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Abstract. There was a significant difference in near-surface PM2.s ehanrges-across China after the
implementation of the Clean Air Action Plan in 2013. This study used the regional climate-
chemistry-ecosystem coupled model, RegCM-Chem-YBs, to investigate interannual variations
in PM2s across East Asia from 2008 to 2018. The drivers of PM2s variability were examined
from Anthropogenic and Natural perspectives. Compared to 2008, PM2s showed little variation
during 2009-—2013-{the PreG phase (2009-2013)}. However, during 2014-2018-(the PostG phase
(2014-2018)}, a substantial decline in PMzs was simulated, particularly in the North China Plain
(-36.76 pg/m?) and the Sichuan Basin (-33.96 pg/m?). Anthropogenic pollution pollution
emissions were the primary drivers of PM2s reductions, contributing -10.39 to -3.82 pg/m? in the
PreG period and -33.86 to -8.45 pg/m?® in the PostG period. The influence of meteorological
conditions on PMzs during the PreG phase (-6.31 to 2.32 pg/m®) was comparable to that of
anthropogenic pollutant emissions. Additionally, in the vegetation-rich region, the impact of CO2
emission changes on PMzs was comparable to that of anthropogenic pollutant emissions. Our
study comprehensively examined the drivers of PMzs concentration changes from 2008 to 2018.
We highlight a significant intensification in the contribution of anthropogenic pollutant
emissions and reveal that, in regions characterized by dense vegetation, changes in CO:
concentrations exert a pronounced impact on PMzs variations.
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1 Introduction

PM2s_refers to fine particulate matter with an aerodynamic diameter less than or equal to 2.5
micrometers (Chen et al., 2018). Its sources include industrial emissions, vehicular exhaust,
biomass burning, and secondary formation from atmospheric gases (Wu et al., 2020). Major

chemical components of PMps_include sulfates, nitrates, ammonium salts, organic carbon,
elemental carbon, and heavy metals (Van Donkelaar et al., 2019; Li et al., 2017a). Fine
particulate-matter(PM2s} is one of the primary atmospheric pollutants in China(Fontes et al.,
2017), posing significant risks to human respiratory health(Feng et al., 2016; Xing et al., 2016).
Long-term exposure to PM2s can lead to respiratory diseases such as chronic bronchitis,
emphysema, and asthma(Kim et al., 2015; Pui et al., 2014; Xing et al., 2016). Additionally,
PMzs is critical as a short-lived species influencing atmospheric radiation processes(Hu et al.,
2017). It affects the radiative energy balance of the Earth-atmosphere system by scattering or
reflecting solar radiation (direct effect)(Wu et al., 2021) and altering cloud microphysical
properties (indirect effect)(Wang et al., 2018a; Wu et al., 2021).

With China's rapid economic development, widespread PMzs pollution became prevalent
across the country in the early 21st century(Ma et al., 2016). In the most severely polluted urban
areas, the annual average PM2.s concentration exceeded 100 pg/m® (Van Donkelaar et al., 2010).
From 2000 to 2008, the national average PMzs concentration in China was 49.4 + 14.2 pg/m®. In
eastern China, the average concentration was 55.4 + 16.1 pg/m®, while the Beijing-Tianjin-Hebei
region experienced average levels as high as 62.1 + 22.5 pg/m33The Yangtze River Delta saw
an average concentration of 63.0 £ 11.1 pg/m?, the Pearl River Delta recorded an average of 52.4
+ 5.8 pg/m?, and the Sichuan Basin averaged 61.6 + 13.4 ug/m? (Wei et al., 2021). To mitigate

the severe PMzs pollution, China implemented the Clean Air Action Plan in 2013(Li et al., 2019).

This policy led to a significant nationwide decrease in PMzs concentrations(Zhang et al., 2019),
marking a notable improvement in air quality ever since 2013 (Vu et al., 2019; Li et al., 2018).

The variation in PM2s concentrations is influenced by three key factors: anthropogenic
pollutant emissions, meteorological conditions(Xiao et al., 2021), and Carbon dioxide (CO2)
changes. Anthropogenic pollutant emissions encompass industrial production, transportation, and
energy consumption(An et al., 2019), which release amounts of primary PMzs, as well as the
precursors of secondary PMzs such as volatile organic compounds (VOCs) (Kurokawa and
Ohara, 2020) and nitrogen oxides (NOx) (Wu et al., 2020; Zheng et al., 2021a; Kurokawa and
Ohara, 2020). Consequently, reducing these emissions is essential for mitigating PMzs
concentrations, as they directly contribute to both the formation and persistence of particulate
pollution(Zheng et al., 2018; Zhang et al., 2019).

Meteorological conditions play a significant role in influencing near-surface PMzs
concentrations(Chen et al., 2020b; Xiao et al., 2021). Elevated temperatures can accelerate
atmospheric chemical reactions(Mousavinezhad et al., 2021), including oxidation and
photochemical processes, thereby promoting the formation of PM2s (Zhong et al., 2018). In
addition, moderate increases in temperature can significantly enhance the emissions of biogenic
volatile organic compounds (BVOCs) by stimulating the activity of the synthase enzyme.
However, when temperatures exceed the physiological tolerance threshold of plants, decreased
enzyme activity or metabolic disruption may suppress emissions(Lindwall et al., 2016; Kleist et
al., 2012). Therefore, temperature changes can influence atmospheric PMp.s_concentrations by
modulating the emissions of BVOCs. Precipitation aids in removing particulate matter from the
atmosphere through wet deposition(Zhang et al., 2013), effectively reducing PMzs pollution
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levels (Wu et al., 2018). Additionally, wind speed and direction are crucial factors in the
transport and dispersion of particulate matter (Li et al., 2017b). Higher wind speeds facilitate the
dispersion of particulate matter over a wider area, reducing its local accumulation and mitigating
air pollution in specific regions (Li et al., 2017b; Zhang et al., 2018). The increase in planetary
boundary layer height (PBLH) strengthens atmospheric upward motion(Ait-Chaalal et al., 2016),
thereby reducing near-surface PM2s concentrations (Pan et al., 2019).

Changes in CO2 concentrations can influence PMzs pollution levels through several
mechanisms. Firstly, elevated CO2 concentrations impact the atmospheric radiation balance,
altering the distribution and intensity of precipitation(Cao et al., 2012), which directly affects
PMzs concentrations by influencing wet deposition rates(Zhang et al., 2022). Additionally,
Changes in CO: concentrations can affect vegetation photosynthesis and growth, which alter the
emissions of biegenic-volatle-organiccompeunds{BVOCs} that can participate in atmospheric
chemical reactions to form secondary organic aerosols (SOA), and thereby impact atmospheric
PMz2s concentrations(Sun et al., 2013; Sun et al., 2012). It is worth noting that elevated CO>
concentrations may also directly inhibit BVOCs emissions by reducing the activity of BVOCs
synthase enzymes(Heald et al., 2009; Pegoraro et al., 2004). Therefore, the impact of increased
CO2 on vegetation BVOCs emissions can be either positive or negative, depending primarily on
the relative strength of the inhibitory effect from enzyme suppression versus the stimulatory
effect from enhanced photosynthesis(Sun et al., 2012). Isoprene is the most abundant species
among BVOCs, so changes in CO2 concentrations can indirectly affect near-surface PMzs
concentrations by influencing isoprene emissions from vegetation(Sun et al., 2013; Lin et al.,
2013; Kramer et al., 2016).

Numerous studies have used statistical models and numerical simulations to investigate the
impacts of meteorological conditions and anthropogenic pollution emissions on PMzs
concentration changes_in China. The results consistently indicate that changes in anthropogenic
pollution emissions are the primary driver of PM2s variation. Zhang et al. (2019) using the
WRF-CMAQ model at the national scale, found that meteorological conditions accounted for
only 9 % of the total decline in PM2s concentrations during 2013-2017 in China, suggesting that
emission reductions were the dominant factor. Similarly, based on a multiple linear regression
model, Chen et al. (2020a) reported that anthropogenic pollution emission reductions contributed
73 %, 87 %, and 84 % to the PMzs decline in the North China Plain, Yangtze River Delta, and
Pearl River Delta, respectively, while the contribution of meteorological conditions ranged from
10 % to 26 %. Cheng et al. (2019) employing the WRF-CMAQ model, found that the decrease in
PMz2s concentrations in Beijing over the same period was mainly attributable to local (65.4 %)
and regional (22.5 %) emission reductions, with meteorological conditions accounting for only
12.1 %.

Current research primarily emphasizes the impact of anthropogenic pollutant
emissions(Zheng et al., 2018) and meteorological changes on PM2s concentrations(Zhang et al.,
2019; Zhai et al., 2019), while the potential influence of CO2 concentration changes on PMzs
pollution levels remains largely underexplored. Additionally, following the implementation of
the Clean Air Action Plan in 2013, significant decreases in PMz2.s concentrations were observed
in China. Concurrently, CO: levels continued to rise(Xu et al., 2022), with the influence of CO:
on PMzs strengthening annually. Therefore, it is essential to analyze the evolution of PM2s
concentrations from 2008 to 2018 in detail, and attribute changes in PMzs levels to every factor,
such as anthropogenic pollution emissions, meteorological conditions, and CO- variations.
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2 Methods and data

2.1 Model description

In this study, we employed the coupled regional climate-chemistry-ecology model RegCM-
Chem-YIBs (Xie et al., 2019; Xie et al., 2024). The RegCM-Chem component simulates key
meteorological variables, including temperature, humidity, precipitation, and radiation, along
with atmospheric pollutants including ozone and particulate matter (Shalaby et al., 2012). The
YIBs (Yale Interactive terrestrial Biosphere) model focuses on simulating vegetation
physiological processes, such as ozone-induced damage, photosynthesis, and respiration(Lei et
al., 2020). Additionally, it computes important land surface parameters, including CO2 flux,
biogenic—volatile—organic—compeund{BVOC) emissions, and stomatal conductance (Yue and
Unger, 2015). The YIBs model employs a leaf-level BVOC emission scheme based on
vegetation photosynthesis. Unlike the traditional MEGAN (Model of Emissions of Gases and
Aerosols from Nature) model, this approach incorporates the influence of plant photosynthesis
on BVOC emissions, making it more representative of actual plant physiological processes. In
this scheme, leaf-level BVOC emission rates depend on the photosynthetic rate, leaf surface

temperature, and intracellular CO, concentration (Yue and Unger, 2015; Lei et al., 2020; Yue et
al., 2015).

The RegCM-Chem and YIBs models exchange variables every 6 minutes, facilitating
dynamic coupling between regional climate, atmospheric chemistry, and ecosystem processes.
The RegCM-Chem-YIBs model simulated both primary and secondary PM2s emissions,
including dust, black carbon, organic carbon, sulfates, nitrates, and ammonium. The structure of
the model is shown in Fig. 1.

In the RegCM-Chem-Y1Bs model, changes in CO, concentrations affect PMp.s primarily via<

two mechanisms: first, COp-induced radiative forcing alters the atmospheric radiation balance,
leading to shifts in temperature, precipitation, and boundary - layer structure that modulate PMz.s
formation, transport, and removal(Li and Mdders, 2008; Matthews, 2007); And second, through
the YIBs modeHe—changes—+r-SOs—concentration—modulate photosynthetic activity and stomatal
behavior, altering BVOCs emissions that undergo atmospheric photochemical oxidation to form
secondary organic aerosols, a significant fraction of PMz5 (Kergoat et al., 2002; Kellomaki and
Wang, 1998).
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Figure 1. Framework of the RegCM-Chem-YIBs Model.

2.2 Model configurations

The study area covers the entire East Asian region, with a horizontal grid resolution of 60 km,
centered at 36N and 107 E. A terrain-following coordinate system was used vertically(Bleck
and Benjamin, 1993), dividing the atmosphere into 18 layers from the surface to 50 hPa.

Anthropogenic pollutant emissions data were obtained from the Multi-resolution Emission
Inventory for China (MEIC v1.4) developed by Tsinghua University(Geng et al., 2024). Surface

CO: flux data were sourced from the National Oceanic and Atmospheric Administration (NOAA)

CarbonTracker CT2019 dataset, which includes contributions from fossil fuel combustion,
biomass burning, and ocean-atmosphere CO2 exchange(Peters et al., 2007). Meteorological fields
were derived from ERA-Interim reanalysis(Balsamo et al., 2015), while sea surface temperature
data were taken from NOAA's weekly mean dataset(Huang et al., 2021). The model employed
the Grell cumulus parameterization scheme, CCM3 radiation scheme, Holtslag PBL scheme for
boundary layers, CBM-Z mechanism for meteorology and chemistry, and TUV photochemistry
scheme.

2.3 Experiment settings

The numerical experiments are presented in Table 1. The SlMpoos experiment represents the
baseline conditions for the year 2008. In the SIMpase experiment, interannual variations in
meteorological fields, CO,_emissions, and anthropogenic pollutant emissions (excluding CO2
emissions) were considered for simulations spanning 2008-2018, representing the baseline
conditions for 2009-2018.The—SHMizase—experiment—accounted—for—interannual—variations—in
meteorological fields, CO2 emissions, and anthropogenic pollutant emissions (excluding CO2)
from-2008-t6-2018. Additionally, the SIMmeT=2008 and SIMcoz=2008 €xperiments were designed,
where meteorological fields and CO2 emissions were fixed at their 2008 levels, respectively,
while simulations were conducted for 2009-2018. The simulation period spans from April to
August each year. Among them, the results from May to August, corresponding to the East Asian
Summer Monsoon (EASM) period, were selected for analysis.

Changes in PM2s concentrations were attributed to three main factors: anthropogenic
pollution emissions, meteorological conditions, and CO: variations. By comparing the simulation
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|185  results from different years in the SIMgase experiment to these-from-2008S1M 008, We quantified [&Eﬁﬁﬁz TR

186  changes in PMzs concentrations relative to 2008 for the period 2009-2018. To evaluate the
187  impact of meteorological conditions on PMzs concentrations, we compared the results of the
188 SlMease experiment with those of the SIMwer=2008 experiment for the same year (SIMgase -
|189  SIMwer=2008). Similarly, the contribution of CO. emission changes to PMzs variations was
190  assessed by comparing the SIMsase experiment with the SIMcoz=2008 experiment (SIMsase -
191 SIMcoz=2008)_in the same year. The contribution of anthropogenic pollutant emissions was then
192 determined by subtracting the effects of meteorological and CO2 emission changes from the total
193 PMzsvariation.

194 It is noteworthy that, as a principal greenhouse gas, CO. modifies meteorological BETHRX: TR

195  parameters—such as radiation, temperature, and precipitation

- 2 2 0 ntll 2 BETHR: Tix
196 levels. In this comparison, all meteorological changes derive solely from variations in COp

= - - o - P BE TR Tix
197  emissions, a mechanism fundamentally different from the meteorological influences identified in ~

w BETHERX: TR

200 Table 1. The Numerical experimental in this study, BETHRX: K. 7E

Anthropogenic

(
(
(
198  experiments SIMgase and SIMmeT=200s. (RETER: Fin
(
(
(RETHER: FHS

o JU A J L

L L

Experiment Time Meteorological fields CO, emissions pollutant
emissions
SIMao0s 2008 2008 2008 2008 (BRETER: F RS
SlMgase 2009-2018 2009-2018 2009-2018 2009-2018 [ﬁﬁ?#&?&: =ik RE
SIMur-2008 2009-2018 2008 2009-2018 2009-2018 (BETHA: =k B
SIMcoz=2008 2009-2018 2009-2018 2008 2009-2018 (BETHR: P AS
201 T [BRETER: RS
202 —2.4 Model evaluations < [wems: peEEERED 0 B
. . . . L &2 Heading-Secondary, 72, 2 4%, 4&itt: Z21: 0
203 Observed PMps data were obtained from the China National Environmental Monitoring %, %;igﬁ-ﬁiiag;;g ;%Jnggqg,&%_;ﬁ%& ;9%*,%35%
204  Center (CNEMC). This study used hourly PMps concentrations during the summer monsoon Bl 0%, SRS + R 2+ HSHX: 12,3, + 1244
205  period (May 1 to August 31) from 2015 to 2018. A total of 366 monitoring stations across ﬁg:uxﬂ\;}?ﬁi’gg@umﬁﬁma 0 [EK + HRHE(L
206  Chinese cities, selected based on data completeness and representativeness, were used for model ; 0.63 BX, }H“jﬂlﬁ
207  validation. The locations of these stations are shown in Fig. S5. CO, observations were sourced [ﬁﬁﬂ‘gﬁ: 5
208 from the World Data Centre for Greenhouse Gases (WDCGG), including all seven sites in East (&R T#=: Fix
209  Asia: Waliguan, Korea Tae-ahn Peninsula, Ulaanbaatar in Mongolia, Lulin, Yonagunijima, Cape ‘[i&ET%ﬁ: TR

210 D'Aguilar (Hong Kong), and King's Park. Detailed station locations are shown in Fig. S6.
211 Reanalysis data for temperature, wind fields, and relative humidity were obtained from the ERA-
212 Interim dataset.

213 e .

214 apeweus—resea#eh—As shown in Table 2 and quures S1-S6, the SlMBase experlments reproduce
215  2015-2018 PM2s and CO2 concentrations with high correlations and low biases relative to
216 observations, while their simulated meteorological fields closelv match reanalv3|s
217 e iz .

218 :
219 model effectlvely captures the fundamental characterlstlcs and temporal trends ofsrmu%ates
|220 meteorological factors, PMzs, and CO2 concentrations in East Asia(Ma et al., 2023a; Ma et al.,
221 2023b).
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Table 2. Evaluations of the near-surface, CO, and PM, s in East Asia.

Species Year Observation Simulation Bias RMSE R <
2015 402.82 406.98 4.16 9.37 0.44

CO, (ppm) 2016 407.12 410.44 3.32 8.22 069
22 . pom) 2017 408.35 413.62 527 11 0.39
2018 409.61 416.68 7.07 11.32 0.41
2015 48.77 44.75 -4.02 29.39 0.57

MDAS8 O 2016 50.16 46.95 -3.21 27.56 0.60 -
(ppb) 2017 55.43 51.87 -3.56 21.55 0.74
2018 55.53 52.08 -3.42 24.78 0.73
2015 36.6 25.57 -11.03 12.99 0.71

PMas 2016 31.03 2291 -8.12 10.31 0.64 -
(ug/m*) 2017 29.61 24.02 -5.59 10.57 0.71
2018 27.18 19.04 -8.14 11.62 0.61

RMSE: root mean square error; R: correlation coefficient.

-
o
Sz 2008-2018 Varying Varying Varying
SHMiMeT=2008 2009-2018 2008 Varying Varying

3 Results and discussion

3.1 PMzs variation

Changes in PMps concentrations from 2009 to 2018 relative to 2008 were quantified by
comparing simulation results from each year in the SIMgase experiment with SIM2oos (SIMBase -

Sl1M2008). Figure 2 illustrates the changes in near-surface PMzs concentrations across East Asia
from 2009 to 2018. PMzs concentrations are notably higher in the North China Plain,
northeastern China, and eastern China (Shanghai, Jiangsu, Zhejiang), largely driven by industrial
emissions, vehicle exhaust, coal combustion, and dust from human activities(Wang et al., 2017).
In contrast, regions in western China (Yunnan, Gansu, Xinjiang) exhibit lower PMzs levels due
to limited industrial activity, lower population density, and more favorable meteorological
conditions_(Low water vapor content, lower temperatures, and weak solar radiation are
unfavorable for the formation of secondary aerosols such as sulfates, nitrates, and organic
aerosols)(Wei et al., 2021; Xue et al., 2020). Developed cities and industrial centers like the Pearl
River Delta and Fuzhou (Fujian Province) continue encountering challenges related to PMzs
pollution. Moreover, the Sichuan region, characterized by its enclosed basin geography and high
population density, also experiences high PMzs pollution levels(Wang et al., 2018b). From 2009
to 2013, PMzs concentrations in China remained relatively stable, with levels averaging around
90 pg/m?* in the North China Plain and Sichuan Basin. However, following the implementation of
the Clean Air Action Plan in 2013, PMzs levels significantly declined nationwide. By 2018,
concentrations had dropped to below 50 pg/m?* across much of the country.

Page 9 of 29

R BRTEIEIBEER A 0 75

BETHRA: 2k HS

BETHRA: 2k 7S

R B, BREIA IR

=

W : B, BERIEERAT:

=

RETHR: Fih 1S

[
[
|
(BETHR: PR ES
[
[
[

WA B, BERIERRAT: 058

BETHRA: =k 7S

R B, BEIEIERRE: 0 B8

BRETHRR: 2K AS

R BRSEIEBEER A 0 75

(RETHER: Fin

(BEBTHR: Fin

(RETER: Fix



https://agupubs.onlinelibrary.wiley.com/journal/21699356

248
249

250
251
252
253

| 254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

manuscript submitted to Journal of Atmospheric Chemistry and Physics

/ =2 N
@ 2014

e i (78 \ ) L LY

120 ¥t B WE. NWTE UPE GUE e

JFigure 2. Nea?:surace VWIDILMz‘j;EconEen't)‘r;tio;'l (pg}m?i“’ové? East A
from 2009 (a) to 2018 (K)_(SIMgo0s). Key regions are highlighted by black boxes, including the North China

20

Plain (NCP), Fenwei Plain (FWP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin
(SCB).

Figure 3 and Table 3S% present the changes in PMzs concentrations relative to 2008 across
East Asia from 2009 to 2018. Since 2008, most regions in China have seen varying degrees of
PMz2s reduction. During the pre-governance period (PreG, 2009~2013), the largest decrease
occurred in the Yangtze River Delta, with a reduction of 14.77 ng/m?, followed by the Sichuan
Basin and Pearl River Delta, where concentrations dropped by 10.59 pg/m*® and 8.69 pg/md,
respectively. In contrast, the Fenwei Plain and Pearl River Delta experienced smaller changes,
with reductions of less than 3 pg/m*. PMzs concentrations across China significantly decreased
after the implementation of the Clean Air Action Plan in 2013. The most notable reductions were
simulated in the North China Plain and Sichuan Basin, where PMzs concentrations dropped by
36.76 pg/m?® and 33.96 pg/m?, respectively. In the Fenwei Plain and Yangtze River Delta, PM2s
concentrations decreased by 22.16 to 27.89 pg/m®. In contrast, the Pearl River Delta saw a
smaller reduction, with levels decreasing by just 8.03 pg/m3. This may be attributed to the
region's significant influence from the summer monsoon and relatively lower impact from
anthropogenic pollution emissions. Further analysis of these factors will be conducted in
subsequent sections.
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Table S1 shows that the mean PMzs trend over China during the PreG (2009-2013) and

PostG (2014-2018) periods was —1.84 pug/m®/yr and —2.90 pg/m®/yr, respectively. These values

are _consistent with the findings of Silver et al. (2025), who reported a PMas trend of —2.47

ug/m3/yr for 20142017 in China based on ground-based observations. Similarly, Lin et al. (2018)

reported PMzs_ trends of —0.65 and —2.30 pg/m®/yr for 2006-2010 and 2011-2015 in China,

respectively. Using satellite remote sensing data, Ma et al. (2019) found declines of 1.03 and

4.27 pg/m®/yr for 2010-2013 and 2013-2017 in China, respectively. The high-resolution Chinese

air_quality reanalysis (CAQRA), developed by Kong et al. (2021) using data assimilation

techniques, indicated a more pronounced decline of —5.80 ug/m®/yr for PM2s from 2013 to 2018

in China. In addition, Silver et al. (2018), based on multi-source data, reported a trend of —3.40

ug/m®/yr for 2015-2017 in China. Therefore, our simulation accurately captures the observed

PMa2s trends over China from 2008 to 2018, providing a robust foundation for

subsequent

attribution analyses.

Overall, before 2013, near-surface PM2.s concentrations across China showed little variation.
However, after 2013, a significant reduction in PMzs pollution levels was simulated nationwide.
Changes in PMzs concentrations were attributed to three main factors: anthropogenic pollution
emissions, meteorological conditions, and CO: variations. The following sections analyze each

factor’s contribution to the changes in PM2.s concentrations from 2008 to 2018.
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293  Table 3. Changes in near-surface PM;s concentrations (ug/m?) during the EASM period from 2009 to 2018
294 relative to 2008 in the North China Plain (NCP), Fen-Wei Plain (FWP), Yangtze River Delta (YRD), Pearl
295  River Delta (PRD), and Sichuan Basin (SCB) (SIMgase - SIM2gos).

Year NCP FWP YRD PRD SCB D (#H#B: Beh
2009 -11.24 -1.29 -11.37 1.41 -3.16 « 5
2010 -3.87 1.9 -15.2 -3.57 -4.79 « [f%iw]' Zhs
2011 -6.27 0.22 -14.76 0.13 -8.65 « (HRRN: B
2012 -7.42 1.69 -17.61 2.35 -1599 < (R KB B
2013 -14.67 -15.49 -14.9 -6.34 2037+~ = -
2014 -24.26 -15.36 -19.95 -6.72 2287 o+ iR 2
2015 -31.41 -16.9 -27.76 -9.91 -31.75 < [ HRN: Be
2016 -38.5 -25.23 -32.43 -8.18 3558 < (RN B
2017 -40.69 -25.49 -26.21 -5.82 3743« . :
2018 -48.96 -27.83 -33.08 9.53 019 . WS E
PreG -8.69 -2.59 -14.77 -1.20 1059« [ #ERM: BF
PostG -36.76 2216 -27.89 -8.03 3396 < (#RAN: E
2% (#mAN: B
297 3.2 Contribution of meteorological conditions (##R0: B
(#He kB fBep

o J J L JC L JL JL JL L JL
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The impact of meteorological conditions variations on PMps concentrations were assed by
compared SIMpase results with those from SIMmeT=2008 for the same year (SIMgase - SIMmeT=2008).

As shown in Fig. 4, during the PreG period, the precipitation increased by 2-4 mm/day in
China's eastern coastal and western inland regions, while it decreased by approximately 2
mm/day in central China. This increase in precipitation facilitates the reduction of near-surface
PMz2s concentrations through wet deposition. Consequently, trends in PMzs concentrations are
inversely related to precipitation: concentrations decreased by 2—16 pg/m? in the eastern coastal
and western inland regions, while increased by 4-8 pg/m® around 110E in central China.
Additionally, in northeastern and southwestern China, wind speeds increased by 1 to 2 m/s,
contributing to the reduction of PMzs concentrations. In contrast, decreased wind speeds in
southeastern and central China facilitated the accumulation of PMz.s. During the PostG period,
the significant increase in temperature (Fig. 41) promoted the formation of PMz2s, leading to an
expansion of the areas where PMzs concentrations increased. Overall, PMzs concentrations have
decreased in the eastern coastal and western inland regions but increased in the central area of
China.

Table 4S2 indicates that in the NCP region, precipitation increased by 0.58 to 0.6 mm/day,
and wind speed rose by 0.17 to 0.26 m/s during the PreG and PostG periods, resulting in a
decrease in near-surface PM2s concentrations of 1.6 to 4.01 pug/m®. In the FWP region, PMzs
concentrations increased by 1 to 2.31 pg/m?, which was associated with a rise in temperature of
0.1 to 0.46 K and a significant decrease in PBLH of 108.5 to 15.3 m. In the YRD region, the
increase in wind speed of 0.48 to 1.02 m/s facilitated a reduction in PMzs concentrations by 0.43
to 0.61 pg/m°. Conversely, in the PRD region, reduced precipitation combined with increased
temperature contributed to an increase in PMa2.s concentrations, ranging from 0.11 to 1.49 pg/m®.
In the SCB region, PMzs concentrations rose by 0.29 pg/m® during the PreG period, linked to a
significant decrease in PBL height of 136.5 m. In the PostG period, PM2s concentrations
decreased by 1.14 pg/m®, attributed to an increase in precipitation (0.37 mm/day) and a decrease
in temperature (0.14 K).
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(20142018, right) phase relative to 2008 (SIMgase - SIMmeT=2008).,

Table 4. Impact of meteorological condition changes on PM,s (ug/m®), precipitation (mm/day), wind speed
(m/s), near-surface temperature (K), and Planetary Boundary Layer (PBL) height (m) during the EASM period
in PreG (2009-2013) and PostG (2014-2018) phase relative to 2008 (SIMgase - SIMmeT=2008).

A Wind Near-Surface
Region Period (F:ll\él/zr.zs) PE?A?;E;'S” Speed Temperature %
(m/s) (K)
NCP PreG -4.01 0.58 0.17 0.32 -46.8
— PostG -1.6 0.6 0.26 0.6 -145
FWP PreG 2.32 1.68 -0.06 0.1 -108.5
— PostG 1 0.81 0.05 0.46 -153
YRD PreG -6.31 1.02 0.18 -0.29 -33.9
= PostG -0.43 0.48 -0.08 0.45 219
PRD PreG 1.49 -2.39 -0.02 0.36 29.6
= PostG 0.11 -3.24 0.18 1.00 52.2
SCB PreG 0.29 181 0.13 -0.58 -136.5
= PostG -1.14 0.37 -0.03 -0.14 -76
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3.3 Contribution of CO2
The contribution of CO, emission changes to PMy.s variability was quantified by comparing the

SIMpase_experiment with the SIMcoz=2008_experiment (SIMgase - SIMcoz=2008) Within the same

year. As shown in Fig. 5, Following the ongoing urbanization and industrialization, CO:
concentrations across East Asia rose by 2-10 ppm during both the PreG and PostG periods, with
a sharper increase in the PostG period. CO2 influences atmospheric PMzs concentrations both
through its radiative effects on precipitation and by altering BVOCs emissions from vegetation.
Overall, CO: changes contributed to PM25 variations across East Asia from 2008 to 2018,
ranging from -4 to 6 pg/m®. PMzs pollution levels generally increased in the PreG period, while
reductions were more common in the PostG period.

Table 5S3 presents a detailed analysis of the five target regions. In northern China,
particularly the NCP and FWP regions, limited vegetation coverage means CO2 impacts surface
PMzs concentrations mainly through precipitation changes. In the PostG period, precipitation
increased by 0.06-0.13 mm/day, lowering PM2s concentrations by 0.98-1.3 pg/m®. Similarly, in
the Sichuan Basin, precipitation rose by 0.21-0.64 mm/day, reducing PM2s concentrations by
0.49-0.73 pg/m® in the PreG and PostG period. However, in the YRD and PRD regions, where
vegetation coverage is higher, CO2 primarily impacts PM2s concentrations by modulating
BVOCs emissions. The impact can be either positive or negative(Possell et al., 2005), depending
primarily on the balance between the inhibitory effects on synthase activity and the stimulatory
effects of enhanced photosynthesis(Wilkinson et al., 2009). In the YRD region, isoprene fell by
0.32-0.58 pg/m® during both periods, while precipitation rose by 0.09-0.13 mm/day, collectively
reducing PMzs by 0.02-0.05 pg/m?®. In the PRD region, isoprene concentrations increased
significantly by 0.31-0.92 pg/m?, while precipitation decreased by 0.33-1.02 mm/day.
Consequently, PMzs concentrations rose by 0.31-1.13 pg/m* during both the PreG and PostG
periods.

(a) 2008 = (b) PreG-2008 & (© PostG-2008 = g
e | B

I v
a.-9 ;7 (i
A .

A o

PM, 5

e’ - B
¥ N
2 I"‘

Figure 5. The PMys (a-C, ug/m3, CO, (d-f, ppm), precipitation (g-i, mm/day), an

§
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during the EASM period in 2008 (left), and their mean changes due to CO, emission variations in PreG
(2009-2013, center) and PostG (2014-2018, right) phase relative to 2008 (SIMgase - SIMco2=2008).Fhe
b e e o sl o DL L 0 o oene ciio g Lo dbe oo nnd noncon s
frehn’).

Table 5. Impact of CO, emission changes on PMys (ug/m®), CO: (ppm). precipitation (mm/day). and isoprene
(ug/m® during the EASM period in PreG (2009-2013) and PostG (2014-2018) phase relative to 2008
(SIMgase - SIMcoz=2008).

. . PMzs CO, Precipitation Isoprene
Region Period 3
Cug/m®) (ppm) (mm/day) (ug/m®)
NCP PreG 0.6 3.19 0.27 -0.1
PostG -1.3 4.24 0.13 0.26
FWP PreG 0.84 1.70 0.21 -0.16
PostG -0.98 2.05 0.06 0.33
PreG -0.02 4.1 0.13 -0.32
YRD PostG -0.05 6.2 0.09 -0.58
PRD PreG 1.13 1.97 -1.02 0.31
PostG 0.31 3.20 -0.33 0.92
SCB PreG -0.49 2.80 0.64 -0.78
PostG -0.73 2.78 0.21 0.69

3.4 Contribution of anthropogenic pollutant emissions
The contribution of changed anthropogenic pollutant emissions to PMos variation was

(RETHER: Fin

determined by removing the effects of meteorological and CO, emission changes from the total
variation. Figure 6 illustrates a significant downward trend in PMzs concentrations across East
Asia since 2008. During the PreG period, PM2s levels decreased by an average of 5 to 10 pg/m?
over East Asia. Following the implementation of the Clean Air Action Plan in 2013, a marked
reduction in PMzs concentrations was simulated. The most substantial decreases occurred in the
NCP and SCB region, with approximately 60 pg/m?. Anthropogenic pollutant emissions emerged
as the primary drivers of this decline, with their spatial distribution and magnitude of impact
closely corresponding to the overall changes in PMzs concentrations. In contrast, the effects of
changing meteorological conditions and CO2 eoneentrations-emissions on PMzs levels in East
Asia were relatively minor, ranging between -5 to 5 pg/m®. Meteorological conditions have
reduced PMzs concentrations in the eastern coastal and western regions of China, while
increasing them in the central region. In the PostG period, the extent of PMzs concentration
increases has expanded. The impact of CO. eeneentration—emission changes on PMzs levels
shows different trends in the PreG and PostG periods. In the PreG period, changes in CO:
concentrations-emissions primarily led to an increase in PMzs concentrations. However, in the
PostG period, the rise in CO2 concentrations began to have a negative impact, leading to a
reduction in PMzs concentrations.
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396  Figure 6. The total changes in PMys concentrations in-the-East-Asiaregion-relativeto-2008-(All, SIMgase - BRETHER: k7S

397  SIManog), and the changes in PM2s attributed to variations of anthropogenic pollutant emissions (Emis, All-

. M . s (E BETHR: =ik A2
398  Met-COy), meteorological conditions (Met, SIMpzse — SIMwiT=2008), and CO2 coneentrations-emissions, (CO2, BETHR = =
309 SIMgase - SIMcozs00g) during the EASM period, in PreG (2009-2013, left) and PostG (2014-2018. right) BETHR: FRES

401 BETHERX: K. 7S

|402 Based on Fig. 7 and Table 6S4, PMz2s concentrations in the NCP region decreased by 5.28 RETHR: =k 52

403 /m?® during the PreG period and by 33.86 ug/m?* in the PostG period. Anthropogenic pollution
pg/m° during the PreG period and by ng/m° 1n the PostG perio pog p RETHR: ok 5o

(
(
(
400  phase relative to 2008. (RETHR: kB2
(
(
(
(

404  emissions were the primary driver of these changes. During the PreG period, the influence of
405 meteorological conditions on PM2s was comparable to that of anthropogenic pollution emissions, BETHX: 2k 1S

0 A

406 with changes in meteorology contributing -4.01 pg/m?® and emissions contributing -5.28 pg/m?.
407 However, in the PostG period, the impact of meteorological factors diminished to -1.6 pg/m?,
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indicating that anthropogenic pollution emissions became the predominant factor in the reduction
of PMzs concentrations. In contrast, the effect of changes in CO2 cencentrations-emissions on
PMzs levels was relatively minor, ranging from -1.3 to 0.6 pg/m?®.

The situation in the FWP region is similar to that of the NCP region, with anthropogenic
pollution emissions as the primary driver of reduced PMzs concentrations. During the PreG and
PostG periods, the contributions of anthropogenic pollution emissions to PMz.s levels were -5.75
pg/m?® and -22.18 pg/m?, respectively. In contrast, meteorological conditions contributed to an
increase in PMzs concentrations, with a contribution of 2.32 pg/m® in the PreG period,
comparable to the impact of anthropogenic pollution emissions. Meanwhile, the influence of CO2
coneentrations-emissions on PMzs levels was relatively minor.

In the YRD region, anthropogenic pollution emissions are the primary driver of reduced
PMz2s concentrations. Due to its location in eastern China, the YRD region is more affected by
the EASM, resulting in more pronounced effects of changing meteorological conditions on PMzs
levels compared to the NCP and FWP regions. During the PreG period, the impact of
meteorological conditions on PMzs concentrations reached as high as -6.31 pg/m®.

In the PRD region, changes in anthropogenic pollution emissions have contributed to a
reduction in PMzs concentrations, ranging from -8.45 to -3.82 pg/m3. However, changes in
meteorological conditions and CO2 eencentrations—emissions have led to increases in PMas
levels, ranging from 0.11 to 1.49 pg/m?3. Similar to the YRD region, the effects of changing
meteorological conditions on PMzs concentrations are significant, peaking at 1.49 ug/m?® during
the PreG period. Located in southeastern coastal China, the Pearl River Delta's rich vegetation
cover enhances the impact of CO2 emission changes on PMzs concentrations. During the PreG
period, the influence of CO2 eoneentration-emission changes on PMzs levels reached 1.13 pg/m?,
comparable to the effect of anthropogenic pollution emissions (-3.82 pg/m?). In the PostG period,
the impact of CO2 emission changes (0.31 pg/m?) surpassed that of meteorological conditions
(0.11 pg/m?3).

In the SCB region, the basin topography results in relatively minor effects of meteorological
conditions and CO2 eoneentration-emission changes on PMzs levels, with contributions ranging
from -1.14 to 0.29 pg/m* during both the PreG and PostG periods. In contrast, anthropogenic
pollution emissions are the primary drivers of reduced PMzs concentrations, exerting an impact
of -32.09 pg/m? during the PostG period.
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Table 6. Changes in total PM2s concentrations (ALL, SIMgase - SIM2oos) and the impacts of anthropogenic { - z—f&t ﬂj
pollutant emissions (Emis, All-Met-CO,), meteorological conditions (Met, SIMgase — SIMmeT=2008), and CO, [ﬁﬁﬁgﬁ' Fi:BS
emission (CO2, SIMgase - SIMcoz=2008) Variations on PM; s concentrations (ug/m®) during the EASM period in [&ET*&EQ: FiK:- RS

PreG (2009-2013) and PostG (2014-2018) phase relative to 2008.

Region Period ALL Emis Met COy
NCP PreG -8.69 -5.28 -4.01 0.6
- PostG -36.76 -33.86 -1.6 -1.3
PreG -2.59 -5.75 2.32 0.84
EWp PostG -22.16 -22.18 1 -0.98
YRD PreG -14.77 -8.44 -6.31 -0.02
— PostG -27.89 -27.41 -0.43 -0.05
PRD PreG -1.2 -3.82 1.49 113
PostG -8.03 -8.45 0.11 0.31
SCB PreG -10.59 -10.39 0.29 -0.49
— PostG -33.96 -32.09 -1.14 -0.73

3.5 Attribution of Changes in PMzs

Figure 8 illustrates that PM2s concentrations remained relatively stable across the five regions
during the PreG period. However, in the PostG period, following the implementation of the
Clean Air Action Plan, significant reductions in PMz5s concentrations were simulated in the NCP,
FWP, YRD, and SCB regions, while the PRD region showed the smallest decrease.

Anthropogenic pollutant emissions are the primary factor driving PMzs concentration
reductions across the five regions, with their impact increasing linearly over time. In the PreG
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period, meteorological conditions had a relatively stronger influence on PMas levels,
occasionally surpassing the effects of anthropogenic pollution emissions. For example, in 2013,
the meteorological and emission impacts on PMz2s in the NCP region were -17.35 pg/m® and
4.49 pg/m?, respectively. Similarly, in the FWP region from 2013 to 2015, meteorological
impacts ranged from -16.9 to -15.36 pg/m% while emissions affected PMzs concentrations
between -15.8 and -2.27 pug/m®. The influence of meteorology also exceeded that of emissions in
the YRD region during 2011-2012 and in the PRD region in 2010. Even in the SCB region,
where meteorological impacts on PMzs were relatively minor, meteorological effects in 2010
(8.59 pg/m®) were comparable to emissions (-14.67 pg/md).

The influence of CO: eoneentration-emission changes on PMzs levels was generally minor
but, in the densely vegetated PRD region, could be comparable to the effects of emissions and
meteorology. The influences of CO2 concentrationemissions, anthropogenic pollutant emissions,
and meteorology on PMzs are -0.25 to 3.11 pg/m?®, -6.19 to -1.47 pug/m®, and -0.5 to 3.11 pg/m?,
respectively from 2009 to 2013.

Our attribution analysis of PM2.s concentration changes is mainly consistent with previous
studies, which have indicated that variations in anthropogenic pollution emissions were the
primary driver of PMzs changes in China during 2013-2017, with meteorological conditions
contributing approximately 9 %-26 % (Zhang et al., 2019; Chen et al., 2020a; Cheng et al., 2019).
In our study, relative to 2008, the average contribution of anthropogenic pollution emissions
during the PreG period was 89.08 %, while meteorological conditions contributed 16.45 %. In
the PostG period, following the implementation of the Clean Air Action Plan, the influence of
anthropogenic pollution emissions further increased to 96.26 %, whereas the contribution of
meteorological conditions declined to 1.60 %. This finding underscores that the impact of
changes in anthropogenic pollution emissions on PMzs concentrations was markedly enhanced
after 2013. Notably, changes in COz eencentrations-emissions had a significant impact on PMzs
levels, contributing -5.46 % during the PreG period and 2.14 % during the PostG period, with the
latter effect surpassing that of meteorological conditions.
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Figure 8. Changes in total PM,s concentrations in-East-Asta-from 2008 to 2018 (ALL, red line) and the

contributions of anthropogenic pollutant emissions (Emis, black line), meteorological conditions (Met,
blue line), and CO: eoneentration-emission changes (CO-, green line) to PM.s concentrations by-Regien
(Units: pg/md).

3.6 Uncertainties

The uncertainties in the MEIC emission inventory primarily arise from activity data, emission
factors, spatial and temporal allocation methods, and the implementation status of pollution
control measures (Hong et al., 2017; Zheng et al., 2021b), all of which may affect the accuracy
of simulation results. Future improvements can be achieved by employing more refined and
accurate emission inventories.

In addition, the use of a 60 km low-resolution grid limits the ability to represent local
topography and physical processes, thereby introducing simulation errors (Harris et al., 2016;
Ringler et al., 2013). Given that this study employs a fully coupled regional climate-chemistry-
ecology model with extended simulation periods (three sets of 10-year simulations) and a broad
regional scope (covering the entire East Asia region), computational resource constraints
necessitated the use of 60 km grids. Numerous studies have employed the RegCM-Chem-YIBs
model at a 60 km grid resolution to systematically analyze PMa2s, O3, CO2, and the regional
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climate over East Asia (Ma et al., 2023a; Ma et al., 2023b; Xu et al., 2023; Gao et al., 2021).
These demonstrate its robustness and reliability in simulating East Asian atmospheric and
climatic conditions. Future studies could enhance simulation accuracy by increasing
computational resources and employing higher-resolution grids.

4 Conclusions

This study employed numerical experiments with the RegCM-Chem-YIBs model to analyze the
interannual variability of near-surface PMzs concentrations in East Asia from 2008 to 2018. The
analysis examines the drivers of annual PMzs changes in detail, focusing on three key factors:
anthropogenic pollutant emissions, meteorological conditions, and CO. eoneentration-emission
changes.

Compared to 2008, PMzs concentrations in East Asia exhibited minimal change during the
PreG stage, with most areas showing variations between -10 and 5 pg/m®. In contrast, following
the implementation of the Clean Air Action Plan, PMzs concentrations decreased significantly
during the PostG stage. This reduction was especially notable in the NCP and the SCB region,
with declines of 36.76 pg/m®and 33.96 pg/mé, respectively.

Anthropogenic pollutant emissions are the primary driver of the decline in PMzs
concentrations in East Asia, with their impact on PMzs levels increasing linearly over time.
During the PreG and PostG stages, the contributions of anthropogenic pollution emissions to
PMgzs concentrations in the NCP, FWP, YRD, PRD, and SCB regions ranged from -10.39 to -
3.82 ng/m® and -33.86 to -8.45 pg/m®, respectively.

Changes in meteorological conditions have led to decreased PM2s concentrations along
China’s eastern coastal and western inland regions, while increasing PMzs levels in central areas.
During the PreG stage, the influence of these meteorological changes on PMzs concentrations
was comparable to that of anthropogenic pollution emissions, ranging from -6.31 to 2.32 pg/m°.

CO: indirectly influences PMzs concentrations by affecting precipitation and isoprene
emissions from vegetation. In the sparsely vegetated NCP and FWP regions, CO: impacts near-
surface PMzs primarily through changes in precipitation. Conversely, in the vegetation-rich PRD
region, CO: affects PM2s concentrations mainly by altering isoprene emissions, with an impact
comparable to that of anthropogenic pollution emissions. From 2009 to 2013, the effects of
anthropogenic pollution emissions and CO: changes on PMz25 ranged are -0.25 to 3.11 pg/m?® and
-6.19 to -1.47 pg/m?, respectively.

In summary, PM2s concentrations in East Asia have significantly declined since 2013,
primarily driven by changes in anthropogenic pollutant emissions. During several years of the
PreG period, variations in meteorological conditions affected PM2s levels to a degree
comparable to that of anthropogenic pollutant emissions. However, following the
implementation of the Clean Air Action Plan in 2013, the influence of anthropogenic pollution
emissions increased significantly, while the impact of meteorological factors diminished
considerably. This simulation underscores the critical importance of stringent air pollution
control measures in mitigating PMzs concentrations. Moreover, we highlight that in regions with
dense vegetation cover, changes in CO2 eencentrations—emissions play a noteworthy role in
regulating PMzs levels, with the average effect during the PostG phase even surpassing that of
meteorological conditions. Given the sustained rise in COz levels in recent years, it is imperative
to integrate the modulatory effects of COz into PMz.s simulating models and control strategies.
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