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Abstract. There was a significant difference in near-surface PMzs across China after the
implementation of the Clean Air Action Plan in 2013. This study used the regional climate-
chemistry-ecosystem coupled model, RegCM-Chem-YBs, to investigate interannual variations
in PM2s across East Asia from 2008 to 2018. The drivers of PM2s variability were examined
from Anthropogenic and Natural perspectives. Compared to 2008, PM2s showed little variation
during the PreG phase (2009-2013). However, during the PostG phase (2014-2018), a
substantial decline in PM2s was simulated, particularly in the North China Plain (-36.76 pug/m?)
and the Sichuan Basin (-33.96 pg/m?). Anthropogenic pollutantpeHution emissions were the
primary drivers of PM2s reductions, contributing -10.39 to -3.82 pg/m? in the PreG period and -
33.86 to -8.45 pug/m? in the PostG period. The influence of meteorological conditions on PMzs
during the PreG phase (-6.31 to 2.32 pg/m?®) was comparable to that of anthropogenic pollutant
emissions. Additionally, in the vegetation-rich region, the impact of CO2 emission changes on
PMz5 was comparable to that of anthropogenic pollutant emissions. Our study comprehensively
examined the drivers of PM2s concentration changes from 2008 to 2018. We highlight a
significant intensification in the contribution of anthropogenic pollutant emissions and reveal
that, in regions characterized by dense vegetation, changes in CO:z concentrations exert a
pronounced impact on PMzs variations.
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1 Introduction

PMzs refers to fine particulate matter with an aerodynamic diameter less than or equal to 2.5
micrometers (Chen et al., 2018). Its sources include industrial emissions, vehicular exhaust,
biomass burning, and secondary formation from atmospheric gases (Wu et al., 2020). Major
chemical components of PMzs include sulfates, nitrates, ammonium salts, organic carbon,
elemental carbon, and heavy metals (Van Donkelaar et al., 2019; Li et al., 2017a). PM2s is one
of the primary atmospheric pollutants in China(Fontes et al., 2017), posing significant risks to
human respiratory health(Feng et al., 2016; Xing et al., 2016). Long-term exposure to PMzs can
lead to respiratory diseases such as chronic bronchitis, emphysema, and asthma(Kim et al., 2015;
Pui et al., 2014; Xing et al., 2016). Additionally, PM2s is critical as a short-lived species
influencing atmospheric radiation processes(Hu et al., 2017). It affects the radiative energy
balance of the Earth-atmosphere system by scattering or reflecting solar radiation (direct
effect)(Wu et al., 2021) and altering cloud microphysical properties (indirect effect)(Wang et al.,
2018a; Wu et al., 2021).

With China's rapid economic development, widespread PMzs pollution became prevalent
across the country in the early 21st century(Ma et al., 2016). In the most severely polluted urban
areas, the annual average PMz.s concentration exceeded 100 pg/m® (Van Donkelaar et al., 2010).
From 2000 to 2008, the national average PMzs concentration in China was 49.4 + 14.2 pg/m®. In
eastern China, the average concentration was 55.4 + 16.1 pg/m®, while the Beijing-Tianjin-Hebei
region experienced average levels as high as 62.1 £ 22.5 ug/m®. The Yangtze River Delta saw an
average concentration of 63.0 = 11.1 pg/m?, the Pearl River Delta recorded an average of 52.4 +
5.8 pg/m?, and the Sichuan Basin averaged 61.6 + 13.4 pg/m? (Wei et al., 2021). To mitigate the
severe PMzs pollution, China implemented the Clean Air Action Plan in 2013(Li et al., 2019).
This policy led to a significant nationwide decrease in PMzs concentrations(Zhang et al., 2019),
marking a notable improvement in air quality ever since 2013 (Vu et al., 2019; Li et al., 2018).

The variation in PM2s concentrations is influenced by three key factors: anthropogenic
pollutant emissions, meteorological conditions(Xiao et al., 2021), and Carbon dioxide (CO2)
changes. Anthropogenic pollutant emissions encompass industrial production, transportation, and
energy consumption(An et al., 2019), which release amounts of primary PMzs, as well as the
precursors of secondary PMzs such as volatile organic compounds (VOCs) (Kurokawa and
Ohara, 2020) and nitrogen oxides (NOx) (Wu et al., 2020; Zheng et al., 2021a; Kurokawa and
Ohara, 2020). Consequently, reducing these emissions is essential for mitigating PMzs
concentrations, as they directly contribute to both the formation and persistence of particulate
pollution(Zheng et al., 2018; Zhang et al., 2019).

Meteorological conditions play a significant role in influencing near-surface PMzs
concentrations(Chen et al., 2020b; Xiao et al., 2021). Elevated temperatures can accelerate
atmospheric chemical reactions(Mousavinezhad et al., 2021), including oxidation and
photochemical processes, thereby promoting the formation of PM2s (Zhong et al., 2018). In
addition, moderate increases in temperature can significantly enhance the emissions of biogenic
volatile organic compounds (BVOCs) by stimulating the activity of the synthase enzyme.
However, when temperatures exceed the physiological tolerance threshold of plants, decreased
enzyme activity or metabolic disruption may suppress emissions(Lindwall et al., 2016; Kleist et
al., 2012). Therefore, temperature changes can influence atmospheric PM2s concentrations by
modulating the emissions of BVOCs. Precipitation aids in removing particulate matter from the
atmosphere through wet deposition(Zhang et al., 2013), effectively reducing PMzs pollution
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levels (Wu et al., 2018). Additionally, wind speed and direction are crucial factors in the
transport and dispersion of particulate matter (Li et al., 2017b). Higher wind speeds facilitate the
dispersion of particulate matter over a wider area, reducing its local accumulation and mitigating
air pollution in specific regions (Li et al., 2017b; Zhang et al., 2018). The increase in planetary
boundary layer height (PBLH) strengthens atmospheric upward motion(Ait-Chaalal et al., 2016),
thereby reducing near-surface PM2s concentrations (Pan et al., 2019).

Changes in CO2 concentrations can influence PMzs pollution levels through several
mechanisms. Firstly, elevated CO2 concentrations impact the atmospheric radiation balance,
altering the distribution and intensity of precipitation(Cao et al., 2012), which directly affects
PMzs concentrations by influencing wet deposition rates(Zhang et al., 2022). Additionally,
Changes in CO: concentrations can affect vegetation photosynthesis and growth, which alter the
emissions of BVOCs that can participate in atmospheric chemical reactions to form secondary
organic aerosols (SOA), and thereby impact atmospheric PM2s concentrations(Sun et al., 2013;
Sun et al., 2012). It is worth noting that elevated CO2 concentrations may also directly inhibit
BVOCs emissions by reducing the activity of BVOCs synthase enzymes(Heald et al., 2009;
Pegoraro et al., 2004). Therefore, the impact of increased CO2 on vegetation BVOCs emissions
can be either positive or negative, depending primarily on the relative strength of the inhibitory
effect from enzyme suppression versus the stimulatory effect from enhanced photosynthesis(Sun
et al,, 2012). Isoprene is the most abundant species among BVOCs, so changes in CO:
concentrations can indirectly affect near-surface PMzs concentrations by influencing isoprene
emissions from vegetation(Sun et al., 2013; Lin et al., 2013; Kramer et al., 2016).

Numerous studies have used statistical models and numerical simulations to investigate the
impacts of meteorological conditions and anthropogenic pollutantpetiution emissions on PMz.s
concentration changes in China. The results consistently indicate that changes in anthropogenic
pollutantpetutien emissions are the primary driver of PMzs variation. Zhang et al. (2019) using
the WRF-CMAQ model at the national scale, found that meteorological conditions accounted for
only 9 % of the total decline in PMzs concentrations during 2013-2017 in China, suggesting that
emission reductions were the dominant factor. Similarly, based on a multiple linear regression
model, Chen et al. (2020a) reported that anthropogenic pollutantpeHutien emission reductions
contributed 73 %, 87 %, and 84 % to the PM2s decline in the North China Plain, Yangtze River
Delta, and Pearl River Delta, respectively, while the contribution of meteorological conditions
ranged from 10 % to 26 %. Cheng et al. (2019) employing the WRF-CMAQ maodel, found that
the decrease in PMzs concentrations in Beijing over the same period was mainly attributable to
local (65.4 %) and regional (22.5 %) emission reductions, with meteorological conditions
accounting for only 12.1 %.

Current research primarily emphasizes the impact of anthropogenic pollutant
emissions(Zheng et al., 2018) and meteorological changes on PM2s concentrations(Zhang et al.,
2019; Zhai et al., 2019), while the potential influence of CO2 concentration changes on PM2s
pollution levels remains largely underexplored. Additionally, following the implementation of
the Clean Air Action Plan in 2013, significant decreases in PM2.s concentrations were observed
in China. Concurrently, CO: levels continued to rise(Xu et al., 2022), with the influence of CO:
on PMzs strengthening annually. Therefore, it is essential to analyze the evolution of PMzs
concentrations from 2008 to 2018 in detail, and attribute changes in PMzs levels to every factor,
such as anthropogenic pollutantpeHution emissions, meteorological conditions, and CO:
variations.
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2 Methods and data

2.1 Model description

In this study, we employed the coupled regional climate-chemistry-ecology model RegCM-
Chem-YIBs (Xie et al., 2019; Xie et al., 2024). The RegCM-Chem component simulates key
meteorological variables, including temperature, humidity, precipitation, and radiation, along
with atmospheric pollutants including ozone and particulate matter (Shalaby et al., 2012). The
YIBs (Yale Interactive terrestrial Biosphere) model focuses on simulating vegetation
physiological processes, such as ozone-induced damage, photosynthesis, and respiration(Lei et
al., 2020). Additionally, it computes important land surface parameters, including CO2 flux,
BVOC emissions, and stomatal conductance (Yue and Unger, 2015). The Y1Bs model employs a
leaf-level BVOC emission scheme based on vegetation photosynthesis. Unlike the traditional
MEGAN (Model of Emissions of Gases and Aerosols from Nature) model, this approach
incorporates the influence of plant photosynthesis on BVOC emissions, making it more
representative of actual plant physiological processes. In this scheme, leaf-level BVOC emission
rates depend on the photosynthetic rate, leaf surface temperature, and intracellular CO2
concentration (Yue and Unger, 2015; Lei et al., 2020; Yue et al., 2015).

The RegCM-Chem and YIBs models exchange variables every 6 minutes, facilitating
dynamic coupling between regional climate, atmospheric chemistry, and ecosystem processes.
The RegCM-Chem-YIBs model simulated both primary and secondary PMzs emissions,
including dust, black carbon, organic carbon, sulfates, nitrates, and ammonium. The structure of
the model is shown in Fig. 1.

In the RegCM-Chem-Y1Bs model, changes in CO2 concentrations affect PMzs primarily via
two mechanisms: first, CO2-induced radiative forcing alters the atmospheric radiation balance,
leading to shifts in temperature, precipitation, and boundary - layer structure that modulate PMzs
formation, transport, and removal(Li and Mdders, 2008; Matthews, 2007); And second, through
the Y1Bs module, changes in CO2 concentration modulate photosynthetic activity and stomatal
behavior, altering BVOCs emissions that undergo atmospheric photochemical oxidation to form
secondary organic aerosols, a significant fraction of PMzs (Kergoat et al., 2002; Kellomaki and
Wang, 1998).

Emissions Initial/boundary conditions Terrain data
RegCM-Chem
Meteorological field Solar Radiation
l I Surface albedo

Temperature Chemical module : Carbon flux
Humidity L NOx'\VOCs /\Ll‘\?.\ol
wind speedpressure CH,\CO Sulfate
Precipitation l Nitrate

Judistion OC'BC Vegetation structure
l ('(; BVOC Sea salt\Dust Vegetation productivity

| Bic U w  Canopy

Figure 1. Framework of the RegCM-Chem-YIBs Model.
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2.2 Model configurations

The study area covers the entire East Asian region, with a horizontal grid resolution of 60 km,
centered at 36N and 107<E. A terrain-following coordinate system was used vertically(Bleck
and Benjamin, 1993), dividing the atmosphere into 18 layers from the surface to 50 hPa.

Anthropogenic pollutant emissions data were obtained from the Multi-resolution Emission
Inventory for China (MEIC v1.4) developed by Tsinghua University(Geng et al., 2024). Surface
CO: flux data were sourced from the National Oceanic and Atmospheric Administration (NOAA)
CarbonTracker CT2019 dataset, which includes contributions from fossil fuel combustion,
biomass burning, and ocean-atmosphere CO2 exchange(Peters et al., 2007). Meteorological fields
were derived from ERA-Interim reanalysis(Balsamo et al., 2015), while sea surface temperature
data were taken from NOAA's weekly mean dataset(Huang et al., 2021). The model employed
the Grell cumulus parameterization scheme, CCM3 radiation scheme, Holtslag PBL scheme for
boundary layers, CBM-Z mechanism for meteorology and chemistry, and TUV photochemistry
scheme.

2.3 Experiment settings

The numerical experiments are presented in Table 1. The SIMzoos experiment represents the
baseline conditions for the year 2008. In the SIMgase experiment, interannual variations in
meteorological fields, COz emissions, and anthropogenic pollutant emissions (excluding CO2
emissions) were considered for simulations spanning 2009-2018, representing the baseline
conditions for 2009-2018. Additionally, the SIMmeT=200s8 and SIMcoz=2008 experiments were
designed, where meteorological fields and COz emissions were fixed at their 2008 levels,
respectively, while simulations were conducted for 2009-2018. The simulation period spans
from April to August each year. Among them, the results from May to August, corresponding to
the East Asian Summer Monsoon (EASM) period, were selected for analysis.

Changes in PMzs concentrations were attributed to three main factors: anthropogenic
pollutantpeHution emissions, meteorological conditions, and CO: variations. By comparing the
simulation results from different years in the SIMgase experiment to SIMzoos (SIMgase - SIM200s),
we quantified changes in PMzs concentrations relative to 2008 for the period 2009-2018. To
evaluate the impact of meteorological conditions on PMzs concentrations, we compared the
results of the SIMgase experiment with those of the SIMwmeT=2008 experiment for the same year
(SIMBase - SIMmeT=2008). Similarly, the contribution of CO2 emission changes to PM2s variations
was assessed by comparing the SIMgase experiment with the SIMcoz=2008 experiment (SIMgase -
SIMcoz=2008) in the same year. The contribution of anthropogenic pollutant emissions was then
determined by subtracting the effects of meteorological and CO2 emission changes from the total
PMzs variation.

It is noteworthy that, as a principal greenhouse gas, CO: modifies meteorological
parameters—such as radiation, temperature, and precipitation—which in turn influence PMzs
levels. In the comparison between experiments SIMgsase and SlMcoz=2008 (SIMsase_ -
SIMcoz=2008) }r-this-comparison, all meteorological changes derive solely from variations in CO2
emissions, a mechanism fundamentally different from the meteorological influences identified in
experiments SIMgase and SIMmeT=2008_(SIMBase - SIMmET=2008).
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Table 1. The Numerical experimental in this study.

Anthropogenic

Experiment Time Meteorological fields CO; emissions pollutant
emissions
S1IM2008 2008 2008 2008 2008
SIMBase 2009-2018 2009-2018 2009-2018 2009-2018
SIMwmET=2008 2009-2018 2008 2009-2018 2009-2018
SIMco2=2008 2009-2018 2009-2018 2008 2009-2018

2.4 Model evaluations

Observed PMzs data were obtained from the China National Environmental Monitoring
Center (CNEMC). This study used hourly PMzs concentrations during the summer monsoon
period (May 1 to August 31) from 2015 to 2018. A total of 366 monitoring stations across
Chinese cities, selected based on data completeness and representativeness, were used for model
validation. The locations of these stations are shown in Fig. S5. CO2 observations were sourced
from the World Data Centre for Greenhouse Gases (WDCGG), including all seven sites in East
Asia: Waliguan, Korea Tae-ahn Peninsula, Ulaanbaatar in Mongolia, Lulin, Yonagunijima, Cape
D'Aguilar (Hong Kong), and King's Park. Detailed station locations are shown in Fig. S6.
Reanalysis data for temperature, wind fields, and relative humidity were obtained from the ERA-
Interim dataset.

As shown in Table 2 and Figures S1-S6, the SIMgase experiments reproduce 2015-2018
PM2s and CO2 concentrations with high correlations and low biases relative to observations,
while their simulated meteorological fields closely match reanalysis data. Overall, the RegCM-
Chem-Y1Bs model effectively captures the fundamental characteristics and temporal trends of
meteorological factors, PM2s, and CO2 concentrations in East Asia(Ma et al., 2023a; Ma et al.,
2023b).

Table 2. Evaluations of the near-surface CO; and PMys in East Asia.

Species Year Observation Simulation Bias RMSE R
2015 402.82 406.98 4.16 9.37 0.44
O (ppm) 2016 407.12 410.44 3.32 8.22 0.69
2017 408.35 413.62 5.27 1 0.39
2018 409.61 416.68 7.07 11.32 0.41
2015 36.6 25.57 -11.03 12.99 0.71
PM2s 2016 31.03 22.91 -8.12 10.31 0.64
Cug/m®) 2017 29.61 24.02 -5.59 10.57 0.71
2018 27.18 19.04 -8.14 11.62 0.61

RMSE: root mean square error; R: correlation coefficient.

3 Results and discussion

3.1 PMzs5 variation
Changes in PMzs concentrations from 2009 to 2018 relative to 2008 were quantified by
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comparing simulation results from each year in the SIMgase experiment with SIMzoos (SIMBase -
SIM2o0s). Figure 2 illustrates the changes in near-surface PMzs concentrations across East Asia
from 2009 to 2018. PM2zs concentrations are notably higher in the North China Plain,
northeastern China, and eastern China (Shanghai, Jiangsu, Zhejiang), largely driven by industrial
emissions, vehicle exhaust, coal combustion, and dust from human activities(Wang et al., 2017).
In contrast, regions in western China (Yunnan, Gansu, Xinjiang) exhibit lower PMzs levels due
to limited industrial activity, lower population density, and more favorable meteorological
conditions (Low water vapor content, lower temperatures, and weak solar radiation are
unfavorable for the formation of secondary aerosols such as sulfates, nitrates, and organic
aerosols)(Wei et al., 2021; Xue et al., 2020). Developed cities and industrial centers like the Pearl
River Delta and Fuzhou (Fujian Province) continue encountering challenges related to PMzs
pollution. Moreover, the Sichuan region, characterized by its enclosed basin geography and high
population density, also experiences high PMzs pollution levels(Wang et al., 2018b). From 2009
to 2013, PMzs concentrations in China remained relatively stable, with levels averaging around
90 pg/m?* in the North China Plain and Sichuan Basin. However, following the implementation of
the Clean Air Action Plan in 2013, PMzs levels significantly declined nationwide. By 2018,
concentrations had dropped to below 50 pg/m?* across much of the country.

(b) 2009 2010

g i 2 1 i) 20 40 60 80 100
¢ S @ 9 ug/m?®

[ L S e

e

Figure 2. Neaf—surface I‘V:’Mz,sucoricentrations (ugjmﬂ over Eagt:Asiei during the EASM period from 2009 (a) to

Page 8 of 26


https://agupubs.onlinelibrary.wiley.com/journal/21699356

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
| 259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|277
278
279
280

manuscript submitted to Journal of Atmospheric Chemistry and Physics

2018 (k) (SIM2o0s). Key regions are highlighted by black boxes, including the North China Plain (NCP),
Fenwei Plain (FWP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB).

Figure 3 and Table 3 present the changes in PMzs concentrations relative to 2008 across
East Asia from 2009 to 2018. Since 2008, most regions in China have seen varying degrees of
PMzs reduction. During the pre-governance period (PreG, 2009~2013), the largest decrease
occurred in the Yangtze River Delta, with a reduction of 14.77 ng/m?, followed by the Sichuan
Basin and Pearl River Delta, where concentrations dropped by 10.59 pg/m* and 8.69 pg/m?,
respectively. In contrast, the Fenwei Plain and Pearl River Delta experienced smaller changes,
with reductions of less than 3 pg/m®. PMzs concentrations across China significantly decreased
after the implementation of the Clean Air Action Plan in 2013. The most notable reductions were
simulated in the North China Plain and Sichuan Basin, where PMzs concentrations dropped by
36.76 pg/m?® and 33.96 pg/m?, respectively. In the Fenwei Plain and Yangtze River Delta, PM2s
concentrations decreased by 22.16 to 27.89 pg/m?. In contrast, the Pearl River Delta saw a
smaller reduction, with levels decreasing by just 8.03 pg/m3. This may be attributed to the
region's significant influence from the summer monsoon and relatively lower impact from
anthropogenic pollutantpetution emissions. Further analysis of these factors will be conducted in
subsequent sections.

Table S1 shows that the mean PMzs trend over China during the PreG (2009-2013) and
PostG (2014-2018) periods was —1.84 pg/m®/yr and —2.90 pg/m®/yr, respectively. These values
are consistent with the findings of Silver et al. (2025), who reported a PMzs trend of —2.47
pg/m3/yr for 2014-2017 in China based on ground-based observations. Similarly, Lin et al. (2018)
reported PMzs trends of —0.65 and —2.30 pg/m3yr for 2006-2010 and 2011-2015 in China,
respectively. Using satellite remote sensing data, Ma et al. (2019) found declines of 1.03 and
4.27 ug/m3/yr for 2010-2013 and 2013-2017 in China, respectively. The high-resolution Chinese
air quality reanalysis (CAQRA), developed by Kong et al. (2021) using data assimilation
techniques, indicated a more pronounced decline of —5.80 ug/m3/yr for PM2s from 2013 to 2018
in China. In addition, Silver et al. (2018), based on multi-source data, reported a trend of —3.40
pg/m3/yr for 2015-2017 in China. Therefore, our simulation accurately captures the observed
PMzs trends over China from 2008 to 2018, providing a robust foundation for subsequent
attribution analyses.

Overall, before 2013, near-surface PM2.s concentrations across China showed little variation.
However, after 2013, a significant reduction in PMzs pollution levels was simulated nationwide.
Changes in PMzs concentrations were attributed to three main factors: anthropogenic
pollutantpeliutien emissions, meteorological conditions, and CO: variations. The following
sections analyze each factor’s contribution to the changes in PMzs concentrations from 2008 to
2018.
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Figure 3. ChanEes m négr-surfagg Pﬁz,s concentrations (pg/m3F during the EASM period from 2009 (a) to
2018 (j) relative to 2008 in East Asia (SIMgase - SIM200g).

Table 3. Changes in near-surface PM2s concentrations (ng/m?) during the EASM period from 2009 to 2018
relative to 2008 in the North China Plain (NCP), Fen-Wei Plain (FWP), Yangtze River Delta (YRD), Pearl
River Delta (PRD), and Sichuan Basin (SCB) (SIMgase - SIM2gog).

Year NCP FWP YRD PRD SCB
2009 -11.24 -1.29 -11.37 141 -3.16
2010 -3.87 1.9 -15.2 -3.57 -4.79
2011 -6.27 0.22 -14.76 0.13 -8.65
2012 -1.42 1.69 -17.61 2.35 -15.99
2013 -14.67 -15.49 -14.9 -6.34 -20.37
2014 -24.26 -15.36 -19.95 -6.72 -22.87
2015 -31.41 -16.9 -27.76 -9.91 -31.75
2016 -38.5 -25.23 -32.43 -8.18 -35.58
2017 -40.69 -25.49 -26.21 -5.82 -37.43
2018 -48.96 -27.83 -33.08 -9.53 -42.19
PreG -8.69 -2.59 -14.77 -1.20 -10.59
PostG -36.76 -22.16 -27.89 -8.03 -33.96

3.2 Contribution of meteorological conditions
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The impact of meteorological conditions variations on PMzs concentrations were assed by
compared SIMaase results with those from SIMmeT=2008 for the same year (SIMgase - SIMmeT=2008).
As shown in Fig. 4, during the PreG period, the precipitation increased by 2-4 mm/day in
China's eastern coastal and western inland regions, while it decreased by approximately 2
mm/day in central China. This increase in precipitation facilitates the reduction of near-surface
PMz2s concentrations through wet deposition. Consequently, trends in PMzs concentrations are
inversely related to precipitation: concentrations decreased by 2—16 pg/m? in the eastern coastal
and western inland regions, while increased by 4-8 pg/m® around 110 in central China.
Additionally, in northeastern and southwestern China, wind speeds increased by 1 to 2 m/s,
contributing to the reduction of PMzs concentrations. In contrast, decreased wind speeds in
southeastern and central China facilitated the accumulation of PM..s. During the PostG period,
the significant increase in temperature (Fig. 41) promoted the formation of PMz2s, leading to an
expansion of the areas where PMzs concentrations increased. Overall, PMzs concentrations have
decreased in the eastern coastal and western inland regions but increased in the central area of
China.

Table 4 indicates that in the NCP region, precipitation increased by 0.58 to 0.6 mm/day, and
wind speed rose by 0.17 to 0.26 m/s during the PreG and PostG periods, resulting in a decrease
in near-surface PM2s concentrations of 1.6 to 4.01 pg/m° In the FWP region, PMzs
concentrations increased by 1 to 2.31 pg/m?, which was associated with a rise in temperature of
0.1 to 0.46 K and a significant decrease in PBLH of 108.5 to 15.3 m. In the YRD region, the
increase in wind speed of 0.48 to 1.02 m/s facilitated a reduction in PMzs concentrations by 0.43
to 0.61 pg/m°. Conversely, in the PRD region, reduced precipitation combined with increased
temperature contributed to an increase in PMa2.s concentrations, ranging from 0.11 to 1.49 pg/m®.
In the SCB region, PMzs concentrations rose by 0.29 ug/m® during the PreG period, linked to a
significant decrease in PBL height of 136.5 m. In the PostG period, PM2s concentrations
decreased by 1.14 pg/m®, attributed to an increase in precipitation (0.37 mm/day) and a decrease
in temperature (0.14 K).
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Figure 4. The PM35 (a—c, ng/m?), precipitation (d—f, mm/day), wind speed (g—i, m/s), temperature (j—-I, K), and
Planetary Boundary Layer (PBL) height (m—o0, m) during the EASM period in 2008 (left), and their mean
changes due to meteorological variations in PreG (2009-2013, center) and PostG (2014-2018, right) phase
relative to 2008+(SHMgase—SHVAmeT=2008), PreG-2008 and PostG-2008 represent the average annual differences

between experiments SIMgase and SIMpeT=2008 (SIMpase - SIMmeT=2008) for the periods 2009-2013 and 2014

2018, respectively.

Table 4. Impact of meteorological condition changes on PMs (ug/m®), precipitation (mm/day), wind speed
(m/s), near-surface temperature (K), and Planetary Boundary Layer (PBL) height (m) during the EASM period
in PreG (2009-2013) and PostG (2014-2018) phase relative to 2008-, PreG and PostG represent the average
annual differences between experiments SIMgase and SIMwmer=2008_(SIMBase - SIMmeT=2008) for the periods
2009-2013 and 20142018, respectively{SHMgase—SHVimer=-2008)-

Wind Near-Surface

. . PMzs Precipitation PBL
Region Period Cug/m?) (mm/day) S(ﬁ]ezgl Tem;(a;r)ature m)
NCP PreG -4.01 0.58 0.17 0.32 -46.8
PostG -1.6 0.6 0.26 0.6 -14.5
FWP PreG 2.32 1.68 -0.06 0.1 -108.5
PostG 1 0.81 0.05 0.46 -15.3
YRD PreG -6.31 1.02 0.18 -0.29 -33.9
PostG -0.43 0.48 -0.08 0.45 21.9
PRD PreG 1.49 -2.39 -0.02 0.36 29.6
PostG 0.11 -3.24 0.18 1.00 52.2
SCB PreG 0.29 1.81 0.13 -0.58 -136.5
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PostG -1.14 0.37 -0.03 -0.14 -76

3.3 Contribution of CO2

The contribution of CO2 emission changes to PMzs variability was quantified by comparing the
SIMgase experiment with the SIMcoz=2008 experiment (SIMgase - SIMcoz=2008) Within the same
year. As shown in Fig. 5, Following the ongoing urbanization and industrialization, CO:
concentrations across East Asia rose by 2-10 ppm during both the PreG and PostG periods, with
a sharper increase in the PostG period. COz2 influences atmospheric PMzs concentrations both
through its radiative effects on precipitation and by altering BVOCs emissions from vegetation.
Overall, CO: changes contributed to PM2s variations across East Asia from 2008 to 2018,
ranging from -4 to 6 ug/m*. PMzs pollution levels generally increased in the PreG period, while
reductions were more common in the PostG period.

Table 5 presents a detailed analysis of the five target regions. In northern China, particularly
the NCP and FWP regions, limited vegetation coverage means CO2 impacts surface PMzs
concentrations mainly through precipitation changes. In the PostG period, precipitation increased
by 0.06-0.13 mm/day, lowering PMzs concentrations by 0.98-1.3 pg/m® Similarly, in the
Sichuan Basin, precipitation rose by 0.21-0.64 mm/day, reducing PMzs concentrations by 0.49—
0.73 pg/m® in the PreG and PostG period. However, in the YRD and PRD regions, where
vegetation coverage is higher, CO2 primarily impacts PM2s concentrations by modulating
BVOCs emissions. The impact can be either positive or negative(Possell et al., 2005), depending
primarily on the balance between the inhibitory effects on synthase activity and the stimulatory
effects of enhanced photosynthesis(Wilkinson et al., 2009). In the YRD region, isoprene fell by
0.32-0.58 pg/m® during both periods, while precipitation rose by 0.09-0.13 mm/day, collectively
reducing PMzs by 0.02-0.05 pg/m?®. In the PRD region, isoprene concentrations increased
significantly by 0.31-0.92 pg/m?, while precipitation decreased by 0.33-1.02 mm/day.
Consequently, PMzs concentrations rose by 0.31-1.13 pg/m?® during both the PreG and PostG
periods.
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Figure 5. The PMzs (a—, pg/m?), CO2 (d—f, ppm), precipitation (g—i, mm/day), and isoprene (j—I, pg/m?)
during the EASM period in 2008 (left), and their mean changes due to CO, emission variations in PreG (2009-
2013, center) and PostG (20142018, right) phase relative to 2008-, PreG-2008 and PostG-2008 represent the
average annual differences between experiments SIMgase_and SIMcoz=2008_(SIMpase - SIMco2=2008) for the
periods 2009-2013 and 20142018, respectively{SHigase—SHVico2-2008}.
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Table 5. Impact of CO, emission changes on PMz5s (ug/m®), CO: (ppm), precipitation (mm/day), and isoprene
(ug/m®) during the EASM period in PreG (2009-2013) and PostG (2014—2018) phase relative to 2008-, PreG
and PostG represent the average annual differences between experiments SIMgase_and SIMcoz=2008_ (SIMBase -
SIMco2=2008) for the periods 20092013 and 20142018, respectively{SHMgase—SHVico2-2008).

Region Period PMz2s CO; Precipitation Isoprene
(ng/m®) (ppm) (mm/day) (ng/m®)
NCP PreG 0.6 3.19 0.27 -0.1
PostG -1.3 4.24 0.13 0.26
FWP PreG 0.84 1.70 0.21 -0.16
PostG -0.98 2.05 0.06 0.33
PreG -0.02 41 0.13 -0.32
YRD PostG -0.05 6.2 0.09 -0.58
PRD PreG 1.13 1.97 -1.02 0.31
PostG 0.31 3.20 -0.33 0.92
SCB PreG -0.49 2.80 0.64 -0.78
PostG -0.73 2.78 0.21 0.69

3.4 Contribution of anthropogenic pollutant emissions

The contribution of changed anthropogenic pollutant emissions to PMzs variation was
determined by removing the effects of meteorological and CO2 emission changes from the total
variation. Figure 6 illustrates a significant downward trend in PMzs concentrations across East
Asia since 2008. During the PreG period, PMz2s levels decreased by an average of 5 to 10 pg/m?®
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over East Asia. Following the implementation of the Clean Air Action Plan in 2013, a marked
reduction in PMzs concentrations was simulated. The most substantial decreases occurred in the
NCP and SCB region, with approximately 60 pg/m?®. Anthropogenic pollutant emissions emerged
as the primary drivers of this decline, with their spatial distribution and magnitude of impact
closely corresponding to the overall changes in PMzs concentrations. In contrast, the effects of
changing meteorological conditions and CO2 emissions on PMzs levels in East Asia were
relatively minor, ranging between -5 to 5 pg/m?*. Meteorological conditions have reduced PMzs
concentrations in the eastern coastal and western regions of China, while increasing them in the
central region. In the PostG period, the extent of PM2s concentration increases has expanded.
The impact of CO. emission changes on PMzs levels shows different trends in the PreG and
PostG periods. In the PreG period, changes in CO2 emissions primarily led to an increase in
PMz2s concentrations. However, in the PostG period, the rise in CO2 concentrations began to
have a negative impact, leading to a reduction in PMzs concentrations.
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Figure 6. The total changes in PM,s concentrations (All, SIMgase - SIM2ogs), and the changes in PMas
attributed to variations of anthropogenic pollutant emissions (Emis, All-Met-CO,), meteorological conditions
(Met, SIMgase — SIMwmeT=2008), and CO2 emissions (CO2, SIMgase - SIMco2=2008) during the EASM period in
PreG (2009-2013, left) and PostG (2014-2018, right) phase relative to 2008.

Based on Fig. 7 and Table 6, PMzs concentrations in the NCP region decreased by 5.28
pg/m* during the PreG period and by 33.86 pg/m® in the PostG period. Anthropogenic

Page 15 of 26


https://agupubs.onlinelibrary.wiley.com/journal/21699356

|397
398
|399
400
|401
402
403
404
405
406
407
408
| 409
410
|411
412
413
414
415
|416
417
418
419
420
421
422
423
|424
425
426
427
428
|429
430
431

manuscript submitted to Journal of Atmospheric Chemistry and Physics

pollutantpetiutien emissions were the primary driver of these changes. During the PreG period,
the influence of meteorological conditions on PMzs was comparable to that of anthropogenic
pollutantpetutien emissions, with changes in meteorology contributing -4.01 pg/m® and
emissions contributing -5.28 pg/m?3. However, in the PostG period, the impact of meteorological
factors diminished to -1.6 pg/m?, indicating that anthropogenic pollutantpeHution emissions
became the predominant factor in the reduction of PMzs concentrations. In contrast, the effect of
changes in COz emissions on PMzs levels was relatively minor, ranging from -1.3 to 0.6 pg/m>.

The situation in the FWP region is similar to that of the NCP region, with anthropogenic
pollutantpetutien emissions as the primary driver of reduced PMzs concentrations. During the
PreG and PostG periods, the contributions of anthropogenic pollutantpeliutien emissions to
PMzs levels were -5.75 pg/m® and -22.18 pg/m?®, respectively. In contrast, meteorological
conditions contributed to an increase in PMzs concentrations, with a contribution of 2.32 pg/m?
in the PreG period, comparable to the impact of anthropogenic pollutantpetution emissions.
Meanwhile, the influence of CO2 emissions on PMzs levels was relatively minor.

In the YRD region, anthropogenic pollutantpeHutien emissions are the primary driver of
reduced PM2s concentrations. Due to its location in eastern China, the YRD region is more
affected by the EASM, resulting in more pronounced effects of changing meteorological
conditions on PMzs levels compared to the NCP and FWP regions. During the PreG period, the
impact of meteorological conditions on PMzs concentrations reached as high as -6.31 pg/m?.

In the PRD region, changes in anthropogenic pollutantpetution emissions have contributed
to a reduction in PM2s concentrations, ranging from -8.45 to -3.82 pg/m*. However, changes in
meteorological conditions and CO2 emissions have led to increases in PMzs levels, ranging from
0.11 to 1.49 pg/m?. Similar to the YRD region, the effects of changing meteorological conditions
on PMzs concentrations are significant, peaking at 1.49 pg/m* during the PreG period. Located
in southeastern coastal China, the Pearl River Delta's rich vegetation cover enhances the impact
of CO2 emission changes on PMzs concentrations. During the PreG period, the influence of CO2
emission changes on PMzs levels reached 1.13 pg/m?, comparable to the effect of anthropogenic
pollutantpetutien emissions (-3.82 pg/m?®). In the PostG period, the impact of CO2 emission
changes (0.31 pg/m?) surpassed that of meteorological conditions (0.11 pg/m?).

In the SCB region, the basin topography results in relatively minor effects of meteorological
conditions and CO2 emission changes on PMzs levels, with contributions ranging from -1.14 to
0.29 pg/m* during both the PreG and PostG periods. In contrast, anthropogenic
pollutantpetiutien emissions are the primary drivers of reduced PMz5s concentrations, exerting an
impact of -32.09 pg/m? during the PostG period.
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Figure 7. The total changes in PM,s concentrations (All, SIMgase - SIM2oog) for the North China Plain
(NCP), Fenwei Plain (FWP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin
(SCB) during the EASM period in PreG (2009-2013) and PostG (2014-2018) phase relative to 2008,
along with the variations in PM.s due to anthropogenic pollutant emissions (Emis, All-Met-COy),
meteorological conditions (Met, SIMgase — SIMmeT=2008), and CO2 emission (CO2, SIMgase - SIMco2=2008)
changes.

Table 6. Changes in total PM.s concentrations (ALL, SIMgase - SIM2gog) and the impacts of anthropogenic
pollutant emissions (Emis, All-Met-CO,), meteorological conditions (Met, SIMgase - SIMmeT=2008), and CO>
emission (COz, SIMgase - SIMcoz=2008) Variations on PMys concentrations (ug/m®) during the EASM period
in PreG (2009-2013) and PostG (2014-2018) phase relative to 2008.

Region Period ALL Emis Met CO2
NCP PreG -8.69 -5.28 -4.01 0.6
PostG -36.76 -33.86 -1.6 -1.3

PreG -2.59 -5.75 2.32 0.84

FWp PostG -22.16 -22.18 1 -0.98

PreG -14.77 -8.44 -6.31 -0.02

YRD PostG -27.89 -27.41 -0.43 -0.05

PRD PreG -1.2 -3.82 1.49 1.13

PostG -8.03 -8.45 0.11 0.31

SCB PreG -10.59 -10.39 0.29 -0.49

PostG -33.96 -32.09 -1.14 -0.73

3.5 Attribution of Changes in PM2s

Figure 8 illustrates that PM2s concentrations remained relatively stable across the five regions
during the PreG period. However, in the PostG period, following the implementation of the
Clean Air Action Plan, significant reductions in PMzs concentrations were simulated in the NCP,
FWP, YRD, and SCB regions, while the PRD region showed the smallest decrease.

Anthropogenic pollutant emissions are the primary factor driving PMzs concentration
reductions across the five regions, with their impact increasing linearly over time. In the PreG
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period, meteorological conditions had a relatively stronger influence on PMas levels,
occasionally surpassing the effects of anthropogenic pollutantpetution emissions. For example,
in 2013, the meteorological and emission impacts on PMzs in the NCP region were -17.35 pg/m®
and 4.49 pg/m?, respectively. Similarly, in the FWP region from 2013 to 2015, meteorological
impacts ranged from -16.9 to -15.36 pg/m% while emissions affected PM2s concentrations
between -15.8 and -2.27 pug/m®. The influence of meteorology also exceeded that of emissions in
the YRD region during 2011-2012 and in the PRD region in 2010. Even in the SCB region,
where meteorological impacts on PMzs were relatively minor, meteorological effects in 2010
(8.59 pg/m®) were comparable to emissions (-14.67 pg/md).

The influence of CO. emission changes on PMzs levels was generally minor but, in the
densely vegetated PRD region, could be comparable to the effects of emissions and meteorology.
The influences of CO2 emissions, anthropogenic pollutant emissions, and meteorology on PM2s
are -0.25 to 3.11 pg/m?®, -6.19 to -1.47 pg/m®, and -0.5 to 3.11 ug/m?®, respectively from 2009 to
2013.

Our attribution analysis of PM2.s concentration changes is mainly consistent with previous
studies, which have indicated that variations in anthropogenic pollutantpeHution emissions were
the primary driver of PM2s changes in China during 2013-2017, with meteorological conditions
contributing approximately 9 %-26 % (Zhang et al., 2019; Chen et al., 2020a; Cheng et al., 2019).
In our study, relative to 2008, the average contribution of anthropogenic pollutantpetution
emissions during the PreG period was 89.08 %, while meteorological conditions contributed
16.45 %. In the PostG period, following the implementation of the Clean Air Action Plan, the
influence of anthropogenic pollutantpetution emissions further increased to 96.26 %, whereas
the contribution of meteorological conditions declined to 1.60 %. This finding underscores that
the impact of changes in anthropogenic pollutantpetution emissions on PMzs concentrations
was markedly enhanced after 2013. Notably, changes in CO2 emissions had a significant impact
on PMzs levels, contributing -5.46 % during the PreG period and 2.14 % during the PostG period,
with the latter effect surpassing that of meteorological conditions.
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Figure 8. Changes in total PM.s concentrations from 2008 to 2018 (ALL, red line) and the contributions
of anthropogenic pollutant emissions (Emis, black line), meteorological conditions (Met, blue line), and
CO: emission changes (CO, green ling) to PM.s concentrations (Units: pg/m°®).

3.6 Uncertainties

The uncertainties in the MEIC emission inventory primarily arise from activity data, emission
factors, spatial and temporal allocation methods, and the implementation status of pollution
control measures (Hong et al., 2017; Zheng et al., 2021b), all of which may affect the accuracy
of simulation results. Future improvements can be achieved by employing more refined and
accurate emission inventories.

In addition, the use of a 60 km low-resolution grid limits the ability to represent local
topography and physical processes, thereby introducing simulation errors (Harris et al., 2016;
Ringler et al., 2013). Given that this study employs a fully coupled regional climate-chemistry-
ecology model with extended simulation periods (three sets of 10-year simulations) and a broad
regional scope (covering the entire East Asia region), computational resource constraints
necessitated the use of 60 km grids. Numerous studies have employed the RegCM-Chem-YIBs
model at a 60 km grid resolution to systematically analyze PMzs, Os, COz, and the regional
climate over East Asia (Ma et al., 2023a; Ma et al., 2023b; Xu et al., 2023; Gao et al., 2021).
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These demonstrate its robustness and reliability in simulating East Asian atmospheric and
climatic conditions. Future studies could enhance simulation accuracy by increasing
computational resources and employing higher-resolution grids.

4 Conclusions

This study employed numerical experiments with the RegCM-Chem-YIBs model to analyze the
interannual variability of near-surface PM2.s concentrations in East Asia from 2008 to 2018. The
analysis examines the drivers of annual PMzs changes in detail, focusing on three key factors:
anthropogenic pollutant emissions, meteorological conditions, and CO: concentration changes.

Compared to 2008, PM2s concentrations in East Asia exhibited minimal change during the
PreG stage, with most areas showing variations between -10 and 5 ug/m?®. In contrast, following
the implementation of the Clean Air Action Plan, PMzs concentrations decreased significantly
during the PostG stage. This reduction was especially notable in the NCP and the SCB region,
with declines of 36.76 pg/m®and 33.96 pg/m®, respectively.

Anthropogenic pollutant emissions are the primary driver of the decline in PMzs
concentrations in East Asia, with their impact on PMzs levels increasing linearly over time.
During the PreG and PostG stages, the contributions of anthropogenic pollutantpetution
emissions to PMzs concentrations in the NCP, FWP, YRD, PRD, and SCB regions ranged from -
10.39 to -3.82 pg/m?® and -33.86 to -8.45 pg/m®, respectively.

Changes in meteorological conditions have led to decreased PMzs concentrations along
China’s eastern coastal and western inland regions, while increasing PM2s levels in central areas.
During the PreG stage, the influence of these meteorological changes on PMzs concentrations
was comparable to that of anthropogenic pollutantpeHution emissions, ranging from -6.31 to
2.32 pg/m®.

CO: indirectly influences PM2s concentrations by affecting precipitation and isoprene
emissions from vegetation. In the sparsely vegetated NCP and FWP regions, CO: impacts near-
surface PM2s primarily through changes in precipitation. Conversely, in the vegetation-rich PRD
region, CO: affects PM2s concentrations mainly by altering isoprene emissions, with an impact
comparable to that of anthropogenic pollutantpeHutien emissions. From 2009 to 2013, the effects
of anthropogenic pollutantpetutien emissions and CO: changes on PMz2s ranged are -0.25 to
3.11 pg/m® and -6.19 to -1.47 pg/m?, respectively.

In summary, PMzs concentrations in East Asia have significantly declined since 2013,
primarily driven by changes in anthropogenic pollutant emissions. During several years of the
PreG period, variations in meteorological conditions affected PMzs levels to a degree
comparable to that of anthropogenic pollutant emissions. However, following the
implementation of the Clean Air Action Plan in 2013, the influence of anthropogenic
pollutantpetiutien emissions increased significantly, while the impact of meteorological factors
diminished considerably. This simulation underscores the critical importance of stringent air
pollution control measures in mitigating PMzs concentrations. Moreover, we highlight that in
regions with dense vegetation cover, changes in CO2 emissions play a noteworthy role in
regulating PMzs levels, with the average effect during the PostG phase even surpassing that of
meteorological conditions. Given the sustained rise in COz levels in recent years, it is imperative
to integrate the modulatory effects of CO2 into PMzs simulating models and control strategies.
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