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Throughout this document, changes in the manuscript text are indicated with the following
formatting:

Unchanged text. Deleted text.
::::::
Added

::::::
text.

Please disregard missing cross-reference numbers (e.g., ‘Figure ??’) in the boxes with changed
text. These are formatted correctly in the revised manuscript and the tracked changes docu-
ment.
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Response to Topic Editor

Comment TE.1

Dear Dr. Vollering and Coauthors, Thank you for your detailed responses to
the reviewers’ comments. Both reviewers offered positive assessments of your
manuscript, recognizing the importance of your study and the inherent challenges
in predicting peat depth using a digital soil mapping approach. They also raised
several shared concerns, particularly the need for clearer and more formal scientific
language, improved manuscript focus, and a more balanced treatment of terrain
and radiometric predictors. Your responses to these points appear appropriate,
and I encourage you to complete your revisions and submit a revised manuscript
for further review.

Thank you very much for this careful and encouraging evaluation. We appreciate the oppor-
tunity to submit a revised manuscript for further review, and thank all parties for their time
and attention so far.

Comment TE.2

That said, I would like to highlight one important conceptual point raised by Re-
viewer 1. While it is correct that Random Forest models are invariant to monotonic
transformations, such as converting counts/s to concentration, this overlooks the
geophysical critique regarding the physical validity of concentration measurements
in peat-rich environments. Addressing these physical limitations directly, rather
than only statistically, would strengthen the interpretation of your findings. Please
ensure that you thoroughly address the issues outlined in Comments 1.5 and 1.6.

Thank you for this advice. Of course the geophysical critique is valid and we do not mean to
overlook it. In our revisions we have tried to address these important issues with the attention
that they deserve, while also acknowledging that they do not prevent us from treating our
research objectives. We have added text in the Introduction, Materials and methods, and
Discussion to ensure that readers are made aware of the physical limitations. Please see the
sections for Comments 1.5 and 1.6 below, which highlight these specific changes to the text.

Comment TE.3

On a related note, your use of K, U, and Th concentrations as separate predictors
differs from the integrated radiometric dose approach used by Gatis et al. (2019),
who combined channels to represent total gamma energy. Given the attenuation
behavior of gamma rays in wet organic soils, modeling the aggregate energy signal
may better capture depth-related variability than using individual concentrations.
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I encourage you to clarify this methodological distinction and discuss how it may
influence model performance and the interpretation of radiometric predictor utility.

Thank you for drawing our attention to this potential objection. We see that we need to clarify
this difference for readers. In short, we use the total count variable provided to use by the
surveyors as an integrated radiometric signal. The total count variable is different than the
gamma dose rate used by Gatis et al. (2019), but at our study sites they were very highly
correlated (𝜌 = 0.989, 0.986). Therefore, our choice to use total count rather than gamma
dose rate can only influence model performance and our interpretations of predictor utility
negligibly.

Since we now mention this point in the Materials and methods, we do not raise it specifically
in the Discussion – in the interest of brevity.

In Materials and methods
::::
We

::::
also

:::::
used

::::
the

:::::
total

::::::
count

::::::::
variable

::
as

::::::::::
provided,

::::::
rather

:::::
than

:::::::::::
calculating

::
a
::::::::
gamma

::::
dose

::::
rate

::::::
based

:::
on

::::
the

:::::::::::
potassium,

:::::::::
thorium,

::::
and

:::::::::
uranium

::::::::::::::::::::::::::::::::::
(as was done in Gatis et al., 2019),

:::::::
because

::::::
these

:::::
were

:::::::
highly

::::::::::
correlated

:::
at

:::::
both

::::::
study

:::::
sites

::::::::::::::::::
(𝜌 = 0.989, 0.986),

::::
and

::::::::
because

:::::::::::
conversions

::
to

:::::
dose

::::::
rates

:::
are

::::::::::::::::
approximations

::::::::::::::
(IAEA, 2003).

:

Comment TE.4

Your work offers valuable insights into the role of remotely sensed data in peatland
mapping. Strengthening the geophysical interpretation within your digital soil
mapping framework will enhance the scientific rigor and practical relevance of the
manuscript for both soil scientists and geospatial modelers.

Thank you for this endorsement and constructive criticism. We believe that the revisions
prompted by the review have strengthened our manuscript for different audiences.

Response to Referee 1

https://doi.org/10.5194/egusphere-2025-1046-RC1

General Comments

Comment 1.1

This article comprehensively addresses the modelling challenges of predicting peat
depth from terrain variables. It takes high resolution terrain variables (derived from
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LiDAR) and low resolution (comparatively) airborne radiometric data across two
individual peat landscapes in Norway and used Random Forest machine learning
algorithm to train combinations of these variables to a multitude of peat depth
probes and GPR peat depth measurements taken in order to establish the predict
power of such variables for peat depth mapping.

Thank you for the time you have kindly taken to review our manuscript.

Comment 1.2

Overall, I found the article to be generally well written, with a very comprehen-
sive and detailed description of modelling mechanism, error derivation, and feature
choice. It is a very long article, going into great detail in several areas, and be-
low I suggest at least one section/topic that could be removed entirely to reduce
length and increase overall readability. I suggest the authors review all sections for
conciseness and reduce the article length where possible. The level of detail may
mean a reader less familiar with machine learning modelling may find the article
hard to follow. While I do find the article to be within the scope of SOIL, I would
be concerned that it focuses heavily on the modelling methodology.

Thank you for your positive comments on the article and for your suggestions to improve
its readability. We have taken your advice to review the article for conciseness and have
made several changes to reduce its length, while retaining the key details of the modelling
methodology. In particular, we have removed the sections on peatland extent mapping, which
was not central to the main focus of the study, and we have shortened some of the other
sections as well. We have moved some of the more detailed descriptions of the methodology
to the appendix, to make the main text more accessible and focused.

We do not reproduce all of the removed text here. Please see the tracked changes document
to examine these changes.

Comment 1.3

Additionally, there were several areas where the language used was quite casual for
a scientific article. Several are highlighted under minor considerations below.

Thank you for this advice and the specific examples you provided. We have gone through the
manuscript and revised the language to make it more formal and scientific, while aiming to
retain clarity and accessibility. A few examples:

In Abstract
The accuracy of

::::
Our

:::::::
remote

::::::::
sensing

:::::::
models

::::
had

:::::::
better

:::::::::
accuracy

:::::
than

:
the national map
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of peat depthdid not measure up to any of our remote sensing models, even though it
was calibrated

:
,
:::::
even

::::::
when

:::
we

::::::::::
calibrated

::::
the

::::::::
national

:::::
map

:
to the same

:::::
depth

:
data.

In Introduction
The little we know about the depths of Norwegian peatlands

::::
only

:::::::::::
systematic

:::::::::
mapping

::
of

::::
peat

::::::
depth

:::
at

::::
the

::::::::
national

::::::
scale

::
in

::::::::
Norway

:
comes from surveys meant to identify arable

land.

In Discussion
Since remotely sensed data are widely available, improvements to soil maps as shown
here are low hanging fruit. This point is recognized and reflected in the rise of DSM
:::::::
readily

::::::::::
achievable

:::
at

::::
low

::::
cost

:
(Minasny et al., 2019).

Comment 1.4

Finally, the main concern noted is the imbalance between the consideration given
to radiometric data compared to terrain variables. Considering the title is stating
terrain being “better” than radiometrics, and given the emerging understanding of
the use of radiometric data in peat land mapping, there is are some fundamental
errors in the methods presented, which may be biasing the conclusion alluded to
in the title.

Thank you for raising this concern. We address the specific comments on this theme below,
and believe that our responses show why we disagree that there are fundamental errors in the
methods. For the same reasons outlined below, we do not think that the conclusion the title
alludes to is biased.

Specific Comments

Comment 1.5

The first concern in the comparison of radiometric data to lidar terrain variables is
related to the choice of radiometric variables. The authors opt to use potassium,
uranium and thorium ground concentration units alongside the Total Count data
from the full energy spectrum. These ground concentration measurements are
derived from counts per second measurements on the airplane which are calibrated,
usually using pads of known concentrations at a calibration facility. Therefore,
concentration of any radioelement is a measurement of the concentration of that
element in the top ~ 60 cm – 1 m of the soil. However, peat soils are different.
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Being organic, they don’t contain the typical geological material that make up
soils. Therefore, they act as an attenuative environment to gamma rays. As
the potential source of gamma rays in peat areas is blocked and attenuated by
the peats, the concentration calibration is no longer physically valid. While these
concentration data are indeed provided by the contractors of such surveys, it is now
recognized that the counts per second measurement is a more appropriate unit when
considering attenuation of gamma rays in peat soils (O’Leary et al, 2022, 2024). In
particular considering depth, the deeper the peat, the greater the attenuation of
gamma rays. Similarly, the wetter the peat the greater the attenuation of gamma
rays. The use of concentration data is not valid for a study in predicting peat
depth. I recommend either the authors convert these concentrations to counts per
second, or remove all but the Total Count data from their analysis and consider
take the next concern into account.

Thank you to the referee for pointing out this concern and providing a thorough explanation
of their reasoning. We appreciate the references, which we have consulted.

After careful consideration, we disagree that the radiometrics variables we used are not valid
for predicting peat depth. In particular, we assert that converting the concentrations we use to
counts per second – as the referee suggests – would produce identical results. That is because
the method we use to predict peat depth (Random Forest) is insensitive to any monotonic
transformation of the predictors, like the scalar conversion between concentration and counts
per second (see Table 10.1 on p.351 in Hastie et al., 2009). The Random Forest algorithm is
based on decision trees, which partition the predictor space into regions based on the values
of the predictors. As a result, any monotonic transformation of the predictors will not change
the partitioning of the predictor space, and therefore will not change the predictions made
by the model (see Fig. 9.2 on p.306 and Algorithm 15.1 on p.588 in Hastie et al., 2009).
Appendix B3 in Baranwal et al. (2013) and Appendix A2 in Ofstad (2015) confirm that the
concentration values we use in our models are simply the counts per second multiplied by a
constant conversion factor.

As a separate argument, we also note that Koganti et al. (2023) successfully predicted peat
depth with concentration data (K concentration).

To try to avoid confusion on this point, we have added a brief mention of it in the Introduction.
We also added a short explanation in the Materials and methods section that the distinction
between counts per second and concentration is not relevant for our analysis and it does not
affect the predictive power of the radiometric variables in our models.

In Introduction
Another set of predictors related to peat depth are measurements of natu-
ral radioactivity from the ground surface. Gamma-ray spectrometry can sur-
vey the activity (decay counts per second) from radioactive isotopes in the
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earth’s crust
:::::::
bedrock

:::::
and

:::::::::
mineral

:::::
soils: potassium-40, uranium-238, and thorium-

232 (Reinhardt and Herrmann, 2019). These exist in bedrock (and mineral soils)and
a peat overburden attenuates the radiation intensity at the surface. The degree
of attenuation relates to properties of the overburden, especially composition and
depth

:::::::::::::::::::::::::::::::::::::::::::::::
(Beamish, 2014; Reinhardt and Herrmann, 2019)

:
.
::::::::::
Although

:::::::
survey

::::::::::::::
measurements

:::
are

::::::::::
commonly

:::::::::
reported

:::
as

:::::::
ground

:::::::::::::::
concentrations

:::::::::
(linearly

::::::
scaled

:::::
from

:::::::
decay

::::::
counts

::::
per

::::::::
second),

:::
in

:::::::::
peatland

:::::::::::::
environments

::::::
these

:::::::::::
predictors

:::
do

::::
not

:::::::
reflect

::::
the

::::::::::::::
concentration

::
of

::::::::::::
radionuclides

:::::
near

::::
the

:::::::
ground

::::::::
surface,

::::
but

::::::
rather

::::
the

:::::::::
radiation

:::::::::
intensity

:::::
after

:::::::::::
attenuation

::
by

::::
the

::::::
peat

:::::::::::
overburden. Deep soil with high water content will attenuate radiation

most (Beamish, 2013; Reinhardt and Herrmann, 2019). Thus, gamma-ray radiometrics
integrate

::::::::
reported

:::::::
ground

:::::::::::::::
concentrations

::::
can

::
be

::::::::::::
statistically

:::::::::::
informative

::::::
about

:::::
peat

:::::
soils,

::::
even

::
if
::::
not

:::::::::::
physically

:::::::
correct,

::::::
with

:::::::
respect

:::
to

:
two scorpan factors: other soil properties

and parent material (McBratney et al., 2003).

In Materials and methods
:::::::::
Although

::::::::::::
radiometric

:::::
data

:::::
must

:::
be

:::
in

::::::
units

::
of

:::::::
counts

::::
per

:::::::
second

:::
to

::::::
model

::::::::::::
attenuation

:::::::
directly

::::::::::::::::::::::
(O’Leary et al., 2022),

::::
we

:::::
used

:::
the

::::::::::::
radiometric

:::::
data

:::
as

:::::::::
provided

:::
to

:::
us:

:::
in

:::::
units

::
of

:::::::::::::
concentration

::::
for

::::::::::
potassium,

:::::::::
thorium,

:::::
and

::::::::
uranium

:::::::::::
(converted

:::::
from

:::::::
counts

:::
per

:::::::
second

::
by

::::::
scalar

:::::::::::
calibration

:::::::::
factors).

:::::
The

::::::::::
monotonic

:::::::::::::::
transformation

:::::::::
between

::::::
counts

::::
per

:::::::
second

::::
and

:::::::::::::
concentration

::::
has

::::
no

::::::
effect

:::
on

::::
the

::::::::::
tree-based

:::::::::
machine

:::::::::
learning

::::::::::
algorithm

:::::
that

:::
we

::::
used

:::
to

::::::
model

:::::
peat

:::::::
depth

:::::::::::::::::::
(Hastie et al., 2009)

:
.
:

Comment 1.6

There is an additional argument missing from within the authors discussion, namely
the fact that we never know the initial source strength, or counts, of the gamma rays
for a given footprint. The measurement at the airplane is an attenuated version
of this initial source. This attenuation is controlled by the attenuation coefficient
for a given element and depth, soil moisture, bulk density and porosity (Beamish
2013) of the peat soils. From a purely physics/modelling point of view, this makes
the prediction of peat depth an underdetermined problem. Even if the soil mois-
ture, bulk density and porosity was known absolutely, the initial source is never
known and so any number of peat depths may result in any given gamma count at
the airplane. Additionally, this modelling exercise cannot be performed on Total
Count data as this is summed from the entire measurement energy spectrum, which
contains multiple element specific attenuation coefficient, meaning the Total Count
data is only ever indicative of attenuation variability across a site, with no ability
to model anything quantitative. This puts Radiometrics in a natural disadvantage
for a quantitative prediction of peat depth. Given the title of this article, I find
that the discussion around the radiometrics lacked sufficient detail to make a fair
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comparison, which naturally results in such a bias towards terrain variables in such
a modelling context. This is therefore not a result per say, but more a perfectly
expected outcome. For this concern, I suggest a more comprehensive discussion
around the physical limitations of radiometrics in the prediction of peat depth.

Again, we thank the referee for a clear and comprehensive explanation of their concern.

We agree that the physical modelling of peat depth from radiometric data is an underdeter-
mined problem, for the reasons that the referee states. However, our prediction of peat depth
is not based on a physical model, but rather on a statistical model that learns the relationship
between the predictors (radiometric and terrain variables) and the response variable (peat
depth) from the data. This is the same general approach used in previous studies with similar
objectives (Keaney et al., 2013; Gatis et al., 2019; Pohjankukka et al., 2025). A mechanistic
relationship – in this case the physical attenuation of radiation through peat – is what leads
us to expect a statistical relationship in the first place, but the model is otherwise agnostic
to the nature and origin of that statistical relationship. That is also why we are able to treat
Total Count data the same as the other radiometric variables, even though it can only indicate
attenuation variability. Indeed, it is exactly attenuation variability across a site that we expect
to be useful for predicting peat depth, and our methods allow the model to decide which of the
radiometric variables are most useful and the functional form of the statistical relationship.

It is important to note here that the radiometric and terrain predictors are on equal footing
– it is the strength of their statistical relationship with peat depth (including non-linear rela-
tionships and interactions with other predictors) that is compared in our analyses and title.
Moreover, we assert that there is a clearer mechanistic explanation for a relationship between
radiometric variables and peat depth than there is for terrain variables and peat depth. The
referee outlines this physical basis for the radiometrics, whereas for terrain variables potential
mechanisms are more tenuous, or at least less consistent. For example, terrain slope in peat-
lands may reflect the topography that underlies the peat layer (e.g. in blanket bogs) or the
position along the microtope (e.g. the rand in raised bogs) – neither of which is necessarily
strongly related to the thickness of the peat layer. The fact that radiometric measurements
integrate across some part of the soil profile is a reason to expect, a priori, that these vari-
ables might predict peat depth better than measurements that technically only reflect the
land surface, like LiDAR and the terrain models derived from it (see for example section 7.2
in Minasny et al., 2019; Reinhardt and Herrmann, 2019; Beamish and White, 2024). We do
not think it is correct, therefore, to conclude that there was a bias towards terrain variables
in our analysis, or that the results are a perfectly expected outcome.

The referee’s comment does expand the list of possible explanations for the poor performance
of radiometric variables in our models, and we have added to our discussion based on the
comment, as suggested.
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In Introduction
A complementary approach from soil science is digital soil mapping (DSM). DSM scales
up field measurements from a set of locations to a wider area, by relating the measured
values to other variables mapped over the area of interest

:
,
::::::::
through

::
a
::::::::::
statistical

:::::::
model.

This approach has grown in importance with the availability of remotely sensed data
and the advancement of methods for identifying patterns, especially through machine
learning

::::::::
machine

:::::::::
learning

::::::::
methods

:
(Minasny et al., 2019; Wadoux et al., 2020).

In Discussion
Weather conditions varied during the Ørskogfjellet radiometric survey and affected its
data(Ofstad, 2015). Thus, uneven

::::::::
Another

::::::::
possible

:::::::
reason

::::
for

:::
the

::::::
poor

::::::::::
predictive

:::::
value

::
of

::::
the

:::::::::::
radiometric

:::::
data

::::::
could

:::
be

:::::
that

::::::
other

::::::::
physical

:::::::::::
parameters

::::::::::::
influencing

:::
the

::::::::
amount

::
of

::::::::::::
intercepted

::::::::::
radiation

:::::::
varied

::::
too

::::::
much

::::::::
within

::::::
sites.

::::::::
Initial

:::::::
source

::::::::::
strength,

::::
soil

:::::::::
moisture,

:::::
bulk

::::::::
density,

::::
and

:::::::::
porosity

:::
all

::::::
affect

::::
the

::::::::
amount

::
of

::::::::::
radiation

:::::
that

:::::::
reaches

::::
the

::::::::
detector

:::::::::::::::::::::::::::::::::::::::::::::::
(Beamish, 2013; Reinhardt and Herrmann, 2019)

:
.
:::::::::::
Therefore,

:::::::::
variation

:::
in

:::::
these

:::::::::::
parameters

:::::
could

:::::
have

::::::::
masked

:::
the

::::::::::::
relationship

::::::::
between

:::::
peat

::::::
depth

::::
and

::::::::::::
radiometric

:::::
data.

::::
This

:::::::
makes

:::::::::
physical

::::::::::
modeling

::
of

::::::
peat

::::::
depth

::::::
from

::::::::::::
radiometric

:::::
data

:::
an

::::::::::::::
undetermined

::::::::
problem.

::::
We

::::::
chose

::::
the

:::::::::::::
Ørskogfjellet

::::
site

::
in

:::::
part

::::::::
because

::
it

::::
has

:
a
::::::::::
relatively

:::::::::::::
homogeneous

::::::::
bedrock,

::::::
which

:::::::
should

:::::::
reduce

::::
the

:::::::::
variation

::
in

:::::::
initial

::::::
source

:::::::::
strength.

:::::
Soil

:::::::::
moisture,

:::::
bulk

:::::::
density,

::::
and

:::::::::
porosity,

:::::::::
however,

::::
are

::::
not

::::::
easily

::::::::::
measured

::::::
across

::::::::::
landscape

::::::
scales

::::
and

:::::
were

::::::::
assumed

::
to

:::
be

::::::::::::::
homogeneous.

::::::::
Uneven

:
snow cover and air moisture

::::::
during

::::
the

::::::::::::
Ørskogfjellet

:::::::::::
radiometric

:::::::
survey

:
may also have masked the soil signal in these data

:
,
:::
as

:::::::
Ofstad

:::::::
(2015)

:::::::
reports

:::::
large

:::::::::
variation

:::
in

::::::::
weather

:::::::::::
conditions.

::
If
::::::
maps

::
of

::::::
these

::::::
other

::::::::
physical

:::::::::::
parameters

::
at

::::
the

:::::
time

:::
of

::::
the

::::::::::::
radiometric

:::::::
survey

::::::
were

:::::::::
available

:::::
and

:::::::::
included

:::
in

::::
the

:::::::
model,

::::
the

:::::::::
predictive

::::::
value

:::
of

::::::::::::
radiometric

:::::
data

::::::
might

:::::::::
improve,

::::
but

:::::
this

::
is

::::
not

::
a

:::::::::
practical

::::::::
solution

:::
for

::::::
digital

::::
soil

:::::::::
mapping

:::
of

:::::
peat

::::::
depth.

Comment 1.7

The main focus of this article is on the prediction of peat depth. However, the
authors include several sections of the possibility of peatland extent mapping. This
is not mentioned at all in the abstract, or the introduction in great detail. As this
article is already quite long and complex, I suggest the removal of any sections and
text related to mapping peat land extent as it is not the focus of the article and
only acts to add unnecessary complexity to an already very technical methodology.
The authors even mention in Line 535 that their aim was not to map extent. I
suggest the removal of all reference to peatland extent prediction and instead focus
on the prediction of peat depth. A much shorter reference to the importance of
peatland extent knowledge could perhaps be mentioned in the conclusions, but a
full analysis and discussion (section 4.1.4) is not appropriate in this article.
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Thank you for this helpful suggestion. We initially thought it would be worth including the
analysis on extent mapping – especially since our occurrence data at Skrimfjella is a good test
set – but based on the comments of both referees, we recognize that it distracts too much from
the main focus. We have removed all sections related to mapping peatland extent (including
section 4.1.4), to shorten the manuscript and improve its readability. We still discuss briefly
the importance of coupling peat depth and extent mapping, since we consider this a research
need directly related to the present study, but we have shortened this section as well.

In Discussion
Finally, we want to highlight

:::::
would

:::::
like

:::
to

:::::::::
highlight

:::::::
briefly

:
the need for research on

peatland extent
:::::::::
peatland

:::::::
extent

:::::::::
mapping

:
and peat depth

::::::::
mapping

:
to be better inte-

grated. Since peatland extent is defined by non-zero peat depth (the specific threshold
varies by definition, Minasny et al., 2024), they

:::
the

:::::::
lateral

::::
and

::::::::
vertical

::::::::::::
dimensions are

fundamentally linked. The goal, therefore, should be a unified prediction framework
for extent and depth. We caution against reducing continuous depth predictions to
arbitrary classes (as in Ivanovs et al., 2024; Karjalainen et al., 2025), since classes can
be derived from continuous predictions. The distribution of peat depths across full
landscapes is zero-inflated, and research

::::::::
Research

:
is needed to determine whether it

is more efficient
::::::
better

:
to parameterize a single model of peat depth (with a larger,

generalized dataset)
::::::
across

::
a

::::
full

:::::::::::
landscape, or to break down the problem into a hur-

dle model by classifying zero depth and then regressing non-zero depths(with smaller,
specialized datasets). Coupling extent and depth will reduce the prevalence of incoherence
that we found: deep peat outside the peatland extent and zero depth inside it.
A key challenge going forward will be obtaining training data that represents both
zero and non-zero components of the depth distribution, since sampling designs often
focus on known peatlands. .

::::::::::
Though

:::::::::
peatland

:::::::::::
definitions

:::::
may

:::::::::::
encourage

:::::::::
reducing

::::::::::
continuous

:::::::
depth

::::::::::::
predictions

:::
to

::::::::::
arbitrary

::::::::
classes,

::::
we

::::::::
caution

:::::::::
against

::::
this

:::::::::
practice

:::::::::::::::::::::::::::::::::::::::::::::::::
(as in Ivanovs et al., 2024; Karjalainen et al., 2025)

:
.
:

Technical Corrections

Line 58- 59. There is no need to include this sentence with an example here, as
the next paragraph goes into the necessary detail on Slope. This is an example of
how the authors might reduce the overall size of the article.

Thank you. We have removed this sentence and looked to remove similar cases.

Section 2.2 I would suggest moving this opening paragraph to the end of this
section as it acts more to sum up how the authors are using the various predictors.
It mentions several of the predictors directly, but the are not described until later
sections (for example 2.2.1). This would increase the readability of this section.
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Thank you for this suggestion. This opening paragraph is intended to give a brief overview
of the full suite of predictors before going into a complete description of how each predictor
was derived. We think therefore that it is best placed at the start of the section, but we
have tried to improve its readability within the structure (including the mentions of specific
predictors).

We created the same suite of peat depth predictors for both sites (25 continuous and 1
categorical; Table ??). Each continuous predictor equates to one variable in the model,
while the categorical predictor equates to two variables in the model because its three
levels become two indicator variables (one level is used as the reference). All continuous
predictors were derived either from an airborne radiometric survey or from a DTM. From
the radiometric surveys, we simply used the four variables produced by the Geological
Survey of Norway: ground concentration of potassium, thorium, uranium, as well as
total count. From the DTMs we calculated several land surface parameters, ranging
from simple terrain indices to more complex geomorphometric and hydrological variables
(Maxwell and Shobe, 2022). The categorical predictor was peat depth class, from a
national map dataset.

:::::::::
Predictor

::::::::::::
preparation

::
is

::::::::::
described

::
in

::::::
more

::::::
detail

::::::
below.

:

Line 179: Remove “also using White Box” as this is obvious.

Thank you.

Line 258: The authors mention density; however, they do not expand on this. Was
this measured in the field, or an operator’s observation and subjective interpreta-
tion of density?

Thank you. We would have clarified that this was the operator’s observation and subjective
interpretation, but this section is now removed entirely.

371: What is the relevance of the Persons correlation coefficient of 0.7. Was this
tested at all? Readers may not be familiar with this so it should be explained a
bit more.

Thank you. We have added some more context to explain the 0.7-cutoff:

Specifically, we eliminated variables from the best performing predictor configuration to
obtain a set with no pairwise Pearson correlation coefficient above 0.7

:::
(an

:::::::::
arbitrary

::::
but

::::::::::::
conventional

::::::::::
threshold

:::
for

::::
this

:::::::::
purpose).

Table 2: I recommend putting a vertical line between the results for both sites so
as to easier distinguish between them.

Thank you. We have reexamined the formatting of the table.
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Heading Section 4.1.1 – “but not useless!” is very casual language to be using in
a scientific article. This is just one example of this casual language. I suggest the
authors review the article for this throughout.

Thank you for this example. We have gone through the manuscript and revised the language
to make it more formal and scientific, while aiming to retain clarity and accessibility. We have
removed this phrase and similar casual language throughout the manuscript.

Line 464: “low hanging fruit” is also casual and colloquial and may not be under-
stood by all cultures.

Thank you. Removed.

Line 515: “large stocks really are large” – very vague and non-scientific comment.
What is large?

Thank you. Clarified:

This is not unexpected for the right-skewed distributions of peat depth, but it has
management implications . Identifying the deepest peats will require additional field
work in candidate areas, which could be defined by an upper quantile of predicted depth.
Map users should not trust the mapsto identify all large carbon stocks, but they can
trust that identified large stocks really are large. That makes the map

::::::::::::
implications

:::
for

:::::::::
potential

:::::
users

::
of

::::
the

::::::
maps.

::::
For

:::::::::
example,

::
it

::::::
makes

::::
the

:::::
maps

:
more suited for “red-lighting”

than “green-lighting” peatland conversion , for example. Where it does not prohibit
conversion (i.e. predicts shallow peat), a ground survey should be done before conversion
is allowed (assuming depth is the only consideration). Although this recommendation
aligns with the precautionary principle, here we make it on technical grounds based on the
maps’ characteristics.

:::::::::::::
determinative

::::::::
factor).

::::::::::::
Identifying

::::
the

::::::::
deepest

::::::
peats

::::
will

:::::::
require

::::::::::
additional

::::
field

:::::
work

:::
in

::::::::::
candidate

:::::
areas

::
–

::::::
where

::::::::::
candidate

:::::
areas

::::::
could

:::
be

:::::::
defined

:::
by

:::::
some

::::::
upper

::::::::
quantile

::
of

::::::::::
predicted

::::::
depth.

Line 530: remove the question at the start of this section.

Thank you. Removed.

Line 549: This section is the first mention of the radiometric survey parameters. I
would recommend moving some of this section to the Methods and Material section
as it is useful descriptors of how the data came to be.

Thank you. We have added a very brief summary of the radiometric surveys to the Materials
and methods section, while retaining the reference to an appendix for the full details.
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The radiometric surveys were conduced with similar flight parameters
::::::::::
conducted

:::::
with

:::::
75–80

:::
m

::::::::
average

:::::
flight

:::::::::
altitude,

:::::::
88–108

:
kmh−1

:::::::
average

::::::
flight

::::::
speed,

::::
and

::::
200

:::
m

:::::
flight

::::
line

:::::::
spacing

:
(Table ??).

Line 564: Typically, airborne radiometric surveys have strict conditions that they
must fly under. One is related to rainfall occurrence and airborne surveys should
not happen directly after rainfall. The authors statement with regards to air mois-
ture should be clarified as otherwise the contractor may have been at fault by
provide incorrect data, which would have implications for the usage of radiometric
data in this area in this study.

Thank you. We have clarified our statement based on the information in the report by the
Geological Survey of Norway.

Weather conditions varied during the Ørskogfjellet radiometric survey and affected its
data(Ofstad, 2015). Thus, uneven

::::::::
Another

::::::::
possible

:::::::
reason

::::
for

:::
the

::::::
poor

::::::::::
predictive

:::::
value

::
of

::::
the

:::::::::::
radiometric

:::::
data

::::::
could

:::
be

:::::
that

::::::
other

::::::::
physical

:::::::::::
parameters

::::::::::::
influencing

:::
the

::::::::
amount

::
of

::::::::::::
intercepted

::::::::::
radiation

:::::::
varied

::::
too

::::::
much

::::::::
within

::::::
sites.

::::::::
Initial

:::::::
source

::::::::::
strength,

::::
soil

:::::::::
moisture,

:::::
bulk

::::::::
density,

::::
and

:::::::::
porosity

:::
all

::::::
affect

::::
the

::::::::
amount

::
of

::::::::::
radiation

:::::
that

:::::::
reaches

::::
the

::::::::
detector

:::::::::::::::::::::::::::::::::::::::::::::::
(Beamish, 2013; Reinhardt and Herrmann, 2019)

:
.
:::::::::::
Therefore,

:::::::::
variation

:::
in

:::::
these

:::::::::::
parameters

:::::
could

:::::
have

::::::::
masked

:::
the

::::::::::::
relationship

::::::::
between

:::::
peat

::::::
depth

::::
and

::::::::::::
radiometric

:::::
data.

::::
This

:::::::
makes

:::::::::
physical

::::::::::
modeling

::
of

::::::
peat

::::::
depth

::::::
from

::::::::::::
radiometric

:::::
data

:::
an

::::::::::::::
undetermined

::::::::
problem.

::::
We

::::::
chose

::::
the

:::::::::::::
Ørskogfjellet

::::
site

::
in

:::::
part

::::::::
because

::
it

::::
has

:
a
::::::::::
relatively

:::::::::::::
homogeneous

::::::::
bedrock,

::::::
which

:::::::
should

:::::::
reduce

::::
the

:::::::::
variation

::
in

:::::::
initial

::::::
source

:::::::::
strength.

:::::
Soil

:::::::::
moisture,

:::::
bulk

:::::::
density,

::::
and

:::::::::
porosity,

:::::::::
however,

::::
are

::::
not

::::::
easily

::::::::::
measured

::::::
across

::::::::::
landscape

::::::
scales

::::
and

:::::
were

::::::::
assumed

::
to

:::
be

::::::::::::::
homogeneous.

::::::::
Uneven

:
snow cover and air moisture

::::::
during

::::
the

::::::::::::
Ørskogfjellet

:::::::::::
radiometric

:::::::
survey

:
may also have masked the soil signal in these data

:
,
:::
as

:::::::
Ofstad

:::::::
(2015)

:::::::
reports

:::::
large

:::::::::
variation

:::
in

::::::::
weather

:::::::::::
conditions.

::
If
::::::
maps

::
of

::::::
these

::::::
other

::::::::
physical

:::::::::::
parameters

::
at

::::
the

:::::
time

:::
of

::::
the

::::::::::::
radiometric

:::::::
survey

::::::
were

:::::::::
available

:::::
and

:::::::::
included

:::
in

::::
the

:::::::
model,

::::
the

:::::::::
predictive

::::::
value

:::
of

::::::::::::
radiometric

:::::
data

::::::
might

:::::::::
improve,

::::
but

:::::
this

::
is

::::
not

::
a

:::::::::
practical

::::::::
solution

:::
for

::::::
digital

::::
soil

:::::::::
mapping

:::
of

:::::
peat

::::::
depth.

Line 628 – 629: remove the sentence starting “The rest of this section….” As it is
unnecessary.

Thank you. Removed.

Line 634: “luxury” is again a very casual phrasing within a scientific article.

Revised.

Line 664: “tricky” – casual
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Revised.

Finally, there is no definite conclusion to this article, nor a heading stating same.
I suggest the authors either add a section at the end and move some text here
to highlight the main conclusions as currently the “discussion” section is quite
large and probably not appropriate to act as a combined discussion and conclusion
section.

Thank you for this helpful recommendation. We have added a Conclusions section to sum-
marize the key findings of the study. This summary highlights the main results and their
implications, which we hope will help readers more easily see how the study addresses its
research aims of quantifying predictive accuracy and identifying key predictors.

We have also used this addition to reduce the length of the Discussion section, by reserving
some of the more general discussion points for the Conclusions.

In Conclusions
::::
This

:::::::
study

::::::::::::::
demonstrates

:::::
that

:::::::
digital

::::
soil

::::::::::
mapping

:::
at

:::
10

:::
m

:::::::::::
resolution

::::
can

:::::::::
improve

:::::
upon

::::::::
existing

::::::
peat

::::::
depth

:::::::
maps

:::
in

::::::::
Norway,

::::::::
though

:::::
the

:::::::::
strength

:::
of

::::
the

::::::::::::
relationship

::::::::
between

:::::::::
available

::::::::::
predictors

:::::
and

:::::
peat

::::::
depth

:::::::::
remains

::::::::
limited.

:::::
Our

:::::::::
findings

:::::
show

:::::
that

::::::::::::::
terrain-derived

::::::::::
variables,

:::::::::::::
particularly

::::::::::
elevation

::::
and

::::::::::::::::::
Multi-Resolution

:::::::
Valley

::::::::
Bottom

:::::::::
Flatness,

:::::::
provide

:::::::::::
predictive

:::::
value

::::
for

:::::
peat

::::::
depth

:::::::::
mapping

:::::::
within

::::::::::
peatland

::::::::
extents.

:::
In

::::::::
contrast,

:::::::::
airborne

::::::::::::
radiometric

:::::
data

::::::::
showed

:::::
little

:::
to

:::
no

::::::::::
predictive

::::::
value

::
at

:::::::
either

::
of

::::
two

:::::
study

::::::
sites,

::::::::
possibly

::::::::
because

:::
of

::::
the

:::::
large

:::::::::
footprint

:::
of

:::::::::
airborne

::::::::::::::
spectrometers

::::::::
relative

::
to

:::
the

:::::::::
fine-scale

::::::::::
variation

::
in

:::::
peat

::::::::
depths.

:

::::
The

:::::
best

:::::::
models

::::::::::
achieved

::::::
mean

:::::::::
absolute

::::::
errors

:::
of

::::::
56–60

::::
cm

::::::::
against

::::::
mean

::::::::
depths

::
of

::::::::
119–126

::::
cm,

::::
and

::::::::::
explained

::::::::::::::
approximately

:::::::::
one-third

:::
of

:::
the

::::::::::
variation

::
in

:::::
peat

::::::
depth

::::::
across

::::::::::
landscapes

:::::
with

::::::::::
aggregate

:::::::::
peatland

::::::
areas

:::
of

::::::::
1.5–15.3

::::::
km2.

::::::::
Though

:::::
field

::::::::::::::
measurements

:::::::
remain

:::::::::
necessary

::::
for

:::::
local,

:::::::::
detailed

::::::::::::
assessments

::
of

:::::
peat

:::::::
depth,

:::::::
digital

:::
soil

::::::
maps

:::
at

:::
10

::
m

:::::::::
resolution

:::::
can

::::::::
provide

:::::::::
valuable

::::::::::::
information

:::
for

::::::::::::::::
landscape-scale

:::::::::
planning

:::::
and

::::::::
regional

:::::::
carbon

:::::::::::::
assessments.

::::::
The

::::::::
models’

::::::::::
tendency

:::
to

::::::::::::::
underpredict

::::
the

:::::::::
deepest

::::::
peats

::::
has

::::::::::
important

:::::::::
practical

::::::::::::
implications,

::::::::
making

:::::
them

::::::
more

::::::::
suitable

:::
for

::::::::::::::
precautionary

:::::::::
screening

::::
than

:::::::::::::::
comprehensive

:::::::::
coverage.

::::
As

::::::::
Norway

::::
and

:::::
other

::::::::
nations

:::::::
pursue

:::::::::::::
nature-based

:::::::
climate

:::::::::
solutions,

::::::
these

::::::::
findings

:::::::::
highlight

::::::
both

::::
the

:::::::::
potential

::::
and

::::::::::::
limitations

::
of

::::::::
remote

:::::::
sensing

:::
for

:::::::::
peatland

:::::::
carbon

::::::::::
mapping.

:
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General Comments

Comment 2.1

This article focuses on improving peat depth mapping in two distinct peatland
landscapes in Norway using a digital soil mapping approach. The study employed
the Random Forest (RF) algorithm to model both peat presence and depth, using
high-resolution terrain data, remotely sensed radiometric data, and polygonised
peat depth data from an existing map. The RF models were calibrated using field-
measured data points collected across both regions, and variable importance was
analysed.

Thank you for the time you have kindly taken to review our manuscript.

Comment 2.2

Overall, this research addresses a significant challenge in peat depth mapping. The
title is clear and likely to attract attention from readers interested in this topic.
However, I have some concerns regarding the writing style. Certain sections use
jargon excessively or are phrased in a way that feels less scientific, which may
hinder clarity and accessibility for a broader audience.

Thank you for your positive comments on the research and title, and for your suggestions to
improve the writing style. We have gone through the manuscript and revised the language to
make it more formal and scientific, while aiming to retain clarity and accessibility. We have
also tried to reduce jargon where possible, while retaining the necessary technical terms.

Specific Comments

Comment 2.3

While the title is clear, I personally find it somewhat overconfident in summaris-
ing the results. This is mainly due to the relatively low performance of the RF
models and the minimal difference observed between the terrain-only and terrain-
plus-radiometric models. To better support the claims, it would be helpful to
include a statistical test (e.g., a t-test) to assess whether the performance differ-
ences between models are statistically significant. Furthermore, incorporating a
stand-alone model that uses only radiometric data as predictors would allow for
a more balanced evaluation of the variable groups and help clarify the specific
contribution of radiometric inputs in predicting peat depth in Norway.
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Thank you for this suggestion. To clarify: the minimal marginal improvement in the terrain-
plus-radiometric models compared to the terrain-only models is in fact evidence for the terrain
variables being stronger predictors. Nevertheless, you are right that adding a radiometric-only
model would provide a clearer comparison of the predictive contribution of radiometric versus
terrain data. We now present models with all seven possible combinations of the three variable
groups. These expanded results make clearer the predictive gap that we highlight in our title.

We have also added statistical tests to assess the significance of the differences in model
performance. The results of these tests are now presented in tables in the appendix. The
results show that the differences in model performance are statistically significant in most cases,
which supports our claims about the relative importance of terrain variables in predicting peat
depth. Specifically, 8 of the 12 direct comparisons between radiometric and terrain variables
(Radiometric–Terrain and RadiometricDMK–TerrainDMK configuration pairs * 3 metrics * 2
sites) are statistically significant at the 0.05 level. We now describe these results in the Results
section, to better support the claim in the title.

Some of the most important text revisions related to this comment are:

In Materials and methods
From the cross-validation we quantified mean absolute error (error magnitude, original
scale), R2 (explained variation, standardized scale), and Lin’s concordance correlation
coefficient (error magnitude and explained variation, standardized scale).

:::
We

:::::::::
formally

::::::::
assessed

:::
the

::::::
effect

:::
of

:::::::::
predictor

:::::::::::::
configuration

:::
on

:::::::::::::
performance

:::::::
metrics

::::::
using

:::::::::::::
mixed-effects

:::::::
models

::
to

:::::::::
account

:::
for

::::
the

::::::::::::::::
cross-validation

::::
fold

::::::::::
structure

::::::
(folds

:::
as

::::::::
random

::::::::
effects),

::::
and

::::::
testing

:::::::::
pairwise

:::::::::::
differences

::::::::
between

:::::::::::::::
configurations.

:

In Results
For Skrimfjella, the best predictor configuration was all predictors, followed closely by
terrain + radiometric . The performance gap between the terrain + DMK configuration
and the terrain configuration was similarly small. Compared to the

::::
(Fig.

::::::
??).

:::::
The

terrain configuration , the
:::::::::::::
outperformed

:::
the

:
terrain + radiometric configuration improved

concordance correlation by 0.04, R2
::::
0.27

::
in

::::::::::::
concordance

:::::::::::
correlation

::::::::::
coefficient

:::::::::::
(𝑝 < 0.001;

:::::::::
Appendix

::::::
Table

:::::
??),

:
by 0.04, and

::::
0.16

:::
in

:::
R2

::::::::::::
(𝑝 = 0.190;

::::::::::
Appendix

::::::
Table

:::::
??),

::::
and

:::
by

::
10

::::
cm

::
in

:
mean absolute error by 1 cm.

:::::::::::
(𝑝 = 0.038;

::::::::::
Appendix

::::::
Table

:::::
??).

:::::
The

:::::::
terrain

::
+

DMK was a very poor predictor of peat depth even though it was calibrated to measured
depths, with a

:::::::::::::
configuration

:::::::::::::
outperformed

::::
the

:::::::::::
radiometric

:::
+

::::::
DMK

:::::::::::::
configuration

:::
by

::::
0.32

::
in

:
concordance correlation coefficient of 0.0077

:::::::::::
(𝑝 < 0.001;

::::::::::
Appendix

::::::
Table

::::
??),

::::
by

::::
0.11

::
in

:::
R2

:::::::::::
(𝑝 = 0.605;

::::::::::
Appendix

::::::
Table

:::::
??),

::::
and

:::
by

:::
11

::::
cm

::
in

::::::
mean

:::::::::
absolute

:::::
error

:::::::::::
(𝑝 = 0.011;

:::::::::
Appendix

::::::
Table

::::
??).

For Ørskogfjellet, the best predictor configuration was terrain + DMK, followed by ter-
rain

:::::
(Fig.

:::::
??). Adding radiometric predictors to these configurations

:::::::
slightly

:
wors-

ened model performance, especially in terms of concordance correlation and R2 . By
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itself,
:
.
:::::
The

::::::::
terrain

:::::::::::::
configuration

::::::::::::::
outperformed

::::
the

::::::::::::
radiometric

::::::::::::
configuration

:::
by

:::::
0.24

::
in

:::::::::::::
concordance

:::::::::::
correlation

::::::::::
coefficient

::::::::::::
(𝑝 = 0.068;

::::::::::
Appendix

:::::::
Table

:::::
??),

:::
by

:::::
0.24

:::
in

:::
R2

:::::::::::
(𝑝 = 0.004;

::::::::::
Appendix

:::::::
Table

:::::
??),

:::::
and

:::
by

:::
25

::::
cm

:::
in

:::::::
mean

:::::::::
absolute

::::::
error

:::::::::::
(𝑝 = 0.086;

:::::::::
Appendix

::::::
Table

:::::
??).

:::::
The

:::::::
terrain

:::
+

:
DMKclass produced a

:::::::::::::
configuration

:::::::::::::
outperformed

:::
the

::::::::::::
radiometric

::
+

:::::::
DMK

::::::::::::
configuration

:::
by

:::::
0.28

:::
in

:
concordance correlation coefficient of

0.17 (compared to 0.008 at Skrimfjella), but the worst
:::::::::::
(𝑝 = 0.015;

::::::::::
Appendix

::::::
Table

::::
??),

::
by

:::::
0.27

:::
in

:::
R2

:::::::::::
(𝑝 < 0.001;

::::::::::
Appendix

::::::
Table

:::::
??),

::::
and

::::
by

::
28

::::
cm

:::
in mean absolute error of

any model at either site: 77 cm
:::::::::::
(𝑝 = 0.031;

::::::::::
Appendix

::::::
Table

::::
??).

In Discussion
Radiometric data had

::::
little

::::
to

::
no predictive value at Ørskogfjellet, while at

Skrimfjella they had minor influence in a relatively weak model
::::::
either

:::::
site

:::::
(poor

::::::::::::::
performance

::::
of

::::::::::::
radiometric

::::::::::::::
configuration),

:::::::::::
although

::::::
they

:::::
did

:::::::::::
contribute

::
to

:::::
the

::::::
best

::::::::
model

::::
at

:::::::::::::
Skrimfjella

:::::::::::
(marginal

:::::::::::::::
improvement

::::
in

:::::
all

:::::::::::
predictors

:::::::::::::
configuration

:::::::::::
compared

::::
to

::::::::
terrain

::::
+

::::::::
DMK

:
).
:::::::::::

These
::::::::
results

::::::::::
contrast

::::::
with

::::::
earlier

::::::::
studies

:::::
that

:::::::
found

::::::
that

:::::::::::::
radiometrics

::::::
were

:::::::
useful

:::::::::::
predictors

:::
of

:::::
peat

:::::::
depth

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Keaney et al., 2013; Gatis et al., 2019; Koganti et al., 2023; Pohjankukka et al., 2025).

Comment 2.4

Figure 1: While the terrain-look map provides a general view of the study area,
the relief of the regions remains unclear. Consider adding a clearer topographic
representation (e.g., contour profile) to better illustrate landscape variation. Addi-
tionally, it would be helpful to explain the rationale for selecting Skrimfjella, which
appears to have relatively limited peat coverage, especially given that the adjacent
region seems to contain a larger peatland area.

Thank you for the suggestion to make the relief of the study areas clearer. We have added
contour lines the maps of the study areas. We have not added contour profiles between specific
points since we think that they may not be as useful for readers as the contour lines, but we
are happy to add profiles if the contour lines are not enough.

We have also clarified the rationale for the delineation of the Skrimfjella study area, especially
with respect to its limited peat coverage. In short: we were also investigating peatland extent
mapping so low coverage was not disqualifying, and accessibility was also an important factor
for this field work.

At Skrimfjella we delineated a study area of 34 km2 based on radiometric cover-
age

:::::::::
(limiting

:::
to

::::
the

:::::::
west)

:
and accessibility (Fig. ??b)

:::::::
limiting

::::
to

::::
the

::::::::
south),

:::
as

::::
part

:::
of

::
a
::::::
pilot

::::::::
project

::::::
(Fig.

:::::::
??a).

::::
In

::::::::::
Norway’s

::::::
AR5

:::::::::
national

:::::
land

::::::
cover

::::::::
dataset
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::::::::::::::::::::::::::::::::::::::::::::::::::::::
(“areal resources in scale 1:5000”, Ahlstrøm et al., 2019)

:
,
:::
1.5

:::::
km2

:::::
(4.5

:::
%)

:::
of

::::
the

::::::
study

::::
area

::
is

:::::::::
classified

:::
as

::::::
‘mire’

::
–
::::::::
defined

:::
as

:::::
areas

:::::
with

:::::
mire

:::::::::::
vegetation

::::
and

:::
at

:::::
least

:::
30

::::
cm

::
of

::::
peat

:::::::
depth.

::::::::::
Relatively

:::::::
sparse

:::::::::
peatland

:::::
cover

::::
did

::::
not

:::::::::
disqualify

::::
the

:::::
area

:::
for

::::
our

:::::::::
purposes,

:::::
since

:::
we

:::::
were

::::
also

::::::::::
interested

:::
in

:::::::::
peatland

:::::::
extent

:::::::::
mapping

::
in

::::
the

:::::
pilot

::::::::
project.

Comment 2.5

It is unclear how the peat depth data are distributed, both statistically and spa-
tially. While the sampling design is described in the text, I recommend including
a figure showing the spatial distribution of the data points to help readers better
understand the coverage and representativeness of the dataset. Additionally, a
basic statistical summary (e.g., mean, median, range, standard deviation) of the
peat depth values would be beneficial to provide context and a clearer picture of
the conditions being modelled.

Thank you for this suggestion. We have added a figure showing the statistical and spatial
distribution of the peat depths in the Results section. We have taken care to use the same
map format as in the figure that presents land cover in the study areas, which we hope will
help readers see the spatial representativeness of the dataset.

Comment 2.6

Since the radiometric data are originally at 50 m resolution and the terrain data are
at 1 m resolution, the method used to resample these datasets to a common 10 m
resolution could influence model performance. In particular, the use of cubic spline
resampling for the radiometric data may affect how well its spatial variability is
represented, especially when compared to the aggregated 10 m topographic data. I
would be interested to hear your thoughts on how this resampling approach might
have impacted the results.

We appreciate this attention to the potential impact of radiometric resampling methodology
on our results. To address this concern, we added to our code a sensitivity analysis comparing
cubic spline and bilinear resampling methods for downscaling the 50 m radiometric data.
Using field measurement locations from both study sites, we extracted radiometric values
resampled by both methods and calculated correlations for each radiometric variable (K, Th,
U, TC). The correlations between cubic spline and bilinear resampling methods were very high,
with the lowest correlation being 0.995. This near-perfect correlation demonstrates that the
choice of resampling method has negligible impact on the spatial representation of radiometric
variability at our target resolution.
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The consistently high correlations across all radiometric variables indicate that our conclusions
about radiometric predictive performance would remain unchanged regardless of resampling
method. Since we now mention this fact in the Materials and methods, we do not raise this
point specifically in the Discussion – in the interest of brevity.

In Materials and methods
The Geological Survey of Norway conducted and processed radiometric surveys over our
study areas, as reported in Baranwal et al. (2013) and Ofstad (2015). They provided us
for each site four variables at 50 m resolution, which we downscaled to 10 m resolution by
cubic spline resampling, using the terra package (v1.7) in R

:
.
:::::::::::
Sensitivity

::::::::
analysis

:::::::
showed

::::
that

::::::::
Pearson

::::::::::::
correlations

::::::::
between

::::::
cubic

::::::
spline

::::
and

::::::::
bilinear

:::::::::::
resampling

::::::::
methods

:::::::::
exceeded

:::::
0.995

::::
for

:::
all

::::::::::::
radiometric

::::::::::
variables,

:::
so

::::
we

:::
are

::::::::::
confident

:::::
that

::::
the

:::::::
choice

:::
of

:::::::::::
resampling

:::::::
method

::::
did

::::
not

::::::
affect

::::
our

:::::::
results.

Comment 2.7

I found the section on sampling design and peat depth measurement to be overly
detailed for the main text. While this information is valuable, it may be more
appropriate to move some of it to the appendix or supplementary material, as it is
less central to the analysis and interpretation of results. This would help improve
the flow and focus of the main manuscript.

Thank you for this helpful suggestion. We agree that this an acceptable way to reduce the
length of the main text and improve its readability, especially with the added figure showing the
spatial distribution of depth measurements (in response to comment 2.5). We have moved the
bulk of the sections on Peat depth sample selection and Depth measurements to the appendix,
while retaining brief summaries of these in the main text. This solution seems to be allowed
under the journal’s guidelines for manuscript composition.

Comment 2.8

In the model interpretation section, it appears that three different methods were
used to assess variable importance: FIRM, permutation importance, and Shap-
ley values. However, the implications of using these different approaches are not
clearly discussed. Each method captures different aspects of variable influence and
may lead to different interpretations. Could you clarify how the results from these
methods align or differ, and what their respective implications are for understand-
ing the drivers of peat depth in your study?

Thank you for this suggestion. We have added text to the Materials and methods and Results
sections to clarify how the three variable importance methods relate to each other. We have
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also added Spearman rank correlation coefficients to our figure on variable importance, to
highlight the similarities and differences. In short, we find that Shapley and permutation
importance are very similar for our application, while FIRM values capture a different aspect
of variable importance.

Since the different methods are broadly congruent and their differences do not affect our
interpretation much – and in the interest of brevity – we do not go into this point in our
Discussion.

In Materials and methods
We calculated variable importance with the vip R package (v0.4), by three different
methods: FIRM, permutation, and Shapley (Greenwell and Boehmke, 2020). FIRM
values measure the flatness of the partial dependence plot, permutation values measure
the decrease in model performance when the predictor is permuted, and Shapley values
are aggregated from local, game-theoretical measures of variable importance (Greenwell
and Boehmke, 2020).

:::::
Since

:::::::
FIRM

::::::
reflects

::::
the

::::::::
flatness

:::
of

::::
the

:::::::
partial

::::::::::::
dependence

:::::
plot,

:
it
::::::::::
captures

::::::::::
functional

:::::::::::
complexity

:::::::
rather

::::::
than

:::::::
overall

::::::::::
predictive

:::::::::
impact.

:
Permutation

values were obtained from ten iterations, with root mean square error as the performance
measure.

In Results
For the purpose of model interpretation, the all predictors configuration for Skrimf-
jella was reduced from 27 variables to 11 non-collinear variables, by removing one of
the variables in each highly-correlated pair. Similarly, the terrain + DMK configura-
tion for Ørskogfjellet was reduced from 23 variables to 11 non-collinear variables.

:::
The

::::::::::::
permutation

::::
and

::::::::
Shapley

::::::::
methods

::
of

:::::::::
variable

:::::::::::
importance

::::::::
showed

:::::
high

:::::
rank

:::::::::::
correlation

::
at

:::::
both

:::::
sites,

::::::
while

::::
the

::::::
FIRM

:::::::
method

:::::::
ranked

::::::::
variable

::::::::::::
importance

::::::::::
differently

:::::
(Fig.

:::::
??).

:

Variable importance

At both sites, elevation and Multi-Resolution Valley Bottom Flatness were important pre-
dictors (Fig. ??). At Skrimfjella these two predictors were of similar importance, while
at Ørskogfjellet elevation was more important

::::
had

::::::
higher

::::::::::
predictive

:::::::
impact

::
(
:::::::::::
permutation

::::
and

:::::::
Shapley

:
)
::::
but

::::::
lower

::::::::::
functional

:::::::::::
complexity

:
(
::::::
FIRM

:
)
:
than Multi-Resolution Valley Bot-

tom Flatness. DMK was also important – the shallow
:::::::
shallow class in particular – but

only at Ørskogfjellet. Some realizations of the hydrological predictors Topographic Wet-
ness Index and Depth-to-Water showed considerable importance, while others showed
little – with no

:::::
clear

:
consistency between sites. For example, TWI5m, DTW40000,

and DTW2500 rounded out the top five most important variables at Skrimfjella, while
TWI20m and TWI50m were least important, other than DMK. At both sites, the most
important realizations of hydrological predictors were more important than the sim-
ple terrain indices slope, Terrain Ruggedness Index, Topographic Position Index, and
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roughness. The
:::
At

::::::::::::
Skrimfjella,

:::
the

:
radiometric predictor uranium ground concentration

:
–
:::::::
which

::::
was

:::::::
highly

::::::::::
correlated

:::::
with

::::
all

::::::
other

:::::::::::
radiometric

::::::::::
variables

::
–

:
showed moderate

importanceat Skrimfjella.

Comment 2.9

I recommend adding a dedicated section to summarise the key results and findings.
This would help readers clearly see how the study addresses its original research
aims and questions. A concise summary at the end of the results or discussion
section would also improve the overall structure and coherence of the paper.

Thank you for this helpful recommendation. We have added a Conclusions section to sum-
marize the key findings of the study. This summary highlights the main results and their
implications, which we hope will help readers more easily see how the study addresses its
research aims of quantifying predictive accuracy and identifying key predictors.

In Conclusions
::::
This

:::::::
study

::::::::::::::
demonstrates

:::::
that

:::::::
digital

::::
soil

::::::::::
mapping

:::
at

:::
10

:::
m

:::::::::::
resolution

::::
can

:::::::::
improve

:::::
upon

::::::::
existing

::::::
peat

::::::
depth

:::::::
maps

:::
in

::::::::
Norway,

::::::::
though

:::::
the

:::::::::
strength

:::
of

::::
the

::::::::::::
relationship

::::::::
between

:::::::::
available

::::::::::
predictors

:::::
and

:::::
peat

::::::
depth

:::::::::
remains

::::::::
limited.

:::::
Our

:::::::::
findings

:::::
show

:::::
that

::::::::::::::
terrain-derived

::::::::::
variables,

:::::::::::::
particularly

::::::::::
elevation

::::
and

::::::::::::::::::
Multi-Resolution

:::::::
Valley

::::::::
Bottom

:::::::::
Flatness,

:::::::
provide

:::::::::::
predictive

:::::
value

::::
for

:::::
peat

::::::
depth

:::::::::
mapping

:::::::
within

::::::::::
peatland

::::::::
extents.

:::
In

::::::::
contrast,

:::::::::
airborne

::::::::::::
radiometric

:::::
data

::::::::
showed

:::::
little

:::
to

:::
no

::::::::::
predictive

::::::
value

::
at

:::::::
either

::
of

::::
two

:::::
study

::::::
sites,

::::::::
possibly

::::::::
because

:::
of

::::
the

:::::
large

:::::::::
footprint

:::
of

:::::::::
airborne

::::::::::::::
spectrometers

::::::::
relative

::
to

:::
the

:::::::::
fine-scale

::::::::::
variation

::
in

:::::
peat

::::::::
depths.

:

::::
The

:::::
best

:::::::
models

::::::::::
achieved

::::::
mean

:::::::::
absolute

::::::
errors

:::
of

::::::
56–60

::::
cm

::::::::
against

::::::
mean

::::::::
depths

::
of

::::::::
119–126

::::
cm,

::::
and

::::::::::
explained

::::::::::::::
approximately

:::::::::
one-third

:::
of

:::
the

::::::::::
variation

::
in

:::::
peat

::::::
depth

::::::
across

::::::::::
landscapes

:::::
with

::::::::::
aggregate

:::::::::
peatland

::::::
areas

:::
of

::::::::
1.5–15.3

::::::
km2.

::::::::
Though

:::::
field

::::::::::::::
measurements

:::::::
remain

:::::::::
necessary

::::
for

:::::
local,

:::::::::
detailed

::::::::::::
assessments

::
of

:::::
peat

:::::::
depth,

:::::::
digital

:::
soil

::::::
maps

:::
at

:::
10

::
m

:::::::::
resolution

:::::
can

::::::::
provide

:::::::::
valuable

::::::::::::
information

:::
for

::::::::::::::::
landscape-scale

:::::::::
planning

:::::
and

::::::::
regional

:::::::
carbon

:::::::::::::
assessments.

::::::
The

::::::::
models’

::::::::::
tendency

:::
to

::::::::::::::
underpredict

::::
the

:::::::::
deepest

::::::
peats

::::
has

::::::::::
important

:::::::::
practical

::::::::::::
implications,

::::::::
making

:::::
them

::::::
more

::::::::
suitable

:::
for

::::::::::::::
precautionary

:::::::::
screening

::::
than

:::::::::::::::
comprehensive

:::::::::
coverage.

::::
As

::::::::
Norway

::::
and

:::::
other

::::::::
nations

:::::::
pursue

:::::::::::::
nature-based

:::::::
climate

:::::::::
solutions,

::::::
these

::::::::
findings

:::::::::
highlight

::::::
both

::::
the

:::::::::
potential

::::
and

::::::::::::
limitations

::
of

::::::::
remote

:::::::
sensing

:::
for

:::::::::
peatland

:::::::
carbon

::::::::::
mapping.

:

Technical Corrections

Table 2: I think you need to move this table somewhere after it is mentioned in
the main text. At first, I was quite confused with this table. What does that
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percentage stand for?

We have moved the table after its first mention and adjusted the table caption to clarify
that the percentages represent the proportion of the total number of 10 m cells across the
stratifications. We have also added standard deviations to the mean depths, in accordance
with comment 2.5.

Line 394-397: I don’t quite get the point of this section. To my understanding,
you compared between the quartile predictions and the observed data to see the
prediction interval coverage probability. If so, I think it would be better to plot this
prediction interval together with the observed data in scatter plot, like in Figure
3.

Thank you for identifying this confusion. We have revised the text to clarify that we are
comparing the quartile predictions to the observed data, to follow best practices in digital soil
mapping. We have also added the prediction intervals to Figure 3 (Figure 4 in the revised
manuscript), and moved the text description to where we also present the figure. We think
that this makes this particular result clearer to readers.

The best models at both sites overpredicted shallow peats and strongly underpredicted
very deep peats (Fig. ??). The mean error (bias) of these models was 10 cm at Skrim-
fjella and -4 cm at Ørskogfjellet.

:::::::::
Although

::::
the

::::::::::
prediction

:::::::::
intervals

::::::
from

::::
the

::::::::
quantile

:::::::::
regression

::::::::
forests

:::::
were

::::::
wide,

:::::
they

:::::
were

:::::
well

:::::::::::
calibrated.

::::
At

::::::::::::
Skrimfjella,

::::
the

::::::::::
prediction

:::::::
interval

:::::::::
coverage

:::::::::::
probability

::::
was

:::
92

:::
%,

::::
and

:::
at

:::::::::::::
Ørskogfjellet

::
it

::::
was

:::
84

::
%

::::::
(both

::::::::::
compared

::
to

::::
the

::::::
target

::::::
value

::
of

:::
90

::::
%).

::::::::::::::
Observations

:::::::
outside

:::
of

::::
the

::::::::::
prediction

:::::::::
intervals

:::::::
showed

:::
no

:::::::
obvious

:::::::
spatial

:::::::::
pattern.

:

Line 413-414: which curve? The information inside the parentheses is not clear to
me.

Thank you. We would have revised this for clarity, but this entire section has been removed.

Figure 4: is the null derived from the calculation between observations and as-
sumptions of 30 cm peat depth? Where is the standard error come from?

We have removed this figure along with all sections about peat extent mapping. The null did
reflect the error between observations and assuming 30 cm depth. The standard errors on the
other error estimates were from the cross-validation folds.

Line 464: “low hanging fruit” ?

Revised.

Line 515: This sentence is unclear to me.
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Revised. The sentence was intended to reiterate what came before, so we removed it for clarity
conciseness.

Line 531: “0% in prediction” what does this sentence mean?

Removed along with all sections about peat extent (occurrence) mapping.

Line 614: What are the ‘both indicators variables’ referring to?

Revised for clarity.

Response to editorial support team

Comment ES.1

Please add the section headlines “Appendix A” (in front of Table A1) and “Ap-
pendix B” (in front of Figure B1).

Thank you. Revised.
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