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Abstract. Permafrost soils are particularly vulnerable to climate change. To assess and improve estimations of carbon (C)

and nitrogen (N) budgets it is necessary to accurately map soil carbon and nitrogen in the permafrost region. In particular,

soil organic carbon (SOC) stocks have been predicted and mapped by many studies from local to pan-Arctic scales. Several

studies have been carried out at the Canadian Beaufort Sea coast, though no regional synthesis of terrestrial carbon stocks

based on spatial modelling has been conducted yet. This study synthesises available field data from the Canadian coastal plain5

and uses it to map regional SOC and N stocks using the machine learning algorithm random forest and environmental variables

based on remote sensing data. We explore local differences in soil properties and how soil data distribution across the region

affects the accuracy of the predictions of SOC and N stocks. We mapped SOC and N stocks for the entire region and provide

separate models for the coastal mainland area and Qikiqtaruk Herschel Island. We assessed performance of different random

forest models by using the Area of Applicability (AOA) method. We further applied the quantile regression forest method to10

the mainland and Qikiqtaruk Herschel Island models for SOC stocks and compared the results with the AOA method. Our

results indicate that not only the selection of data is crucial for the resulting maps, but also the chosen covariates, which were

picked by the models as most important. The estimated SOC stock for the upper metre is 56.7 ± 5.6 kg m−2 and the N stock

2.19 ± 0.51 kg m−2. The average SOC stocks vary significantly when including or excluding data in the predictive models.

Qikiqtaruk Herschel Island is geologically different from the coastal mainland and has lower SOC stocks. Including Qikiqtaruk15

Herschel Island soil data to predict SOC stocks at the mainland has large impact on the results. Differences in N stocks were

not as dependent on the location as SOC stocks and rather differences between individual studies occurred. The results of the

separate models show 36.2 ± 5.7 kg C m−2 and 2.66 ± 0.39 kg N m−2 for Qikiqtaruk Herschel Island and 57.2 ± 4.5 kg C
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m−2 and 2.17 ± 0.50 kg N m−2 for the mainland. Our results diverge from previous studies of lower resolution, showing the

added regional-scale accuracy and precision that can be achieved at intermediate resolution and with sufficient field data.20

1 Introduction

The northern Permafrost region, which is approximately 22% of the earth’s surface (Obu, 2021), is considered vulnerable to

climate change. With air temperatures rising up to four times faster than the global average (Meredith et al., 2022; Rantanen

et al., 2022), permafrost is thawing across the pan-arctic. Between 2017 and 2016 permafrost temperatures in the continuous

permafrost zone have increased by 0.39 ± 0.15 °C (Biskaborn et al., 2019). The permafrost region contains ca.1,600 Gt25

of carbon, including ca.1000 Gt stored in frozen ground, which is twice as much as atmosphere (Strauss et al., 2021). The

thickening of the active layer, driven by warming, increases carbon availability for decomposition, releasing greenhouse gases

like carbon dioxide and methane, which further amplify climate warming. This is called the permafrost-climate feedback

(Schuur et al., 2015). In addition to gradual thaw, ice-rich permafrost is particularly prone to thermokarst and abrupt thaw

events (Turetsky et al., 2020) which further accelerate losses of permafrost carbon.30

Approximately one third of the earth’s coastlines are Arctic (Lantuit et al., 2012) and coastal permafrost areas are especially

prone to changes. Average coastal retreat rates of -0.7 myr−1 (Irrgang et al., 2018) were detected along the Yukon coast. This

represents considerable changes, taking into account that previous studies estimated SOC fluxes of 132 kg C yr−1 per metre

of shoreline from land to sea at the Yukon coast (Couture et al., 2018b). Therefore, it is crucial to estimate soil organic carbon

(SOC) and nitrogen (N) stocks in the coastal lowland area. The study area is characterised by extensive ice-wedge polygon35

(IWP) terrain, high ground ice content and the occurrence of thermokarst.

Quantification and mapping of SOC using different methods have been carried out on pan-Arctic (Hugelius et al., 2014;

Mishra et al., 2021) and local level (Obu et al., 2017; Palmtag et al., 2018; Siewert et al., 2015, 2016; Siewert, 2018; Wag-

ner et al., 2023). However, few studies have investigated how the shift from local to regional scale affects accuracy and the

prediction results. The availability of intermediate to high resolution datasets for larger areas in recent years (e.g. Bartsch40

et al., 2019a; Widhalm et al., 2019) offers the possibility to investigate local and regional SOC and N stocks using the same

data and therefore connects the different scales. As permafrost soil properties and ice content are highly variable, especially

in ice-wedge polygon (IWP) terrain (e.g. Siewert et al., 2021a), high-resolution studies that represent the variability at the

pedon-scale of <2 m (e.g. Wagner et al., 2023), the terrain scale (ranging up to tens of metres) up to landscape scale are needed.

The variability at landscape scale can now be represented in pan-Arctic studies such as Mishra et al. (2021) with a resolution45

of 250 m or better. Studies in between those scales are lacking, but necessary when quantifying regional carbon budgets. While

Couture et al. (2018b) studied fluxes from nearshore terrain units, our study is the first for the region that combines all available

terrestrial SOC and N data to predict regional SOC and N stocks.

A range of different methods have been used to upscale permafrost SOC stocks, including landcover class upscaling (e.g.

Obu et al., 2017; Palmtag et al., 2018). Machine learning (ML) algorithms are also widely used for the spatial mapping of SOC50

and N stocks (e.g. Siewert, 2018; Wagner et al., 2023), or for investigating C and N fluxes (Virkkala et al., 2024). Machine
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learning as part of digital soil mapping (DSM) generates model based datasets for soil properties. Based on the “SCORPAN”-

principle (McBratney et al., 2003) covariates representing the soil forming factors (soils, climate, organisms, terrain, parent

material, age, spatial location) are identified and spatial patterns and relationships between those and the target variable are used

to predict the target variable to the whole area (Lagacherie, 2008). Next to geostatistical methods, machine learning methods55

are the current state of the art, especially recommended to map permafrost soils due to the spatial heterogeneity and the ability

of ML to detect non-linear relationships (Siewert et al., 2021a). A method that is suitable for evaluating the representativeness

of predictive models is the area of applicability (Meyer and Pebesma, 2021). The AOA method computes a dissimilarity

index (DI) by analysing the relationship between the target variable and covariates in prediction areas, accounting for variable

importance and location distances. Areas poorly represented by these relationships receive a low DI, and a threshold is used60

to classify regions into applicable or non-applicable areas. To quantify regional C and N budgets, quantifications of soil C and

N stocks are necessary. The aim of this study is to quantify SOC and N stocks and their local-scale variability in the whole

lowland area at the Yukon coastal plain. The targeted spatial resolution is 10 m.

To reach this overall aim, the specific objectives of our study are

(1) to synthesise research on SOC and N stocks that has been carried out in the study region,65

(2) to provide regional spatial datasets of SOC and N stocks and

(3) to assess our predictions via the area of applicability (AOA) method, to quantify the uncertainty with quantile regression

forest and to discuss the importance of considering local heterogeneity in the data.

2 Material and methods

2.1 Study area70

The study area is located in the continuous permafrost zone (Obu et al., 2019) of the Yukon Coastal Plain and comprises the

coastal lowland area below 180 m.a.s.l. and Qikiqtaruk Herschel Island (in further description named as Herschel Island) (Fig

1A). During the Last Glacial Maximum (LGM) the study area was partially glaciated with the Laurentide ice sheet reaching up

until west of Herschel Island during the Wisconsinan glaciation (Fritz et al., 2011; Rampton, 1982). Herschel Island represents

a unique feature, namely an ice-thrust moraine created by the advance of the Laurentide ice sheet (Fritz et al., 2012; Rampton,75

1982). Rampton (1982) mapped the quaternary deposits of the region. The western area, outside of the LGM glacial limit, is

composed of mainly lacustrine deposits. Colluvial slopes are found in areas with higher elevation and greater distance from the

coast. The area within the former glacial limits is composed by lacustrine and outwash plains. The whole area is transected by

several rivers flowing towards the Arctic Ocean, creating alluvial fens, floodplains and stream terraces. Further, some areas are

rich in organic material with peat layers of 0.4 to 3.5m thickness.80

The study area is high in ground ice, with an average of 46% volume of ground material and up to 74% in some areas

(Couture and Pollard, 2017; Couture et al., 2018b). The study area is highly prone to erosion with mean coastal erosion

rates of - 0.7 myr−1, with some parts eroding up to 9 myr−1 (Irrgang et al., 2018). On Herschel Island several well-studied

retrogressive thaw slumps occur and retreat rates of 0.45± 0.48 myr−1 between 1970 and 2000 (Lantuit and Pollard, 2008) and
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0.68 ± 2.48 myr−1 between 2000 and 2011 were estimated (Obu et al., 2016). The local scale landforms in the study area are85

determined by permafrost and ground ice with large areas covered by IWP tundra. The formation and geomorphology of these

IWP systems has been extensively studied (e.g. Fritz et al., 2016; Wolter et al., 2016, 2018). Another commonly occurring

landform feature are drained thermokarst lake basins (DTLB) which are subject of current studies due to their potential for

carbon storage (Wolter et al., 2024). The climate is characterised as Tundra climate. Between 1972 and 2000, mean annual

temperatures were -9.9 °C and -11.0 °C at the nearby weather stations Komakuk Beach and Shingle point, respectively. During90

the summer months (June, July and August) average temperatures of 8.6 C (±1.7 °C) at Shingle point and 6.0 °C (±1.6 C)

at Komakuk Beach were observed (Government of Canada, 2024). The active layer depths in the study area reported in the

literature range from 30 to up to 50 cm (Siewert et al., 2021a; Wagner et al., 2023; Wolter et al., 2018). The vegetation close to

the coast is characterised by tussock and non-tussock sedge, dwarf-shrub, moss tundra and sedge, moss, dwarf-shrub and low

shrub wetlands. Herschel Island is defined by erect dwarf-shrub tundra (Walker et al., 2005).95

2.2 Synthesis and processing of soil data and predictor variables

This study focuses on coastal lowland tundra and Herschel Island, the mapping region (Fig. 1A) was selected from the DEM

by using areas with an elevation below 180 m. This threshold includes all the area of Herschel Island, while not expanding too

far inland where soil data is limited.

Soil property data was retrieved from existing publications (Table 1, Fig. 1), harmonised and converted into the depth100

intervals 0-30 cm and 30-100 cm. The studies were conducted with different sampling designs and goals, causing spatial

clustering of data points in the study area. The studies by Siewert et al. (2021a) and (Ramage et al., 2019) both followed a

transect approach, the study by Obu et al. (2017) sampled representative sites per ecological unit and Couture et al. (2018a)

sampled sites along the coast. Wagner et al. (2023) followed a stratified random sampling approach. The study by Siewert et al.

(2021a) focuses on soil properties at a small scale and contains values for subpedons which are soil profiles in 10 cm intervals105

generated from 1 metre wide transects. Such a high level of detail was not necessary in our study. Therefore these values were

averaged per pedon.

In addition to published data, new data from DTLBs that were sampled during a field campaign in April 2019 was added

to this synthesis. The DTLB data covers drained lake basins between Herschel Island and Kay Point at different distances

inland from the coast (0.6-14.0 km) and on various elevations (3-65 m), with one central coring location per basin. We cored110

24 frozen sediment cores using a SIPRE permafrost corer during this campaign. We aimed to core at least the top metre of

sediment including active layer and permafrost and reached 88-200 cm sediment depth, except for core YC19-DTLB-17 (88

cm) and YC19-DTLB-20 (95 cm). All cores were kept frozen until subsampling and analysis. We described core stratigraphies

and subsampled all cores at 5 cm resolution or according to stratigraphic boundaries. The stratum of the drainage event was

sampled in 2 cm resolution. We weighed the frozen soil samples and measured their dimensions to calculate sample volume. We115

then calculated water contents as the difference before and after freeze drying, and calculated dry bulk densities as dry sample

weight divided by wet sample volume. We analysed freeze dried ground samples for total organic carbon (TOC) content using
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an Elementar Soli TOC® cube, and for total nitrogen (TN) content using an Elementar Rapid Max N exceed analyser. All

analyses were conducted at laboratories of the Alfred Wegener Institute of Polar and Marine Research in Potsdam, Germany.

The predictor variables used in the study were taken from published datasets at a spatial resolution of 10 - 20 m (Table 2).120

All raster datasets were resampled to 10 m and reprojected to the UTM coordinate system (EPSG code 32607). The landcover

data (Bartsch et al., 2019b) was converted into binary variables and the dominating classes in the area were selected. Those

were “dry to moist prostrate to erect dwarf shrub tundra” (LC_class4) and “moist to wet graminoid prostrate to erect dwarf

shrub tundra” (LC_class5). Uncertainties may need to be considered regarding the role of landcover. The representation of

landcover strongly depends on the used spatial resolution. (Bartsch et al., 2024) applied super-resolution processing based on a125

convolutional neural networks approach to the 20m bands of Sentinel-2. In the resulting 10m version, re-assignment reflected

the high heterogeneity. The largest differences in unit assignment occurred for the shrub tundra groups which are dominating

along the Canadian Beaufort Sea coast. Our study uses the 20m product, as the 10m product was not available yet when the

analysis was completed.
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Figure 1. Overview of the study area, locations and sources of the soil data used in this study (A) and zoom-in to the eastern part of Herschel

Island (B). The DTLB dataset is a new dataset previously unpublished and included in this study (for more information see chapter 2.2). The

mapping extent is shown in grey on top of the Basemap: ESRI (2024a).

2.3 Random forest mapping, area of applicability and uncertainty130

This study focuses on creating spatial predictions individually for the mainland and Herschel Island (Fig. 1), creating a separate

model that combines all data and comparing the results of the models. All analysis were carried out in R studio using R version

4.1.2 (R Development Core Team, 2021). The random forest algorithm (Liaw and Wiener, 2002) implemented in the package

caret (Kuhn, 2008, 2022) was used for mapping SOC and N stocks for the whole area as well as with separate models for

Herschel Island and mainland the coastal area. Random forest is a decision-tree based algorithm that builds a large amount of135

trees based on bootstrap samples of the training data and aggregating their results. This process aims to reduce the prediction

error and is also called “bagging” (bootstrap and aggregating). The number of trees (ntree), the amount of covariates selected
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Table 1. Overview of the datasets, their sources, aim of the study and availability of SOC and N stock data.

Datasource
SOC

stock

data

N

stock

data

Location Aim of the study

Available Available

Obu et al. (2017) (Paper) yes yes Herschel Island Upscaling of SOC and N stocks

Obu et al. (2016) (Dataset)

Couture et al. (2018a) (Paper) yes no Herschel Island Mapping SOC and N stocks

(Couture et al., 2018a) (Dataset) and along the Yukon coast and fluxes along the Yukon

coastal plain

Ramage et al. (2019) (Pa-

per+Dataset)

yes yes Herschel Island SOC and N stocks along

Hillslopes in three valleys

Siewert et al. (2021a) (Paper) yes no Herschel Island Mapping of small scale

Siewert et al. (2021b) (Dataset) Variations in SOC

Wagner et al. (2023) (Paper) yes yes Two representative Mapping of SOC and N stocks

Wagner et al. (2024) (Dataset) catchments at the Yukon

coast

DTLB dataset
yes yes Drained thermokarst lake

basins at the Yukon coast

Thorough investigation of

drained lake basins, SOC and N

data published here

at each split (mtry) and the minimum amount of training data to continue splitting the tree (nodesize) can be manually defined

(Breiman, 1996, 2001).

The “boruta” algorithm (Kursa and Rudnicki, 2010) was used for feature selection prior to the training of the random forest140

models. The algorithm was run with random forest, a maximum repetition of 2500 and a maximum of 1500 trees. The Boruta

algorithm serves as a wrapper algorithm and assesses the significance of predictors by contrasting their importance with their

corresponding shadows, discarding those with notably lowered importance. These shadows mirror the initial variables, featur-

ing randomly shuffled values while maintaining the original distribution and are regenerated in each iteration. The algorithm

stops either as soon as reaching the maximum of specified runs or when only the attributes considered important remain (Kursa145

and Rudnicki, 2010). Separate random forest models were trained for the depth 0-30 and 30-100 cm for the whole study area

including all data. Additional models were trained for Herschel Island and the mainland using the respective data. The reason

for creating separate models and predictions was due to Herschel Island being an ice thrust moraine (Rampton, 1982) and

therefore geologically very different from the coastal mainland area. The mtry was chosen by grid search where RMSE was

the lowest. Mtry is the amount of variables chosen at each split (Liaw and Wiener, 2002). The internal validation was set to150
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Table 2. Overview of the predictor variables, their sources, spatial resolution, acronym used, and brief description.

Variable Data Source Spatial

resolution

Acronym Description

Elevation ArcticDEM (Porter

et al., 2018)

10m DEM Digital surface model

Landcover data Bartsch et al. (2019b) 20m LC Landcover derived from Sentinel

1 and 2 data

NDVI (Normalised Difference

Vegetation Index)

Bartsch et al. (2024) 10m NDVI Based on Sentinel 2

NDWI (Normalised Difference

Water Index)

Bartsch et al. (2024) 10m NDWI Based on Sentinel 2

NDBI (Normalised Difference

Built-up Index)

Bartsch et al. (2024) 10m NDBI Based on Sentinel 2

Vegetation height Bartsch et al. (2019a) 20m VH Vegetation height derived from

Sentinel 1 and 2 data

Normalised C-VV winter

backscatter

Bartsch et al. (2024) 10m S1 C VV Based on Sentinel 1

Normalised C-HH winter

backscatter

Widhalm et al. (2019) 20m S1 C HH Based on Sentinel 1

10-fold crossvalidation repeated 20 times for all models, except two where leave-one-out crossvalidation was chosen due to

a low amount of datapoints. Ntree was set to 500 and nodesize was kept at its default value of 5. We provide the internal

validation results: mtry at which the best performing model was selected according to the lowest RMSE, R2 (fraction of %),

mean absolute error (MAE), the number of predictors (n pred), the number of samples (n samp) and StDev. Additionally, we

display for simplicity the first three important variables (short: var) for each model, var1, var2 and var3 (Table 4).155

To further evaluate the prediction, the “area of applicability” – method (Meyer and Pebesma, 2021) implemented in the

package CAST version 0.9.0 (Meyer et al., 2024) was applied to each model. The area of applicability (AOA) estimates

the area where the application of the predicted model is likely accurate and lies within the prediction error (RMSE). The

AOA is based on the dissimilarity index (DI) which is calculated based on the minimum distance to the training data within

the multidimensional predictor space, where predictors are weighted with respect to their importance in the model prior to160

the distance calculation. Then a threshold to the DI is applied which is the maximum DI of the training data obtained via

crossvalidation resulting in a binary raster layer with 1 representing the AOA and 0 displaying areas outside the AOA. In

addition to the AOA we used quantile regression forest as described by Yigini et al. (2018) and also applied by (Wagner et al.,

2023) to estimate the uncertainty which includes the sensitivity of the model to available data and the uncertainty of the model.

We applied this workflow to the mainland and Herschel Island models for the carbon stocks.165
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3 Results

3.1 Data synthesis of regional carbon and nitrogen stocks

The individual studies included in this synthesis showed a large variety in their distribution of SOC stocks (Fig. 2). Stocks were

generally lower on Herschel Island (Fig. 2) compared to the mainland, mirroring geological differences. All the studies carried

out solely on Herschel Island showed lower SOC stock values, with the study by Ramage et al. (2019) having the lowest values170

in the depth increments 0-30 and 30-100 cm with averages of 10.2 and 16.1 kg m−2 respectively. The study by Siewert et al.

(2021a) showed the highest average values with 16.0 and 29.6 kg m−2 and the study by Obu et al. (2017) was in between

with average values of 11.9 and 26.8 kg m−2. The studies carried out on the mainland showed average values of 17.6 and 31.2

kg m−2 (DTLB dataset) and 21.5 and 42.6 kg m−2 (Wagner et al., 2023). The study by Couture et al. (2018b) used sites on

Herschel Island as well as coastal sites on the mainland, so the average values were higher than on Herschel Island and in a175

similar range to the mainland studies at 18.6 and 26.6 kg m−2.

Table 3. Mean, median, standard deviation (StDev) and number of datapoints per study used in this synthesis.

SOC stocks [kg m−2] 0-30 cm SOC stocks [kg m−2] 30-100 cm

study mean median StDev N mean median StDev N

Couture et al. 2018 18.6 16.0 6.9 17 26.6 26.5 11.2 17

Obu et al. 2017 11.9 10.4 7.7 12 26.8 24.5 19.5 12

Ramage et al. 2019 10.2 10.0 3.8 43 16.1 16.0 7.2 43

Siewert et al. 2021 16.0 15.5 4.0 38 29.6 31.0 11.0 38

Wagner et al. 2023 21.5 21.0 8.1 83 42.6 41.7 16.6 83

DTLB dataset 17.6 18.1 4.9 18 31.2 30.2 8.2 18

N stocks [kg m−2] 0-30 cm N stocks [kg m−2] 0-30 cm

study mean median StDev N mean median StDev N

Couture et al. 2018 NA NA NA 0 NA NA NA 0

Obu et al. 2017 0.84 0.90 0.43 12 2.45 2.60 1.36 12

Ramage et al. 2019 0.79 0.80 0.22 43 1.35 1.35 0.47 43

Siewert et al. 2021 NA NA NA 0 NA NA NA 0

Wagner et al. 2023 1.21 1.19 0.51 83 2.48 2.46 1.00 82

DTLB dataset 0.74 0.71 0.28 10 1.68 1.70 0.36 10

In contrast, N stocks showed a different pattern with higher N stocks at the sites of the studies by Obu et al. (2017) and

Wagner et al. (2023), especially in the depth 30-100 cm compared to the datasets by Ramage et al. (2019) and the DTLB

dataset (Fig. 2 and Table 3). After dividing SOC and N values between ‘mainland’ and ‘Herschel Island, average SOC stock
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values were 13.0 kg m−2 in depth 0-30 cm and 23.1 kgm−2 at 30-100 cm for Herschel Island and 20.6, while average SOC180

stock values for the mainland were 38.9 kg m−2. The N stocks on Herschel Island were 0.8 and 1.59 kg m−2 and 1.16 and

2.39 kg m−2 on the mainland (Fig. 2). The distribution further shows that mean and median values are close (Fig. 2).

3.2 Random Forest mapping and model validation assessment

The models for the whole area who R2 values of 0.24 and 0.17 for the SOC stocks and 0.2 and 0.19 for the N stocks. When

separated, the models for the mainland had the lowest R2 values of 0.11 and 0.10 for the SOC stocks and R2 values of 0.17185

and 0.18 for the N stocks (Tab. 4). The models for the SOC stocks at Herschel Island had an R2 value of 0.28 for 0-30 cm and

0.35 for 30-100 cm. The RMSE values of all models were below the standard deviation (StDev) of the distribution of the data

values The highest values for SOC and N stocks are predicted in the areas close to the coast with lower values with increasing

distance from the coast (Fig. 3). The average SOC stocks (Table 5) for the models using all data for the whole area were 14.9

kg m−2 at 0-30 cm and 29.5 kg m−2 at 30-100 cm depth. The N stocks were 0.90 and 0.91 kg m−2 respectively. When both190

SOC and N stocks, were modelled separately for Herschel Island and the mainland, higher SOC and N stocks were modelled

on the mainland and lower SOC and N stocks on Herschel Island. The only exception to that were N stocks on Herschel Island

for 30-100 cm depth (Table 5). SOC stocks at 0-30 cm depth were 19.9 kg m−2 for the mainland and 12.2 kg m−2 for Herschel

Island, when both areas were modelled separately, in contrast to using the all data for the whole area, which resulted in an

average of 14.9 kg m−2 (Table 5).195

The elevation was the most important predictor variable driving the distribution of SOC and N stocks for all models over

the whole area (Table 4, Fig. 4). While figure 4 shows examples of two variable importance plots, the variable importance

for the remaining models is shown by figures S1 and S2 (supplement). The most important variable for the mainland was the

normalised difference water index (NDWI) for all models, except the SOC stocks at 30-100 cm depth, where landcover class 4

[“dry to moist prostrate to erect dwarf shrub tundra”] was more important in determining the distribution of SOC stocks. The200

models for Herschel Island determined different variables as most important, with elevation and landcover class 4 being the

most important for the SOC and N stocks at 0-30 cm depth respectively. The NDWI and vegetation height were most important

in the models for SOC and N stocks at 30-100 cm depth.
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Figure 2. Soil organic carbon (SOC) and nitrogen (N) stocks per depth interval separated into mainland and Herschel Island (A) and per

study area (B).
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3.3 Area of Applicability (AOA) and uncertainty with quantile regression forest

The analysis of the DI and AOA showed that areas where models were not reliable are mostly located around streams and205

lakes, as well as higher elevation areas further away from the coast (Fig. 5 and Fig. 6). The analysis also shows that a large area

on Herschel Island, where no samples are available, had a high DI, limiting the applicability of the model. Generally, areas that

are too different from the sampled areas had a high DI and are outside the AOA. However, sites with similar sample-predictor

relations to the sampled sites, but further away, were still suitable and within the AOA (Fig. 6). In models using all data and

the models for the mainland, predicted SOC and N stock values inside the AOA were generally higher (for example 20.9± 2.8210

kg C m−2 inside the AOA compared to 19.9 ± 2.8 kg C m−2 for the mainland model at 0-30 cm depth; Table 5). For Herschel

Island there was no difference between AOA and whole area.

The results of the quantile regression forest uncertainty (Fig. S3 and S4, supplement) showed areas around lakes and streams

as having high uncertainty, similar to the AOA analyses. At Herschel Island (Fig. S4, supplement) the highest uncertainty

is towards the coast, in depressions and near streams. The area in the centre of Herschel Island, that has been identified as215

inapplicable by the AOA method, has contrastingly a lower uncertainty measured by the quantile regression forest.

Figure 3. Prediction of soil organic carbon (SOC) and nitrogen (N) stocks for the whole study area using all data (Basemap: ESRI (2024b)).

12

https://doi.org/10.5194/egusphere-2025-1052
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 4. Variable importance for the models predicting soil organic carbon (SOC) for the whole area in depth 0-30 and 30-100 cm. For

the variable importance for all models see supplement. (variables: DEM=digital elevation model, NDVI= Normalised Difference Vegetation

Index, NDWI= Normalised Difference Water Index, NDBI= Normalised Difference Built-up Index, vegetation height, LC_class4= dry to

moist prostrate to erect dwarf shrub tundra, LC_class4= moist to wet graminoid prostrate to erect dwarf shrub tundra, S1 C VV backscatter=

Normalised C-VV winter backscatter from Sentinel-1, S1 C HH backscatter= Normalised C-HH winter backscatter from Sentinel-1).

Table 4: Results of the random forest models. The table shows the internal validation results: mtry at which the best performing

model was selected according to the lowest RMSE. R2 (fraction of %), mean absolute error (MAE), the number of predictors

(n pred), the number of samples (n samp) and StDev are displayed together with the first three important variables for each

model (Var1, Var2 and Var3). The table continues on the next page.

model mtry RMSE R2 MAE StDev n

pred

n

samp

validation

method

Var1 Var2 Var3

whole area

SOC

stock
2 6.86 0.24 5.23 7.80 7 189

10-fold CV,

repeated

20 times
DEM NDVI NDWI

0-30 cm

SOC

stock
2 15.30 0.17 11.99 16.43 9 189

10-fold CV,

repeated

20 times
DEM NDVI LC_class4

30-100

cm
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N stock
2 0.46 0.20 0.33 0.49 4 135

10-fold CV,

repeated

20 times
DEM NDWI NDBI

0-30 cm

N stock

2 0.46 0.19 0.34 1.02 5 135

10-fold CV,

repeated

20 times DEM NDWI NDVI
30-100

cm

mainland

SOC

stock
2 7.59 0.11 5.83 7.74 9 107

10-fold CV,

repeated

20 times
NDWI NDVI

veg

height

0-30 cm

SOC

stock
2 17.12 0.10 13.99 16.04 9 107

10-fold CV,

repeated

20 times
LC_class4 NDWI NDVI

30-100

cm

N stock
2 0.48 0.17 0.36 0.51 4 93

10-fold CV,

repeated

20 times
NDWI NDBI DEM

0-30 cm

N stock
2 0.48 0.18 0.36 0.98 5 93

10-fold CV,

repeated

20 times
NDWI NDBI NDVI

30-100

cm

Herschel Island

SOC

stock
2 4.86 0.28 3.75 5.28 7 78

10-fold CV,

repeated

20 times
DEM NDBI NDVI

0-30 cm
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SOC

stock
2 10.58 0.35 8.30 12.60 7 78

10-fold CV,

repeated

20 times
NDWI

veg

height
NDBI

30-100

cm

N stock
2 0.23 NA 0.23 0.30 9 42

leave-one-

out CV
LC_class4 NDBI NDVI

0-30 cm

N stocks
2 0.74 NA 0.74 0.87 9 42

leave-one-

out CV

veg

height
S1 C VV

backscatter
NDBI

30-100

cm

Figure 5. Area of applicability (AOA) and dissimilarity index (DI) for the predictive model of SOC stocks for the whole area. For DI

thresholds that determine AOA see supplement (Tab. S1) (Basemap: ESRI (2024b)).
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Figure 6. Zoom-in to an area (A, black square) with SOC stock distribution for depth 0-30 cm (B) the respective area of applicability (C)

and dissimilarity index (DI). The datapoints are shown with cross symbols (Basemap in A: ESRI (2024a)).

16

https://doi.org/10.5194/egusphere-2025-1052
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 5. Comparison of average soil organic carbon (SOC) and nitrogen (N) stocks for each model prediction depicting the whole area and

additionally the AOA of each respective prediction and predictive model (For more descriptive statistic values see supplement Table S2).

Prediction
SOC stocks 0-30 cm SOC stocks 30-100 cm N stocks 0-30 cm N stocks 30-100 cm

[kg/ m2] [kg/ m2] [kg/ m2] [kg/ m2]

mean StDev mean StDev mean StDev mean StDev

whole area 14.9 3.0 29.8 4.3 0.90 0.23 0.91 0.21

whole area only AOA 16.2 3.6 30.6 5.1 0.97 0.27 0.98 0.26

mainland 19.9 2.8 37.3 3.3 1.08 0.26 1.09 0.25

mainland area only AOA 20.9 2.8 37.7 3.6 1.21 0.36 1.20 0.33

Herschel Island 12.2 1.7 24.0 4.7 0.83 0.11 1.83 0.32

Herschel Island only AOA 12.2 1.8 23.8 4.7 0.83 0.11 1.81 0.33

Herschel Island (from mainland pre-

diction)

20.5 1.8 38.1 4.0 1.02 0.18 1.05 0.18

Herschel Island (from whole area

prediction)

14.3 1.9 27.6 4.5 0.88 0.13 0.88 0.11

mainland (from whole area predic-

tion)

14.9 3.0 29.9 4.3 0.90 0.23 0.91 0.21

4 Discussion

This study has significantly improved the data availability and knowledge about SOC and N stocks for the region. This new data

compilation provides a benchmark dataset for further studies in the region, but also high-lights large remaining uncertainties.

4.1 Data synthesis of regional carbon and nitrogen stocks220

Our study shows that already at a regional level there is a very high heterogeneity in field data, challenging the predictive

ability of models. The full range of the available data in regional, but also in pan-Arctic synthesis must be representative for the

entire study area. Data collection and sampling strategies from local studies are often tailored to a specific research question.

This poses the risk that some landscape features may be over- and others underrepresented in the available data. It is therefore

advisable to analyse the values of the target variable at the sampling locations and the diversity of the landscape to ensure that225
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the spatial variability in the landscape is reflected by the sampled sites The AOA method can be used to assess whether the

heterogeneity of the landscape, ideally mirrored in the covariates, is captured by the sampling locations. Areas where this is

not the case can be excluded from regional estimates and could be further used to determine new sampling sites for future field

sampling campaigns.

Our synthesis shows that SOC and N stocks are lower at Herschel Island than at the mainland (Fig. 2). This is likely due to230

Herschel Island being an ice thrust moraine (Rampton, 1982) and therefore being geologically different to the mainland. When

looking at the studies individually, large differences occur even when comparing the studies only carried out on Herschel Island

(Fig. 2). This is attributed to the different aims of the studies and site selection. While Obu et al. (2017) covered representative

sites for different ecological units on Herschel Island, Ramage et al. (2019) sampled hillslopes in three valleys which show

significant levels of erosion. Erosive relocation of organic material which explains why SOC and N stocks are lower compared235

to the other studies. Siewert et al. (2021a) sampled representative sites in three typical ecological units on Herschel Island:

hummocky tussock tundra, non-sorted circle tundra and IWP tundra. The selective sampling of specific representative areas

was to study multi-scale variation of SOC distribution in specific permafrost landforms. The sites did not undergo significant

erosion/ degradation and therefore SOC stocks are higher than at the sites of Ramage et al. (2019) and slightly higher than

Obu et al. (2017). The latter covers also moderately and strongly disturbed sites which show lower amounts of SOC are found240

in the upper soil (0-30 cm) as well as in the whole profile of 1 metre. Wagner et al. (2023) studied two typical small coastal

catchments with dense sampling density. Particularly the sampling sites at Ptarmigan Bay were located in areas of high organic

layer thickness (Rampton, 1982). The DTLB samples were exclusively from organic rich deposits (peat above lake sediment).

4.2 Spatial mapping of carbon and nitrogen stocks with random forest, area of applicability and uncertainty

Our analysis shows a substantial challenge in bridging from local- to regional-scale study areas. Already at the pedon scale245

permafrost soils are very heterogeneous (Siewert et al., 2021a), and this variability is retained in analyses at coarser scale. The

m−2 values (Table 4) of the models of the entire area range from 0.17 to 0.24 which shows the predictive model can explain a

5th up to a quarter of the spatial heterogeneity in SOC and N stocks and the relationship between the data and the covariates

at 10 m resolution. In contrast, the models for the mainland show even lower R−2 values ranging from 0.11-0.18. The models

for Herschel Island have higher R2 values for the SOC stocks than the models for the entire area with 0.28 and 0.35. This250

may indicate that the variability in SOC could be better represented by the predictor variables at Herschel Island than at the

mainland, but the difference may also be caused by less natural soil variability or a better representation of the soil data on

Herschel Island.

For Herschel Island, there was a higher data density (0.8 samples per km2; n=78 for SOC, area approximately 108 km2)

than on the mainland (0.02 samples per km2; n=107 for SOC stocks, area approximately 4465 km2). This has likely affected255

the accuracy of the models and may explain why mainland models have a lower R2 values. It is also possible that the exact

data density is less important than the spread and representation of the data in relation to natural variability between landscape

types. Several of the studies on Herschel Island included representative sampling of multiple ecological units on the island,

ensuring a range of landscape types are well characterised by the data.
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The local heterogeneity in SOC and N stock distribution is also evident when different data are used to predict SOC stock260

distributions. Figure 7 displays the SOC stock distribution for the whole study area when using only data from the mainland

(Fig. 7a and Fig. 1b), in contrast to training a model that also includes data from Herschel Island (Fig. 8 2a and 2b). When

using all data, including Herschel Island, SOC stocks are lower, with averages of 14.9 kg C m−2 and 29.9 kg C m−2 for 0-30

and 30-100 cm depth, respectively. This is in large contrast to using only data derived from the mainland where SOC stocks

are considerably higher, with 19.9 kg C m−2 and 37.3 kg C m−2. An opposing pattern is displayed in figure 8, where using265

all data results in higher SOC stocks at Herschel Island in comparison to using Herschel Island data only. The map with the

largest SOC stocks is produced when interpolating from mainland data to Herschel Island (Fig. 8 2a and 2b).

Figure 7. Comparison of soil organic carbon (SOC) stock for the coastal mainland region using only the mainland data (1a and 1b) and using

all data (2a and 2b) (Basemap: ESRI (2024b)).

This analysis shows that the selection of data is crucial for studies at a regional scale. Data representation and potential

site biases are also likely to be important for pan-Arctic SOC and N assessments. Mishra et al. (2021) carried out spatial

predictions for three regions separately: the North American, the Eurasian and the Tibetan Permafrost region. Our study shows270

19

https://doi.org/10.5194/egusphere-2025-1052
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



that differences in SOC stocks are significant even when comparing adjacent local scale areas. As the exclusion or inclusion

of certain data has the potential to significantly influence in SOC/ N stock predictions, a more detailed differentiation, e.g.

through geological units or terrain characteristics, would be recommended.

Figure 8. Comparison of soil organic carbon (SOC) stocks at Herschel Island using only datapoints on Herschel Island (1a and 1b), predicting

(extrapolating) SOC only based on data from the mainland (2a and 2b) and using da for the entire area (3a and 3b) (Basemap: ESRI (2024b)).
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Herschel Island in comparison to the mainland, especially the area in close proximity, is particularly interesting, since

soil forming factors such as landscape age, climate and vegetation are very similar, however the parent material differs. The275

area at Ptarmigan Bay consists mostly of glaciofluvial and rolling moraine deposits (Rampton, 1982)). In contrast Herschel

Island consists of massive ground ice later buried by marine sediments (Burn, 2012). These differences in parent material

offer different conditions for soil development as their texture and geochemical composition differ. Studies show that carbon

enrichment through cryoturbation differs with grain size leading to higher carbon enrichment in higher coarse silt to very fine

sand fractions (Palmtag and Kuhry, 2018).280

An assessment of uncertainty and model representation is crucial in digital soil mapping. Hugelius et al. (2014) used upscal-

ing of SOC stocks based on thematic maps representing the physiography and provide an uncertainty assessment in their study

that includes a “representation error” in the regions with lower data density. Similar considerations should be incorporated

in pan-Arctic studies that use DSM approaches such as machine learning models. The data used in synthesis studies might

be highly clustered and can show a high variability on regional and local level. This phenomenon is discussed by Meyer and285

Pebesma (2022), mentioning that geographic clusters of the data do not necessarily mean gaps in the feature space, i.e. the

sample – predictor relationships may still represent the entire area.

To assess whether the presented models of our study are applicable for the total study area, we used the AOA method (Meyer

and Pebesma, 2021). It is expected that the dry areas of riverbeds and areas around lakes on the mainland are excluded after

applying the AOA, because these areas do not contain any sampling sites. Areas with larger distance from the coast were not290

extensively sampled and therefore DI rises with distance from the coast. An interesting result in the AOA analyses is that

the model is not applicable to a large area in the centre of Herschel Island. The AOA method excludes this area likely due

to elevation differences that are not mirrored by the sampling locations. The AOA method includes consideration of variable

importance and DEM elevation most the important variable for the Herschel Island models (Table 4). The average SOC and

N stocks were slightly higher compared to the initial prediction when excluding not applicable areas. This shows that the295

predictions outside the AOA are at the lower end of the spectrum of predicted values (Table 5). We believe that values that are

not represented by AOA are more likely to be underpredicted than overpredicted when using random forest for our study area.

The AOA method focuses on the relationship between covariates and data. We also applied the quantile regression forest to

the mainland and Herschel Island models for SOC stocks to assess uncertainty. This method estimates uncertainty from two

sources: the model itself and variations in the data. Data uncertainty is assessed by repeatedly applying a random forest model300

to different datasets, while model uncertainty is calculated using quantile regression forests, and both are combined into a final

uncertainty map (Yigini et al., 2018). For the mainland models some areas of high DI overlap with high uncertainty (Fig. S5,

supplement). The Herschel Island models show high uncertainty in some areas with high DI, such as streams and depressions

near streams, but also low uncertainty in the centre where DI is high (Fig. S4, supplement). The quantile regression forest

method focuses on the uncertainty on a pixel basis. Multiple model runs are used to assess the sensitivity of the model to305

available data and quantile regression forest is used to calculate a probability distribution for the values each pixel can take on.

In contrast, the AOA method assesses the applicability based on a certain model and the importance of the variables. To best
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assess the accuracy of the predictions, we recommend using not exclusively one of the two methods, as the results may differ

as was seen for Herschel Island in our study.

The selection of the covariates also significantly impacts the prediction power of models. Many studies in digital soil map-310

ping in general (e.g. Hengl et al., 2017) but also pan-Arctic studies (Mishra et al., 2021) include parameters derived from

digital elevation models such as slope, curvature, aspect, flow direction, flow accumulation, etc. Coastal lowland tundra areas

generally have very flat terrain and are close to sea level, which are critical aspects when considering the use of topographic

derivates. Parameters such as flow direction and flow accumulation may not represent the complexity of flow patterns in IWP

terrain (e.g. Speetjens et al., 2024). Most models in our study did not consider elevation as important and other factors such315

as NDWI and vegetation height play a more important role for predicting SOC and N stock distribution. The models in our

study only explain a fifth to a quarter of the spatial variability in SOC and N stocks. This suggest that to achieve high predictive

power across this region, systematic additional soil sampling in addition to the compilation of local studies would be needed.

A dataset that represents all landscape types, and predictors that co-vary with soil variability across space are needed.

4.3 Comparing local scale results to regional scale synthesis320

Our study shows that the results of local studies can differ from the results in regional studies for the equivalent sub region. The

two mainland sites Ptarmigan Bay and Komakuk Beach were studied on a high spatial resolution (2m) (Wagner et al., 2023)

and SOC stocks were 40 kg C m−2 and 66.6 kg C m−2 respectively. The results of our study show 62 kg C m−2 and 47.8 kg

C m−2 respectively with the entire area models and 63.5 kg C m−2 and 58.5 kg C m−2 with the mainland only models. For

Ptarmigan Bay, (Hugelius et al., 2013) suggest 92.8 kg C m−2 and (Mishra and Gautam, 2022) 63.4 kg C m−2. At Komakuk325

Beach, (Hugelius et al., 2013) estimated 18.1 kg C m−2. Furthermore, this synthesis shows that there are high local differences

between different geographic areas when comparing different individual high resolution studies. In contrast, the results of the

regional mapping lead to similar results for Komakuk Beach and Ptarmigan Bay. However, the SOC stocks for Komakuk Beach

using the model with all data is significantly lower than using the mainland only model. This could be partially explained by the

inclusion of data from Herschel Island. Even though our study included more samples than Obu et al. (2017) and our methods330

differ (machine learning in contrast to class matching), average SOC stocks are similar in both studies. Obu et al. (2017) show

34.8 kg C m−2 for the upper metre of soil while our results show 36.2 kg C m−2 with the Herschel models and 41.9 kg C m−2

with the entire area models (Table 5). Large scale studies seemed to overpredict SOC stocks at Herschel Island. The estimated

SOC stocks in the upper metre are according to Hugelius et al. (2013) 55.3 kg C m−2 at Herschel Island and 58.6 kg C m−2

according to Mishra and Gautam (2022). For the mainland, Hugelius et al. (2013) provide an average of 64.5 kg C m−2 and335

Mishra and Gautam (2022) 52.8 kg C m−2, though the latter does not account for the whole mainland area due to data gaps.

Our study shows 57.1 kg C m−2 for the mainland, which lies in between the studies mentioned above.

Our study underlines that large-scale studies should not just be split according to their geographic regions but also according

to their geological identity. This is supported by the differences in important variables between different models. When using

all data together in one model, the elevation is the most important variable. For the mainland-only-model, the elevation was340

considered as less important while the NDWI was the most important variable. We also found that predictions of soil C and
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N stocks vary significantly at different scales and with different data, and that models at larger scales can smooth out local

variability. The dataset by Mishra and Gautam (2022) has a data gap at Komakuk Beach, west of Komakuk Beach and for a

large portion of the area where DTLBs were sampled. This shows that the coastal area lacks accurate maps of SOC stocks.

Hence, our study contributes in complementing existing studies and provides moderate resolution datasets at regional scale.345

Furthermore, the fact that local SOC stocks can vary widely between studies needs to be taken into account in future carbon

budget studies.

5 Conclusion

Our study synthesises existing soil data from different studies that have been carried out at the Yukon coastal plain, providing

an estimation of regional SOC and N stocks at 10 m spatial resolution for the top metre of soil. Furthermore, our study350

complements pan-Arctic estimates, especially as coastal areas are not well represented and there are large data gaps in pan-

Arctic datasets. The average SOC stock for the upper metre for the entire area summing the results from the mainland and

Herschel model is 56.7± 5.6 kg m−2 and the N stock 2.19 ± 0.51 kg m−2. The values using all data are 44.7± 6.5 kg C m−2

and 1.81 ± 0.44 kg N m−2 respectively. We do not recommend using all data together, since the separate models for Herschel

Island and the mainland are likely more accurate. On Herschel Island the values are 36.2 ± 5.7 kg C m−2 and 2.66 ± 0.39 kg355

N m−2 respectively, at the mainland 57.2 ± 4.5 kg C m−2 and 2.17 ± 0.50 kg N m−2.

Our study leads to several recommendations. First, we want to highlight that the usage/ exclusion of data might lead to very

different model results, especially when extrapolating to areas with differences in geological genesis or soil parent material

composition. We therefore recommend that pan-Arctic studies not only subdivide data into geographic regions, but also fol-

lowing landscape history. Second, we recommend the usage of the AOA to assess whether the relation between covariates and360

target variable is represented across the whole study area, as this approach can also help to determine new sampling sites. This

requires additional spatial regional datasets that can be used as covariates that represent the soil forming factors. Third, we

recommend using quantile regression forest to estimate the model uncertainty. Overall, we conclude that multi-scale studies

are needed for better predictions of global soil C budgets in the wake of climate change, because they can provide a potent

bridge between high resolution local studies and moderate resolution pan-Arctic studies.365
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