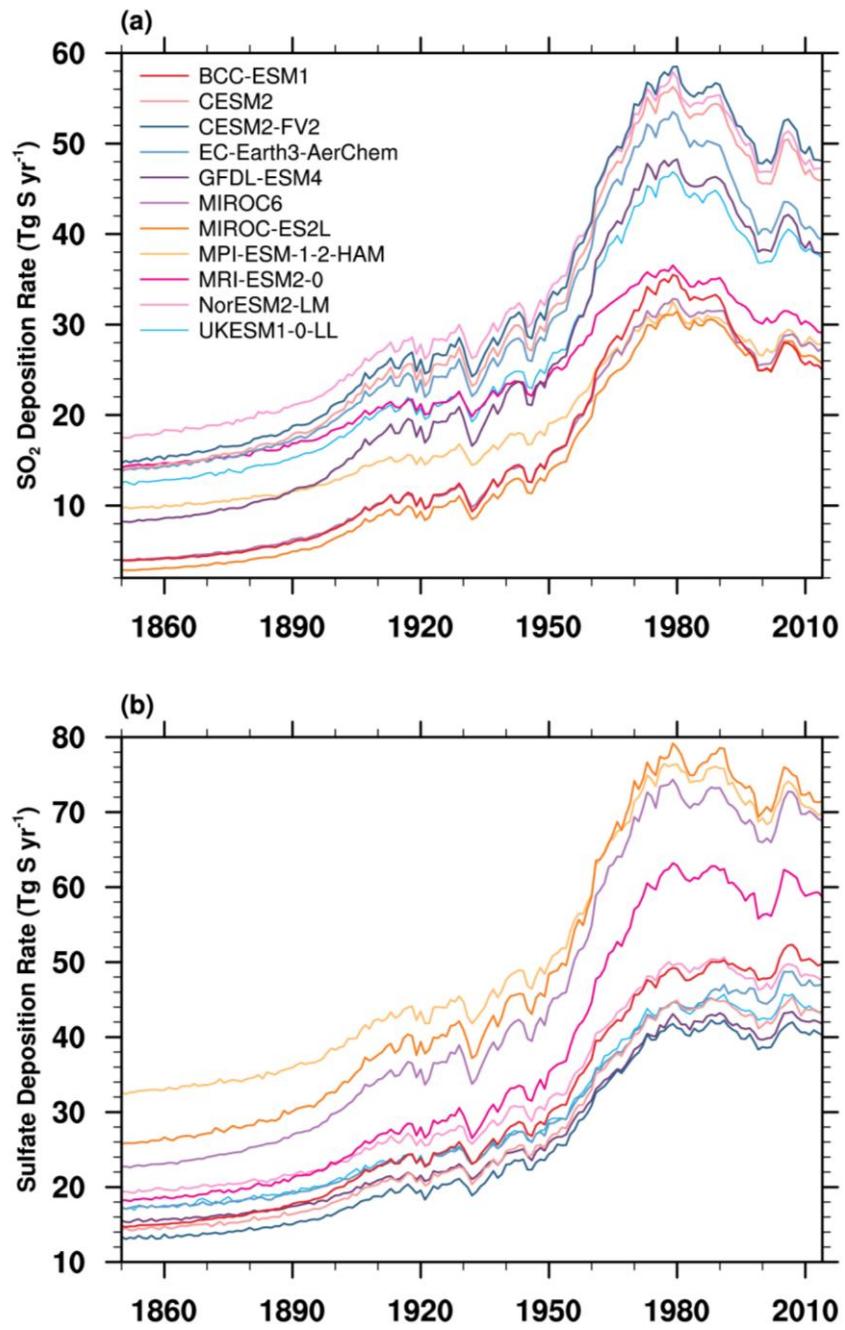
336 **3.4 Sulfate turnover time and dominant sulfur deposition**

337 τ_{same} can be derived from fundamental model output variables, ensuring
338 straightforward calculation across all models. While we recognize that τ_{same} is a

339 composite metric incorporating both SO_2 and sulfate deposition rather than a physical
 340 timescale, here we examine two metrics with clear physical interpretations to identify
 341 the dominant physical processes.

342

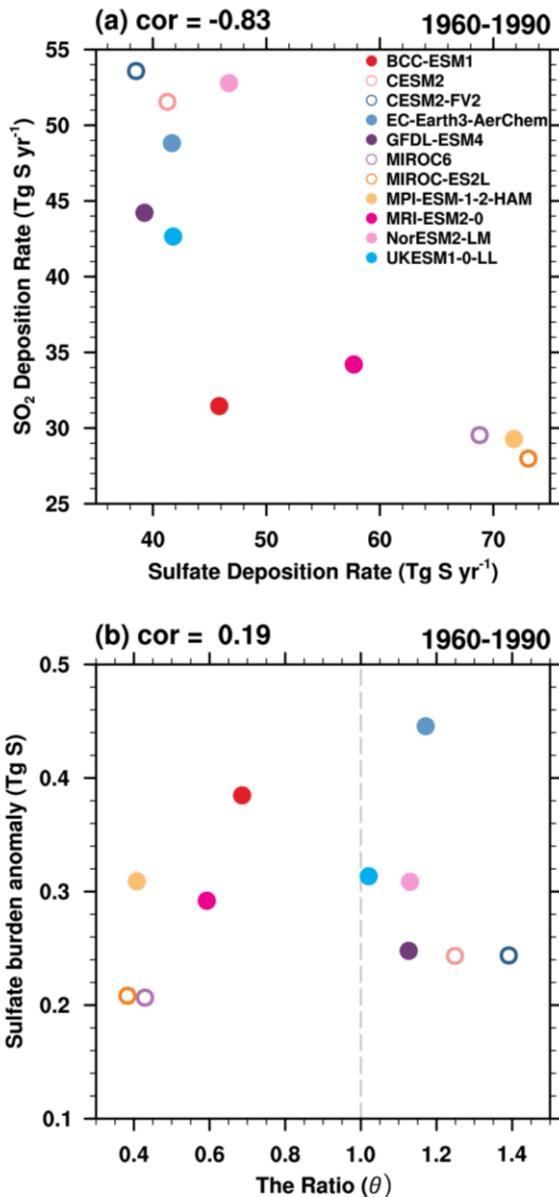
343 **Figure 6.** (a) Sulfate deposition versus sulfate burden in 1960-1990. (b) Sulfate turnover time versus
 344 sulfate burden anomaly in 1960-1990. (c) Sulfate turnover time versus SATa in 1960-1990.


345

346 Figure 6 presents the sulfate deposition and sulfate burden in 1960-1990. A weak
347 negative correlation (-0.15) indicates that sulfate deposition alone cannot fully explain
348 sulfate burden differences in these simulations. Sulfate turnover time is critical for
349 validating the model capability in representing the sulfate cycle. It is quantified
350 following Eq. (2) in Section 2.2 as the ratio of sulfate burden to sulfate deposition,
351 representing the average atmospheric residence time of sulfate aerosols. The sulfate
352 turnover time exhibits considerable inter-model variability, ranging from 1.67 days in
353 MIROC-ES2L to 6.57 days in EC-Earth3-AerChem. These results generally agree
354 with most aerosol models, which typically simulate sulfate lifetimes of around 4 days
355 (e.g., Textor et al., 2006; Liu et al., 2012; Matsui and Mahowald, 2017; Tegen et al.,
356 2019). However, sulfate turnover time in models is notably shorter than observational
357 estimates, 7.3 days (0.02 yr) in Charlson et al. (1992) and 10-14 days in Kristiansen et
358 al. (2012). This discrepancy may stem from premature removal processes, inadequate
359 poleward transport, or incomplete chemical representations (e.g., Croft et al., 2014).

360 The inter-model variations in sulfate turnover time exhibit a strong correlation with
361 sulfate burden anomalies and SAT anomaly during the 1960-1990 period, with a
362 correlation coefficient of 0.84 and -0.78 (Fig.6b and Fig.6c). This suggests that
363 differences in sulfate turnover time may account for both the sulfate burden anomaly
364 variations and the consequent surface temperature differences among models.
365 However, CMIP6 models systematically overestimate sulfate burden anomalies,
366 implying that these models should exhibit shorter lifetimes to produce lower sulfate
367 burden anomalies (Fig.6c). This would further exacerbate the existing underestimation
368 of sulfate turnover time in CMIP6 models. Thus, enhancing sulfate deposition to
369 mitigate burden anomalies is not an appropriate solution.

370 Sulfate turnover time in the two post-CMIP6 models, 8.53 days in BCC-ESM1-1
371 and 5.77 days in UKESM1-1-LL, is generally longer than that of their CMIP6 versions.
372 The longer sulfate lifetimes in the two post-CMIP6 models may be due to lower SO₂ in


373 these revised models, but also could be due to physical climate changes (e.g.,
374 temperatures, clouds, rainfall).

375

376 **Figure 7.** Evolution of (a) the SO_2 deposition rate (R_{SO_2}), and (b) the sulfate deposition rate (R_{SO_4}).

377

378

379 **Figure 8.** (a) SO_2 deposition rate (R_{SO_2}) versus sulfate deposition rate (R_{SO_4}) in 1960-1990. (b)
380 Ratio between R_{SO_2} and R_{SO_4} (θ , x-axis) versus sulfate burden anomaly (y-axis) in 1960-1990.

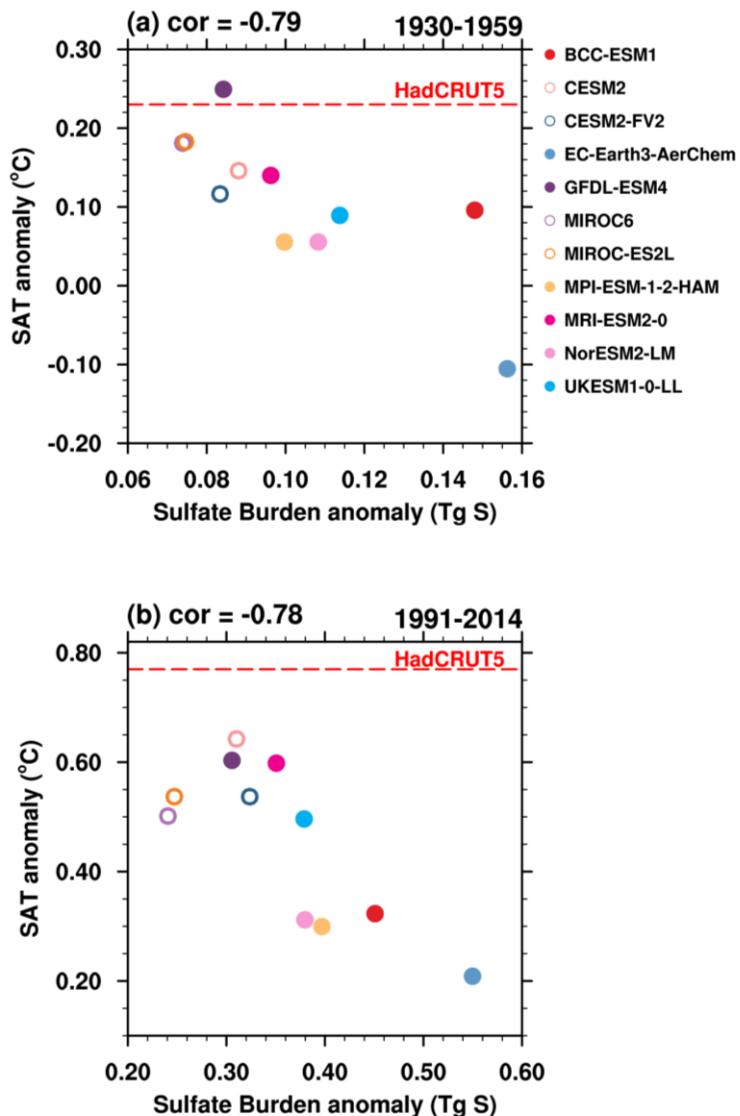
381

382 Considering the importance of sulfate and SO_2 deposition to sulfate burden
383 changes, we further examine their dominance in CMIP6 models. The temporal
384 evolutions of SO_2 and sulfate depositions exhibit a clear dependence on the
385 anthropogenic SO_2 emission across the 11 CMIP6 models (Fig.7). Notably, models
386 with higher sulfate deposition rates generally show lower SO_2 deposition rates. Their
387 correlation is significant with a correlation coefficient of -0.83 in 1960-1990 (Fig. 8a).

388 We examine the dominance of sulfate and SO₂ deposition by their ratio:

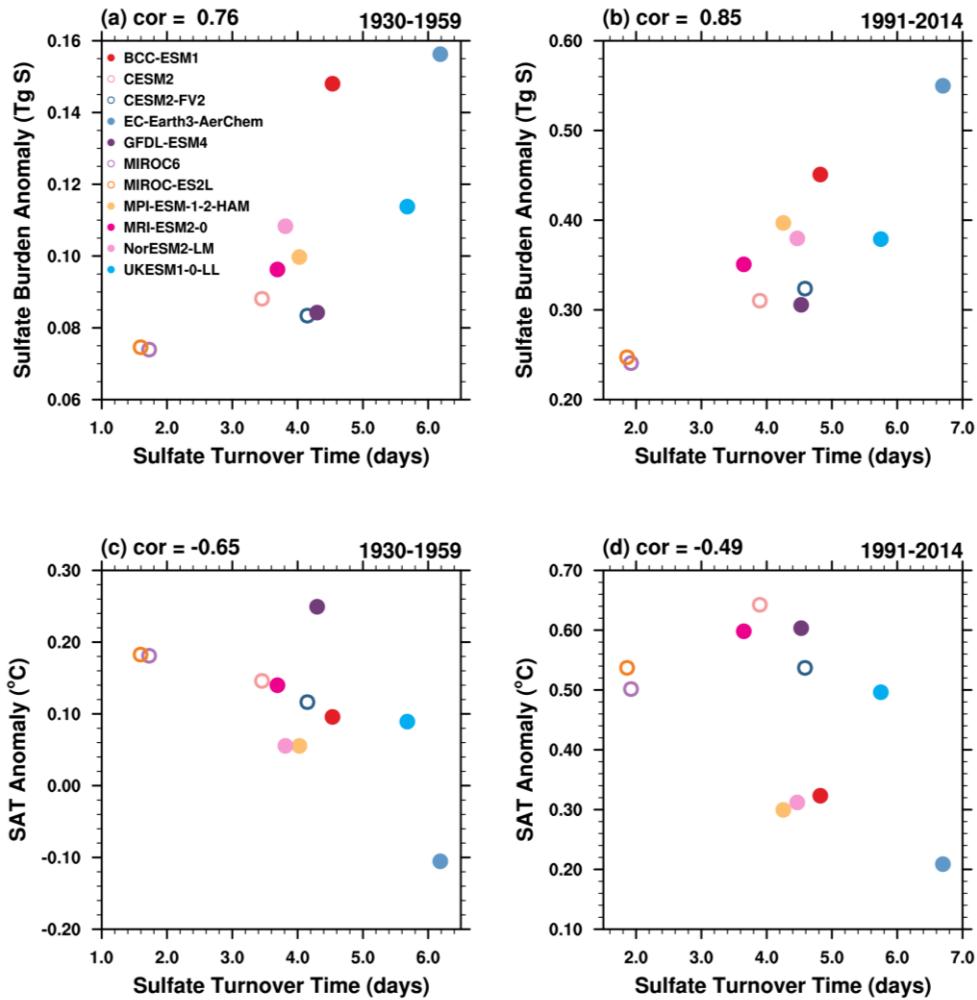
389
$$\theta = \frac{R_{SO_2}}{R_{SO_4}} \quad (3),$$

390 where R_{SO_2} and R_{SO_4} denotes the deposition rate of SO₂ and sulfate, respectively.
391 The ratio between SO₂ deposition and sulfate deposition (θ) also varies across CMIP6
392 models (Fig.8b). In 5 out of 11 models, sulfate removal dominates over SO₂ removal,
393 while the opposite is true in the remaining four. The ratio θ , which reflects the relative
394 dominance of sulfur deposition, does not exhibit a clear relationship with sulfate
395 burden anomalies. This suggests that θ is not a major source of inter-model
396 discrepancy in sulfate burden anomalies.


397 Sulfur oxidation rate is also a physically meaningful metric, which quantifies the
398 efficiency of atmospheric conversion of SO₂ to sulfate and indicates the degree of
399 secondary aerosol formation. However, it cannot be evaluated precisely since this
400 variable is not available for most CMIP6 models.

401

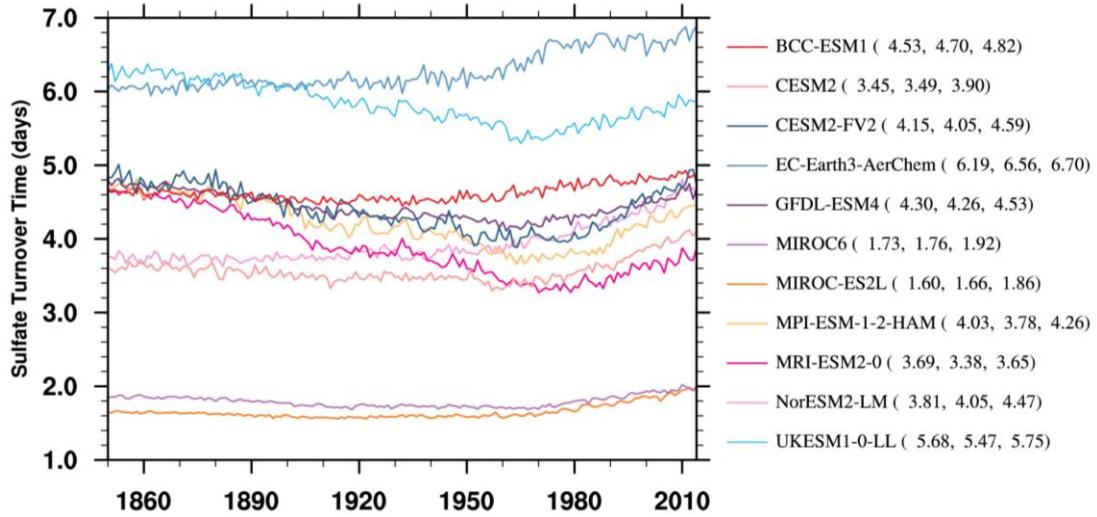
402 4. Relative changes preceding and following the 1960-1990 period


403 Our analysis reveals a robust correlation between sulfate burden anomalies and
404 SATa in 1960-1990 (Fig. 2a). To assess temporal consistency, we examined these
405 relationships before and after this period. Since their relationship reflects clear
406 underlying physics, we expected similar correlations across periods. As shown in Fig.9,
407 statistically significant correlations are evident in both periods, suggesting that sulfate
408 burden anomaly was overestimated prior to the 1960-1990 interval, and this
409 overestimation continued to influence SATa in subsequent years. The SATa is
410 underestimated by 0.11°C during 1930-1959 and by 0.31°C during 1991-2014 in MMM
411 relative to HadCRUT5. The correlations between sulfate burden anomaly and SATa (-
412 0.79 and -0.78) are weaker than that in 1960–1990 (-0.91). This may be potentially due
413 to the smaller sulfate burden bias during the 1930-1959 interval. The combined effects
414 of high model sensitivity in CMIP6 models (Hausfather et al., 2022) and the
415 atmospheric CO₂ accumulation since the Industrial Revolution may partially offset the

416 cooling bias during the 1991-2014 period.

417

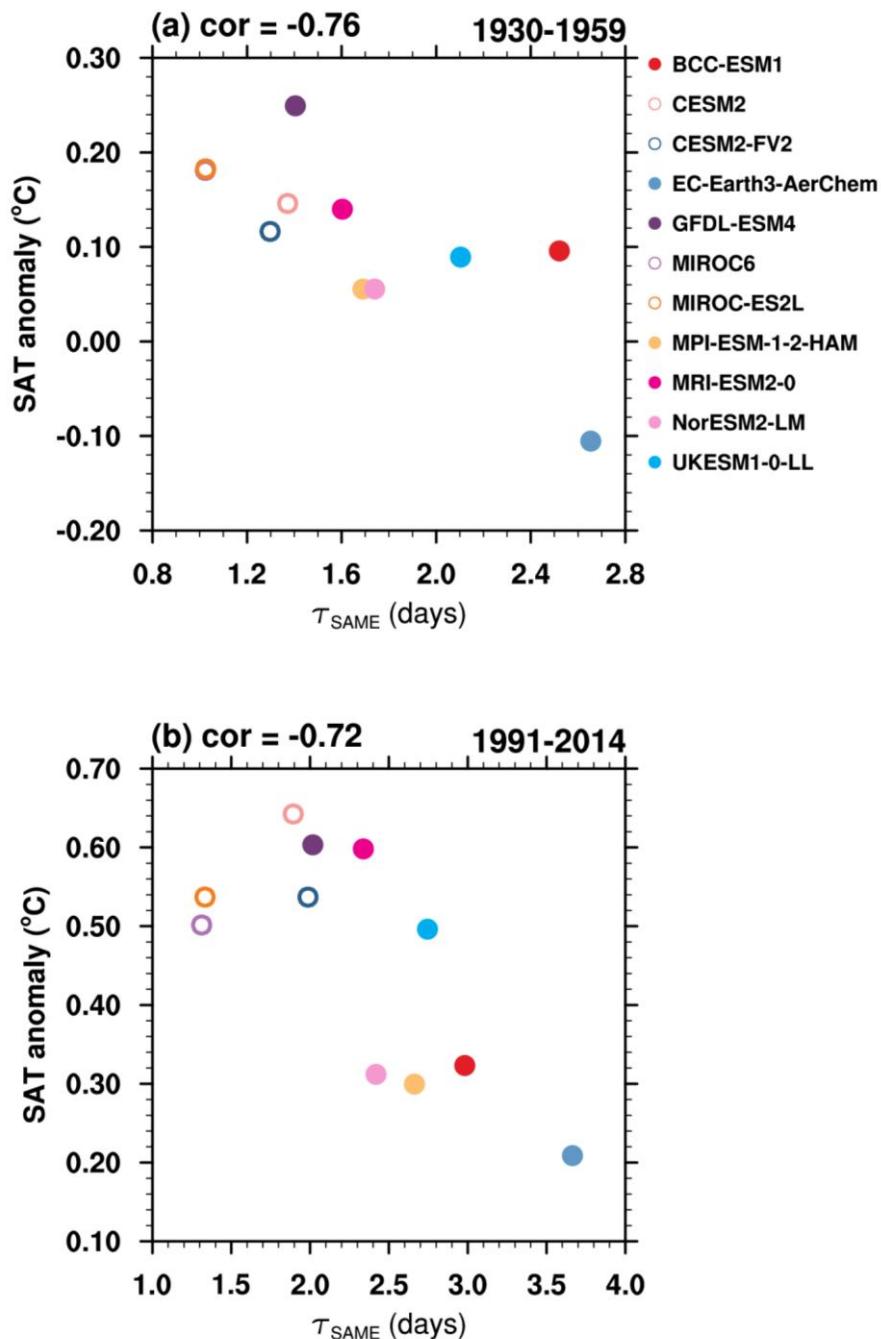
418 **Figure 9.** Correlate sulfate burden anomalies with SATa in (a) 1930-1959, and (b) 1991-2014.



419

420 **Figure 10.** Correlation between sulfate turnover time (τ_{SO_4}) and: (a, b) sulfate burden anomalies,
 421 and (c, d) SATa for the periods 1930-1959 and 1991-2014.

422


423 Sulfate turnover time serves as a key parameter influencing sulfate burden
 424 variations and exhibits a strong correlation with SATa in 1960–1990 (Figs. 6b and 6c).
 425 Significant correlations between sulfate turnover time and both sulfate burden
 426 anomalies and SATa persist both before and after this period (Fig. 10), confirming the
 427 dominant role of sulfate physical processes across all examined time periods.

428

429 **Figure 11.** Temporal evolution of sulfate turnover time (τ_{SO_4}) in CMIP6 models. Numerical labels
 430 denote mean τ_{SO_4} value during 1930-1959, 1960-1990, and 1991-2014.

431 We also examine the temporal evolution of sulfate turnover time (Fig.11). Its
 432 temporal variability, indicated by the standard deviation ($\sigma < 0.5$ days), is substantially
 433 smaller than the inter-model spread. For 1930-1959, models exhibit divergent changes
 434 with 5 of 11 models simulating reduced turnover times in the following period.
 435 Conversely, all models show prolonged turnover times during 1991-2014 relative to
 436 earlier periods. This may be partly due to the shift in the regional distribution of sulfur
 437 emissions, with an increasing proportion of emissions from Asia and stringent emission
 438 control policies in Europe and North America.

439

440 **Figure 12.** Correlation between τ_{same} and SATa over (a) the 1930-1959 period, and (b) the 1991-
441 2014 period.

442

443 The τ_{same} in CMIP6 models show comparable magnitudes between 1930-1959
444 and 1960-1990, followed by a modest amplification during 1991-2014 (Fig. 12). This
445 may partially reflect spatial shifts in emission sources, analogous to sulfate turnover
446 time (Fig.11). Notably, τ_{same} maintains more significant correlations with SATa in

447 both periods (-0.76 and -0.72) compared to sulfate turnover time (-0.65 and -0.49 in
448 Fig.10c and Fig.10d), mirroring the relationship seen during the 1960-1990 period (-
449 0.90 in Fig.4b versus -0.78 in Fig. 6c).

450

451 5. Conclusions

452 Aerosol cooling effect is considered to be the second most important
453 anthropogenic forcing over the 20th Century. Our study, based on the 11 CMIP6 models
454 with aerosol schemes, demonstrates that the cooling bias in 1960-1990 is closely related
455 to the sulfate burden changes in the atmosphere. Sulfate burden anomaly in the models,
456 and hence the strength of the cooling bias, is determined by sulfur deposition. We
457 introduce a metric, called τ_{same} , which incorporates the effects of sulfur removal
458 processes on sulfate concentration. The index is highly correlated with cooling and can
459 be used to constrain sulfur removal processes in models, on a global scale. **Sulfate**
460 **turnover time is critical for validating the model's physical realism and is further**
461 **examined to ensure model credibility.** Analysis of sulfate turnover time compared with
462 observational measurement demonstrates that increasing sulfate deposition to reduce
463 sulfate burden anomalies is not a reasonable approach.

464 A constraint on τ_{same} , derived from observed SATa, is used to improve SO₂
465 deposition parameterizations in models. The modifications in BCC-ESM1 and
466 UKESM1-0-LL lead to shortened τ_{same} values and improved SATa simulations. The
467 optimal τ_{same} is 1.35 days, with a 95% confidence interval (CI) of ± 0.25 days and a
468 95% prediction interval (PI) of ± 0.6 days.

469 Analyses both preceding and following the 1960-1990 period indicate the
470 persistent dominance of sulfate physical processes across all examined time periods.
471 Therefore, the models are likely to underestimate the rate of warming in future climate
472 **projections.** This has potential implications for the use of CMIP6 in scenarios that
473 incorporate clean-air measures to inform the Paris Agreement goals of limiting
474 warming to below 2 or 1.5°C, i.e., SSP1-2.6 and SSP1-1.9 in CMIP6 (O'neill et al.,

475 2016). Generally, τ_{same} introduced in this study provides a tunable measurement,
476 which can be directly calculated from basic model output. It can effectively guide
477 modifications to sulfur processes, ensuring that models do not overestimate the sulfate
478 cooling effect over the historical period, as was the case in CMIP6 and is a current
479 concern for model performance in the upcoming CMIP7.

480

481 **Code availability**

482 All data processing codes are available if a request is sent to the corresponding authors.

483

484 **Data availability**

485 The HadCRUT5 dataset is accessible through Met Office Hadley Centre observations

486 database (<https://www.metoffice.gov.uk/hadobs/hadcrut5/>). All the model data can be

487 freely downloaded from the Earth System Grid Federation (ESGF) nodes

488 (<https://aims2.llnl.gov/search/cmip6/>).

489

490 **Author contributions**

491 The main ideas were formulated by J.Z. and K.F. J.Z. wrote the original draft. The

492 results were supervised by K.F. and S.T.T. All the authors discussed the results and

493 contributed to the final manuscript.

494

495 **Competing interests**

496 The authors declare no competing financial and/or non-financial interests.

497

498 **Acknowledgements**

499 We sincerely appreciate the constructive and insightful comments from Dr. Stephen E.

500 Schwartz and anonymous reviewers, which significantly improved the quality of this

501 manuscript. We acknowledge all data developers, their managers, and funding agencies

502 for the datasets used in this study, whose work and support are essential to us.

503

504 **Financial support**

505 This work was jointly supported by the National Natural Science Foundation of China

506 (Grant no. 42341202 and 42230608) and the UK–China Research and Innovation

507 Partnership Fund through the Met Office Climate Science for Service Partnership
508 (CSSP) China as part of the Newton Fund.
509

510 **References**

511 Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J.,
512 Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié,
513 D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein,
514 A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of
515 atmospheric sulfur, *Scientific Reports*, 9, 953, 10.1038/s41598-018-37304-0,
516 2019.

517 Bevacqua, E., Schleussner, C., and Zscheischler, J.: A year above 1.5 °C signals that
518 Earth is most probably within the 20-year period that will reach the Paris
519 Agreement limit, *Nature Climate Change*, 1-4, 10.1038/s41558-025-02246-9,
520 2025.

521 Chen, J. P., Chen, I. J. and Tsai, I. C.: Dynamic Feedback of Aerosol Effects on the
522 East Asian Summer Monsoon, *Journal of Climate*, 29, 6137-6149. 2016.

523 Chylek, P., Folland, C., Klett, J. D., and Dubey, M. K.: CMIP5 Climate Models
524 Overestimate Cooling by Volcanic Aerosols, *Geophysical Research Letters*, 47,
525 e2020GL087047, <https://doi.org/10.1029/2020GL087047>, 2020.

526 Croft, B., Pierce, J. R. and Martin, R. V.: Interpreting aerosol lifetimes using the GEOS-
527 Chem model and constraints from radionuclide measurements, *Atmospheric
528 Chemistry and Physics*, 14, 4313-4325. 2014.

529 Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
530 Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C.,
531 Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T.
532 M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-
533 Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L.,
534 Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B.,
535 Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson,
536 S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The
537 Community Earth System Model Version 2 (CESM2), *J. Adv. Model. Earth Syst.*,
538 12, 35, 10.1029/2019ms001916, 2020.

539 Dittus, A. J., Hawkins, E., Wilcox, L. J., Sutton, R. T., Smith, C. J., Andrews, M. B.,

540 and Forster, P. M.: Sensitivity of Historical Climate Simulations to Uncertain
541 Aerosol Forcing, Geophysical Research Letters, 47, e2019GL085806,
542 10.1029/2019gl085806, 2020.

543 Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T.,
544 Bergmann, T., Bernadello, R., Bousetta, S., Caron, L. P., Carver, G., Castrillo, M.,
545 Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier,
546 D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg,
547 J., Hieronymus, J., Karami, M. P., Keskinen, J. P., Koenigk, T., Makkonen, R.,
548 Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L.,
549 van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega,
550 P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager,
551 P., Schmitt, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B.,
552 Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D.,
553 Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3
554 Earth System Model for the Climate Model Intercomparison Project 6, Geosci.
555 Model Dev. Discuss., 2021, 1-90, 10.5194/gmd-2020-446, 2021.

556 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G.,
557 Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A.,
558 Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin,
559 R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He,
560 J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonorov, S., Paynter, D.
561 J., Poshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T.,
562 Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton,
563 M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth
564 System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description
565 and Simulation Characteristics, J. Adv. Model. Earth Syst., 12,
566 10.1029/2019ms002015, 2020.

567 EB, U.: Protocol to Abate Acidification, Eutrophication and Ground-level Ozone, 1999.
568 Flynn, C. M. and Mauritzen, T.: On the climate sensitivity and historical warming
569 evolution in recent coupled model ensembles, Atmos. Chem. Phys., 20, 7829-7842,

570 10.5194/acp-20-7829-2020, 2020.

571 Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M.,
572 Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K.,
573 Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth
574 system model and the evaluation of biogeochemical processes and feedbacks,
575 Geoscientific Model Development, 13, 2197-2244, 10.5194/gmd-13-2197-2020,
576 2020.

577 Hand, J. L., Schichtel, B. A., Malm, W. C., and Pitchford, M. L.: Particulate sulfate ion
578 concentration and SO₂ emission trends in the United States from the early 1990s
579 through 2010, Atmos. Chem. Phys., 12, 10353-10365, 10.5194/acp-12-10353-
580 2012, 2012.

581 Hansen, J., Kharecha, P., Sato, M., Tselioudis, G., Kelly, J., Bauer, S., Ruedy, R., Jeong,
582 E., Jin, Q., Rignot, E., Velicogna, I., Schoeberl, M., Schuckmann, K., Amponsem,
583 J., Cao, J., Keskinen, A., Li, J., and Pokela, A.: Global Warming Has Accelerated:
584 Are the United Nations and the Public Well-Informed?, Environment: Science and
585 Policy for Sustainable Development, 67, 6-44, 10.1080/00139157.2025.2434494,
586 2025.

587 Hardacre, C., Mulcahy, J. P., Pope, R. J., Jones, C. G., Rumbold, S. T., Li, C., Johnson,
588 C., and Turnock, S. T.: Evaluation of SO₂, SO₄²⁻ and an updated SO₂ dry
589 deposition parameterization in the United Kingdom Earth System Model,
590 Atmospheric Chemistry and Physics, 21, 18465-18497, 10.5194/acp-21-18465-
591 2021, 2021.

592 Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. and Zelinka, M.:
593 Climate simulations: recognize the 'hot model' problem, Nature, 605, 26-29. 2022.

594 Hegerl, G.C., F. W. Zwiers, P. Braconnot, N.P. Gillett, Y. Luo, J.A. Marengo Orsini,
595 N. Nicholls, J.E. Penner and P.A. Stott, 2007: Understanding and Attributing
596 Climate Change. In: Climate Change 2007: The Physical Science Basis.
597 Contribution of Working Group I to the Fourth Assessment Report of the
598 Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning,
599 Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge

600 University Press, Cambridge, United Kingdom and New York, NY, USA.

601 Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F. R. and Vallis, G. K.:
602 Probing the Fast and Slow Components of Global Warming by Returning
603 Abruptly to Preindustrial Forcing, *Journal of Climate*, 23, 2418-2427. 2010.

604 Hienola, A., Partanen, A.-I., Pietikäinen, J.-P., O'Donnell, D., Korhonen, H., Matthews,
605 H. D., and Laaksonen, A.: The impact of aerosol emissions on the 1.5 °C pathways,
606 *Environmental Research Letters*, 13, 044011, 10.1088/1748-9326/aab1b2, 2018.

607 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,
608 T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L.,
609 Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke,
610 P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive
611 gases and aerosols from the Community Emissions Data System (CEDS), *Geosci.
Model Dev.*, 11, 369-408, 10.5194/gmd-11-369-2018, 2018.

613 IPCC. Climate Change 2021 – The Physical Science Basis: Working Group I
614 Contribution to the Sixth Assessment Report of the Intergovernmental Panel on
615 Climate Change, 10.1017/9781009157896, 2023.

616 Likens, G. E., Butler, T. J., and Buso, D. C.: Long- and short-term changes in sulfate
617 deposition: Effects of the 1990 Clean Air Act Amendments, *Biogeochemistry*, 52,
618 1-11, 10.1023/a:1026563400336, 2001.

619 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F.,
620 Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C.,
621 Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton,
622 C. S., Flanner, M. G. and Mitchell, D.: Toward a minimal representation of
623 aerosols in climate models: description and evaluation in the Community
624 Atmosphere Model CAM5, *Geoscientific Model Development*, 5, 709-739. 2012.

625 Matsui, H. and Mahowald, N.: Development of a global aerosol model using a two-
626 dimensional sectional method: 2. Evaluation and sensitivity simulations, *Journal
627 of Advances in Modeling Earth Systems*, 9, 1887-1920. 2017.

628 Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V.,
629 Claussen, M., Crueger, T., Esch, M., Fast, J., Fiedler, S., Flaeschner, D., Gayler,

630 V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C.,
631 Hohenegger, C., Ilyina, T., Jahns, T., Jimenez-de-la-Cuesta, D., Jungclaus, J.,
632 Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G.,
633 Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali,
634 K., Moebis, B., Muellner, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D.,
635 Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J.,
636 Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T.,
637 Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L.,
638 Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners,
639 K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-
640 M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
641 CO₂, *J. Adv. Model. Earth Syst.*, 11, 998-1038, 10.1029/2018ms001400, 2019.
642 Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E.,
643 Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An Updated
644 Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5
645 Data Set, *Journal of Geophysical Research-Atmospheres*, 126,
646 10.1029/2019jd032361, 2021.
647 Mulcahy, J. P., Jones, C. G., Rumbold, S. T., Kuhlbrodt, T., Dittus, A. J., Blockley, E.
648 W., Yool, A., Walton, J., Hardacre, C., Andrews, T., Bodas-Salcedo, A., Stringer,
649 M., de Mora, L., Harris, P., Hill, R., Kelley, D., Robertson, E., and Tang, Y.:
650 UKESM1.1: development and evaluation of an updated configuration of the UK
651 Earth System Model, *Geosci. Model Dev.*, 16, 1569-1600, 10.5194/gmd-16-1569-
652 2023, 2023.
653 Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock,
654 S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse,
655 J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P.,
656 Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Molland, J.,
657 O'Connor, F. M., Palmieri, J., Reddington, C., Rumbold, S. T., Richardson, M.,
658 Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S.,
659 and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-

660 GC3.1 CMIP6 historical simulations, Geoscientific Model Development, 13,
661 6383-6423, 10.5194/gmd-13-6383-2020, 2020.

662 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G.,
663 Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi,
664 K., and Sanderson, B. M.: The Scenario Model Intercomparison Project
665 (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461-3482, 10.5194/gmd-9-
666 3461-2016, 2016.

667 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka,
668 T.: An Asian emission inventory of anthropogenic emission sources for the period
669 1980-2020, Atmospheric Chemistry and Physics, 7, 4419-4444, 10.5194/acp-7-
670 4419-2007, 2007.

671 Samset, B. H., Sand, M., Smith, C. J., Bauer, S. E., Forster, P. M., Fuglestvedt, J. S.,
672 Osprey, S., and Schleussner, C.-F.: Climate Impacts From a Removal of
673 Anthropogenic Aerosol Emissions, Geophysical Research Letters, 45, 1020-1029,
674 <https://doi.org/10.1002/2017GL076079>, 2018.

675 Seland, Ø., Bentsen, M., Olivié, D., Tonietto, T., Gjermundsen, A., Graff, L. S.,
676 Debernard, J. B., Gupta, A. K., He, Y. C., Kirkevåg, A., Schwinger, J., Tjiputra,
677 J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M.,
678 Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A.,
679 Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.:
680 Overview of the Norwegian Earth System Model (NorESM2) and key climate
681 response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model
682 Dev., 13, 6165-6200, 10.5194/gmd-13-6165-2020, 2020.

683 Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor,
684 F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt,
685 T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham,
686 N. L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E.,
687 Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N.,
688 Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones,
689 A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi,

690 V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T.,
691 Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the UK
692 Earth System Model, *J. Adv. Model. Earth Syst.*, 11, 4513-4558,
693 10.1029/2019ms001739, 2019.

694 Smith, C. J. and Forster, P. M.: Suppressed Late-20th Century Warming in CMIP6
695 Models Explained by Forcing and Feedbacks, *Geophysical Research Letters*, 48,
696 10.1029/2021gl094948, 2021.

697 Steffen, W., Crutzen, P. J., and McNeill, J. R.: The Anthropocene: Are humans now
698 overwhelming the great forces of nature, *Ambio*, 36, 614-621, 10.1579/0044-
699 7447(2007)36[614:taahno]2.0.co;2, 2007.

700 Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K.,
701 Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N.,
702 Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'Ishi, R., Yamazaki, D.,
703 Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description
704 and basic evaluation of simulated mean state, internal variability, and climate
705 sensitivity in MIROC6, *Geoscientific Model Development*, 12, 2727-2765,
706 10.5194/gmd-12-2727-2019, 2019.

707 Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens,
708 N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H.,
709 Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B. and Lohmann,
710 U.: The global aerosol-climate model ECHAM6.3-HAM2.3-Part 1: Aerosol
711 evaluation, *Geoscientific Model Development*, 12, 1643-1677. 2019.

712 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
713 Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter,
714 H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Kristjansson, J. E., Krol, M.,
715 Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari,
716 G., Reddy, S., Seland, O., Stier, P., Takemura, T. and Tie, X.: Analysis and
717 quantification of the diversities of aerosol life cycles within AeroCom,
718 *Atmospheric Chemistry and Physics*, 6, 1777-1813. 2006.

719 Vestreng, V., Myhre, G., Fagerli, H., Reis, S., and Tarrasón, L.: Twenty-five years of

720 continuous sulphur dioxide emission reduction in Europe, *Atmos. Chem. Phys.*, 7,
721 3663-3681, 10.5194/acp-7-3663-2007, 2007.

722 Wang, Z., Lin, L., Xu, Y., Che, H., Zhang, X., Zhang, H., Dong, W., Wang, C., Gui,
723 K., and Xie, B.: Incorrect Asian aerosols affecting the attribution and projection
724 of regional climate change in CMIP6 models, *Npj Climate and Atmospheric*
725 *Science*, 4, 10.1038/s41612-020-00159-2, 2021.

726 Watterson, I. G. and Dix, M. R.: Effective sensitivity and heat capacity in the response
727 of climate models to greenhouse gas and aerosol forcings, *Quarterly Journal of the*
728 *Royal Meteorological Society*, 131, 259-279. 2005.

729 Wilcox, L. J., Highwood, E. J., and Dunstone, N. J.: The influence of anthropogenic
730 aerosol on multi-decadal variations of historical global climate, *Environmental*
731 *Research Letters*, 8, 10.1088/1748-9326/8/2/024033, 2013.

732 Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu,
733 X., Tan, H., Zhang, L., Wang, J., and Hu, A.: Beijing Climate Center Earth System
734 Model version 1 (BCC-ESM1): model description and evaluation of aerosol
735 simulations, *Geosci. Model Dev.*, 13, 977-1005, 10.5194/gmd-13-977-2020, 2020.

736 Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino,
737 H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E.,
738 Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The Meteorological Research
739 Institute Earth System Model Version 2.0, *MRI-ESM2.0: Description and Basic*
740 *Evaluation of the Physical Component*, *Journal of the Meteorological Society of*
741 *Japan*, 97, 931-965, 10.2151/jmsj.2019-051, 2019.

742 Zhang, J., Furtado, K., Turnock, S. T., Mulcahy, J. P., Wilcox, L. J., Booth, B. B.,
743 Sexton, D., Wu, T., Zhang, F., and Liu, Q.: The role of anthropogenic aerosols in
744 the anomalous cooling from 1960 to 1990 in the CMIP6 Earth System Models,
745 *Atmos. Chem. Phys. Discuss.*, 1-39, 10.5194/acp-2021-570, 2021a.

746 Zhang, J., Wu, T., Zhang, F., Furtado, K., Xin, X., Shi, X., Li, J., Chu, M., Zhang, L.,
747 Liu, Q., Yan, J., Wei, M., and Ma, Q.: BCC-ESM1 Model Datasets for the CMIP6
748 Aerosol Chemistry Model Intercomparison Project (AerChemMIP), *Advances in*
749 *Atmospheric Sciences*, 38, 317-328, 10.1007/s00376-020-0151-2, 2021b.