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Dear Editor, Alison Delhasse, François Massonnet and Imke Sievers

Firstly, we would like to thank you all very much for the constructive comments and suggestions for the
manuscript “Enhancing sea ice knowledge through assimilation of sea ice thickness from ENVISAT and
CS2SMOS”. Your insights are very useful in enhancing the quality of our work. Based on the comments and
suggestions, we have revised the manuscript.

Please find our detailed point-by-point responses to the reviewers’ comments in the following sections. Below,
we list each comment (Reviewer Comment, RC) and insert our response (Authors’ Response, AR) along
with the corresponding revisions of the manuscript (inside the black box).

Sincerely,

Nicholas Williams
On behalf of all the authors
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1. Reviewers: Alison Delhasse and François Massonnet

RC: This manuscript focuses on the role that sea ice thickness (SIT) knowledge plays on the estimation of the
Arctic sea ice state as well as on the skill of Arctic sea ice predictions. The authors use the Norwegian
Climate Prediction Model (NorCPM) to conduct a series of sensitivity experiments : a FREE ensemble
run where no data is assimilated at all, a CTRL run where sea ice concentration (SIC), sea surface
temperature (SST) and hydrographic profiles data are assimilated, and finally a +SIT run where SIT
data (the CS2SMOS product and the ENVISAT product) is assimilated in addition to the data considered
in CTRL. The authors use several standard metrics to first evaluate the impact of SIT assimilation on
the mean state, which is found to be improved against independent observational datasets. Then, the
authors look at the skill of seasonal predictions that are initialized from CTRL and SIT and show clear
improvement for the prediction of the sea ice edge (the improvement for sea ice extent, SIE, is a bit less
clear).

AR: The overview of the manuscript provided by the reviewers is precise. We thank the reviewers for their time
and effort in carefully reviewing the manuscript.

1.1. General comments
RC: Novelty. The study clearly adds to the body of literature, as it is the first time that ENVISAT data are

assimilated in a coupled model, to our knowledge. This is also an insightful study to better understand the
role that sea ice thickness plays on the skill of seasonal predictions, even though there is already some
evidence from previous studies that this is the case. The study is also insightful from methodological
aspects, since doing strongly coupled assimilation with a coupled model is a real challenge. There are
interesting aspects of full-field vs. anomaly initialization that can be useful for practitioners.

AR: We appreciate that the reviewers found this study insightful, interesting, and novel.

RC: Positioning. with respect to previous works. The authors seem to cite all relevant literature for this work
and the work is well positioned with respect to the existing body of knowledge.

AR: Thanks.

RC: Methodology. We have several comments/pieces of advice for improvement.

AR: We appreciate the reviewers’ thoughtful and insightful feedback and suggestions, which helped us to improve
the manuscript. Please find our detailed point-by-point responses to the reviewers’ comments in the following
text.

RC: Sometimes, the interpretation of statistics is not clear to readers who are not in the data assimilation
community. A few examples: Degrees of Freedom for Signal (DFS) : We have the definition at line 227 but
we would like to have more guidance about the interpretation of this statistic. What are the units? Is DFS
supposed to be large, low? What is the desired look of maps like in Fig. 1? Somehow, we understand that
the maps should show some form of complementarity (i.e., DFS associated with one variable should not be
redundant with the DFS associated with another)? Should the maps be orthogonal to each other?

AR: We agree with the reviewer that the degree of freedom for signal (DFS) is a challenging metric and that our
explanations were too succinct. We have added further explanation about DFS in the section "Validation
Metrics". We believe that with the current modifications, readers who are not experts in data assimilation will
be able to understand the purpose of the metric better.
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The DFS metric quantifies how the assimilation of observations has reduced the dimension or rank of
the ensemble (Sakov et al., 2012). A larger DFS value implies that the assimilation has more change
into the system, i.e., reducing the number of degrees of freedom (the unit of the metric). The DFS can
be between 0 (no impact) and the total number of degrees of freedom minus one (where all members
collapse to a single member)a. A well-balanced data assimilation system aims to make minimal changes
necessary to comply with observations, and as such, one should reach neither the lower nor the upper
DFS value. As a consequence, DFS is often used to calibrate the strength of the data assimilation
system when observation error is poorly known (Sakov et al., 2012) -prevent too strong or too weak
assimilation. DFS can also be used to isolate the relative influence of each observation on the total
impact of the assimilation, which is our aim in this study. More specifically, DFS is used here to
diagnose the relative influence of the SIT assimilation compared to other datasets, for instance, where
it is most beneficial, as well as to quantify the impact of ENVISAT SIT versus C2SMOS.

aNote that the total number of degrees of freedom is the minimum between the ensemble size and the number of observations
used in the local analysis.

RC: The Integrated Ice Edge Error (IIEE) can be decomposed as in Eq. 5 as a contribution from overestimation
and underestimation, but also as the sum of a mean absolute error and a displacement error. Have the
authors tried to produce the timeseries following the latter decomposition? This would help understand
what type of error is driving the IIEE

AR: We would like to thank the reviewer for this nice suggestion that aligned well with our previous analysis for
SIT and SIC – decomposing the error as mean absolute error and displacement. We have now included the
decomposition (L378) and Figure R1 in the revised manuscript.

The IIEE can also be decomposed in a different way, using a mean absolute error (MAE) and a
displacement (DISP). This is formulated in Goessling et al. (2016) as

IIEE = MAE + DISP (1)
MAE = |O − U| (2)
DISP = 2 ·min(O,U), (3)

where O is the area where SIE is overestimated, and U is the area where SIE is underestimated.

It is in quite good agreement with the rest of our analysis for SIC and SIT. Until summer, the MAE is well
constrained, which yields an improvement over both CTRL and FREE. The displacement IIEE error is also
reduced. During the summer, the MAE is still reduced, but the displacement of IIEE in +SIT has increased
compared to CTRL between June and October.

RC: We are wondering why the authors focus all the analyses on the ensemble mean and never display the
spread/variability of the ensemble. For example, in Fig. 5, if we had access to the range (min-max) of the
FREE, CTRL and +SIT ensembles, we could assess whether the change in the mean is significantly larger
than the intra-member spread. To us, it is an important information because if the changes brought by the
data assimilation are lying within a lot of background noise, then the information is not the same as if the
changes clearly emerging from the background noise.

AR: We thank the authors for this insightful comment and agree that showing the spread of the ensemble would
be important. We have adjusted Figure 6 to additionally show the ensemble spread using shaded colours,
modified the caption as appropriate, and added some discussion of this in the text. We also have an analysis
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Figure R1: Climatology of the displacement (DISP), mean absolute error (MAE) and total IIEE of the FREE,
CTRL and +SIT reanalyses.
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on the reliability of the system (cf our answer to the next comment)

The ensemble spread in extent and volume is shown in all experiments (Figure 6). The spread in FREE
is the largest of the three experiments by far, particularly for the SIE. This is expected as FREE does
not assimilate any observations, so the spread is less constrained. The ensemble spreads in CTRL and
+SIT are comparable for the SIE in March and September, whereas +SIT has a lower spread for the
SIV, particularly in March. Again, this is no surprise, because SIT observations are not assimilated in
summer, so we expect +SIT to have a larger spread at the end of summer in September.

RC: It would be good to know if the filter works as expected, by producing sufficiently dispersed forecasts before
the analysis time steps. Could the authors plot the time series of the ensemble standard deviation of some
variable (e.g. SIE) to see if this spread is commensurate with the bias that is expected to be fixed by the
filter? Ideally, the same analysis for other variables (volume, spatial sea ice thickness) would be welcome.
Maybe the authors have already done this and have a figure that they can pull up for this review. It does
not need to be an extra figure in the manuscript, but that point can be mentioned in the manuscript.

AR: We indeed investigated if the filter was working as expected for the SIT assimilation before we began the
work that appears in this study. We include in the manuscript the plot shown below that shows the changes in
ensemble spread, bias and RMSE of the sea ice thickness over time.

We also added the following to the manuscript (L281)

In Figure 1, we present the time evolution of the assimilation diagnostic. We can first notice that the
bias has a seasonal signal that relates to the lack of observation during summer, when the bias increases.
For ENVISAT, the system is too thick at the start but gets too thin at the end of the season, while with
C2S the too thick bias remains positive until the end of the seasonal observation period. In an ensemble
data assimilation system, one can use the ensemble spread as a measure of the system’s error. A first
check to assess the reliability of the system is to ensure that the quadratic sum of the ensemble standard
deviation and observation error (here denoted as total error) matches the bias-free error of the ensemble
mean (RMSE, Rodwell et al., 2016). We can notice that our system exhibits too high dispersion during
the ENVISAT period, but that the reliability is very good in the C2S period. The overdispersion during
the ENVISAT may relate to the observation error, which is very high. We can also notice that the
ensemble spread and RMSE covary in time very well (both seasonally and interannually). There is a
discrepancy at the start of the assimilation season that relates to the bias being large (not to be accounted
for in the reliability budget analysis).

RC: The model assimilates SIC, but also SST from the OISSTV2 dataset, which is derived (line 167) using
a quadratic function of SIC itself. Isn’t there some unnecessary redundancy here? How does the filter
behave when it assimilates both x and x2 ? The filter works on linear assumptions for the covariances
between variables, so our initial guess would have been that it is better to let the SST adjust to the SIC
when the latter is assimilated, but it would be interesting to know more if the authors have some thoughts
here.

AR: The reviewers are correct that the SST and SIC from the OISSTV2 dataset are highly correlated due to the
derivation of SST from SIC. In our studies, SST under sea ice is not assimilated. Note also that we update
SST when assimilating SIC (strongly coupled data assimilation), an approach that performs better than letting
the SST adjust (Lisæter et al., 2007; Sakov et al., 2012; Kimmritz et al., 2018). For clarity, we have modified
the text (L167-168) as follows:
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Figure R2: The time evolution of five key metrics of the EnKF for SIT assimilation (computed on the
innovation vector – the difference between the observation and the model at the observation location): which
is the bias, model error (ensemble standard deviation), observation error (standard deviation), total error
(quadratic sum of model error and observation error) and RMSE. Note that there are gaps in the figure due to
the lack of SIT observations outside winter.
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The SST data are produced by combining both in-situ and satellite observations and SST’s simulated
by sea ice cover (Reynolds et al., 2007). Note that SST data in the regions covered by sea ice are not
assimilated in this study (Kimmritz et al., 2019; Wang et al., 2019). However, the ocean underneath the
sea ice is updated based on the ensemble covariance.

RC: Can the authors justify the use of N = 30 members ? This choice is certainly guided by a tradeoff between
practical experience, computational limitations, and statistical power, but having a sense of the history
behind that choice can be useful for other teams.

AR: As the reviewers state, it is a tradeoff in these qualities. A sample size of 30 is typically the size needed to
have a reasonable estimation of the ensemble variance of a random variable. An ensemble of 30 members
is sufficiently large to represent the subspace of a water column in the local analysis and has been found
large enough to produce robust results for ocean and sea ice update Counillon et al. (2014); Kimmritz et al.
(2018). Many parameters of the assimilation system have been tuned to work with the ensemble size of 30
(e.g., localisation and inflation). For clarity, we have added some statements to justify the use of 30 ensemble
members as follows:

FREE allows us to estimate the skill related to external forcings (Kimmritz et al., 2019). We use CTRL
to compare the model with and without the assimilation of SIT data, while still assimilating the ocean
and SIC observations. We use an ensemble size of 30 members primarily due to limited computational
resources. In addition, many of the parameters in NorCPM (localisation, inflation) have been tuned to
work ideally with an ensemble size of 30 which we found large enough to provide robust results for
ocean and sea ice update with NorCPM (Counillon et al., 2014; Kimmritz et al., 2018).

RC: In the same vein, why do the authors do monthly assimilation (why this frequency)?

AR: This is a choice driven primarily by computational limit - the assimilation step in NorCPM requires stopping
and restarting the model. At start, NorESM reinitialises all the components of the fully coupled Earth system
model NorESM, which takes a substantial amount of time. For this reason, using a frequency of assimilation
higher than monthly (e.g., daily assimilation) was making our system too slow. In the latest version of
NorCPM, we have implemented the capability to pause and resume the model allowing us to perform the
assimilation online. This solves the issue and we can now run the system with a daily assimilation frequency.
We are currently testing the added value of a higher frequency in preparation for the CMIP7 Decadal Climate
Prediction Project.

RC: Line 137: It appeared strange to us to have SIC assimilated in anomaly while SIT is assimilated in full
field. Now, we understand that this is the result of a few attempts, and this is also where the paper has a
real value. Nevertheless, we can imagine a few cases where this methodology makes things complicated.
Suppose a grid cell where, at one assimilation step, there is much more ice in satellite observations for
that year than in the satellite climatology. The SIC anomaly initialization will drive a strong increase in
SIC. But suppose that, at the same grid cell, the model as a thick bias, so that the (full field) assimilation
of SIT drives a negative update of SIT. The filter will thus produce very spread and thin ice in that grid
cell, which results from two different causes: one is a climatic reason and one is a model issue. Isn’t the
filter producing strange-looking updates in some cases if SIC and SIT are assimilated in anomaly and
full-field mode, respectively? The authors say that they tried SIT anomaly initialization too, but that this
was inconclusive. Did they try SIC full-field together with SIT fullfield?

AR: We have not tried the full-field assimilation for both SIC and SIT. The anomaly-field assimilation (updating
only the model variability) has been a standard setting of NorCPM for ocean observations, as the Earth system
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models often have large model biases. Correction for model bias in the ocean has a detrimental impact on the
ocean when there is limited observation (transfer of bias in the ocean interior, instability that takes several
decades to dissipate; see discussion in Counillon et al. (2016) and degrades the prediction skill (Garcia-Oliva
et al., 2024). In the context of sea ice, the ocean has a much larger heat capacity, so it is essential that the
mask of sea ice and freezing surface temperature are updated in agreement. It is why we decided to update
the SIC and ocean data both in anomaly, as the two are tightly correlated.

Initially, we attempted to update SIT in the anomaly field to be fully consistent. However, it had no real
influence on our prediction (either improvement or degradation). We noticed that in our system, SIT bias
correction was persisting for a very long time (10 years). We decided to test the current setup.

We are unsure of understanding the challenges with the example mentioned. In our system, the assimilation
takes place in two distinct steps: 1) assimilate the oceanic and SIC data (in anomaly field) and 2) assimilate SIT
data (full field). In the example provided, assimilation in step 1 increases the overall aggregated concentration,
and the thickness will adjust the individual thickness concentration so that the ice is primarily in the thinner
class. Note that assimilation will deplete the spread by construction.

In a post-processing, which takes place at the end of the assimilation step, the sea ice volume (vice) in each
thickness category is changed proportionally so that the thickness of each thickness category remains identical
to that of the prior. For clarity, we have modified the relevant text (L141) as follows:

NorESM has a large SIT bias (Bentsen et al., 2012), and while assimilation of ocean observation
reduces it partially, some of the bias remains. Bethke et al. (2021), compared two versions of NorCPM
assimilating ocean observations, one that updates only the ocean component and one that updates the
ocean and sea ice components. The latter yields a strong reduction of the bias of SIT and provides
enhanced predictions. Note also that it takes about ten years for the model to rebuild the SIT bias once
assimilation is stopped (their Figure S15). We, therefore, use full-field assimilation to correct the SIT
bias that can influence the variability. In the first attempt, we used anomaly-field assimilation. However,
the assimilation impact of SIT anomalies was inconclusive, with no added skill for predictions (not
shown). Please also note that full field assimilation for the ocean is preferred in NorCPM (Counillon
et al., 2016), because with the imbalanced observation data set (i.e. observation nearly only at the
surface prior to Argo), full field assimilation produces large drift (Garcia-Oliva et al., 2024). As the
ocean has a much larger heat capacity than sea ice, we prefer to update the ocean and the sea ice mask
in agreement. This explained why we did not attempt to perform a full-field assimilation of ocean, sea
ice concentration, and sea ice thickness.

When assimilating SIT observations, we only update the individual category sea ice fraction, which can
change the sum of the ice fraction. In the post-processing of the assimilation, the sea ice volume in each
thickness category is changed proportionally so that the thickness of each thickness category remains
identical to that of the prior. We do not update the ocean component, as the covariances between SIT
and the ocean are very small, and may cause more harm than benefit because of sampling error.

RC: After an analysis by the filter, is the model immediately restartable? Or do the authors apply some post-
processing / regularization / sanity check to avoid unphysical initial states? There may be cases where, for
example, sea ice volume is not zero but sea ice concentration is zero, which can cause a model crash.

AR: There is a post-processing applied to the sea ice and ocean components. This post-processing is detailed in
Kimmritz et al. (2018), and there is a reference to this paper in methods. However we have also clarified
some of the post-processing as explained in the methods, which the reviewers also noted further down in this
review.
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RC: It would be helpful to add a map of the regions used for the analyses (i.e. the Bushuk et al’s regions).

AR: As suggested, we have added a map as a new figure (Figure 8) in the study in the prediction section.

RC: Line 237: the treatment of ensemble information when using the IIEE is actually quite subtle, as one of
the reviewers learned when interacting with Helge Goessling in another study (Massonnet et al. 2023,
https://www.frontiersin.org/journals/marinescience/articles/10.3389/fmars.2023.1148899/full). The spirit
of the IIEE is not to be applied to all members individually, to be then averaged across members.

AR: We were also not aware of this treatment. We re-plotted the IIEE results using this ensemble treatment.
However, there was no noticeable difference in any of the results using this treatment of ensemble information.
The reviewers can compare the new IIEE plot in the revised manuscript with the originally plotted IIEE
(Figure R3).

1.2. Presentation
RC: Fig. 7 and similar: please explain the meaning of dots / crosses in the caption.

AR: The crosses are to show periods when the validation is not possible due to the lack of SIT observations from
ENVISAT/CS2. The dots represent the ACC values that are not statistically significant. We have added this
explanation to the captions for these figures (note that these are now figures 9 and 10 due to the addition of
new figures).

1.3. Minor comments
RC: Line 1: the decline extends to at least four decades, so better write “four” here.

AR: Thanks. We have modified the text (L1-2) as

Arctic sea ice extent has declined significantly over the past four decades, opening up the Arctic to
shipping and resource extraction while also impacting wildlife and local communities.

RC: Line 5: Specify the spatial resolution of NorCPM in your abstract.

AR: As suggested, we have revised the relevant text (L5) as follows:

We use the Norwegian Climate Prediction Model (NorCPM) with 1◦ horizontal resolution for the ocean
and sea ice components and approximately 2◦ for the atmosphere and land components, which has
previously assimilated ocean and sea ice concentration observations.

RC: Line 7: Specify which two decades.

AR: We have added the exact period of the reanalysis as follows (L8-9):

This allows us to produce a two-decade (2003-2023) reanalysis with sea ice thickness assimilation
focusing on the Arctic Ocean.

RC: Line 23: Seasonal predictions do not really aim to predict the response of the sea ice to climate change
(climate projections do). Seasonal predictions are more an initial-value problem, and the changes in
forcings play little role at these time scales.

AR: We agree with the reviewers on this comment and have reworded this sentence to the following (L24-25):
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Figure R3: Top: Original figure from the paper, with the incorrect ensemble treatment of the climatological
IIEE. Bottom: Climatology of the displacement (DISP), mean absolute error (MAE) and total IIEE of the
FREE, CTRL and +SIT reanalyses.
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This has led to increasing interest in the study of Arctic sea ice and, in particular, of seasonal predictions,
which aim to predict the sea ice on seasonal time scales.

RC: Line 24: The Arctic basin itself has not warmed, it is the atmosphere or the oceans that have warmed.

AR: We have changed from "Arctic basin" to "Arctic climate" (L25).

RC: Line 26: remove “ice”

AR: Removed, thanks.

RC: Line 26: is it the melting season that has lengthened, or the open-water season? We think the latter.

AR: We have revised the sentence as follows (L27-28):

Much of the Arctic sea ice has gone from being perennial year-round to seasonal, with an increase in
the length of the open-water season.

RC: Line 26-27: It is rather unclear what “such a radical change influences internal variability”. The internal
variability is the manifestation of internal processes within the climate system, how do sea ice changes
modify this internal variability?

AR: We agree with the reviewers and have revised the sentence (L28-29) to

Such radical change also makes seasonal Arctic sea ice prediction more challenging.

RC: Line 39: We would also cite: Koenigk, T., König Beatty, C., Caian, M., Döscher, R., Wyser, K. (2012).
Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled
model. Climate Dynamics, 38(11–12), 2389–2408. https://doi.org/10.1007/s00382-011-1132-z

AR: Added, thanks (L40-41).

Sea ice thickness (SIT) may be predictable up to 2 years in advance (Holland et al., 2011; Koenigk
et al., 2012), and can be important for SIE predictions up to 2 years ahead (Tietsche et al., 2014) in an
idealised framework.

RC: Line 43: “comprise of melting” is a strange sentence.

AR: We have changed this text to

Thermodynamic changes in the sea ice are composed of melting (lateral, bottom and top melt) and
freezing (congelation and frazil ice formation).

RC: Line 56: “the atmosphere, particularly wind” is not really meaningful. Wind is not a part of the atmosphere;
it is a process that occurs within the atmosphere.

AR: We agree with the reviewers and have changed this to (L58-59)
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Atmospheric processes, particularly wind, which determine the dominant Arctic ocean currents of the
Transpolar drift stream and the Beaufort Gyre, are also important but have a short memory.

RC: Line 62: To our knowledge CS2 has not been defined yet.

AR: It has already been defined in L52 in the revised manuscript.

RC: Line 106: you may also want to cite Massonnet et al. 2019 where we also recommended five categories for
climate studies (https://doi.org/10.5194/gmd12-3745-2019)

AR: Agreed and added, thanks.

RC: Line 127: What do you mean by strong and weak data assimilation method?

AR: Strongly coupled DA refers to when model variables of a different component (ocean, atmosphere, sea ice)
from the observed one are updated via cross-component covariance. (Stephen G. Penny, 2017), e.g., when
ocean variables are updated when assimilating SIC data. If they are directly updated via the covariances
during data assimilation, then it is strongly coupled; if not, then it is considered weakly coupled. For clarity,
we have revised the text (L128-130) as follows:

We update both the ocean and sea-ice components based on the observations from both components,
an approach called strongly coupled ocean-sea ice DA (Laloyaux et al., 2016; Kimmritz et al., 2018;
Stephen G. Penny, 2017). Strongly coupled ocean-sea ice DA in NorCPM was shown to be more
effective than weakly coupled DA in which sea ice observations are used to only update the sea ice
variables (Kimmritz et al., 2018).

RC: Line 129-130: “so that the individual thickness category remains identical”. This is strange, the category
(limits) are fixed, aren’t they? Do the authors mean that the thickness in each category is constrained to
not change? Maybe a schematic would help here to explain to the reader how the redistribution of volume
works.

AR: It is correct that this was confusing. We do not think a schematic is needed, but we have revised the explanation
(L132-134) as follows:

The sea ice volume in each thickness category is changed proportionally in a post-processing of the
assimilation so that the thickness of each thickness category for each member remains identical to its
thickness category in the prior. As such, only the sea ice area of each thickness category is updated,
which still yields an update of the total thickness but ensures that there is no need to re-allocate sea ice
in a different thickness category post assimilation Kimmritz et al. (2018).

RC: Line 140: a large fraction of what?

AR: We worded this poorly and meant to say that some of the sea ice thickness bias remains, even after assimilation.
We have changed the text (L141-142) as follows:

NorESM has a large SIT bias (Bentsen et al., 2012), and while assimilation of ocean observation
reduces it partially, some of the bias remains.

RC: Line 144-145: “we update the individual multi-category sea ice fraction” but not volume then? Maybe a
schematic would help.
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AR: We updated the sea ice fraction in each category during the assimilation and updated the sea ice volume
in each category in the post-processing of the assimilation. For clarity, we have revised the text (L148) as
follows:

When assimilating SIT observations, we update the individual category sea ice fraction, which can
change the sum of the ice fraction. However, as the prior assimilation of SIC observations has already
constrained the ensemble close to the observed estimate, the subsequent SIT assimilation updates the
individual fractions so that it complies with the observed ice thickness as well. The sea ice volume in
each thickness category and for each member is changed proportionally so that the thickness of each
thickness category remains identical to that of the prior.

RC: Line 158: error à errors

AR: Modified, thanks.

RC: Line 183: “The observation error is provided by the datasets”. We assume you mean that the error statistics
is provided (otherwise the true state would be known).

AR: Yes, this is what we meant. We have updated the manuscript (L187) to clarify as follows:

The observation error statistics are provided by the datasets.

RC: L188: Could you be a bit more specific about your random states: are they picked up between 1850-2005?
Which months exactly? Perhaps a list of these random state years/months would be appreciated in the
supplement.

AR: We have clarified this and the ensemble generation in the text (L190).

a 30-member ensemble run without data assimilation, integrating from 1850 to December 2023 with
CMIP5 historical forcings and with RCP8.5 beyond 2005. The ensemble is initialised on 01 January
1850 by randomly selecting 30 states on 01 January in different years from a stable pre-industrial run
(with one single member) (Counillon et al., 2016).

The random states were picked over the last 100 years of a stable preindustrial run, and FREE is identical to
the one used in Counillon et al. (2016).

RC: L190: Could you precise how your ensemble is generated?

AR: Please refer to the previous reply.

RC: Line 195: disentangle from what?

AR: For clarity, we have revised the text (L199) as follows:

FREE allows us to estimate the skill related to external forcings (Kimmritz et al., 2019).

RC: Line 205: the area of grid cells

AR: As suggested, we have modified the text (L212) to
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We define the SIE as the total sum of the area of grid cells where the ensemble mean of SIC is at or
above 15%.

RC: Figure 1: Is OCN DFS limited to 6 or could be higher value? In this last case, could you adapt your color
scale for subplot 1a)?

AR: The DFS is limited by the minimum of the number of observations in the local analysis and the ensemble size
(i.e., 30). It is correct that over the ocean domain, DFS is overly dominated by ocean observation. However,
we aim to highlight the relative influence of different observations in the Arctic domain. If we adapt the
different colour bars to individual panels, it would likely be confusing and not straightforward to compare the
influence of different observations. If we keep using one colourbar for all panels and increase the range, then
the DFS of SIT will become indistinguishable. Therefore, we have decided to keep the same colour scale as
before.

RC: Figure 1: Can you refer to a) to e) in your caption instead of/or added to your location indications (top
right, left,. . . )?

AR: As suggested, we have modified the caption for the figure (Figure 2 in the revised manuscript).

RC: Figure 2: we would propose that there is an extra row showing the mean SIT just to have a sense of the
spatial distribution of that variable.

Figure 2: change the color of the localization of your observation points as there are indistinguishable from
islands for instance.

AR: As suggested, we have added an extra row showing the mean SIT. We have also changed the colour of the
localisation of observation points to green squares, thanks for your suggestion. Please see the new figure
below or Figure 3 one the revised manuscript.

RC: How do explain the negative bias of +SIT compared to observation for SIT (Figure 3 and Table 1)?

AR: This can be caused by two factors. FREE has a very strong positive SIT bias, so when assimilating SIT, the
assimilation removes a lot of this additional ice thickness. However, the analysis is a linear combination
between the model and the observation and some bias remains. Additionally, the way the BGEP SIT data is
derived from the ice drift can potentially lead to an overestimation of the SIT, compared to the observation
product assimilated.

RC: Figure 4b: Do you have any idea to explain this minimum in bfRMSE in June for FREE experiment?

AR: We agree that it is an interesting feature, and we confirm that there is nothing wrong with the plot or the
experiment. We noticed a similar feature when using another observation product, such as OSTIA – albeit
not as sharp as with NOAA OISSTV2. The reason for this is that the fraction of total variability explained
by the trend (see Equation 1 in (Kimmritz et al., 2019)) is larger for June than for the surrounding months.
Experiments with assimilation (CTRL and +SIT), which are built on the FREE run, retain similar features.
However, while +SIT represent better the year-to-year variability than FREE, the bfRMSE is poorer for June
because the discrepancies in the bias between ENVISAT and C2S introduce a spurious trend that degrades
performance.

We have complemented the text by explaining this better.
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Figure R4: Bias (a - c), bfRMSE (d - f) and mean (g - i) of SIT in each of our NorCPM experiments in
comparison to SIT observations from CS2SMOS between 2010 and 2023. In panel (c) we also show the
locations of the BGEP ULS moorings as green squares.
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For the bfRMSE of SIE (Figure 5b), +SIT and CTRL have lower errors than FREE, showing the
positive impact of the assimilation of ocean and SIC data. However, the bfRMSE in SIT+ is larger
than CTRL from January to August. In June, the bfRMSE for FREE reduces significantly, while there
are smaller decreases in CTRL and +SIT. In that month, the fraction of total variability explained by
the trend (see Equation 1 in (Kimmritz et al., 2019)) is substantially larger than for the surrounding
months. While +SIT better represents the year-to-year variability than FREE, the bfRMSE is poorer for
June because the discrepancies between ENVISAT and C2S introduce a spurious trend that degrades
performance.

RC: Line 339: “we remove the trend”: is it the linear trend?

AR: Yes, it is the linear trend, we have added the word "linear" here to clarify (L375).

RC: Line350: (Figure 7) à (Figure 7 and 8)?

AR: We have modified to "(Figures 9 and 10)" (L387).

RC: Line 360: “but it is only significant in November-December, for hindcast initialized in January and March.”
If significance is marked without a point, I missed the significance for prediction of nov-dec initialized in
March.

AR: Thank you for the correction, the "and March" was a mistake in the text. We have removed it.

RC: L447: in the Beaufort Sea

AR: Modified. Thanks.
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2. Reviewer: Imke Sievers

RC: Currently the article is missing a clear discussion of the differences in skilfully predicting the sea ice
state between assimilating ENVISAT and CS2SMOS. The title, summery and aim in the introduction
(line 60) give the impression that the article mainly addresses new insight from assimilating ENVISAT in
comparison to only assimilating CS2SMOS, however the article only discusses the difference between the
reduction of bias and bias free root mean square error for both satellites, not the difference in forecasting
skill. Keeping the large SIT bias of the model in mind, the bias correction is to be expected. Either
additional analysis should be added, or this should be made clear in the title, introduction and summery
and the choice to not analysing the difference in skill between assimilating only CS2SMOS and assimilating
both SIT products should be motivated. For example does the summery state that the article focuses on the
skill of seasonal prediction. From reading this I would expect that the article analysis the differences in
skill from assimilating ENVISAT vs. CS2SMOS, however this is not the case. This is unfortunate, since
the assimilation of ENVISAT is the main novelty of the study.

AR: While we agree that assimilation of ENVISAT is one of the novelties of the manuscript, we do not see it
as the main novelty. The main novelty of this study is that we have been able to extend the reanalysis and
hindcast sea ice prediction period over a sufficiently long period (21 years) to robustly assess the added value
of SIT. We think that the title clearly highlights this objective, but we fully agree that the introduction was
misleading. We have revised the following paragraph (L75-86):

In this study, we will investigate how assimilation of SIT observations from ENVISAT and CS2SMOS
can first benefit our sea ice reanalysis and Arctic sea ice predictions by using seasonal hindcasts
(i.e., retrospective predictions) started from 2003 to 2023. As such, this study provides for the first
time an analysis of the added value of SIT initialisation for a sufficiently long period (21 years) to
assess robustly its impact. Furthermore, to our knowledge, ENVISAT SIT observations have not been
assimilated before in a GCM, so this study will investigate their use and feasibility of inclusion for
assimilation in GCMs for the first time. We investigate not only SIE/SIT predictions but also the
prediction of the sea ice edge location using the integrated ice edge error (IIEE).

Still, we have tried to compare the two observation products. However, this analysis is limited due to the
shortness of the time series. For example, we have compared the assimilation influence (DFS) and assimilation
diagnostics during both observation periods (Figures 1 and 2 in the revised manuscript). As expected (in view
of the observation uncertainty), C2SMOS provides increased impact on the assimilation as shown by the
increase in DFS (Figure 2c-d in the revised manuscript).

RC: 2) It is clear that a lot of work and testing has gone into the assimilation set up, which is very well done.
However the method section is currently a bit confusing and lacks some important information for the
study to be reproducible: 1) how is the SIC updated by the SIT assimilation, in one categories, in several
categories, etc? 2) How does Full filed assimilation differ from anomaly field assimilation? What effects
on the results are expected of mixing them? 3) Is there a reason why you choose to not assimilate both
SIT observations during their overlap? 4) Please add version numbers to the model components where
applicable. 5) Which variables are in the state vector. For the Ocean this is clear, but how about the sea
ice?

AR: 2.1) The details of the assimilation have been described in (Kimmritz et al., 2018, 2019) extensively, and we
build on that. However, we acknowledge that it was too succinct (as also highlighted by the other reviewer).
We now clearly indicate the sea ice state vector(i.e., the multicategory sea ice fraction aicen) as well as
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diagnosing the multicategory sea ice volume so that the multicategory sea ice thickness is not changed by
assimilation. Please refer to the main text (L126-145):

Assimilation of ocean temperature and salinity profiles, sea surface temperature (SST), and SIC
observations is performed as described in Kimmritz et al. (2019). We employ anomaly-field assimilation,
using a monthly reference climatology calculated from 1982 to 2016. We update both the ocean and
sea-ice components based on the observations from both components, so called strongly coupled
ocean-sea ice DA (Laloyaux et al., 2016; Kimmritz et al., 2018). Strongly coupled ocean-sea ice DA in
NorCPM was shown to be more effective than weakly coupled DA in which sea ice observations are
used to only update the sea ice variables (Kimmritz et al., 2018). We update the full ocean physics state
vector in isopycnal coordinates (i.e., 3D temperature, salinity, velocities and layer thickness) and update
the multicategory SIC in the sea ice state vector (i.e., the multicategory aicen within the 5 categories,
see DEPTH HI_PRESERVE in Kimmritz et al. (2018)). The sea ice volume in each thickness category
is changed proportionally so that the thickness of each thickness category remains identical to that of
the prior (i.e., the multicategory hicen before assimilation). This prevents the need to reshuffle ice to
a different thickness category in the post-analysis, which proved to be optimal in an idealised twin
experiment (Kimmritz et al., 2018). The post-processing step ensures that sea ice state variables remain
within physical ranges and recompute the energy budget of each of the multicategory sea ice quantities
(Appendix 1 in Kimmritz et al. (2018) for further details).

When assimilating SIT observations, we only update the individual category sea ice fraction, which can
change the sum of the ice fraction. In the post-processing of the assimilation, the sea ice volume in each
thickness category is changed proportionally so that the thickness of each thickness category remains
identical to that of the prior. We do not update the ocean component, as the covariances between SIT
and the ocean are very small, and may cause more harm than benefit because of sampling error.

2.2) The problem of full-field versus anomaly assimilation has also been raised by the other reviewer, and
we have made several modifications to explain why we have chosen this approach. Anomaly assimilation
neglects the climatological difference between model and observation and only aims to update the anomaly.

NorCPM used anomaly assimilation for the ocean because a full field introduces large prediction drift
(reemergence of the bias) that degrades prediction performance, in particular in places where there are no
observations (e.g, intermediate to deep ocean) (Garcia-Oliva et al., 2024; Counillon et al., 2016). Because the
ocean has a much larger heat capacity than sea ice, we also perform assimilation of sea ice concentration in
the anomaly field so that the ice mask is in equilibrium. For the assimilation of thickness observations, we
use full-field assimilation. Please refer to the text in the manuscript (L144-147):

NorESM has a large SIT bias (Bentsen et al., 2012), and while assimilation of ocean observation
reduces it partially, some of the bias remains. Bethke et al. (2021), compared two versions of NorCPM
assimilating ocean observations, one that updates only the ocean component and one that updates the
ocean and sea ice components. The latter yields a strong reduction of the bias of SIT and provides
enhanced predictions. Note also that it takes about ten years for the model to rebuild the SIT bias once
assimilation is stopped (their Figure S15). We, therefore, use full-field assimilation to correct the SIT
bias that can influence the variability. In the first attempt, we used anomaly-field assimilation. However,
the assimilation impact of SIT anomalies was inconclusive, with no added skill for predictions (not
shown).

2.3) In theory, the reviewer is fully correct that both C2SMOS and ENVISAT can be assimilated jointly if
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they were independent, and it could have been an interesting experiment. However, we do not think it is
straightforward and it may not lead to a significant improvement, for the following reasons: i) the retrieval
algorithm from the altimeter may introduce some correlation in the final products, and it is hard to quantify it
exactly. The largest discrepancies between the two products revolve around much higher biases in ENVISAT
due to instrument differences. ii) The C2SMOS observation product is much more accurate, so that the
ENVISAT SIT becomes nearly ineffective if both products are assimilated.

2.4) We have updated to show the versions of each model (L93-106)as follows:

The NorESM version used here is NorESM1-ME (Bentsen et al., 2013). It is based on the Community
Earth System Model (CESM1.0.4, Hurrell et al., 2013). However, the ocean component is replaced
with an isopycnal coordinate ocean general circulation model (BLOM, Bentsen et al., 2012), and the
Community Atmosphere Model version 4 (CAM4, Neale et al., 2010) with the original prescribed
aerosol formulation is replaced by the atmospheric model CAM4-OSLO with a prognostic aerosol life
cycle formulation using emissions and new aerosol-cloud interaction schemes (Kirkevåg et al., 2013).

As in CESM1.0.4, NorESM1-ME uses the Los Alamos Sea Ice Model version 4 (CICE, Hunke et al.,
2015) and the Community Land Model (CLM) version 4 (Lawrence et al., 2011). These are coupled
using version 7 of the coupler designed for the CESM (Craig et al., 2012).

2.5) See our answer to 2.1)

2.1. Minor comments
RC: line 25-27: please add reference

AR: Added reference to Nghiem et al. (2007) and Sumata et al. (2023) on changes in the sea ice cover thickness,
thanks.

RC: line 234: first occurrence of acronym RHS

AR: Corrected, thanks.

RC: line 280-281: add citation

AR: Added reference to Sumata et al. (2015), thanks.

RC: line 315 which visual agreement is referred to?

AR: This is referring to Figure 5d, which we now clarify in the text (L349-351):

All systems capture the decreasing trend in SIV well. Interannual variability is stronger in CTRL than
in FREE and even more pronounced in +SIT (Figure 6d).

RC: table 2: it would increase readability to use the same exponent within one column (not the case for SIV of
+SIT)

AR: Agreed, thanks for the suggestion, we have changed all the exponents in the SIV column to match, thanks.

RC: line 319: +SIT has a strong discontinuity only in SIV, the SIE is actually in line with observations, or?
(figure 5)

AR: Yes, we were referring to the SIV only, we clarify this in the manuscript now (L354-355):
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Figure R5: Detrended ACCs of our seasonal hindcasts for SIT from CTRL and +SIT with observations of
SIT from CS2SMOS. Crosses are shown when comparison with observations is not possible due to lack of
observations. The dots represent the ACC values that are not statistically significant.

+SIT has a strong discontinuity in 2010 for SIV during the transition between ENVISAT and C2SMOS.

RC: 1) line 320-325 which table figures are you referring to?

We have clarified this section to clearly refer to the different tables and figures we are discussing (L356-
360):

In September, all systems have high positive SIE biases as a direct consequence of anomaly assimilation,
as seen in Figure 5. Table 2 shows that CTRL and +SIT show higher ACC values than FREE. The
agreement is better in +SIT, with ACC increasing from 0.7 to 0.8, and slightly reduced bfRMSE. In
Figure 6, the ensemble mean of FREE shows, again, nearly no interannual variability. In the same
figure, we see that +SIT better captures the amplitude of the peaks and, in particular, the minimum in
2007 and 2012.

RC: 3) figure 3: what is the criteria for not enough point to calculate a yearly average?

AR: The criteria is that if there are more than 30 continuous days of missing data in one year, we would compute
the yearly average for this specific year. For example, ULS C was not used after early 2008. So there is no
yearly average in the plot after 2007. We have modified the caption for Figure 4 to clarify this as follows:

If there are more than 30 continuous days of observations missing from a ULS mooring, we do not
compute a yearly average and these years are masked.

RC: 2) figure 7: please add a accessible colour bar varying between two colours.

AR: We have added the Red-Blue colour bar similar to what we have used in other plots for this plot, the new plot
is shown in Figure R5.
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RC: Line 408-409: Which section is this based on? From figure 5 it looks as if the sea ice extent is only
improved in September, not in March during the ENVISAT period.

AR: This section is meant to refer to two things: 1) the improved performance in September for +SIT is due to the
reduction of SIT bias by the ENVISAT assimilation, and 2) the hindcasts, where ice thickness and ice edge
estimates are improved between August and October. We have modified the sentence (L451-455) to clarify
this:

We evaluated the assimilation of ENVISAT and CS2SMOS SIT data into NorCPM. While ENVISAT
has higher uncertainties than CS2SMOS, it extended the reanalysis period and improved SIT and ice
edge hindcast estimates in the central Arctic, particularly during the melt season through the SIT bias
reduction in winter.

RC: Line 410: CS2SMOS is only available from 2010, so it can not improve anything before.

AR: Agreed, this sentence was meant to be a comparison of ENVISAT to CS2SMOS observation assimilation.
We have clarified the meaning of this sentence to say (L454-456):

CS2SMOS provided more accurate data and greater reductions in biases in comparison to ENVISAT.
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