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Abstract

The frequency of extreme events worldwide is steadily increasing. Therefore, it is crucial to
recognize the accompanying response of different ecosystems. Monoculture tree plantations
with simplified ecosystem linkages in food webs are particularly vulnerable to catastrophic
events like fires, wind throws, droughts and insect outbreaks. These events threaten forests and
other associated ecosystems, including peatlands, which are extremely important in regulating
the global carbon cycle and thus mitigating the effects of a warming climate. Here, we traced a
2000-year history of the Miaty peatland located in one of Poland's largest pine plantation
complexes, and we examined how a-this peatland in-ene-of Poland'stargest-pineplantation
complexes responded to some of the largest environmental disasters observed in the 20™ century
across Central Europe — the 1922-1924 Panolis flammea outbreak and the 1992 fire. As a
disturbance proxy, we used a multi-proxy palaeoecological analysis (plant macrofossils, testate
amoebae, pollen, non-pollen palynomorphs, micro- and macrocharcoal) supported by a
neodymium isotope record. We showed several critical transitions in the peatland associated
with extreme events and anthropogenic impacts, which triggered significant changes in the

peatland’s ecological status.

Introduction
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In recent decades, peatlands have been subjected to intense and ever-increasing climatic and
anthropogenic pressures (Zhang et al., 2022). Hydrologically unstable due to diverse
anthropogenic impacts, they are becoming extremely susceptible to various types of
disturbances and extreme phenomena, which are a threat to human health, cause economic
losses, and contribute to the amplification of the global warming effect (Kiely et al., 2021; Page
et al., 2002). Peatlands have evolved from being net CO; sinks to CO; emitters in every climate
zone — from tropical (Deshmukh et al., 2021; Page et al., 2022) to boreal realm (Ofiti et al.,
2023; Turetsky et al., 2011; Wilkinson et al., 2023). This is particularly important because
peatlands are preeious valuable ecosystems accumulating a third of the world's soil carbon
stocks (Parish et al., 2008), twice the entire biomass of the world's forests (Beaulne et al., 2021).
Hundreds of thousands of hectares of peatlands in Poland are located in forests, as forests cover
31% of Poland’s area, equivalent to 94,770 km? (Statistical Office in Biatystok, 2023). More
than half of this forest cover comprises coniferous forests dominated by Scots pine (Pinus
sylvestris L.). It is mainly the result of planned forest management in modern-day Poland in the
19" and 20™ centuries (Broda, 2000). Pine monocultures were easier to manage and grew faster
on poor soils, securing the continuous supply of raw material for the growing timber industry
(Broda, 2000). Such an environment is particularly dangerous for Poland’s peatlands because
The-danger-is-even-higherfor peatlandsloeated-within-monoculture tree plantations that have
simplified linkages in food webs {Chapin-etal52042) and thus are more sensitive to fires, strong
winds, droughts, and insect outbreaks (Chapin et al., 2012), which also poses a threat to
peatlands that-are-more-commeon—inreecent-years. It should be strongly emphasized here that
such extreme phenomena have become more common in recent years around the world (Seidl

et al., 2014; Westerling, 2016). These negative impacts have been recorded for various

peatlands, including those in Central and Eastern Europe (Leonardos et al., 2024; Lucéw et al.,

It is essential to recognize how peatlands at different latitudes respond to a warming climate
and how they respond to changes resulting from the management of their surroundings (land
use change), including the planned forests and monoculture tree plantations. Thanks to their

anaerobic and acidic conditions, peatlands are excellent preservers of various types of micro-



68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

and macrofossils (Rydin and Jeglum, 2013; Tobolski, 2000). Thus, they are valuable archives
of the changes occurring in the peatland (autogenic change) and its surroundings (allogenic
changes).

Multi-proxy palaeoecological studies (including analyses of several proxies, e.g., testate
amoebae, plant macrofossils, pollen, charcoal and others) are an excellent tool for
reconstructing the peatland development (Birks and Birks, 2006; Mitchell et al., 2000).
Particularly broad insight can be provided when dendrological (Bak et al., 2024) or geochemical
methods (Fiatkiewicz-Koziet et al., 2018; Galka et al., 2019; Marcisz et al., 2023b) are included.
In recent years, the neodymium (Nd) isotope composition of the peat-hosted mineral matter has
been increasingly used in palaeoecological studies. Among the various applications, the method
has been used to determine distant sources of atmospheric dust (Allan et al., 2013; Fagel et al.,
2014; Pratte et al., 2017) and the signal associated with anthropogenic pollution (Fiatkiewicz-
Koziet et al., 2016). Marcisz et al. (2023b) used this method to identify local disturbances in
peat, such as fires or deforestation.

The environmental past of the largest European forest complexes, including the Note¢ Forest
area in Poland studied here, is insufficiently understood. These forests were affected by some
of the most severe environmental disasters of the 20" century that took place in pine-dominated
forests across Central and Eastern Europe — the 1922-1924 inseet Panolis flammea outbreak
and the 1992 fire. The only palaeoecological data documenting these events in the Note¢ Forest

eome were derived from two cores taken from the Rzecin peatland (Barabach, 2014;

Lamentowicz et al., 2015; Milecka et al., 2017). However, netall-the-evidence-ef past-dramatie

interpretation of these extreme events based solely on these two cores appears to leave many

questions unanswered and highlights the need for further research into the impact of insect

outbreaks and fires on peatland ecosystems. Small-peatlands—are—usuallyJess—restlient—to
disturbanees-thanlarge-ones (bamentowiez-et-al;2008). The changes caused by extreme events

can lead a peatland to reach a critical transition, that is, to cross a tipping point after which it
does not return to its previous hydrological and trophic conditions (Dakos et al., 2019; Lenton
etal., 2008, 2019). So far, peatland research has focused chiefly on the tipping points associated
with changes in groundwater levels due to a warming climate, fires, pollution, carbon
sequestration, or opening landscape caused by agricultural development (Fiatkiewicz-Koziet et

al., 2015; Jassey et al., 2018; Lamentowicz et al., 2019a, b; Loisel and Bunsen, 2020). Except
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for these issues, there is a need for a broader recognition of the consequences of insect outbreaks
in forest areas and the accompanying forest management.

In this article, we focus on the impact of catastrophic events on the ecosystem of the Miaty
peatland in the Note¢ Forest (local scale) and the broad context of such disturbances for pine
plantations in Central and Eastern Europe (regional scale). Our aims were (1) to reconstruct the
environmental history of the Mialy peatland using multiproxy palaeoecological analyses
(including analyses of pollen, non-pollen palynomorphs, testate amoebae, plant macrofossils
and charcoal) and geochemical analyses (neodymium isotope signatures), and through this
reconstruction to identify peat layers corresponding to severe environmental catastrophic
events; (2) assess the impact of such disturbances on the peatland ecosystem, as well as to
understand the relation between disturbances occurring in the surrounding forest and the
peatland. We hypothesized that catastrophic events in pine plantations, including insect
outbreaks and fires, cause significant changes in the peatlands located in their area and even a

complete change in trophic and hydrological conditions, leading to a critical transition.

Materials and methods

Study site

The Miaty peatland is located in western Poland, about 65 km northwest of Poznan (Fig. 1). It
is located within the boundaries of the Note¢ Forest, one of the largest forest complexes in
Poland, covering an area of about 1370 km? (Statistical Office in Biatystok, 2023). The Note¢
Forest is a Scots pine-dominated monoculture (Pinus sylvestris, 95% of the tree stand)
(Sukovata, 2022). A large part of the pine forest, including our research site, is located in the
‘Puszcza Notecka’ protected landscape area. It is also a special protected area, ‘Puszcza
Notecka’ (PLB300015, since 2007), and a special area of conservation, ‘Dolina Mialy’
(PLH300042, since 2023), under Natura 2000. According to the physical-geographic
regionalization, the peatland is located in the Gorzow Basin mesoregion, in the Warta and Note¢
Inter-river submesoregion. It is a high glacial-alluvial terrace covered with dunes with a relative
height of 20 to 40 meters (Kondracki, 2001). It has a temperate transitional climate. From 1981
to 2010, the average annual air temperature was 8.4 °C. The warmest month was July, with an
average temperature of 18.8 °C, and the coolest month was January, with an average
temperature of —1.1 °C. Average annual precipitation for 1981-2010 equalled 563 mm, with the
maximum precipitation in July — 69 mm, and the minimum in April — 31 mm (Institute of

Meteorology and Water Management, 2025).
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Figure 1. A-C. The location of the study site on topographic (A, B) and geological (C) maps.
D. Orthophoto of the Mialy peatland with sampling points (asterisks): red — peat core sampling
site, blue — soil surface sampling sites for the neodymium isotope analyses, green — Sphagnum
surface sampling sites for the neodymium isotope analyses. E. Photograph of the peatland and

its forest surroundings. F. Sphagnum mosses covered the peatland surface.

Fieldwork and sampling

The peat core was collected from the western part of the peatland in October 2021 using a
Wardenaar corer (chamber dimensions: 10 cm x 10 cm x 100 cm) (Wardenaar, 1987). The entire
length of the sampled peat core — a 97 cm-long monolith — was analyzed. The core was
subsampled continuously every 1 cm, except for the first sample (0—2 cm), which contained a
living layer of peat-forming vegetation. A total of 96 samples were obtained for multi-proxy
analyses, including the water content in fresh material, organic matter content in dry material,
ash-free bulk density, peat accumulation rate, peat carbon accumulation rate, plant macrofossils,
testate amoebae, macroscopic and microscopic charcoal, pollen and neodymium isotopes.
Moreover, five surface samples of Sphagnum mosses (two samples) and soil (three samples)
were taken as a reference for downcore neodymium measurements (Fig. 1), following the

approach of Marcisz et al. (2023b).
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Radiocarbon dating, absolute chronology and peat accumulation rates

Ten samples containing Sphagnum and brown moss stems were used for accelerator mass
spectroscopy (AMS) “C dating of the entire length of the core, conducted at the Poznan
Radiocarbon Laboratory in Poland (laboratory code marked Poz; Tab. 1).

The absolute chronology of the core was based on a Bayesian age-depth model using OxCal
v4.4.4 (Bronk Ramsey, 2021). The P_Sequence command with a parameter k of 0.75 cm’!
calculated the model, assuming logo(k/k(0) = 2, and interpolation = 1 cm. The IntCal20 (Reimer
et al., 2020) and Bomb21NH1 (Hua et al., 2021) atmospheric curves were used as calibration
sets. The most pronounced changes in peat composition, as manifested by changes in pollen
concentration, testate amoeba species composition, and species composition of plant
macrofossils, which may signal changes in peat accumulation rates, are were inputted using the
Boundary command. In this model, the Boundary command was input at a depth of 26 cm, with
a pronounced change in pollen concentration. Two dates (laboratory code — Poz-150636 and
Poz-150390) were rejected because they were after—the—initial-modelling outside the main
trajectory of the model. For better readability of the age-depth model, mean values (i) rounded
to tens were applied in the following section of the text. Peat accumulation rates were retrieved
from the age-depth model using the OxCal software.

Table 1. The list of radiocarbon dates from Mialy peatland with calibration. The outliers are
marked with asterisks (*). The IntCal20 (Reimer et al., 2020) and Bomb21NH1 (Hua et al.,
2021) atmospheric curves were used to calibrate the dates. pMC — percent modern carbon

Laboratory code | Depth 14C date (1*C | Calibrated dates [cal.

Dated material

— number sample (cm) BP) CE (25 — 95.4%)
114.23 £ 0.28 1958-1962 (9.7%) Sphagnum
Poz-150634 10.5 PMC 1986-1996 (85.7%) stems
Poz-150451 205 | 1388204 1664 1974 (95.49%) Sphagnum
pMC stems
1682-1738 (25.7%) < haomim
Poz-150635 30.5 110 + 30 1754-1762 (1.1%) phag

1801-1938 (68.6%) stems, seeds

1448-1530 (48.8%)
1540-1635 (46.7%)

Sphagnum and
brown mosses
stems
brown mosses
stems
Sphagnum and
Poz-150389 50.5 830 £ 30 1166-1269 (95.4%) brown mosses

stems

Poz-150681 40.5 370 + 40

Poz-156989 45.5 750 £ 30 1224-1290 (95.4%)
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brown mosses

Poz-156994 55.5 840 + 30 1162-1266 (95.4%)
stems
Sphagnum and
Poz-150636* 60.5 470 £+ 30 1407-1460 (95.4%) brown mosses
stems
248-298 (32.6%) brown mosses
_ *
Poz-150390 70.5 1730 + 30 306-406 (62.9%) stems
Poz-156773 75.5 1595 + 30 417-546 (95.4%) brown mosses

stems
Sphagnum and
brown mosses
stems, charcoal,

seeds
Sphagnum and
brown mosses

stems

434-467 (11.3%)
Poz-150637 80.5 1530 + 30 472-519 (15.6%)
526-603 (68.6%)

28-44 (2.9%)

Poz-150682 96.5 1910 %30 58-214 (92.6%)

Peat properties and peat carbon accumulation rates

The water content in a wet sample (WC, %), organic matter content in a dry sample (ORG, %),
ash content (ASH, g, %), ash-free bulk density (BD, g/cm?), peat accumulation rate (PAR,
mm/yr) and peat carbon accumulation rate (PCAR, gC/m?/yr) were calculated for each of the
96 samples. For these analyses, the volume of each sample was accurately measured using
calipers. Next, each sample was placed in separate crucibles, weighed, dried, and weighed again
to determine the percent of WC. The dried samples were burned in a muftle furnace at 550 °C
for 5 hours and reweighed according to the protocol of Heiri et al. (2001) to determine ASH (g,
%). BD (g/cm?) was calculated by dividing the weight of the dry sample by the volume of the
fresh sample and multiplied by ORG, according to Chambers et al. (2010). PAR was calculated
based on core chronology and then multiplied by the BD value obtained earlier and by 50% to
obtain PCAR, according to Loisel et al. (2014).

Plant macrofossil analysis

The plant macrofossils were analysed using the modified protocol of Mauquoy et al. (2010).
Each sample of approximately 5 cm?® was wet sieved (mesh diameter: 200 pm). The generalized
content of the sample was estimated in percentage using a binocular microscope. Fruits, seeds,
achenes, perigynia, scales, whole preserved leaves, sporangia, and opercula were counted as
total numbers in each sample. The tissues of monocotyledon species and moss leaves (brown
and Sphagnum mosses) were identified on slides using a magnification of x200 and x400. The

material was compared with the guides (Anderberg, 1994; Berggren, 1969; Bojnansky and
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Fargasova, 2007; Mauquoy and van Geel, 2007). The diagram for the analyzed proxy was
plotted using the riojaPlot package for R (Juggins, 2023).

Testate amoeba analysis

Peat samples for testate amoeba analysis were washed under 300 um mesh following Booth et
al. (2010). Testate amoebae were analyzed under a light microscope with x200 and x400
magnifications until the sum of 100 tests per sample was reached (Payne and Mitchell, 2009);
however, in peat layers below 27 cm, the testate amoeba sums were lower (between 5 and 50)
due to the very low concentration of tests. Several keys, including taxonomic monographs
(Clarke, 2003; Mazei and Tsyganov, 2006; Meisterfeld, 2001) and online resources
(Siemensma, 2023), were used to achieve the highest possible taxonomic resolution. The results
of the testate amoeba analysis were used for the quantitative depth-to-water table (DWT) and
pH reconstructions. Both reconstructions were performed in C2 software (Juggins, 2007) using
the European training set (Amesbury et al., 2016). In layers with low testate amoeba sums, water

table reconstruction should be viewed with caution (Payne and Mitchell, 2009).

Pollen and non-pollen palynomorphs analyses

Samples for palynological analysis (volume: 3 ¢cm? for 0-21 cm and 1 ¢cm? for 21-97 cm) were
prepared using standard laboratory procedures (Berglund and Ralska-Jasiewiczowa, 1986). To
remove the carbonates, samples were treated with 10% hydrochloric acid. This step was
followed by digestion in hot 10% potassium hydroxide (to remove humic compounds) and
soaking in 40% hydrofluoric acid for 24 h (to remove the mineral fraction). Next, acetolysis
was carried out. Three Lycopodium tablets (Batch 280521291, containing 18,407 spores per
tablet; produced by Lund University) were added to each sample during the laboratory
procedures for the calculation of microfossil concentration (Stockmarr, 1971). Pollen, spores,
and selected non-pollen palynomorphs (NPPs) were counted under an upright microscope
(Zeiss Axio SCOPE Al) until the number of total pollen sum (TPS) grains in each sample
reached at least 500, apart from 10 samples in which pollen concentrations were very low. Two
of them (depths: 19-18 and 17-16 cm) were excluded due to extremely low pollen
concentration, and it was impossible to reach 100 grains included in TPS. Sporomorphs were
identified with the assistance of atlases, keys (Beug, 2004; Moore et al., 1991), various
publications, and the image database in the case of NPPs, for which there are no atlases (Miola,
2012; Shumilovskikh et al., 2022; Shumilovskikh and van Geel, 2020). The results of the

palynological analysis were expressed as percentages, calculations are based on the ratio of an
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individual taxon to the TPS, i.e., the sum of AP (arboreal pollen) and NAP (non-arboreal
pollen), excluding aquatic and wetland plants (together with Cyperaceae and Ericaceae),

cryptogams, and fungi. A pollen diagram was drawn using the program Tilia (Grimm, 1991).

Macro- and microcharcoal analyses

Microscopic charcoal particles (size: > 10 pum) were analyzed from the same slides as pollen
following standard protocol where the number of charcoal particles and Lycopodium spores
counted together exceeded 200 (Finsinger and Tinner, 2005; Tinner and Hu, 2003). Microscopic
charcoal influx or accumulation rates (MIC, particles/cm?/year) were calculated by multiplying
the charcoal concentrations by peat accumulation rates (PAR) (Davis and Deevey, 1964; Tinner
and Hu, 2003).

Ninety-six contiguous samples (2 cm?) were prepared for macroscopic charcoal analysis.
Bleaching was used to create a more visible contrast between the charcoal and the remaining
organic matter, following the method described by Whitlock and Larsen (2001). The samples
were sieved through a 500-um mesh and analyzed with a binocular under x60 magnification.
Only charcoal fragments > 600 um were analyzed to obtain the local fire signal (Adolf et al.,
2018). Macroscopic charcoal influx or accumulation rates (MAC, particles/cm?/year) were

calculated using the charcoal concentrations and PAR.

Neodymium isotopes

We used neodymium isotopes to assess the impact of disturbances on the Miaty peatland. This
method helps determine the sources of mineral matter in peat profiles, including whether it was
washed into the peatland basin (i.e., the peatland had a connection to groundwater and was of
minerotrophic origin) or was primarily of atmospheric origin (meaning the peatland functioned
more as an ombrotrophic, rain-fed system) (Marcisz et al., 2023b). [sotopic measurements were
performed from peat samples taken along the peat core as well as from reference material from
the surface of the peatland and soil around it (Fig. 1). All analytical procedures and isotopic
measurements were performed in the Isotope Laboratory of the Adam Mickiewicz University,
Poznan, Poland, on a Finnigan MAT 261 multi-collector thermal ionization mass spectrometer.
Details of the analytical procedures are provided by Marcisz et al. (2023b). Peat samples, as
well as surface Sphagnum and soil samples from both peatlands, were dried and burned at 550
°C overnight. Prior to preparation for isotopic measurements, the ash of peat and soil samples
was dissolved on a hot plate (~100 °C for three days) in closed PFA vials using a mixture of

concentrated hydrofluoric- and nitric acids (4:1). The ash of fresh plant material was digested



264
265
266
267
268
269
270
271
272

273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

in 16 N HNOs. Neodymium was separated using the miniaturized chromatographic techniques
described by Pin et al. (1994) and Dopieralska (2003). The analytical precision was monitored
by analysing the USGS reference material BHVO-2 (14Nd/!**Nd =0.512986+0.000006 [26; n
= 2]). Neodymium (loaded as phosphate) was measured on Re in a double-filament
configuration. Isotopic ratios were collected in a dynamic mode. Nd isotope ratios were
normalized to "*Nd/!**Nd = 0.7219. Repeated measurements of the AMES standard yielded
IBNJ/1*Nd = 0.512118 + 10 (20, n = 12). Nd isotope data are reported in the standard ¢

notation:

143 143
Nd Nd
<W> sample — <W> CHUR
ENa = <143Nd

x 104

where CHUR denotes the present-day Chondritic Uniform Reservoir (!**Nd/'*Nd = 0.512638
and "YSm/'"*Nd = 0.1967) (Jacobsen and Wasserburg, 1980).

Statistical analyses

To quantify periods of rapid botanical change and recovery, we apply the principal response
curves (PrC) to the data, as outlined by Burge et al. (2023) in their R package ‘baselines’. This
approach allows for the identification of directional shifts and when these begin to accumulate
beyond the level expected from random wvariation. The multivariate palynological data
(individual taxa only) was Hellinger-transformed and reduced to a one-dimensional curve using
PrC. Thus, PrC results trace changes in the relative abundance of pollen and NPP over time.
This method is useful for detecting changes in data with a strong underlying gradient in
palaeoecological studies (Van Den Brink and Ter Braak, 1999; De’ath, 1999). Mixed-medel
ceneralised-additive-medels Generalised additive mixed models (GAMMSs) were then fitted to
the data, with a smoothing term accounting for temporal autocorrelation. A cubic regression
spline was used as the smoothing basis, with &£ = 20. A range of values for k£ was tested to ensure
the model avoids overfitting or underfitting the data. Likewise, Maximum Likelihood (ML) was
used for consistency with Burge’s framework, instead of REML (Restricted Maximum
Likelihood). However, REML was used to reanalyse the data in place of ML as a smoothing
parameter, and it didn’t make an appreciable difference to the results.

When poor GAMM fits occurred, adaptive splines with GAMS were compared with the
GAMM to assess model fits. Adaptive spline GAMs provide better fits to data exhibiting abrupt

10
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changes but cannot yet be incorporated into the GAMM framework (Simpson, 2018). Periods
of significant change were identified in the GAMM models by calculating the time intervals
where the confidence intervals surrounding the first derivative did not include zero. PrC curves
were derived from constrained ordination of the time series palynological data, which use the
prcurve() function (package analogue) in R.

The phases in the palacoecological analyses were distinguished based on changes in plant

communities obtained from palynological and plant macrofossil data.

Results

Chronology, peat accumulation rates and peat properties

The age-depth model shows the agreement index (Amoder) of 61%, just above the recommended
minimum of 60% (Bronk Ramsey, 2008) (Fig. 2). The model has the highest uncertainty, with
a 95.4% confidence interval — 80 calibration years (CE) — at depths between 65.5 and 64.5 cm
(ca. 840-870 cal. CE, Fig. 2). The age of the oldest layer — 96.5 cm — was modelled at 130+45
(confidence interval: 1 o) cal. CE (Fig. 2).

Age-depth model Lithology Peat properties & geochemistry
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Figure 2. Bayesian age-depth model (based on '*C dating) and lithology (based on plant
macrofossils analysis) with palacoecological phases of the peat profile in Miaty (on the left
site). Changes in the physical peat properties (water content in the wet sample, organic matter

content in the dry sample, ash content, ash-free bulk density, PAR, and PCAR) and neodymium

11
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isotope signatures — end — are marked. The timing of the most critical catastrophic disasters in

the 20 century is also marked.

The water content of the wet sample ranged from 77.0% (22-21 cm, ca. 1965 cal. CE) to 95.0%
(20-19 cm, ca. 1970 cal. CE), averaging 89.4% throughout the core (Fig. 2). Organic matter
content of the dry sample ranged from 83.6% (33-32 cm, ca. 1755-1785 cal. CE) to 99.2%
(22-21 cm, ca. 1965 cal. CE), with an average of 94.5% in the entire core (Fig. 2). Bulk density
ranged from 0.04 g/cm? (15-14 cm, ca. 1980 cal. CE) to 0.28 g/cm?® (21-20 c¢m, ca. 1965-1970
cal. CE), with an average of 0.12 g/cm? across the core (Fig. 2). Average PAR throughout the
core was relatively slow at 1.3 mm/yr, fastest at 4.8 mm/yr (20—19 cm, ca. 1970 cal. CE),
slowest at 0.2 mm/yr (43-42 cm, ca. 1395-1440 cal. CE) (Fig. 2). The average PCAR had a
value of 73.4 gC/m?/yr, the largest — 590.6 gC/m?/yr (21-20 cm, ca. 1965-1970 cal. CE), the
smallest — 10.2 gC/m?/yr (71-70 ¢m, ca. 665-700 cal. CE) (Fig. 2). Higher PAR and PCAR

values were associated with an undecomposed acrotelm zone.

Palaeoecological analysis

Phase 1 (97-76 cm, ca. 130 — 520 cal. CE): very wet peatland with a dominance of
monocots, surrounded by mixed forest

The local vegetation (Fig. 3) for most of this period is dominated by monocots (max. 96% of
plant macrofossil content), including Carex, whose achenes are found in the peat profile.
Cyperaceae pollen makes up max. 6.0% (Fig. 4). Short periods of dominance of Sphagnum
(max. 80%), mainly Sphagnum sub. Cuspidata (max. 40%), occur (Fig. 3). This phase is also
characterized by a high content of unidentified organic matter, reaching up to 10% (Fig. 3).
The low sums of testate amoebae do not allow for a statistically significant reconstruction of
water and pH levels in this phase (full data in the open dataset). However, among the testate
amoeba taxa, Centropyxis aculeata dominates quantitatively. There is a high percentage of
Cyanobacteria and algae (Zygnemataceae, Botryococcus) (Fig. 4) and a maximum of the
Utricularia curve in the pollen data (Fig. 4; max. 0.5%).

Pinus sylvestris (39.0-65.8%) grains are the most frequent, but the pollen of deciduous trees is
relatively common as well (Fig. 4): Betula (7.4-26.4%), Alnus (max. 17.0%), Quercus (max.
15.6%), Carpinus betulus (max—5-8 max. 5.8%), Corylus avellana (max. 4.6%), Fagus
sylvatica (max. 3.5%). Remains of Betula (achenes and catkin scales) are present in the plant

macrofossils (Fig. 3).
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The highest fire activity is recorded for ca. 310-330 cal. CE (macroscopic charcoal
concentration ca. 70 particles/cm?, Fig. 3 and microscopic charcoal concentration ca. 420,000
particles/cm?, Fig. 4) and ca. 430-455 cal. CE (90 particles/cm? of macroscopic charcoal; Fig.
3).
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Figure 3. A diagram showing macrofossil percentages, macroscopic charcoal concentrations
and influx as a local fire proxy. Testate amoeba-based depth-to-water table and pH curves for
27-0 cm layers are also presented. The timing of the most critical catastrophic disasters in the

20™ century is also marked. Ten times exaggeration is presented.

Phase 2 (76—64 cm, ca. 520 — 890 cal. CE): moderately wet peatland, landscape closure —
increase in forestation, decrease in ruderal species

The Sphagnum content decreases in favour of the brown moss (max. 85%) and monocot
remains (max. 80%), including Carex (achenes and perigynia of this taxon are found, Fig. 3).
Cyperaceae pollen (Fig. 4) make up between 3.4% and 8.4%. This is the only phase in which
seeds of Menyanthes trifoliata are found (Fig. 3), and the pollen curve maximum of this taxon
is observed (0.3%; Fig. 4).

Reconstructions of depth-to-water level and trophic conditions imply a low abundance of testate

amoebae, with a continuation of the quantitative dominance of C. aculeata (full data in the open
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dataset). The share of freshwater bacteria and algae decreases significantly at this time (Fig. 4).
Cyanobacteria reach max. 5.9% (Fig. 4).

This period has the highest forest cover in the peatland’s surroundings. Arboreal pollen accounts
for over 90% of total pollen throughout this phase (Fig. 4). Compared to the phase 1, the share
of Betula pollen decreases (5.1-19.1%), while the share of Pinus sylvestris pollen slightly
increases (44.6—65.2%) (Fig. 4). Admixture species — Alnus (max. 17.9%), Quercus (max.
9.2%), Carpinus betulus (max. 6.8%), Corylus avellana (max. 5.2%), Fagus sylvatica (max.
2.7%) — continue to be relatively important (Fig. 4).

Trees and shrubs Dwarf shrubs, herbs, pteridophytes and mosses Non-pollen palynomorphs (NPP)
i Dry tq fresh Wetlands Cyanobacteria Fungi
l I D Cgtrl]\éated Dry {9 fregh yané)a?gae . g Charcoals
= 3
iy o ) 8 o
3 [ 3 =
2k N £ |35 g . =3
. N £ s 5 2 g 3 5 v e = 8,2
E _:S8188 5 ] §8le s 2.3 T o Selos g 8T g%
— B $:c23kgg 2 $%28s5 | o &l 9§38 |2 £e3832% 5 = I s £ 5EE
m 255 Ss85 g S8 2 9|5 § 8|5 S§eg 88 s g ol % 3 3 S 5cg
o=5 =3 % 332845 % T3 8¢ o & |2 S e S5t T S & 32z > o 062
£ 2 2«3 ¢ 21258 3 23 33 § =g 5 & 8 |a ScS ow E B B 3 82 @ ] =S
%98 0 S= S 9183% 20 28535 8 LRe Tow |8 SEN gL S5 2 8 S 3| E 0o L g 88t
St 582590 e,23 2882y @ 58/8 €85 [C seE9%E 5 8 8 3 g5 o 55 g g28
2 8 252 FlggsS35s§5§s33g § 8s/g 52 8,8 255833 & § ¢ $ {838 I 2R g 6Eq
50 5 8£ S 5ISEREESSSRY 8 358 28 58% 8R85SS § & 8B 3 3| 8= = o5 g 882
<0 Fr o< E<aSC § o uld v obla <A &0 SO 355 o I 03 IS Q0I5 I & = Sex
0 bk b s = R .....mymﬁwm - [ g [mmmNanannl du
2000 > i |
>
PHASE 5/ |
. FEL =) Ik —— 45 — - AR
T4 : At -
L b i = w
1900 = L —| ’ * Sphaerd PHASE 4
o 4 - cf. retisy Panolis
1800 = (0.1-0.4[% flammea
1600 é -1 infestation
159 < (1922-1924)
1300 ¢ 4 r —
1200 S S [ PHASE 3
1100 s — | 4
1000 3 %
900 |
800
700 L PHASE 2
600 ) > |
500
400 < 4 =
200 j PHASE 1
200 — 3 the phase
4 boundary
100 | |[rrerer e[ e ey v e e e e [ e T e [ o P T [ e e [ [ e pee e
51010 5 10 55 10 10 5105 55550150 1010 50 1020 5 5 10 10 100 300

00 400 10 50 10010203055 10 1010 100 400 30 50

Figure 4. Pollen diagram with selected taxa presented (full list of taxa is provided in the
associated open dataset). Pollen percentages are shown in black, and 10 times exaggeration is
marked. Microscopic charcoal concentrations and influx as an extra-local fire proxy are also

presented.

Fhreugh-mueh For the first half of the phase 2, fire activity is low, but increases in the second
half. The concentration of both microscopic and macroscopic charcoal increases markedly
towards the end of this phase, reaching a maximum of 61 particles/cm® for macroscopic

charcoal (Fig. 3) and 293,600 particles/cm?® for microscopic charcoal (Fig. 4).

Phase 3 (64-36 cm, ca. 890 — 1660 cal. CE): very wet peatland, expansion of Sphagnum
mosses, development of agriculture and gradual decrease in deciduous trees
Sphagnum mosses (max. 42%) appear again, although, due to the significant degree of the

material decomposition, it was not possible to determine lower taxonomic ranks in the plant
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macrofossil analysis (Fig. 3). The content of the remains of monocots (max. 85%) and brown
mosses (max. 55%) remains high (Fig. 3). Carex achenes are also present (Fig. 3). The
percentage of Cyperaceae pollen is relatively high (2.0-7.0%; Fig. 4). This is the only phase
where fruits of Lycopus europaeus are found (Fig. 3). Seeds of Scheuchzeria palustris are also
present (Fig. 3).

The concentration of testate amoebae remains low, so again, the reconstruction of water levels
and trophic conditions should be treated with caution (full data in open dataset). Species of the
genera Centropyxis sp., Cyclopyxis sp., and Difflugia sp. dominate quantitatively. The increase
in Cyanobacteria (max. 82.6%) and freshwater algae, especially Tetraédron (max. 24.6%) and
Botryococcus (max. 2.5%), is significant (Fig. 4).
The-structure-of-the-forest-wasrelatively-stable (Fig—4)- The share of arboreal pollen is high,
ranging from 86% to 94%, although with a slightly decreasing trend, compounded by declines
in admixture species (Fig. 4). Pinus sylvestris represented 51-68% and Betula 6—15% of total
pollen. At the end of this phase, the share of Alnus, Quercus, Carpinus betulus, Corylus avellana
and Fagus sylvatica in total pollen is respectively: 11.6%, 5.5%, 2.0%, 1.1% and 1.6%. The
declines in the percentage of these taxa may be related to the increased contribution of Cerealia
pollen (Fig. 4). Among Cerealia, Secale cereale dominates, reaching a maximum of 2.2%. The

percentages of Poaceae, Artemisia, Plantago lanceolata, and Rumex also increase (Fig. 4).

Phase 4 (3624 cm, ca. 1660 — 1960 cal. CE): the further expansion of Sphagnum mosses,
an increase of Pinus sylvestris pollen with an episodic extreme decrease of it

The expansion of Sphagnum is continued. The percentage of monocot remains decreases to
15% by the end of this phase. However, the number of achenes and perigynia of Carex is higher
than in any other part of the profile (Fig. 3). The percentage of Cyperaceae pollen ranges from
2.7% to 13.0% (Fig. 4). The initial part of the phase is dominated by the Sphagnum sub.
Subsecunda (Fig. 3). At the same time, Lycopodiella inundata appears (Fig. 4). This is the only
phase in which Sphagnum sub. Subsecunda and Lycopodiella inundata occur together. The
brown mosses completely disappear.

At the end of the phase 4, the abundance of testate amoebae increases (with Galeripora
discoides, Nebela tincta, and Phryganella acropodia as dominant species), which allows for
statistically significant reconstructions of the water table level and pH level (Fig. 3). The
abundance of Cyanobacteria and algae decreases distinctly; most of them disappear entirely at

the end of this phase (Fig. 4).
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In the pollen dataset (Fig. 4), a further decrease in the percentage of deciduous species is
observed. In the upper part of the phase 4, the share of Alnus, Quercus, Carpinus betulus,
Corylus avellana, and Fagus sylvatica in total pollen is 3.4%, 1.9%, 1.2%, 1.3%, and 0.6%,
respectively. The share of Betula in total pollen remains at about the same level (5.9-12.2%).
A significant decrease in Pinus sylvestris pollen percentages and an increase in the percentages
of Secale cereale, Poaceae, Plantago lanceolata, and Rumex pollen occur in 1900-1926 cal.
CE.

Analysis of the macroscopic charcoal data (Fig. 3) shows one local fire event (macroscopic
charcoal concentration — 22 particles/cm?, macroscopic charcoal accumulation rate — 7
particles/cm?/year; 1952-1956 cal. CE). The regional fire activity (Fig. 4) remained quite high
(ca. 127,000-312,000 particles/cm? of microscopic charcoal concentration; ca. 3900-61,000

particles/cm?/year of microscopic charcoal accumulation rate).

Phase 5 (24-0 cm, ca. 1960 — 2021 cal. CE): the dominance of Sphagnum mosses and the
disappearance of Cyanobacteria and algae, the development of microscopic fungi, the
episodic extreme collapse of the arboreal pollen curve

The uppermost part of the profile records further development of Sphagnums, initially Sphagnum
sub. Sphagnum, later Sphagnum sub. Cuspidata. The proportion of Sphagnum sub. Acutifolia
remains stable. Sphagnum capsule remains — sporangia and opercula — appear; we link their
presence with spores of the parasitic fungus Bryophytomyces sphagni (see discussion). Tree
remains (Betula achenes and catkin scales, Pinus sylvestris mycorrhizal roots) are abundant.
Vaccinium oxyccocus leaves appear in large numbers.

At the beginning of this phase, Cyanobacteria and algae disappear completely. Testate amoeba
species such as G. discoides, Galeripora catinus, and N. tincta are abundant. G. discoides
dominates for most of the-phase4 the phase 5, and the abundance of N. tincta increases towards
its end. The groundwater level remains constant, except for one marked fluctuation (ca. 1990—
1995 cal. CE), whereas the pH level increases gradually from ca. 1995 cal. CE (Fig. 3). Both
phenomena can be linked to the effect of the 1992 fire (see discussion).

Pinus sylvestris remains the dominant species in this of the profile (32.6-78.9%). Compared to
the previous phase, the percentage of Betula pollen increases (5.6-20.3%). One significant
decrease in the share of tree pollen, in particular Pinus sylvestris, is recorded in ca. 1995 cal.
CE. We interpret this as decreased forest cover after the 1992 fire (see discussion). At the same
time, a higher share of Pinus stomata typifies ca. 1980-2000 cal. CE layers (0.2-3.9%). We

associate this with massive needle falls associated with the fire (see discussion). Rumex
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acetosa/acetosella type — a taxon characteristic of open and ruderal areas (Behre, 1981) —
reaches its maximum — 19.6% (ca. 1995 cal. CE), which we also interpret as an effect of the
fire. The shares of other deciduous trees — Quercus (max. 3.9%), Carpinus (max. 1.6%),

Corylus (max. 1.3%), Ulmus (max. 0.7%) decrease.

Neodymium isotopes analysis

The eng values measured in the mineral matter extracted from the analyzed peat samples range
from —14.5 to —9.8. Most samples show a relatively low variability of the strongly negative Nd
isotope ratios (ena < —12), including the most negative values in layers 61-60 and 4140 cm.
Less negative eng values (ranging from —9.9 to —9.8) are only observed in the upper part of the
profile, most notably in the layers 21-20, 16—15 and 11-10 cm.

Among the reference surface samples, the mineral material from the peatland surface yielded
moderately negative eng signatures (—12.1 and —11.7), whereas the soil taken from the slopes
of the peatland catchment display strongly unradiogenic Nd isotope composition (eng = —18.9
to —16.5; Fable Fig. 2, Tab. 2). The study site is covered by young glacial material dominated
by clay and sand derived from Scandinavia, transported and accumulated during the last
glaciation (Marks, 2012). Previously, Nd isotope measurements in the young glacial sediments
of another outwash plain covered by a pine monoculture were measured only by Marcisz et al.

(2023b), who reported eng signatures similarly negative (ena =—26.5 to —16.6) to those in Miaty.

Table 2. Reference eng values measured in surface samples taken from the studied peatland and

its surrounding (1-5) and eng values measured in peat samples.

Nr |Sample code| ¥Nd/™Nd () Uncertainty |ena (t= 0)
1 MLYO1 0.512016 +0.000011 —-12.1
2 MLYO02 0.511791 +0.000010 -16.5
3 MLYO03 0.511671 +0.000012 - 18.9
4 MLY 04 0.511727 +0.000012 -17.8
5 MLYO05 0.512036 +0.000011 -11.7
6 MLYS5.5 0.512036 +0.000012 -11.7
7 MLY10.5 0.512129 +0.000010 -9.9
8 MLY15.5 0.512134 +0.000010 -9.8
9 MLY?20,5 0.512133 +0.000009 -99
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10 MLEY25.5 0.512042 +0.000009 —11.6
11 MLEY30.5 0.511969 +0.000010 —13.1
12 MLEY35.5 0.511952 +0.000015 —13.4
13 MLEY40.5 0.511905 +0.000010 — 143
14 MLY45.5 0.511952 +0.000010 —13.4
15 MLEY50.5 0.511973 +0.000010 —13.0
16 MLY55 0.511932 +0.000010 —13.8
17 MLY 60 0.511991 +0.000010 —12.6
18 MLY 65 0.511895 +0.000017 — 145
19 MLY70 0.511975 +0.000008 - 129
20 MLYT75.5 0.511992 +0.000011 —12.6
21 MLEY80.5 0.511972 +0.000010 —13.0
22 MLEYB5.5 0.511940 +0.000010 —13.6
23 MLEY90.5 0.511941 +0.000010 —13.6
24 MLEY95.5 0.511992 +0.000009 —12.6
25 MLY97.5 0.512028 +0.000012 - 11.9
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482  Fig. 5. Changes in the principle response curve derived from pollen count data (circles) fit with
483 a GAMM model fit (solid black and red lines). The red line indicates periods of rapid change.

484  Dashed vertical lines indicate historical periods of forest management change affecting the site:
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the 1775 decree by Frederick II the Great (black); infestation by Panolis flammea (1922—-1924;
blue), and the 1992 fire period (yellow).

The PrC explained 73% of the variance in the palynological data. However, the GAMM
provided a relatively poor fit to the data. An adaptive spline GAM provided a better explanation
of the data, with the differences between the two models primarily related to the improved fit
with the more recent samples. This suggests a possible return to previous conditions, although
these samples are more likely to be influenced by temporal autocorrelation. Despite this, the
GAMM effectively captures the general trends in the data and provides a better fit for the
earliest samples (Fig. Al). Therefore, we can proceed to use this data.

The PrC analysis revealed that changes over time occurred between the beginning of the record
and 1720 cal. CE. However, there is no substantial evidence of significant or rapid changes until
after this time. From approximately 1000 cal. CE until the 1700s, the PrC scores exhibited high
variability. A significant increase in the rate of change was identified for the period ca. 1725—

2005, as shown in Figure 5.

Discussion

Combining ecological, palaeoecological, geochemical and historical data to understand
long-term environmental changes

Present-day pine monoculture ferests plantations of Poland are often perceived as typical for
this region by the local populations, whereas these are highly modified forests that are
significantly different from the natural ones. Compared to natural potential vegetation maps,
these areas should possess a large proportion of deciduous taxa, e.g., oak-hornbeam (Querco-
Carpinetum medioeuropaeum) forests (Matuszkiewicz, 2008). The relatively high percentages
of deciduous tree pollen compared to the percentages of Pinus sylvestris pollen in historical
times were recorded at many sites from present-day pine monocultures in northern Poland (Bak
et al., 2024; Czerwinski et al., 2021). The development of the Polish state and agriculture in the
early Middle Ages, in our data manifested by the high percentages of cereal pollen grains (incl.
Secale cereale) and taxa characteristic for open and ruderal areas (Poaceae, Artemisia, Plantago
lanceolata, and Rumex), caused a decline of deciduous species in the forest composition (Fig.
4). These changes in the forest structure were distinct but gradual; when planned management
was introduced in 18" century, however, the contribution of admixture trees started to decrease
rapidly. In 1772 CE, the area of the Note¢ Forest was included in the borders of the Kingdom

of Prussia as a result of the First Partition of Poland. At that time, some of the first legal
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regulations for planned forest management in the area appeared, including the 1775 CE decree
of Frederick II the Great regarding government forests in Prussia and the preference for planting
pines instead of deciduous species (Bak et al., 2024; Jaszczak, 2008). Around this time, the PrC
analysis began to reveal periods of significant and rapid change in the palynological record.
Consequently, the forest has continued to undergo substantially rapid changes ever since, unlike
the preceding changes. The results of the PrC analysis proved to be statistically significant,
confirming the occurrence of critical transitions in the peatland on a scale that was not observed
in the older part of the core. The trend in the PrC aligns broadly with the patterns seen in the
data, as shown by the correspondence between the PrC scores and the relative contributions of
deciduous trees, arboreal pollen, Pinus sylvestris type and NPPs.

It is commonly assumed that outwash plains or eolian sandy dunes, remnants of the Weichselian
glaciation (to 11,700 BP), which are currently covered by extensive Scots pine monoculture in
northern Poland (e.g., the Note¢ Forest, the Tuchola Forest) are not conducive to the growth of
other species and Pinus is a natural main forest-forming species (Magnuski, 1993; Mis, 2003).
Although pollen data suggest the domination of Pinus sylvestris since the 2" century CE, the
distinct admixture of Quercus, Carpinus betulus, and Corylus avellana was recognized in our
study. Fhe-ether Previous multi-proxy palaecoecological studies exist from the Note¢ Forest;
were unable to provide such information because the cores collected from the Rzecin peatland
covered only the last 200 years and did not capture the entire background of the changes related
to human activity and subsequent forest management (Barabach, 2014; Lamentowicz et al.,
2015; Milecka et al., 2017; Stowinski et al., 2019). The knowledge of the historical background

is essential for the interpretation

peatlands™hydrelogical andtrophie—eonditions of the complex response of the peatland
ecosystem to a change in forest management, as it allows for the long-term tracing of reference
conditions relating to both the composition of the forest and the trophic and hydrological
variants of the peatland (Bak et al., 2024). In this study, we recorded the presence of
hydrophytes and later also helophytes and hygrophytes (e.g., Utricularia, Menyanthes
trifoliata, Lycopus europaeus, Scheuchzeria palustris, Cicuta virosa) in the first four phases of
the peatland development (up to ca. 1960 CE, Fig. 4). Combined with the high percentages of
Cyanobacteria and algae (Zygnemataceae, Botryococcus, Tetraédron) and domination of
Centropyxis sp., Cyclopyxis sp. and Difflugia sp. among the testate amoebae, it indicates the
existence of a shallow water body supplied not only by rainwater and runoff but also by

groundwaters (Figs. 3, 4). All these taxa disappeared in the-phase 5, after ca. 1960 CE. Menecot
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The relative stability of the ecosystem until the 20" century appears in line with the moderately
variable, unradiogenic neodymium isotope signatures of the mineral matter extracted from the
peat samples (ena = —14.5 to —11.6). These data are similar to the results from other peatlands
in the Tuchola Forest, Poland: the Stawek peatland (—15.3 to —12.7) and Gleboczek peatland
(—13.7 to —12.6) (Marcisz et al., 2023b). The notably consistent exg values in the pre-infestation
part of the studied profile point to the dominance of local sources of the mineral matter. Strongly
unradiogenic eng values are generally characteristic of the surface clastic sediments that

dominate the young post-glacial landscape of northern Poland (Marcisz et al., 2023a, b). Fhe
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based-on-the-ensrecord-alone:

The instability of the ecosystem is a consequence of the introduction of planned forest
management and the planting of monoculture plantations in the late 18th century. Indeed, such
forests are more sensitive to disturbance and extreme phenomena than mixed forests. The Note¢
Forest fell victim to such management and faced two massive ecological disasters in the 20th
century — the Panolis flammea outbreak in 1922-1924 and a fire in 1992. The consequences of
the Panolis flammea outbreak were particularly severe, as they directly caused a complete
change in the trophic and hydrological conditions of the peatland in the following decades, i.e.,
in the period around 1925-1960.

Nevertheless, all Fhe three above-mentioned disturbance agents factors (introduction of
planned forest management, 1922-1924 outbreak, and 1992 fire) that-influenced-thestatus-of

and-eatastrophicforestfire—have-all-been affected the condition of the peatland and were

recorded as statistically significant critical transitions in the GAMM model (Fig. 5).

Panolis flammea outbreak (1922-1924) and its impact on peatland and pine plantations

One of the most harmful documented insect outbreaks in Poland happened in 1922-1924 CE
(Broda, 2003) and covered vast areas of central and eastern Europe (today’s area of Germany,
Poland, Lithuania, Belarus, and part of European Russia), progressing from west to east
(Zidtkowski, 1924). It was caused by Panolis flammea, one of the most dangerous primary pests
of pine trees (Szmidt, 1993). As a result of the 1922-1924 Panolis flammea infestation, over
Over 500,000 hectares of forests have been defoliated in Europe (Glowacka, 2009). In the Note¢
Forest, the first caterpillars found in 1921 CE did not yet herald an ecological disaster (Broda,

2003). Still;-in-the foellowing twe-years; Over the next two years, between 1922-1923, ca. 64,000

hectares of the forest were destroyed (Hernik, 1979). In the Potrzebowice Forest District, where

our site is located, the outbreak destroyed over 90% of the forest area (~8,000 ha) (Broda, 2003).

phase-4—Itis—marked-by-This outbreak is evidenced in our pollen record, marked a sharp

decrease in the percentage of Pinus sylvestris pollen (48.0%) compared to the neighbouring
layers — ca. 1875-1900 cal. CE (60.6%) and ca. 1925-1950 cal. CE (62.8%). After almost all
the pine trees have been destroyed and the caterpillars had nothing to eat, they attacked the
deciduous trees on which they do not usually feed (Przebieg..., 1929). In our data, a

manifestation of this shift is probably the decrease in the proportion of Betula, Alnus and
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Quercus pollen. This layer also shows the highest share of Poaceae (14.7%), Cerealia (10.4%),
and Plantago lanceolata (2.7%) pollen in the entire peat core. The share of Rumex
acetosa/acetosella type (6.6%) is also high. The presence of taxa characteristic of open and
ruderal areas indicates that the landscape has opened up due to logging activities in the
destroyed forest stands. However, in the Rzecin peatland, 8 km southeast of our site, a
significant decrease in Pinus pollen has not been observed (Barabach, 2014). According to
Barabach (2014), as a result of immediate human activities, heliophytes did not develop, and a
natural secondary succession did not occur at the Rzecin bog’s surroundings. Barabach (2014)
argued that a single pine that stands alone will produce more pollen than the same pine in a
compact forest stand, referring to the individual trees that survived the disaster. Later, along
with wind and water, the pollen was deposited in natural depressions, including the Rzecin
peatland. However, an increase in Poaceae pollen percentages has been recorded, confirming
the opening of the landscape at the Rzecin bog’s surroundings.

The layers corresponding to ca. 1900-1950 cal. CE are the only portions of the core where the
spores of Sphaerodes retispora (syn. Microthecium retisporum) were identified. This taxon
occurs on other fungus Tremates hirsuta, which inhabits dead trees and their branches, as well
as recently dead and decaying wood (Bhatt et al., 2016). It mainly attacks deciduous trees,
although reports from coniferous trees are known (Szwalkiewicz, 2009). Perhaps the
appearance of the S. retispora spores in these layers reflects the presence of 7. hirsuta on dead
wood after the P. flammea outbreak. We also observed higher percentages of coprophilous fungi
(including HAV-55A Sordaria type) in the layer corresponding to ca. 1900-1925 cal. CE (2.7%)
compared to neighbouring layers — ca. 1875-1900 cal. CE (0.4%) and ca. 1925-1950 cal. CE
(0.9%). Sordaria type coprophilous fungi can indicate the presence of open land and the
presence of livestock, as well as wood detritus or wood burning (Lageard and Ryan, 2013;
Lundqvist, 1972; Mighall et al., 2008; Wheeler et al., 2016). We point out, however, that
Sordaria type spores can also occur on the faeces of wild herbivores and are predominantly
coprophilous, meaning that this taxon may include non-coprophilous species (Shumilovskikh
and van Geel, 2020). Kotaczek et al. (2013) at the Jesionowa mire in southern Poland noted the
co-occurrence between the high percentage of Sordaria type and high percentages of Poaceae,
Cerealia, Rumex acetosalacetosella type and Plantago lanceolata, i.e., taxa characteristic of
open areas that we observed in our pollen dataset during and after the outbreak. However, in
the surroundings of the Jesionowa mire, the landscape has not opened up due to deforestation,
but the grazing of livestock has intensified. Synchronously, Barabach (2014) reported a massive

emergence of Glomeromycota spores, which can be widely considered an indicator of soil
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erosion (Ejarque et al., 2010; Van Geel et al., 1989). Indeed, the deforestation associated with
the outbreak resulted in increased water and wind erosion. However, Kotaczek et al. (2013)
argue that Glomeromycota spores can be considered indicators of soil erosion only in lacustrine
deposits. In peatlands, there is a high risk of the presence of plant species capable of forming
arbuscular mycorrhizae. Glomeromycota spores then come from fungi that have colonized the
roots of plants growing on the surface of the peatland.

In their study of the Rzecin peatland, Milecka et al. (2017) reported an increase in charcoal in
ca. 1910-1925 cal. CE. The authors linked this increase to the fires occurring in the Note¢ Forest
in the 1920s and 1930s. Still, it could also result from cleanup activities after the P. flammea
outbreak, such as raking and burning litter with dead caterpillars. Barabach (2014) reported a
higher content of ash and a higher charcoal concentration in the concerned interval. We did not
observe increased micro- or macroscopic charcoal concentrations in the Miaty peatland. It is
possible that the redistribution of charcoal particles to the edges of the peatland occurred due
to high water levels. A core taken closer to the edge could, therefore, give a complete answer
as to the extent of burning.

Following the outbreak, an increase in the proportion of Picea abies until the early 1970s is
observed in our dataset. After the outbreak, initial management plans included diversification
of species composition in the newly planted forest’s forest stands. Still, P. sylvestris was selected
as the primary species again. Other planted species included Befula (mainly along the roads),
Pinus strobus, Pinus banksiana, Pinus rigida, Alnus glutinosa, Robinia pseudoacacia, and
Prunus serotina (Mroczkiewicz, 1933). Considering that P. abies reaches sexual maturity after
20-30 years in open areas (Skreppa, 2003) or even later in closed areas (~40 years) (Matthias
and Giesecke, 2014; Rispens, 2003), we conclude that the observed increase in P. abies pollen
is an echo of the 1922-1924 outbreak.

Recognizing the ecology of past Panolis flammea outbreaks in Central and Eastern Europe can
help model and predict its risk of occurrence in Northern Europe, which is warming due to
climate change. Pulgarin Diaz et al. (2022) (Pulgarin Diaz et al., 2022) report that between 1970
and 2020, the range of Panolis flammea in Finland shifted nearly 5° northward, 50 years earlier
than assumed. The remains of these butterflies could help determine the scale and ecology of
historical outbreaks in Central and Eastern Europe and thus better predict their future effects in
Northern Europe. Unfortunately, they do not preserve well in the sediment sediments (Bak et
al., 2024). However, we emphasize that we did not use advanced extraction methods the delicate
structures of the butterfly wing remains (Montoro Girona et al., 2018), but only observation

under light and stereoscopic microscopes when viewing the samples in the analyses used. We
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also haven't encountered them at Mialy peatland. Palacoecological analyses such as pollen and
testate amoeba analyses can support recognising the results of such historical outbreaks, but
they do not provide an answer that an outbreak occurred. There are, however, palaeoecological
reconstructions of outbreaks caused by other pests whose remains are better preserved in the
sediment. Schafstall et al. (2022) showed the usefulness of subfossil bark beetles for

reconstructing disturbances occurring in Picea abies forests in Slovakia.

Changing trophic and hydrological conditions as an effect of post-outbreak forest
management

The effect of the Panolis flammea outbreak was tens of thousands of hectares of damaged
forests. Damaged forests were cleaned, and the land was prepared for new plantings. However,
the opportunity to rebuild the forest's species structure was not seized. Easy-to-manage and fast-
growing pine trees were used for forest regeneration (Ankudo-Jankowska, 2003), which caused
a change in the trophic conditions of the peatland manifested by the decline of pH in our data
(Fig. 3). After the infestation, in our dataset, we primarty also notice the expansion of
Sphagnum mosses, which tolerate more acidic conditions. which-displace-monocetyledonous
plants: Sphagnum content reaches 65% for ca. 1900-1925 cal. CE and already 85% for ca. 1955-
1960 cal. CE, further increasing in the upper part of the section (Fig. 3) and almost completely

displacing monocot plants and brown mosses. The-development-of-Sphagnum—messes—was

assume that more acidic conditions in the peatland after the Panolis flammea outbreak are the

result of monoculture plantings after this devastating event—Many because many studies
document the ability of various pine species to acidify the soil (Berthrong et al., 2009;
Cifuentes-Croquevielle et al., 2020; Hornung, 1985; Turner and Lambert, 1988). Our

of o ence—of them num-—of-the Pin e
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polen—eurve-at-Mialy,—which—is—inthe 1950s-and1960s—This is confirmed by the highest
percentages of Pinus sylvestris at Mialy between 1950-1960. This is because Pinus sylvestris
in dense forest complexes begins flowering at the age of about 25-30 years (Matyas et al., 2004).
The process of peatland acidification is a natural manifestation of peatland development over
time, as long as it occurs gradually. We noted a gradual transition from the moderately rich fen
to the poor fen in phase 4 (ca. 1660-1960 cal. CE). However, further changes in local plant
communities and hydrological and trophic conditions toward acidification occurred abruptly,

characteristic of external interference. Bak et al. (2024) pointed out that such changes are
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characteristic as a result of forest management activities and can be caused by drainage and
transformation in forest species composition. In this study, we emphasize the importance of the
consequences of vulnerability and poor resilience of monoculture plantations to disturbances
and extreme phenomena such as insect outbreaks.

The change in trophic conditions at this time, and the concomitant change in hydrological
conditions, is-are also documented by the completely disappearing Cyanobacteria and algae
(Fig. 4), which indicates that the peatland was cut off from the groundwater supply. Among
testate amoebae, G. discoides, N. tincta, and P. acropodia, species that tolerate unstable
hydrological conditions became dominant, suggesting the lowering of the water table and
substantial water table fluctuations (Lamentowicz and Mitchell, 2005; Sullivan and Booth,
2011).

This observation is supported by the concurrent change in the Nd isotopic signatures tewards
higher-valaes (Fig. 2). The deforestation caused by the Panolis flammea infestation is followed
by an increase in the Nd isotope ratios, reaching exg values notably higher than those observed
in any of our reference samples from the peatland catchment. Therefore, the elevated exg values,
coinciding with the notably decreased ash contents, most likely reflect a decreased supply of
the local sediments by surface runoff and groundwater flow. This interpretation is in agreement
with the acidification of the peatland; the transition in the hydrological regime likely resulted
in an increased relative role of extra-local, aeolian sources of the sedimentary material (Allan
etal., 2013; Fagel et al., 2014; Marcisz et al., 2023a). A specific source of such '**Nd-enriched
sediments cannot, however, be identified based on the exgrecord alone.

In the period of the transition of trophic and hydrological conditions in a peatland (ca. 1925-
1960 CE), we observed the appearance of Bryophytomyces sphagni (HdV-27). Some studies
point out that this fungus is an indicator of the change from minerotrophic to ombrotrophic
conditions in a peatland, especially in association with the appearance of Sphagnum spores (van
Geel et al., 2020). Although we observe numerous spores of this fungus in the narrow period of
changing trophic and hydrological conditions in our dataset (ca. 1925-1960 CE), we also note
that the massive number of B. sphagni spores does not necessarily indicate sudden
ombrotrophication of the peatland. There are many studies where the appearance of B. sphagni
does not correlate with the ombrotrophication of the peatland (van der Linden et al., 2008;
McCarroll et al., 2017; Yeloff et al., 2007). Thus, we emphasise the need for better recognition
of the ecology of B. sphagni. With the appearance of B. sphagni, Gaeumannomyces caricis
(HdV-126) disappear. G. caricis is a fungus associated with Carex (van Geel and Aptroot, 2006;

Pals et al., 1980). In our plant macrofossil data, Sphagnum mosses, as we mentioned above,
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have almost completely displaced monocots, including Carex, which dominated the peatland in
the-phases 5;4;-and-3 3-5. A coincident disappearance of G. caricis, the appearance of B.
sphagni and the development of Sphagnum, has have been noted in the past in southwest France
(Aoustin et al., 2022). These authors, among others, based on the large number of spores of B.
sphagni, decided to separate the developmental phase of the object they studied, which they
referred to as Sphagnum bog (Aoustin et al., 2022).

Sudden changes in trophic conditions, resulting in subsequent changes in the vegetation cover
in the catchment, are one of the most common causes of critical transitions in peatlands

(Lamentowicz et al., 2019b).

Fire in 1992 - the second-largest fire in the post-World War II history of Poland
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Fig. 6. The rate of fire spread in the Note¢ Forest in 1992.

Potential high and medium modern fire danger concerns 83% of forests in Poland (65% in
Europe) (Szczygiel, 2012). This is mainly due to poor habitats and a homogeneous forest
structure, with Pinus sylvestris as the dominant species. Pinus, in turn, favours the accumulation
of a significant amount of dry biomass on the surface. Fire danger is also a result of the young

age of the tree stands, which have not yet developed stable ecosystem links in food webs. The
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young stands result from planned forest management involving rapid wood harvesting and 20%-
century ecological disasters (particularly insect outbreaks). Industrial pollution, increasing
accessibility to the public, and climate change, resulting in prolonged droughts and water
deficits, amplify the problems of forest composition and management.

The 1992 droughts were marked by fires in many regions of Poland (Polna, 2005) and other
countries in central Europe (Kula and Jankovskd, 2013; Somsak et al., 2009). Almost 12,000
forest fires were recorded in Poland alone, and nearly 48,000 ha of forest area burned. The
largest fire in Poland's post-war history, which burned more than 9,000 ha of forest (Szczygiel,
2012), occurred near the town of Kuznia Raciborska (Silesia, southern Poland) frem between
26 te and 30 August. Mere-than-9;000-ha-of forest-were-destroyed: Two weeks earlierprior to
this event, the second largest fire in Poland’s post-war history had affected the Note¢ Forest.
In the 1970s, Hernik (1979) and Ratajszczak (1979) signalled that the tree stands of the Note¢
Forest were weakened by repeated insect outbreaks (Panolis flammea: 1956; Lymantria
monacha: 1947, 1964; Barbitistes constrictus: 1964; Diprion pini: 1961; Bupalus piniarius,
1966; Dendrolimus pini: 1970). Compared to the 1922-1924 Panolis flammea outbreak,
however, they were smaller, less severe, and covered different locations of the Note¢ Forest,
rather than a larger area. The authors stressed the need to introduce admixture species to change
the age structure of the forest and reduce the fire threat. Their predictions soon turned out to be
very accurate. June 2, 1992, a fire covered about 700 hectares of the Note¢ Forest;-400-heetares
ofwhich-burned-completely (Bugaj, 1992), and on August 10, the fire consumed more than
5,000 hectares of forest in just eight hours (Fabijanski, 1996).;-and-the The total area affected
was mapped in detail by the foresters (Fig. 6). Only an enclave of several hectares of deciduous
old-growth forest resisted the fire. This event roughly coincides with the period of substantial
rapid change identified by the PrC curve (Fig. 5), suggesting that this change may have
contributed to the rapid alteration of the forest ecosystem reflected in pollen record.
Macroscopic charcoal concentrations did not register this fire event as we expected. Although
the concentration of microscopic charcoal in 1989-1991 cal. CE (ca. 30,800 particles/cm?) and
1991-1994 cal. CE (ca. 27,500 particles/cm?) is higher than in the 1986-1989 cal. CE (ca.
10,000 particles/cm?) and 1994-1997 cal. CE (ca. 16,300 particles/cm?), these values do not
reflect the actual scale of the forest destruction, especially since the fire also took place rear on
the peatland (Eig—5 Fig. 6). A smaller-than-expected signal from the 1992 fire in charcoal
analysis was also obtained by Barabach (2014) in the nearby Rzecin peatland. The small amount
of macroscopic charcoal may be explained by the fact that the more intense the fire, the smaller

the charcoal particles it produces (Schaefer, 1973). Additionally, before the particles are
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deposited, their dispersion by wind and water plays an important role (Patterson et al., 1987).
By-the-time Shortly after the fire reached the peatland, heavy rain had fallen, reaching a value
of 31.5 mm (Institute of Meteorology and Water Management, 2025). This rain stopped the
smoke fire from spreading further away,—heweveritreached-the Miakypeatland(Fig—6) and
significantly limited the movement of charcoal by the wind.

The events are, however, well recorded by other proxies. Directly after the fire — 1991-1994
cal. CE and 1994-1997 cal. CE — a substantial decrease in the percentage of arboreal pollen,
especially of Scots pine, is observed in the pollen dataset. At the same time, the Pinus stomata
appear, which may indicate a fall of needles to the surface. However, we recommend a cautious
approach to interpreting the presence of Pinus stomata. While burnt Pinus stomata would give
certainty to the occurrence of fire, needle fall due to other processes should also be considered.
High water levels also may have contributed to the shedding of needles by Pinus in the peatland

(which we explain below). R#

The water table rose to the ground level, probably due to inundation. The rise in the groundwater

level shortly after increased fire activity is a well-known phenomenon observed at other sites
(Marcisz et al., 2015). The rise in water level is correlated to a high concentration (72%) of the
testate amoeba Galeripora discoides, which tolerates hydrologically unstable conditions and is
abundant in disturbed ecosystems (Lamentowicz and Mitchell, 2005). Rumex
acetosa/acetosella type reaches its maximum percentage, which is accompanied by an increase
in the percentage of pollen of Poaceae, a taxon characteristic of open areas, indicating the
landscape’s opening due to the forest’s reduction. In their study of the Tuchola Forest peatlands,
Marcisz et al. (2023b) observed pronounced decreases in the eng values following major fire
events, attesting to an increased supply of locally-sourced sedimentary material favoured by the
forest removal. Analogously, some decrease in the eng values following the 1992 fire is
observed in the peat profile in this study.-Therefore, we note that it is not always possible to
unambiguously identify local fire events from even high-resolution charcoal analysis and that
historical sources can validate the data. This is a crucial finding regarding the interpretations of
paleofire reconstructions, pointing out that even catastrophic fires can go unnoticed in the
sedimentary record.

The scale and frequency of catastrophic fires, including forest and peatland fires, have been
increasing worldwide for decades due to climate change (Sayedi et al., 2024). In terms of the

total area burnt, the year 2022 was the second-worst year ever recorded in the European Union
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(San-Miguel-Ayanz et al., 2023). Nearly 900,000 ha of natural areas were burned, 43% of which
were located in Natura 2000 sites. In Poland, almost 7,000 fires of natural areas (including more
than 4,800 forest fires) were recorded resulting in approximately 2,850 ha of area burnt
(including 2,210 ha in forests). In terms of the number of fires in natural areas, more fires were
recorded only in France (22,800 fires; 70,300 ha), Spain (10,500; 268,000 ha), and Portugal
(10,400; 110,000 ha). Ferest Therefore, forest fires in Poland were;—therefore; frequent but

covered small areas (0.4 ha/fire on average). Most of the fires in Poland occurred in May (more

than 25%), a significant percentage of which were drought-induced.-Fhis-pattern-is—vital- when
compared-with-dendroechmatie-data- A recent study from the pine-dominated Tuchola Forest in
Poland revealed a negative correlation between Scots pine growth and rainfall in May (Bak et
al., 2024), which indeed indicates a water deficit in that month. A-water-defieitin-May-earries;
therefore;many-dangerous—consequenees—In 2022, there were 84 fire incidents in the Note¢

Forest resulted in 8.4 ha of burnt area. From 2007 to 2022, there were more than 1170 fire
incidents covered 96.7 ha. Hence, the Note¢ Forest is a high-fire-risk area and, as a large

monoculture forest complex, requires continuous monitoring, including within EU structures.

Conclusions

Understanding the functioning of peatlands that are under severe climatic pressure and exposed
to extreme events in recent decades is crucial for their conservation and monitoring. Peatlands,
as archives of environmental change, are sources of valuable information about past ecological
disasters, recorded in both the palaeoecological and geochemical records. Combining these two
approaches gives a complete picture of environmental changes due to fires or insect outbreaks.
The conclusions of such studies can be successfully used to predict the consequences of
contemporary phenomena. Particularly severe disasters can even lead to peatland ecosystems
reaching critical transitions, after which there is an irreversible change in hydrological and
trophic conditions, followed by a change in vegetation. We have identified many paleo-
indicators that allow a comprehensive assessment of the peatland's response to catastrophic

events both at the time of these events and on a long-term scale (Fig. 7).
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Fig. 7. Diagram showing environmental changes in the Miaty peatland and the forest

surrounding it as a result of the Panolis flammea outbreak (1922-1924; boards no 1 and 2),

leading to a change in forest structure to a Pinus sylvestris monoculture (3) and the

consequences of poorly resilient monocultures in the form of the 1992 fire (4). The percentages

oftaxa in the pie charts were taken from palynological data. Each of the four boards corresponds

to one specific layer in the peat profile — the depth of the layer and the calibrated period are

marked in the upper right corners of the boards in the grey box.
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We have shown that the Mialty peatland has rapidly acidified as a result of Panolis flammea
infestation and forest restoration activities. We reported a significant decrease in Pinus
sylvestris pollen during catastrophic events. Competition among plants in the peatland was won
by those adapted to acidic conditions Sphagnum mosses, which displaced monocotyledonous
plants. We point out that it is difficult to identify past Panolis flammea outbreaks, as the remains
of these butterflies do not preserve well in sediments. We emphasized a cautious approach to
fungi as bioindicators of environmental change due to many ambiguous interpretations in
studies. Charcoal analysis can provide information on localized fires, but it should be
emphasized that not every fire is recorded in this way. For this reason, adequate validation of
the data with historical sources or, if these do not exist, multi-proxy palaeoecological analyses
are essential. However, we point out that other paleo-recordings, treated cautiously, can help
identify past fires, such as Pinus stomata. To understand current or recent changes in peatlands
and their surroundings, it is often not enough to analyze the last hundred or two years, but the
background eeming going back hundreds or thousands of years must be considered. Only such
a combination gives a complete overview of changes due to human activity, climate change or
ecological disasters. We observed that there has been no catastrophic deforestation for more
than 1,800 years. Major deforestation occurred only after changes in forest management. The

peatland was also hydrologically and trophically stable for most of the time analyzed. Drastie

consequenees: Drastic changes in trophic and hydrological conditions of the Miaty peatland
began after the introduction of planned forest management in the late 18th century, weakening
forests' resilience to environmental disasters. Particularly extreme changes occurred with the
1922-1924 Panolis flammea and the subsequent approach from forest restoration after 30-40

years. Keeping the forest structure homogeneous in turn led to a huge fire in 1992 (Fig. 7).
Data availability
The open dataset that supports the findings of this study is available in Mendeley Data with the

identifier doi: 10.17632/cv5t59wt24.1

Appendix
Appendix Figure 1
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