10

15

Code for the implementation of the forcings

To use the transient forcings several changes need to be done in the source code of CCLM. The changes are explained in the

following:

In src_radiation.f90 between line 1384 and 1396: add integer mm

In src_radiation.f90 between line 206 and 675: add variables for forcings as shown in Figure 1

In src_radiation.f90 between line 1539 and 1546: add reals aod (28812), solc_tbl (28224) and solc

Create a new file in src which contains the values for the greenhouse gas, the orbital, the solar and the volcanic forcing.
It is named data_forcing.f90 and has the structure shown in Figure 2 and Figure 2 where the values according to the used

dataset needs to be filled

In ObjDependencies add the file data_forcing.f90 to the section Dependencies of the Data Modules

In ObjFiles add the file data_forcing.o to the section DATAOBJ

1 Greenhouse Gases

The greenhouse gas forcing is added as a namelist option. Originally one can choose for the namelist parameter ico2_rad
different COs, or effective CO, scenarios with the numbers 1 to 10. Here we add option 11. To use the transient greenhouse gas

forcing the following changes need to be done in the namelist and the source code:

— Set CCLM namelist parameter ico2_rad to 11

=

1 USE data_forcing, ONLY: &
2 aod_1, stratospheric aerosol optical depth
3

aod_2, & ! stratospheric aerosol optical depth
aod_3, & ! stratospheric aerosol optical depth

= solc_1, & ! solar constant

6 solc_2, & ! solar constant

] solc_3, & ! solar constant

8 recc, & ! eccentricity

9 robld, & ! obliquity

10 rlonp, & ! perihelion

11 tco2, & ! CO2

12 tch4, & | CH4

13 tn o ! N20

Figure S1. Code to be implemented in src_radiation.f90 for the transient greenhouse gas forcing.

1 !+ Data module for all parametric data for the climate forcings
2 !
3
4 MODULE data_forcing
5
6 !
7 !
8 ! Description:
9 ! This module declares and initializes all parametric scalar and array
10 ! data which are used for the climate forcings
11 !
12 ! Current Code Owner: Eva Hartmann
13 ! email: Eva.Hartmann@geogr.uni-giessen.de
14 I
15 ! Code Description:
16 ! Language: Fortran 90.
17 ! Software Standards: "European Standards for Writing and
18 ! Documenting Exchangeable Fortran 90 Code".
19 !
20 !
21 ! Modules used:
22 USE data_parameters, ONLY : &
23 ireals, & ! KIND-type parameter for real variables
24 iintegers ! KIND-type parameter for standard integer variables
25
26 !
27
28 IMPLICIT NONE
29
30 !
31
32 ! Global (i.e. public) Declarations:
33
34 ! 1. Data arrays for properties of different forcings
35 !
36
37 REAL (KIND=ireals) :: &
38 ! a) parameters for the volcanic forcing
39 aod_1 (6000), & ! stratospheric aerosol optical depth
40 aod_2 (12000), & ! stratospheric aerosol optical depth
41 aod_3 (10812), & ! stratospheric aerosol optical depth
42
43 ! b) parameters for the orbital forcing
44 recc (3451), & ! eccentricity
45 robld (3451), & ! obliquity
46 rlonp (3451), & ! longitude of perihelion
47
48 ! c) parameters for the solar forcing
49 solc_1 (6000), & ! solar constant
50 solc_2 (12000), & ! solar constant
51 solc_3 (10224), & ! solar constant
52
53 ! d) parameters for the greenhouse gases
54 tco2 (2351), & ! CO2 concentration
55 tch (2351), & ! CH4 concentration
56 tn o (2351) ! N20 concentration
57
58 ! Initialization of forcing values
59
60 ! Volcanic Forcing data on monthly resolution for chosen Latitudes
61 DATA aod_1l / 0.0049, 0.0047, 0.0045, ... / ! monthly_data from 500 to 1 BCE
62
63 DATA aod_2 / ... / ! monthly data from 0 to 999 CE
64
65 DATA aod_3 / ... / ! monthly data from 1000 to 1900 CE
66
67 ! Solar Forcing data on monthly resolution
68 DATA solc_1 / 1360.7570, 1360.7861, ... / ! monthly data from 500 to 1 BCE
69
70 DATA solc_2 / ... / ! monthly _data from 0 to 999 CE
71
72 DATA solc_3 / ... / ! monthly data from 1000 to 1851 CE
73

Figure S2. Code of the new created file data_forcing.f90 for the transient forcing values - part I.

4 ! Orbital Forcing data on yearly resolution
! (Eccentricity, Obliquity, Longitude of Perihelion)

7 DATA recc / , , ... [/ ! yearly data from 500 BCE to 2950 CE
DATA robld / , , ... [/ ! yearly data from 500 BCE to 2950 CE
DATA rlonp / , , ... [/ ! yearly data from 500 BCE to 2950 CE

! Greenhouse Gas Concentration on yearly resolution
! (CO2, CH4, N20)

DATA tco2 / =04, -04, ... / ! yearly data from 500 BCE to 1850 CE
DATA tch4 / -07, -07, ... / ! yearly data from 500 BCE to 1850 CE
88 DATA tn / =07, -07, .../ ! yearly data from 500 BCE to 1850 CE

2 END MODULE data_forcing

Figure S3. Code of the new created file data_forcing.f90 for the transient forcing values - part II.

CASE (11)
! specific transient effective CO2
! 25 * ch4 and 298 * n2o
zgco2 = (tco2(jj- +) &
+ tch4 (jj- +)* &
+ tn2o0(jj- +) *) *

U WN

Figure S4. Code to be implemented in src_radiation.f90 for the transient greenhouse gas forcing.

— In organize_physics.f90 line 2673: change 10 to 11

— In src_radiation.f90 after line 1870: add case 11 as shown in Figure 4

2 Orbital Forcing

The orbital forcing is added as three values on yearly resolution. They are the eccentricity, the obliquity and the longitude of

20 perihelion of the earth’s orbit. The original code is owned by Patrick Ludwig and was modified for the transient simulation. To

use the transient orbital forcing the following changes need to be done in the source code:
— In src_radiation.f90 from line 2042 to 2058: comment out and replace by:

— In src_radiation.f90 after line 2041: add orbital forcing as shown in Figure 5 and Figure 6

3 Solar Forcing

25 The solar forcing is added as monthly value for the solar constant. To use the transient solar forcing the following changes need

to be done in the source code:

1 if (itype_calendar==0) then
2 yearl = 365 4 IABS(MOD(3jj,4) — 4) / 4
3 else
4 yearl = 360
5 end if
6
7 api = 2.*ASIN(l.) ! Pi
8 zve 0 = 80.5 ! Day of the vernal equinox in 1900
9 zvebas = yearl-zve00 ! Remainder of the year
10 zyearve = float(itaja) - 1. + zvebas ! itaja: actual day of the year
11 ! zyearve: time of the year from
12 ! last years vernal equinox in degrees
13 ! zvetim = MOD (zyearve/yearl,1l.)*2.*api
14 ! Time of the year from the vernal equinox
15 ! in radians
16 zyeardif=zyearve/yearl
17 zone=1.
18 zvetim = MOD (zyeardif, zone) *2.*api
19
20 zecc=recc (jj—6999+500)
21 zobld=robld (jj-6999+500)
22 zlonp=rlonp (jj=6999+500)
23
24 zoblr=zobld*api/180.
25 zlonpr=zlonp*api/180.
26 zsgecc=SQRT ((1+zecc) / (l-zecc))
27
28 zeps=1.E-6
29
30 ! CALCULATION OF ECCENTRIC ANOMALY OF VERNAL EQUINOX!
31 zeve=2.*ATAN (TAN (0.5*zlonpr) /zsgecc)
32
33 ! CALCULATION OF TIME ANGLE IN RADIANS OF LONGITUDE OF PERIHELION
34 ! FROM VERNAL EQUINOX
35 ztlonpr= zeve — zecc*SIN(zeve)
36
37 ! CALCULATE ECCENTRIC ANOMALY:
38 ! USE FIRST DERIVATIVE (NEWTON) TO CALCULATE SOLUTION FOR
39 ! EQUATION OF ECCENTRIC ANOMALY *ZENEW*
40 zztime=zvetim-ztlonpr
41
42 zeold=zztime/ (1 .-zecc)
43 zenew=zztime
44 iter=0
45
46 DO
47 zzeps=zeold—-zenew
48 IF (iter.GE.10) THEN
49 yzerrmsg = 'PALEO ORBIT: - eccentric anomaly not found!'
50 CALL model_abort (my_world_id, 2091, yzerrmsg, 'radiation')
51 END IF
52 IF (ABS(zzeps) .LT.zeps) EXIT
53 iter=iter+l
54 zeold=zenew
55 zcose=COS (zenew)
56 zenew= (zztime+zecc* (SIN(zenew)—-zenew*zcose))/ (1l .-zecc*zcose)
57 END DO
58
59 zsocof=(1./(l.-zecc*COS (zenew))) **2
60
61 ! CALCULATION OF THE DECLINATION.
62 ztgean=TAN (zenew*0.5)
63
64 *znu*: TRUE ANOMALY

1

65 ! (ACTUAL ANGLE OF EARTH'S POSITION FROM PERIHELION)
!
!

66 *zlambda*: TRUE LONGITUDE OF THE EARTH
67 (ACTUAL ANGLE FROM VERNAL EQUINOX)

68 znu=2.*ATAN (zsgecc*ztgean)

69 zlambda=znu+zlonpr

70 zsinde=SIN(zoblr) *SIN(zlambda)

71 zdek=ASIN (zsinde)

72

73 zdeksin_save = SIN (zdek)

Figure SS5. Code to be implemented in src_radiation.f90 for the transient orbital forcing - part I.

4 zdekcos_save = COS (zdek)

zsct_save = zsocof*solc

zsct_h = zsct_h + zsct_save
nz_zsct = nz_zsct +
1 ztwo = + *(33-) - (33—)/
) ztho = *pi*(REAL(itaja, ireals) - + ztwo)/
zdtzgl_save = + *COS (ztho) - *SIN (ztho) &
-0 *COS(2.*ztho) - *SIN(2.*ztho)

Figure S6. Code to be implemented in src_radiation.f90 for the transient orbital forcing - part II.

1 solc_tbl(1l:) = solc_1
2 solc_tbl(:) = solc_2
3 solc_tbl(H) = solc_3

Figure S7. Code to be implemented in src_radiation.f90 for the transient solar forcing - part I.

— In src_radiation.f90 line 289: comment out old solar constant
— In src_radiation.f90 after line 2033 and after line 3623: add solar forcing values as tables shown in Figure 7

— In src_radiation.f90 after line 2036 and after line 3628: add how to get the solar forcing values for the actual month as

30 shown in Figure 8

4 Volcanic Forcing

The volcanic forcing is added as monthly value for the stratospheric aerosol optical depth. The raw data is given in latitudinal
bands. As preparation, the latitudes covering the domain of the RCM simulations are selected and we continue with an average

of those latitudes. To use the transient volcanic forcing the following changes need to be done in the source code:
35 — In src_radiation.f90 after line 1887: add volcanic forcing values as tables shown in Figure 9
— In src_radiation.f90 line 1890 and line 7991: add variables aod, ntstep and ydate_ini to the function aerdis

— In src_radiation.f90 after line 7884: add additional local variables for the calculation of the volcanic forcing as shown in

Figure 10

1 READ (yradl(5:6),'(I2)') mm
2 solc = solc_tbl((jj- +)*12 + mm)

Figure S8. Code to be implemented in src_radiation.f90 for the transient solar forcing - part II.

1 aod(1:) = aod_1
2 aod (H) = aod_2
3 aod () = aod_3

Figure S9. Code to be implemented in src_radiation.f90 for the transient volcanic forcing - part L.

1 REAL (KIND=ireals), DIMENSION (
2 aod ! aerosol o
3 INTEGER (KIND=iintegers), INTENT (IN
4 ntstep
5 INTEGER (KIND=iintegers) H &
6 itaja, & !
7 ist, & ! number
8 mm, & ! output
9 I3 ! output
10 REAL (KIND=ireals) &
11 zstunde ! output
12 CHARACTER (LEN=14) yradl
13 CHARACTER (LEN=22) yrad2

CHARACTER (LEN=

), INTENT (IN)

SIS

), INTENT (IN) &
ptical depth of the volcanic forcing file
) &

of aod values
from routine
from routine

from routine
! output from
! output from

get_utc_dat

routine get_utc_dat
routine get_utc_dat
1

ydate_ini start of the forecast yyyymmddhh

Figure S10. Code to be implemented in src_radiation.f90 for the transient volcanic forcing - part II.

— In src_radiation.f90 line 7912: comment out the calculation of pstbga and replace by:

40

5 Land-Use Change

— In src_radiation.f90 after line 7912: add additional calculation of the volcanic forcing as shown in Figure 11

To make the land-use change transient in the CCLM simulation one has to convert the ESM output to the needs of CCLM with

an appropriate converter for external data. It could be created a new external data file for each month, each year or whatever is

needed. This can be read in by the INT2LM routine during the simulation run.

1 CALL get_utc_date (ntstep, ydate_.
2 itaja, zstunde)

4 READ (yradl(), (I4)") 53

5 READ (yradl(), " (I2)") mm

6

7 ist = ((33- +) *) + mm
8

9 pstbga = aod(ist) /

ini, dt, itype_calendar, yradl, yrad2,

Figure S11. Code to be implemented in src_radiation.f90 for the transient volcanic forcing - part III.

