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Section S1. Sensitivity simulations for limonene-derived ON using box model

A series of sensitivity tests were conducted using chemical box model. The initial concentration for the
three oxidants is categorized into low (1.0x10° molecules-cm™ for OH, 1.0x10!! molecules-cm™ for O3,
1.0x10° molecules-cm™ for NOs), medium (1.0x10'! molecules-cm™ for OH, 1.0x10'* molecules-cm
for O3, 1.0x10" molecules:'cm™ for NO;) and high (1.0x10'" molecules-cm™ for OH, 1.0x10!8
molecules-cm™ for O3, 1.0x10' molecules-cm™ for NOs) levels for analysis in experiments with multiple

initial oxidation pathways of limonene.

Sensitivity tests under multiple initial oxidation pathways could be divided into two sets. The first
set of simulations was denoted as individual initial oxidation pathway cases, model was performed with
only one initial oxidation pathway of limonene (OH-, Os- or NOs-initiated oxidation). In the experiments
with OH-initiated oxidation pathway, low to high level of initial concentration of OH was added into
chemical box model. In the experiments with Os-initiated oxidation pathway, initial O3 concentration
ranging from low to high level was set. Similarly, in the experiments with NOs-initiated oxidation
pathway, low to high level initial concentration of NO3 was set. The second set of simulations was
denoted as multiple initial oxidation pathways cases, two and three initial oxidation pathways of
limonene were included in chemical box model. These experiments intended to elucidate the synergistic
effect of multiple initial oxidation pathways. In the experiments of OH + Os initiated oxidation pathway,
low to high level initial concentrations of OH and Oz were added into chemical box model. In the
experiments of OH + NOj initiated oxidation pathway, additional initial OH and NO3 concentrations
ranging from low to high level were set for comparison of an initial concentration of 0 molecules cm™.
Similarly, the experiments of O; + NOs initiated oxidation pathway with low to high level initial
concentrations of O3 and NOs were performed. Lastly, the experiments of OH + O3 + NOs initiated
oxidation pathway with low to high level initial concentrations of OH, O3 and NO; were conducted. To
ensure adequate intermediate reaction processes during the experiments, the initial concentration of other
gaseous species included in chemical mechanism used in experiments were set to high enough.
Experiments including OH-initiated oxidation pathway added an additional concentration of NO3, NO
and HO,, experiments including Os-initiated oxidation pathway added an additional concentration of OH,
NO3, NO, CO, SO, HO; and H,O and experiments including NOs-initiated oxidation pathway need to

add initial concentrations of OH, NO and HO,. Multiple initial oxidation pathway experiments included

2
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OH-initiated, Os-initiated or NOs-initiated oxidation pathways, where the concentration of this oxidant
was set according to the three initial concentration gradients mentioned above. The initial concentration
of these gaseous species (OH, NO3, NO, CO, SO, HO», H,0) were set to 1.0x10'°, 1.0x10'2, 1.0x10'2,

1.0x10',1.0x10', 1.0x10'"! and 1.0x10'® molecules-cm™, respectively.
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Section S2. Sensitivity simulations for global atmospheric ON using global model

We conducted sensitivity simulations to evaluate the impacts of oxidation pathways on burden of
limonene-derived ON. The base case (Case0) includes all three initial oxidation pathways (OH-, Os- and
NOs-initiated oxidation) to form limonene-derived ON. The first sensitivity case (Casel) was designed
to examine the effects of OH-initiated oxidation pathway on global limonene-derived ON formation. In
Casel, the model was run in the same way as Case0 but without OH-initiated oxidation pathway of
limonene. The second sensitivity case (Case2) was designed to examine the effects of Os-initiated
oxidation pathway on global limonene-derived ON formation. Os-initiated oxidation pathway of
limonene is not included in Case2 while all the other settings are the same as Case0. The third sensitivity
case (Case3) was designed to examine the effects of NOs-initiated oxidation pathway on global
limonene-derived ON formation, whose setup is referred to as the base case (Case0) excluding NOs-
initiated oxidation pathway of limonene. The fourth to sixth sensitivity case (Case4-6) was designed to
examine the effects of individual initial oxidation pathway on global limonene-derived ON formation,
whose setup is referred to as the base case (Case0) including OH, O3 or NOs-initiated oxidation pathway

of limonene.
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Section S3. Comparison With Measurements

The model's ability to simulate the formation of limonene-derived organonitrates (ON) is evaluated
through comparisons with surface measurement data summarized in previous publication with references
provided therein.(Li et al., 2023) Given that observational data do not differentiate ON formed
specifically from limonene versus other VOC precursors, we compared simulated surface concentrations
ON under two conditions, with and without developed limonene-derived ON formation mechanism in
this study, against observations at 33 surface sites (Fig. S5). Global observation of ON concentration

ranged from 0.1 to 6.1 pgm

. Simulations excluding limonene-derived ON formation largely
underestimated the results, which may be due to incomplete consideration of the precursors and
formation process of ON in the mechanism. The incorporation of the limonene-derived ON formation
mechanism improved global simulation of ON, resulting in increased simulated concentration of ON
(0.05-0.50 pg m=), which were closer to observations, especially at forest and coastal sites. The
simulated ON concentration were within an order of magnitude of most particulate ON observations,
though the simulated concentrations were still significantly lower than observed values in some urban
and rural sites. It should be noted that this study primarily focused on developing explicit chemical
mechanisms for global model to elucidate oxidation pathways of limonene from biogenic emission
contributing to ON formation. The large underestimation at urban and suburban sites is likely due to the

underestimation of ON generated from anthropogenic VOC emissions in this study, which is needed for

further improvements in future research.
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148 Figure S1. Limonene-derived ON gas-phase formation mechanism. If available, names of the species as they appear
149 in Table S1 and MCM v3.3.1 are given. OH-initiated oxidation pathway of limonene is labeled in red; Os-initiated
150 oxidation pathway of limonene is labeled in yellow; NOs-initiated oxidation pathway of limonene is labeled in green.
151 Subsequent reactions with identical intermediates are represented only once. The green boxes indicate the
152 intermediate oxidation pathways used for the experiments of NOs-initiated oxidation pathways discussed in section

153 3.1
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Figure S3. Simulated concentration variations of limonene by adding OH-initiated, Os-initiated and NOs-initiated
oxidation pathways on the production of limonene-derived ON under different oxidant conditions, including
variation of limonene concentration with adding initial OH concentration in the three O3 levels under (a) low, (b)
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264
265
266
267
268
269
270
271
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272  Table S1. Gas-phase species used in the limonene-derived ON formation mechanism

Short name Chemical formula

LIMO CH3C=CHCH2CH(CH2CH3)C(=CH2)CH2

LIMAO2 [0]OC(CH3)CH2CH2CH(CH2CHOH)C(=CH2)CH3

LIMBO2 [OJOCHCH2CH(CH2CH2C(CH3)OH)C(=CH2)CH3
LIMAOOH HOOC(CH3)CH2CH2CH(CH2CHOH)C(=CH2)CH3
LIMBOOH HOOCHCH2CH(CH2CH2C(CH3)OH)C(=CH2)CH3

LIMOOA O=CHCH2CH(CH2CH2C/(=[O+][0-])CH3)C(=CH2)CH3
LIMOOB [0-][0+]=CHCH2CH(CH2CH2C(=0)CH3)C(=CH2)CH3
NLIMO?2 [O-][N+](=0)OCHCH2CH(CH2CH2C(CH3)0O[0])C(=CH2)CH3
NLIMO2B [OJOCHCH2CH(CH2CH2C(CH3)O(=0)[N+][0-])C(=CH2)CH3
NLIMO2EXO CH3C=CHCH2CH(CH2CH2)C(CH20(=0)[N+][0-])(O[O])CH3
NLIMOOH [O-][N+](=0)OCHCH2CH(CH2CH2C(CH3)OOH)C(=CH2)CH3
NLIMOOHEXO CH3C=CHCH2CH(CH2CH2)C(CH20(=0)[N+][0-])(OOH)CH3
LIMALAO2 O=CHCH2CH(CH2CH(0[O])C(=0)CH3)C(=CH2)CH3
LIMALBO2 [0]OCH2C(=0)CH2CH2CH(CH2CH=0)C(=CH2)CH3
LIMANO3 [0-][N+](=0)OC(CH3)CH2CH2CH(CH2CHOH)C(=CH2)CH3
LIMBNO3 [O-][N+](=0)OCHCH2CH(CH2CH2C(CH3)OH)C(=CH2)CH3
LIMALAOOH O=CHCH2CH(CH2CH(OOH)C(=0)CH3)C(=CH2)CH3
LIMALBOOH HOOCH2C(=0O)CH2CH2CH(CH2CH=0)C(=CH2)CH3
C923CO3H HOOC(=0)CH2CH(CH2CH2C(=0)CH3)C(=CH2)CH3
LIMBOO [0-][0+]=CHCH2CH(CH2CH2C(=0)CH3)C(=CH2)CH3
LIMAO CH3C(=CH2)CHCH2CH2C(CH3)([0])CH(OH)CH2

LIMBO CH3C(=CH2)CHCH2CH2C(CH3)(OH)CH([O])CH2

NLIMO [O-][N+](=0)OCHCH2CH(CH2CH2C(CH3)[0])C(=CH2)CH3
NLIMOEXO CH3C=CHCH2CH(CH2CH2)C(CH20(=0)[N+][0-])([0])CH3
LIMAL O=CHCH2CH(CH2CH2C(=0)CH3)C(=CH2)CH3

LIMBCO CH3C(=CH2)CHCH2CH2C(CH3)(OH)C(=0)CH2

LIMALACO O=CHCH2CH(CH2C(=0)C(=0)CH3)C(=CH2)CH3
LIMALBCO 0=CHCH2CH(CH2CH2C(=0)CH=0)C(=CH2)CH3
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Table S2. Reactions for limonene-derived ON formation mechanism.

Reaction Rate constant (cm3-molecules!'s! ors')  Note
LIMO + OH = LIMAO2 4.3x10 'xexp(401/T)x0.408 b
LIMO + OH = LIMBO2 4.3x10 " xexp(401/T)x0.222 b
LIMAO2 + HO2 = LIMAOOH KRO2HO02x%0.914 b
LIMAO2 + NO = LIMANO3 KRO2NOx0.228 b
LIMAO2 + NO = LIMAO + NO2 KRO2NOx0.772 b
LIMAO2 + NO3 = LIMAO + NO2 KRO2NO3 b
LIMAO2 + RO2 =LIMAO 9.2x10714x0.7 b
LIMAO2 + RO2 = LIMAOH 9.2x10714x0.3 b
LIMBO2 + HO2 = LIMBOOH KRO2HO2x%0.914 b
LIMBO2 + NO = LIMBNO3 KRO2NOx0.228 b
LIMBO2 + NO = LIMBO + NO2 KRO2NOx0.772 b
LIMBO2 + NO3 = LIMBO + NO2 KRO2NO3 b
LIMBO2 + RO2 = LIMBO 8.8x10713x0.6 b
LIMBO2 + RO2 = LIMAOH 8.8x10713x0.2 b
LIMBO2 + RO2 = LIMBCO 8.8x10713x0.2 b
LIMAOOH + OH = LIMAO2 7.4x10°!1 b
LIMAOOH + hv = LIMAO + OH J<41> b
LIMANO3 + OH = LIMAL + NO2 6.2x10711 b
LIMAO = LIMAL + HO2 KDEC b
LIMAOH + OH = LIMBCO + HO2 7.0x10°! b
LIMBOOH + OH = LIMBCO + OH 1.0x10710 b
LIMBOOH + hv =LIMBO + OH J<41> b
LIMBNO3 + OH = LIMBCO + NO2 5.9x101 b
LIMBO = LIMAL + HO2 KDEC b
LIMO + 03 = LIMOOA 2.8%10"5xexp(-770/T)x0.73 b
LIMO + O3 = LIMOOB 2.8x105%exp(-770/T)*0.27 b
LIMOOA = LIMALAO2 + OH KDECX0.5 b
LIMOOA = LIMALBO2 + OH KDECx0.5 b
LIMOOB = LIMBOO KDECX%0.5 b
LIMALAO2 + HO2 = LIMALAOOH KRO2HO2x%0.914 b
LIMALAO2 + RO2=LIMALACO 8.8x10713x0.2 b
LIMALAO2 + RO2 = LIMALAOH 8.8x10713x0.2 b
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LIMALBO2 + HO2 = LIMALBOOH

LIMALBO2 + RO2=LIMALBCO

LIMALBO2 + RO2 = LIMALBOH

LIMBOO + CO = LIMAL

LIMBOO + NO = LIMAL

LIMBOO + NO2 = LIMAL

LIMBOO + SO2 = LIMAL + SO3

LIMBOO + H20 = LIMAL + H202

LIMBOO + H20 = LIMNONIC

LIMO + NO3 = NLIMO2

LIMO + NO3 = NLIMO2B

LIMO + NO3 = NLIMO2EXO

NLIMO2 + HO2 = NLIMOOH

NLIMO2 + NO = NLIMO + NO2

NLIMO2 + NO3 = NLIMO + NO2

NLIMO2 + RO2 => LIMBNO3

NLIMO2 + RO2 = NLIMO

NLIMO2B + HO2 = NLIMOOH

NLIMO2B + NO = NLIMO + NO2

NLIMO2B + NO3 = NLIMO + NO2

NLIMO2B + RO2 = LIMBNO3

NLIMO2B + RO2 = C10HI5NO4

NLIMO2B + RO2 = NLIMO

NLIMO2B = C10H16NO7RO2

NLIMO2EXO + HO2 = NLIMOOHEXO

NLIMO2EXO + NO = NLIMOEXO + NO2

NLIMO2EXO + NO3 = NLIMOEXO + NO2

NLIMO2EXO + RO2 = NLIMOEXO

NLIMO2EXO = C10H16NO7R0O2

NLIMOEXO = C10H16NO6RO2

NLIMOOH + OH = NLIMO2

NLIMOOH + hv = NLIMO + OH

NLIMOOHEXO + OH = NLIMO2EXO

NLIMOOHEXO + hv = NLIMOEXO + OH

NLIMO = LIMAL + NO2

KRO2HO02x%0.914
8.8x10713x0.05
8.8x10713x0.05
1.2x10°13
1.0x1014
1.0x10°1
7.0x10714
1.4x107"7
2.0x10718
1.2x10711%x0.63
1.2x10711x0.34
1.2x10711%0.03
KRO2HO02x%0.914
KRO2NO
KRO2NO3
9.2x1071%x0.3
9.2x10714x0.7
KRO2HO2x%0.914
KRO2NO
KRO2NO3
8.8x10713x0.2
8.8x10713x0.2
8.8x1073%0.6
0.02
KRO2HO2x0.914
KRO2NO
KRO2NO3
9.2x10714x0.7

20

KDECX%0.5
4.3x10!

J<41>

4.3x101!

J<41>

KDECx0.92

a,b
a,b
a,b
a,b
a,b
a,b
a,b
a,b
a,b
a,b
a,b
a,c
a,b,d
a,b
a,b
a,b

a,b

19



NLIMO = C10H16NO6RO2

LIMAL + NO3 = (C923C0O3 + HNO3

LIMAL + OH = C923CO3

LIMBCO + OH = C923CO3

LIMBCO + NO3 = C10H16NO7RO2

C923C0O3 + HO2 = C923CO3H

C923C0O3 + HO2 = LIMNONIC + O3

C923C0O3 + RO2 = LIMNONIC

C923CO3H + NO3 = C10H16NO9RO2

LIMNONIC + NO3 = C10H16NO8SRO2

LIMALAOH + NO3 = C10H16NO8RO2

LIMALACO + NO3 => C10H14NO8RO2

LIMALAOOH + NO3 = C10H16NO9RO2

LIMALBOH + NO3 = C10H16NO8SRO2

LIMALBCO + NO3 => C10H14NO8RO2

LIMALBOOH + NO3 = C10HI6NO9RO2

CI10H16NO6RO2 + HO2 = C10H17NO6

CI0OH16NO6RO2 + NO = C10HI6NOS5SRO + NO2

CI0H16NO6RO2 + NO3 = C10HI6NO5SRO + NO2

CI0H16NO6RO2 + RO2 = C10H17NOS5

CI10H16NO6RO2 + RO2 = C10HI5NOS

CI0H16NO6RO2 + RO2 = C10H16NOSRO

CI0H16NO6RO2 = C10H16NO8SRO2

CI10H16NO8RO2 = C10H15NO7 + OH

CI0H16NOS5SRO = C10H15NOS + HO2

CI10H16NO5RO = C10H16NO7RO2

CI10H16NO7RO2 + HO2 = C10H17NO7

CI0OH16NO7RO2 + NO = CI0HI6NO6RO + NO2

CI0H16NO7RO2 + NO3 = C10HI6NO6RO + NO2

CI0H16NO7RO2 + RO2 = C10H17NO6

CI0H16NO7RO2 + RO2 = C10H15NO6

CI10H16NO7RO2 + RO2 = C10HI6NO6RO

CI10H16NO7RO2 = C10H16NO9RO2

CI10H16NO6RO = C10H15NO6 + HO2

CI0H16NO6RO = C10H16NOSRO2

KDECx0.08
1.1x10719x0.092
1.1x10719x0.288
6.7x1011
2.6x10713
KAPHO2x0.41
KAPHO2x0.15
1.0x1071%x0.3
2.6x10713
2.6x10713
2.6x10713
2.6x10713
2.6x10713
2.6x10713
2.6x10713
2.6x1013
KRO2HO02x%0.914
KRO2NO
KRO2NO3
5.0x10713%0.25
5.0x10°13x0.1
5.0x10713%0.65
0.2

0.1

KDECX0.1
KDECX%0.5
KRO2HO02x%0.914
KRO2NO
KRO2NO3
5.0x10"3x0.25
5.0x10713x0.1
5.0x10713%0.65
0.2

KDECx0.1

KDECx0.5

b,d

b,d

b,d

b,d
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274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

CI0H16NO9RO2 = C10H15NO8 + OH 0.1 c

CI0H14NO8RO2 = C10H13NO7 + OH 0.1 c

“New short names are given for species not existing in MCM. "Rate constants refer to Master Chemical
Mechanism (MCM). “Rate constants refer to recent studies (Mayorga et al., 2022). “The branching ratios

are estimated from recent studies (Mayorga et al., 2022).
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300

301

302

Table S3. Summary of vapor pressures of highly oxygenated limonene-derived ON calculated by two

methods under standard conditions (298 K).

Species Vapor pressure (atm)
EVAPORATION SIMPOL1
CioH13NO7 1.4x107 1.7x107
CioH1sNOg4 1.1x10%¢ 1.7x10%¢
Ci0H15NOs 2.7x107 6.2x10°8
Ci1oH15NOsg 3.5x10%8 2.7x10°8
Ci1oH1sNO7 2.3x10%8 5.5x108
CioH15NOg 7.9x1010 3.6x10°10
CioH17NOs 1.5x10%8 4.8x10°8
CioH17NOg 6.6x10° 8.4x10°
CioH17NO7 2.6x107° 3.3x108
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303

304

Table S4. Compilation of experiments in chemical box model.

Scheme Initial concentration of species (cm™) Description
LIMO OH O3 NO3 NO CcO SOz HO» H.O

OH 1.0x10'"  1.0x105~1.0x10' 0.0 1.0x10'2 1.0x102 0.0 0.0 1.0x10' 0.0 Limonene-derived
ON formation

0; 1.0x10" 1.0x101° 1.0x1011~1.0x10!8 1.0x1012 1.0x1012  1.0x10 1.0x10'0 1.0x10'! 1.0x10'6 L
under individual
initial  oxidation

NO; 1.0x10! 1.0x101° 0.0 1.0x10°~1.0x10"7 1.0x102 0.0 0.0 1.0x10"" 0.0
pathway

OH+03 1.0x10"! 0.0/1.0x10%/1.0x10'/1.0x10'  0.0/1.0x10'/1.0x10'5/1.0x10'8  1.0x10'2 1.0x10'2 1.0x10' 1.0x10 1.0x10'! 1.0x10'6 Limonene-derived
ON formation

OH+NO; 1.0x10" 0.0/1.0x10%/1.0x10'/1.0x10" 0.0 0.0/1.0x10%1.0x10'3/1.0x10"7  1.0x102 0.0 0.0 1.0x10'" 0.0 A
under multiple

03+NOs 1.0x10 1.0x1010 0.0/1.0x10'/1.0x10'5/1.0x10'8  0.0/1.0x10%1.0x10'3/1.0x10'7  1.0x10'2 1.0x10'% 1.0x10° 1.0x10'" 1.0x10'¢ initial  oxidation
pathways

OH+03+NOs  1.0x10'"! 0.0/1.0x10%/1.0x10'/1.0x10'  0.0/1.0x10'/1.0x10'5/1.0x10'8  0.0/1.0x10%1.0x10'¥/1.0x10'7  1.0x10'2 1.0x10¥ 1.0x10' 1.0x10'' 1.0x10'6
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305

Table S5. Initial concentrations of species used in chemical box model experiments.

Scheme Species (cm™)
LIMO  OH 0s NOs NO Co SO: HO» H:0

OH 1.0x10'"  1.0x10° 0.0 1.0x10"2 1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x107 0.0 1.0x10'2  1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10° 0.0 1.0x1012  1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'" 0.0 1.0x10'2 1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10" 0.0 1.0x10"2 1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'5 0.0 1.0x10"2  1.0x10"2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'7 0.0 1.0x10"2 1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10' 0.0 1.0x10"2  1.0x10'2 0.0 0.0 1.0x10'" 0.0

0s 1.0x10'"  1.0x10'  1.0x10'  1.0x102 1.0x10"2 1.0x10™ 1.0x10' 1.0x10" 1.0x10'6
1.0x10' 1.0x10'0  1.0x10"2  1.0x10"2  1.0x10"2  1.0x10™ 1.0x10' 1.0x10" 1.0x10'6
1.0x10'"  1.0x10' 1.0x10" 1.0x10'2 1.0x10'>2 1.0x10™ 1.0x10'0 1.0x10'" 1.0x10'6
1.0x10' 1.0x10'0  1.0x10™ 1.0x10"2  1.0x10"2  1.0x10™ 1.0x10'0 1.0x10"" 1.0x10'6
1.0x10'"  1.0x10' 1.0x10% 1.0x10'2 1.0x10'?2 1.0x10™ 1.0x10'" 1.0x10'" 1.0x10'6
1.0x10' 1.0x10'0  1.0x10'  1.0x102  1.0x10"2  1.0x10™ 1.0x10' 1.0x10" 1.0x10'6
1.0x10' 1.0x10'  1.0x10'7  1.0x10"2  1.0x102  1.0x10™ 1.0x10'° 1.0x10" 1.0x10'6
1.0x10'"  1.0x10' 1.0x10' 1.0x10'2 1.0x10'>2 1.0x10™ 1.0x10'0 1.0x10'" 1.0x10'6

NOs 1.0x10'" 1.0x10'° 0.0 1.0x10°  1.0x10'2 0.0 0.0 1.0x10" 0.0
1.0x10'"  1.0x10' 0.0 1.0x10'°  1.0x10'2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10' 0.0 1.0x10'"  1.0x10"2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'° 0.0 1.0x10"2 1.0x10'2 0.0 0.0 1.0x10" 0.0
1.0x10'"  1.0x10' 0.0 1.0x10  1.0x10"2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'° 0.0 1.0x10™  1.0x10'2 0.0 0.0 1.0x10" 0.0
1.0x10'"  1.0x10' 0.0 1.0x10'5  1.0x10"2 0.0 0.0 1.0x10'" 0.0
1.0x10'"  1.0x10'° 0.0 1.0x10'6  1.0x10'2 0.0 0.0 1.0x10" 0.0
1.0x10'"  1.0x10'° 0.0 1.0x10'7  1.0x10'2 0.0 0.0 1.0x10'" 0.0

OH + 0, 1.0x10"  1.0x105 0.0 1.0x10"2  1.0x10'>  1.0x10™ 1.0x10'° 1.0x10'' 1.0x10'6
1.0x10'"  1.0x10'" 0.0 1.0x10"2 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'"  1.0x10'6
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1.0x10" 1.0x10" 0.0 1.0x102  1.0x1012 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'¢
1.0x10" 0.0 1.0x10"  1.0x10'2  1.0x10"> 1.0x10™ 1.0x10' 1.0x10"  1.0x10'6
1.0x10" 0.0 1.0x10'5  1.0x10'2 1.0x10'>  1.0x10™ 1.0x10' 1.0x10'"  1.0x10'6
1.0x10" 0.0 1.0x10'  1.0x10'2  1.0x10">  1.0x10™ 1.0x10' 1.0x10"" 1.0x10'6
1.0x10"  1.0x105  1.0x10''  1.0x10'2 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'¢
1.0x10"  1.0x10°  1.0x10'S 1.0x102 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10"  1.0x10°  1.0x10' 1.0x102 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10"  1.0x10''  1.0x10'"  1.0x10'2 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10"  1.0x10'  1.0x10'S 1.0x10 1.0x10'2 1.0x10™ 1.0x10" 1.0x10'" 1.0x10'¢
1.0x10"  1.0x10''  1.0x10'  1.0x102 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10"  1.0x10" 1.0x10'  1.0x10 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'¢
1.0x10"  1.0x10'  1.0x10'5 1.0x102 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10"  1.0x10'  1.0x10'8 1.0x102 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6

OH + NOs 1.0x10" 0.0 0.0 1.0x10°  1.0x10"2 0.0 0.0 1.0x10" 0.0
1.0x10" 0.0 0.0 1.0x10%  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10" 0.0 0.0 1.0x107 10102 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10° 0.0 0.0 1.0x10™2 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10'" 0.0 0.0 1.0x10 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10" 0.0 0.0 1.0x10™2 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10° 0.0 1.0x10°  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10° 0.0 1.0x10"  1.0x10"2 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10° 0.0 1.0x107  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10""  1.0x10'" 0.0 1.0x10°  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10" 0.0 1.0x10"  1.0x10"2 0.0 0.0 1.0x10" 0.0
1.0x10""  1.0x10'" 0.0 1.0x107  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10" 0.0 1.0x10°  1.0x10"2 0.0 0.0 1.0x10" 0.0
1.0x10""  1.0x10" 0.0 1.0x10%  1.0x102 0.0 0.0 1.0x10" 0.0
1.0x10"  1.0x10" 0.0 1.0x107 10102 0.0 0.0 1.0x10" 0.0

03 +NOs 1010 1.0x10'° 1.0x10"" 0.0 1.0x10"2  1.0x10  1.0x10 1.0x10'" 1.0x10'6
1.0x10"  1.0x10'  1.0x10'5 0.0 1.0x102  1.0x10™ 1.0x10' 1.0x10""  1.0x1016
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1.0x10'"  1.0x100  1.0x10'8 0.0 1.0x1012  1.0x10™  1.0x10'° 1.0x10'"  1.0x10'6
1.0x10'" 1.0x10' 0.0 1.0x10°  1.0x10"2  1.0x10™ 1.0x10' 1.0x10'" 1.0x10'
1.0x10'" 1.0x10' 0.0 1.0x10%  1.0x10'2 1.0x10™ 1.0x10' 1.0x10'"  1.0x106
1.0x10'" 1.0x10' 0.0 1.0x107  1.0x10"2 1.0x10™ 1.0x10' 1.0x10''  1.0x10'6
1.0x10'" 1.0x10'  1.0x10" 1.0x10° 1.0x10'2  1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10'" 1.0x10'  1.0x10" 1.0x10" 1.0x10"2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10'"  1.0x10'  1.0x10" 1.0x10"7 1.0x10"2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10' 1.Ox10'  1.0x10'S 1.0x10° 1.0x10'2  1.0xI10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10'" 1.0x10'  1.0x10'S 1.0x10" 1.0x10"2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10' 1.Ox10'  1.0x10'S 1.0x10"7 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10'" 1.0x10'0  1.0x10' 1.0x10° 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'' 1.0x10'6
1.0x10' 1.Ox10'  1.0x10'™ 1.0x10" 1.0x10'2 1.0xI10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10' 1.Ox10'  1.0x10'™ 1.0x10"7 1.0x10'2 1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
OH+ O3 +NOs | gxjoi  1.0x105 0.0 1.0x10°  1.0x10'2  1.0x10™ 1.0x10' 1.0x10'" 1.0x10'6
1.0x10' 1.0x10° 0.0 1.0x101  1.0x102  1.0xI0™ 1.0x10' 1.0x10"  1.0x10'
1.0x10'" 1.0x10° 0.0 1.0x10"7  1.0x10"2 1.0x10™ 1.0x10"° 1.0x10''  1.0x10'6
1.0x10'" 1.0x10" 0.0 1.0x10°  1.0x10"2  1.0x10™ 1.0x10" 1.0x10'' 1.0x10'6
1.0x10'" 1.0x10' 0.0 1.0x101  1.0x10"2  1.0xI0™ 1.0x10' 1.0x10"  1.0x10'
1.0x10'" 1.0x10" 0.0 1.0x10"7  1.0x1012 1.0x10™ 1.0x10'° 1.0x10'' 1.0x10'6
1.0x10'" 1.0x10" 0.0 1.0x10°  1.0x10'2  1.0xI0™ 1.0x10' 1.0x10" 1.0x10'6
1.0x10'" 1.0x10" 0.0 1.0x101%  1.0x1012 1.0x10™ 1.0x10"° 1.0x10''  1.0x10'6
1.0x10'" 1.0x10" 0.0 1.0x10"7  1.0x10'2  1.0x10™ 1.0x10' 1.0x10'"  1.0x10'
1.0x10'  1.0x10°  1.0x10" 0.0 1.0x1012 1.0x10™  1.0x10" 1.0x10'"  1.0x10'6
1.0x10' 1.0x10°  1.0x10'S 0.0 1.0x1012  1.0x10™  1.0x10 1.0x10" 1.0x10'6
1.0x10'  1.0x10°  1.0x10'8 0.0 1.0x1012  1.0x10™  1.0x10" 1.0x10'"  1.0x10'6
1.0x10'  1.0x10"  1.0x10"" 0.0 1.0x1012  1.0x10™  1.0x10 1.0x10" 1.0x10'6
1.0x10'"  1.0x10"  1.0x10'S 0.0 1.0x1012  1.0x10™  1.0x10" 1.0x10'"  1.0x10'6
1.0x10'" 1.0x10"  1.0x10'8 0.0 1.0x1012  1.0x10™  1.0x10 1.0x10" 1.0x10'6
1.0x10"  1.0x10'  1.0x10'" 0.0 1.0x10™2  1.0x10™  1.0x10'° 1.0x10"  1.0x10'6
1.0x10'" 1.0x10"  1.0x10'5 0.0 1.0x1012  1.0x10™  1.0x10" 1.0x10'"  1.0x10'6
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Table S6. Description of global model experiments.

Scheme Description

Case0 Run with three initial oxidation pathways

Casel The same as Case0 without OH-initial oxidation pathway

Case2 The same as Case( without Os-initial oxidation pathway

Case3 The same as Case0 without NOs-initial oxidation pathway

Cased The same as Case(0 without O3 and NOs-initial oxidation pathways
Case5 The same as Case0 without OH and NOs-initial oxidation pathways
Case6 The same as Case0 without OH and Os-initial oxidation pathways
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Table S7. Estimated reaction rates under two initial oxidation pathway experiments

Test description

Reaction rates (cm-s™")

Scheme Variables (cm™) Rou Ros Rnos
OH 0O; NO;

OH + O3 1.0x10° 0.0 / 2.4x1010 4.8x10* /
1.0x103 1.0x101  / 2.3x101° 8.6x107 /
1.0x10° 1.0x10%  / 1.4x1010 7.9x1010 /
1.0x10° 1.0x10% / 3.2x107 1.0x10! /
1.0x10° 0.0 / 4.4x101° 1.4x10° /
1.0x10"° 1.0x10't  / 4.4x1010 6.3x107 /
1.0x10%° 1.0x10%  / 1.9x1010 7.5x101° /
1.0x10" 1.0x10%0 / 4.1x107 1.0x10! /
1.0x10% 0.0 / 1.0x101! 3.3x108 /
1.0x10% 1.0x101  / 1.0x101! 3.3x108 /
1.0x10% 1.0x10%  / 1.0x10" 3.3x10° /
1.0x10% 1.0x10%2 / 1.0x10!! 7.6x10° /

OH + NOs3 1.0x10° / 0.0 5.4x10'0 / 2.4%10°
1.0x10° / 1.0x10° 5.4x1010 / 2.5x107
1.0x10° / 1.0x10"3 4.9x108 / 9.9x10!0
1.0x10° / 1.0x10'8 2.0x10% / 1.0x10"
1.0x101° / 0.0 7.4x1010 / 1.1x10°
1.0x10"° / 1.0x10° 7.4x1010 / 1.7x107
1.0x10° / 1.0x1013 9.7x108 / 9.9x1010
1.0x10" / 1.0x10'8 3.5x104 / 1.0x10"
1.0x10%  / 0.0 1.0x10!! / 1.5x10°
1.0x10%  / 1.0x10° 1.0x10!! / 1.5x10°
1.0x10% / 1.0x10"3 1.0x10" / 1.5x10°
1.0x10%  / 1.0x1018 9.8x101° / 2.1x10°

03 + OH 0.0 1.ox10'  / 2.3x1010 8.6x107 /
1.0x10° 1.0x10t / 2.3x101° 8.6x107 /
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1.0x101°  1.0x10'" / 4.4x1010 6.3x107 /
1.0x10%  1.0x10' / 1.0x10M" 3.3x10° /
0.0 1.0x1015  / 1.4x1010 7.9x1010 /
1.0x103 1.0x1015  / 1.4x10'0 7.9x1010 /
1.0x10"°  1.0x10 / 1.9x10'0 7.5%x1010 /
1.0x10%  1.0x10% / 1.0x10M" 3.3x10° /
0.0 1.0x10% / 3.2x107 1.0x10M" /
1.0x10° 1.0x10% / 3.2x107 1.0x10M" /
1.0x10"°  1.0x10%° / 4.1x107 1.0x10"" /
1.0x10%  1.0x10%0 / 1.0x10M" 7.6x10° /

03 +NOs / 1.0x10" 0.0 / 7.8x107 1.0x107
/ 1.0x10"  1.0x10° / 7.7x107 8.8x107
/ 1.0x10"  1.0x10"3 / 1.1x103 1.0x10™
/ 1.0x10'""  1.0x10'8 / 3.4x10? 1.0x10!"
/ 1.0x10" 0.0 / 3.3x1010 6.5x10'0
/ 1.0x10"  1.0x10° / 3.3x10'0 6.5x10'°
/ 1.0x10"5  1.0x10"3 / 1.0x10° 9.9x10'0
/ 1.0x105  1.0x10'8 / 1.3x10° 1.0x10M
/ 1.0x10% 0.0 / 8.4x101° 1.6x10'°
/ 1.0x10%0  1.0x10° / 8.4x101° 1.6x10'0
/ 1.0x10%  1.0x10" / 7.0x10'0 3.0x10'
/ 1.0x10%°  1.0x10'8 / 1.2x10° 9.9x10'0

NO; + OH 0.0 / 1.0x10° 5.4x101° / 2.5%107
1.0x10° / 1.0x10° 5.4x101° / 2.5%107
1.0x10"  / 1.0x10° 7.4x1010 / 1.7x107
1.0x10%  / 1.0x10° 1.0x10" / 1.5x10°
0.0 / 1.0x10% 4.9x108 / 9.9x10'0
1.0x10° / 1.0x10"3 4.9x108 / 9.9x1010
1.0x101°  / 1.0x10"3 9.7x108 / 9.9x10'°
1.0x10%  / 1.0x10"3 1.0x10M" / 1.5x106
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352

353

354

355

356

357

358

359

360

361

362

363

364

0.0 / 1.0x1018 2.0x10* / 1.0x10™
1.0x103 / 1.0x10'8 2.0x10* / 1.0x10!"
1.0x101°  / 1.0x1018 3.5x10* / 1.0x10™
1.0x10%  / 1.0x10'8 9.8x1010 / 2.0x10°
NOs3 + 03 / 0.0 1.0x10° / 4.2x103 8.0x107
/ 1.0x10"  1.0x10° / 7.7x107 8.8x107
/ 1.0x10%  1.0x10° / 3.3x1010 6.5x10'°
/ 1.0x10%0  1.0x10° / 8.4x1010 1.6x101°
/ 0.0 1.0x10"3 1.1x103 1.0x10!"
/ 1.0x10"  1.0x10"3 / 1.1x103 1.0x10™
/ 1.0x10'5  1.0x10"3 / 1.0x10° 9.9x10'0
/ 1.0x10%  1.0x10"3 / 7.0x1010 3.0x10'
/ 0.0 1.0x1018 / 1.9x10! 1.0x10™
/ 1.0x10'""  1.0x10'8 / 3.4x10? 1.0x10!"
/ 1.0x105  1.0x10'8 / 1.3x10° 1.0x10M
/ 1.0x10%  1.0x10'8 / 1.2x10° 9.9x10'0
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Table S8. Estimated reaction rates under three initial oxidation pathway experiments.

Test description

Reaction rates (-cm-s™")

Scheme Variables (molecucm™) Ron Ros Rxo3
OH 0; NOs

The influence of ° 1.0x10"  1.0x10° 52x1010  3.5x107 3.7x107
OH-initiated 1.0x105  1.0x10"  1.0x10° 52x1010  3.5x107 3.7x107
oxidation pathway o o1t 1 gx10t 1.0x10° 7.0%1010  2.5%107 3.6%107
1.0x10"  1.0x10"  1.0x10° 1.0x10' 3.3%106 1.4x106

0.0 1.0x10  1.0x10° 2.6x10° 3.1x101° 6.3x1010

1.0x105  1.0x105  1.0x10° 2.6x10° 3.1x1010 6.3x1010

1.0x101  1.0x10'S  1.0x10° 5.0x10° 3.2x1010 6.1x1010

1.0x10"  1.0x105  1.0x10° 1.0x10' 3.3x106 2.6x10°

0.0 1.0x10"  1.0x10° 2.5x107 8.5%1010 1.6x10'0

1.0x10°  1.0x10'8  1.0x10° 2.5x107 8.5x1010 1.6x10'0

1.0x10"  1.0x10'8  1.0x10° 3.1x107 8.0x10!° 2.0x1010

1.0x10"  1.0x10'8  1.0x10° 1.0x10" 7.6x106 1.5x106

0.0 1.0x10"  1.0x10'3 4.0x108 1.1x103 1.0x10"

1.0x10°  1.0x10""  1.0x10'3 4.0x108 1.1x10° 1.0x10"

1.0x10"  1.0x10"  1.0x10'3 7.2x108 1.4x10° 9.9x1010

1.0x10"  1.0x10"  1.0x10'3 1.0x10' 3.3x106 1.4x106

0.0 1.0x105  1.0x10"3 2.9x108 9.9x108 9.9x1010

1.0x105  1.0x10'5  1.0x10'3 2.9x108 9.9x108 9.9x1010

1.0x10"  1.0x10'S  1.0x10'3 5.3x108 1.4x10° 9.8x1010

1.0x10"  1.0x10'5  1.0x10'3 1.0x10'! 3.3x106 3.0x10°

0.0 1.0x10'%  1.0x10'3 2.0x107  7.0x10'° 3.0x10'0

1.0x105  1.0x10'®  1.0x10'3 2.0x107  7.0x101° 3.0x10'0

1.0x10"  1.0x10'8  1.0x10'3 2.7x107  7.0x10'° 3.0x10'0

1.0x10"°  1.0x10'®  1.0x10'3 1.0x10"  7.6x10° 1.6x108

0.0 1.0x10""  1.0x10'7 2.0x10*  3.4x102 1.0x10"

1.0x10°  1.0x10''  1.0x10"7 2.0x10*  3.4x10? 1.0x10"
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1.0x10"  1.0x10"  1.0x10"7 3.5x10*  3.1x107 1.0x10!"
1.0x10"  1.0x10"  1.0x10"7 9.8x10'°  3.2x10¢ 2.0x10°
0.0 1.0x10  1.0x10"7 7.7x10°  1.3x10° 1.0x10!"
1.0x105  1.0x10%  1.0x10"7 7.7x10°  1.3x10° 1.0x10"
1.0x10"  1.0x10'S  1.0x10"7 1.5x10*  1.3x10° 1.0x10"
1.0x10"  1.0x10"  1.0x10"7 9.8x10  3.2x10° 2.0x10°
0.0 1.0x10  1.0x10"7 6.6x10°  1.2x10° 9.9x101°
1.0x105  1.0x10'®  1.0x10"7 6.6x10°  1.2x10° 9.9x101°
1.0x10"  1.0x10  1.0x10"7 1.3x10*  1.2x10° 9.9x101°
1.0x10°  1.0x10'®  1.0x10"7 9.7x10'%  1.4x107 2.9x10°
The influence of On. 1.0x10° 0.0 1.0x10° 5.2x1010  7.6x104 3.3x107
initiated oxidation 1.0x10°  1.0x10"  1.0x10° 5.2x1010  3.5x107 3.7x107
pathway 1OX105  1.0x10'S  1.0x10° 2.6x10°  3.1x10'0 6.3x1010
1.0x105  1.0x10%  1.0x10° 2.5%x107  8.5x101° 1.5x10"°
1.0x10" 0.0 1.0x10° 7.0x10'  1.6x10° 3.3x107
1.0x10"  1.0x10"  1.0x10° 7.0x1010  2.5x107 3.6x107
1.0x10"  1.0x10"  1.0x10° 5.0x10°  3.2x10'° 6.1x101°
1.0x10'"  1.0x10%  1.0x10° 3.1x107  8.0x10'° 2.0x1010
1.0x10" 0.0 1.0x10° 1.0x10'"  3.3x10° 1.5%10°
1.0x10"°  1.0x10"  1.0x10° 1.0x10'""  3.3x10° 1.4x108
1.0x10"  1.0x10'"  1.0x10° 1.0x10'"  3.3x10° 2.6x10°
1.0x10Y  1.0x102  1.0x10° 1.0x10"  7.6x10° 1.5%108
1.0x10° 0.0 1.0x10"3 3.9x10%  1.0x10° 1.0x10"
1.0x105  1.0x10'"  1.0x10" 4.0x10%  1.1x10° 1.0x10"
1.0x105  1.0x10  1.0x10'3 2.9x10%  9.9x10% 9.9x101°
1.0x105  1.0x10% 1.0x10'3 2.0x107  7.0x101° 3.0x101°
1.0x10'" 0.0 1.0x10'? 7.1x108  1.7x103 9.9x101°
1.0x10"  1.0x10'"  1.0x10'3 7.2x10%  1.4x10° 9.9x101°
1.0x10"  1.0x10  1.0x10"3 5.3x10%  1.4x10° 9.8x101°
1.0x10M  1.0x102  1.0x10'3 27107 7.0x101° 3.0x101°
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1.0x10° 0.0 1.0x10"3 1.0x10"  3.3x10° 1.5%10°
1.0x10"  1.0x10'"  1.0x10"3 1.0x10'""  3.3x10° 1.4x10°
1.0x10"  1.0x10'5  1.0x10"3 1.0x10'""  3.3x10° 3.0x10°
1.0x10"  1.0x10%® 1.0x10"3 1.0x10'"  7.6x10° 1.6x10°
1.0x10° 0.0 1.0x10'8 2.0x10*  1.8x107! 1.0x10"
1.0x105  1.0x10"  1.0x10' 2.0x10*  3.4x107 1.0x10!"
1.0x10°  1.0x10%  1.0x10' 7.7x10°  1.3x10° 1.0x10"
1.0x105  1.0x10%  1.0x10' 6.6x10°  1.2x10° 9.9x101°
1.0x10" 0.0 1.0x108 3.5x10*  2.9x10! 1.0x10"
1.0x10'"  1.0x10'"  1.0x10'® 3.5x10*  3.1x107 1.0x10!"
1.0x10'"  1.0x10'S  1.0x10'8 1.5x10*  1.3x10° 1.0x10!"
1.0x10"  1.0x102  1.0x10' 1.3x10*  1.2x10° 9.9x101°
1.0x10" 0.0 1.0x10'8 9.8x1010  3.2x10° 2.0x10°
1.0x10"  1.0x10"  1.0x10' 9.8x10'0  3.2x10° 2.0x10°
1.0x10"°  1.0x10'S  1.0x10'® 9.8x1010  3.2x10° 2.0x10°
1.0x10"  1.0x102  1.0x10' 9.7x10'  1.4x107 2.9x10°
1.0x105  1.0x10" 0.0 5.2x10'  3.5x107 2.0x10°

The influence of 'y g.105  1.0x10"  1.0x10° 52x10'°  3.5x107 3.7%107

NOs-initiated

oxidation pathway 1.0x105  1.0x10'"  1.0x10" 4.0<10%  1.1x10° 1.0x10"
1.0x105  1.0x10'"  1.0x10' 2.0x10*  3.4x107 1.0x10"
1.0x10"  1.0x10" 0.0 7.0x1010  2.5x107 5.6x10°
1.0x10Y  1.0x10"  1.0x10° 7.0x10'0  2.5%x107 3.6x107
1.0x10"°  1.0x10"  1.0x10"3 7.2x108  1.4x10° 9.9x10'°
1.0x10"°  1.0x10"  1.0x10'8 3.5x10*  3.1x107 1.0x10"
1.0x10%  1.0x10" 0.0 1.0x10'""  3.3x10° 1.4x108
1.0x10%  1.0x10"  1.0x10° 1.0x10'""  3.3x10° 1.4x10°
1.0x10%  1.0x10"  1.0x10' 1.0x10'""  3.3x10° 1.4x108
1.0x10%  1.0x10"  1.0x10'8 9.8x10'0  3.2x10° 2.0x10°
1.0x105  1.0x10" 0.0 2.6x10°  3.1x10' 6.3x101°
1.0x10°  1.0x10'5  1.0x10° 2.6x10°  3.1x101° 6.3x101°
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366

367

368

369

370

371

372

373

1.0x103

1.0x103

1.0x10"°

1.0x10"

1.0x10"

1.0x10"°

1.0x10%

1.0x10%

1.0x10%

1.0x10%

1.0x10°

1.0x10°

1.0x10°

1.0x10°

1.0x10%

1.0x10"

1.0x10"

1.0x10%

1.0x10%

1.0x10%

1.0x10%

1.0x10%

1.0x101"3

1.0x101"

1.0x101"

1.0x10"

1.0x101"

1.0x101"

1.0x101"

1.0x101"5

1.0x10%

1.0x101"

1.0x10%0

1.0x10%0

1.0x10%0

1.0x10%0

1.0x10%0

1.0x10%

1.0x10%

1.0x10%0

1.0x10%

1.0x10%0

1.0x10%

1.0x10%

1.0x10"3

1.0x10'8

0.0

1.0x10°

1.0x10"3

1.0x1018

0.0

1.0x10°

1.0x10"3

1.0x1018

0.0

1.0x10°

1.0x10"3

1.0x10'8

0.0

1.0x10°

1.0x10"

1.0x1018

0.0

1.0x10°

1.0x10"

1.0x10"8

2.9x108
7.7x103
5.0x10°
5.0x10°
5.3x10%
1.5x104
1.0x10™"
1.0x10"
1.0x10"
9.8x101°
2.5%107
2.5%107
2.0x107
6.6x10°
3.1x107
3.1x107
2.7x107
1.3x10*
1.0x10"
1.0x10"
1.0x10"

9.7x101°

9.9x108
1.3x10°
3.2x101°
3.2x101°
1.4x10°
1.3x10°
3.3x10°
3.3x10¢
3.3x10°
3.2x10¢
8.5%x101°
8.5%x101°
7.0x101°
1.2x10°
8.0x101°
8.0x101°
7.0x101°
1.2x10°
7.6x10°
7.6x10°
7.6x10°

1.5%107

9.9x101°
1.0x10"
6.0x101°
6.1x101°
9.8x101°
1.0x10"
2.6x10°
2.6x10°
3.0x10°
2.0x10°
1.5x10%0
1.5x10"°
3.0x101°
9.9x1010
2.0x10"0
2.0x10"°
3.0x101°
9.9x1010
1.5%10°
1.5x10°
1.6x10°

2.9x10°
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374 Table S9. Published measurements of atmospheric particulate ON concentrations at surface sites.

Area Site Observation period ON (ug'm3) Reference
Urban Bakersfield, California, USA 15 May - 24 Jun 2010 0.51 (Rollins et al., 2012)
Urban Bakersfield, California, USA 15 May - 24 Jun 2010 0.46 (Rollins et al., 2013)
Urban Atlanta, Georgia, USA May 2012 - Feb 2013 0.7 (Xu et al., 2015)
Urban San Antonio, Texas, USA May 2 to 26, 2017 0.17 (Guo et al., 2024)
Urban Ji'nan, China Apr 2016 0.26 (Lietal., 2018)
Urban Shenzhen, China 2005 - 2006 0.51 (Yu etal., 2019)
Urban Shenzhen, China Spring 0.5 (Yu et al., 2019)
Urban Shenzhen, China Summer 1.4 (Yu et al., 2019)
Urban Shenzhen, China Autumn 0.87 (Yuetal., 2019)
Urban Beijing, China 20 May - 23 Jun 2018, 3 (Xu et al., 2021)

20 Nov - 25 Dec 2018
Urban Beijing, China 20 May - 23 Jun 2018, 0.9 Xuetal., 2021)

20 Nov - 25 Dec 2018
Urban Xi'an, China 29 Oct to 19 Nov, 2020 3.57 (Lin et al., 2021)
Urban Nanjing, China Apr 2020 1.22 (Ge et al., 2022)
Urban Nanjing, China Jul 2019 0.62 (Ge et al., 2022)
Urban Nanjing, China Oct 2019 1.24 (Ge et al., 2022)
Urban Nanjing, China Dec 291 (Ge et al., 2022)
Urban Barcelona, Spain 1 - 26 Mar 2009 1.57 (Mohret al., 2012)
Urban Helsinki, Finland 9 Jan - 13 Mar 2009 0.46 (Carbone et al., 2014)
Rural Centreville, Alabama, USA 1 Jun - 15 Jul 2013 0.23 (Xu et al., 2015)
Rural Yorkville, Georgia, USA 26 Jun - 20 Jul 2013 0.6 (Xu et al., 2015)
Rural Changping, China 15 May - 23 Jun 2016 0.01 (Wang et al., 2018)
Rural Xianghe, China 25 Dec 2018 - 13 Jan 2019 2.29 (Huang et al., 2021)
Rural Xianghe, China 9 Jun to 9 Jul 2013 1.86 (Zhu et al., 2021)
Rural Xianghe, China 9 Jun to 9 Jul 2013 1.71 (Zhu et al., 2021)
Rural Gucheng, China 10 Dec 2019 - 13 Jan 2020 6.14 (Xu et al., 2021)
Rural Wangingsha, China 1 -30 Sep, 0.07 (He et al., 2014)

1 -26Nov 2010
Rural Cabauw, Netherlands May 2008 1.71 (Mensah et al., 2012)
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375

376

377

378
379

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Rural

Forest

Forest

Forest

Coastal

Coastal

Coastal

Cabauw, Netherlands
Jungfraujoch, Switzerland
Melpitz, Germany
Melpitz, Germany
Melpitz, Germany
Payerne, Swiss

Payerne, Swiss

Puijo, Finland

San Pietro Capofiume, Italy
Po Valley, Italy

Po Valley, Italy

Harwell HW/GB36
Hyytiéld, Finland
Hyytidld, Finland
Kpuszta KPO/HU02
Montseny, Spain

Puy de Dome, France

Puy de Dome, France

Woodland Park, Colorado, USA

Tuscaloosa, Alabama, USA
Hyytidlé, Finland
Connemara, Ireland
Finokalia, Crete, Greece

Finokalia, Crete, Greece

Mar 2009

30 Apr - 29 May 2008
23 May - 9 Jun 2008
16 Sep - 3 Nov 2008
24 Feb - 27 Mar 2009
Oct 2008

Mar 2009

Oct 2008

30 Mar - 20 Apr 2008
Oct 2008

Mar 2009

Oct 2008

Oct 2008

Mar 2009

Oct 2008

25 Feb - 26 Mar 2009
Oct 2008

Mar 2009

Jul - Aug 2011

1 Jun - 15 Jul 2013
Apr 8 and May 4, 2016
May 2008

4 May-8 Jun 2008

25 Feb - 26 Mar 2009

1.23

0.1

1.01

2.39

2.23

0.64

2.29

0.23

3.87

241

3.16

2.9

0.29

0.29

1.39

3.16

0.74

0.51

0.2

0.8

0.32

0.16

0.2

0.1

(Mensah et al., 2012)

(Lanz et al., 2010)

(Poulain et al., 2011)
(Poulain et al., 2011)
(Poulain et al., 2011)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Saarikoski et al., 2012)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Kiendler-Scharr et al., 2016)
(Minguillén et al., 2011)
(Freney et al., 2011)

(Freney et al., 2011)

(Fry et al., 2014)

(Ayres et al., 2015)

(Graefte et al., 2023)
(Dall'osto et al., 2010)
(Pikridas et al., 2010)

(Hildebrandt et al., 2011)
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