

The coupling between hydrology, the development of the active layer and the chemical signature of surface water in a periglacial catchment in West Greenland

Johan Rydberg^{1*}, Emma Lindborg^{2, 3}, Christian Bonde⁴, Benjamin M. C. Fischer⁵, Tobias Lindborg^{6, 3},
5 Ylva Sjöberg^{7, 4, 1}

¹Department of Environmental Science, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden

²DHI Sweden AB, Svartmangatan 18, 111 29 Stockholm, Sweden

³Blackthorne Science AB, Slånässtråket 36, 125 56 Älvsjö, Sweden

10 ⁴Department of Geosciences and Natural Resource Management, and Center for Permafrost, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark

⁵Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden

⁶Swedish Nuclear Fuel and Waste Management Company (SKB), Box 3091, 169 03 Solna, Sweden

⁷Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden

15 *Correspondence to:* Johan Rydberg (johan.rydberg@umu.se)

Abstract. The chemical signature of surface water is influenced by the interactions with soil particles and groundwater. In permafrost landscapes, ground ice restricts groundwater flow, which implies a limited influence of processes such as weathering on the chemical signature of the runoff. The aim of this study was to examine how freeze-thaw processes, hydrology and water age interact to shape the chemical and stable hydrogen and oxygen isotopic signature of surface water in a catchment 20 in West Greenland. Measuring runoff in remote catchments is challenging, and therefore we used a validated hydrological model to estimate daily runoff over multiple years. We also applied a particle tracking simulation to determine groundwater ages, and used data on stable isotopic and chemical composition from various water types – including surface water, groundwater, lake water and precipitation – spanning from early snowmelt to late in the hydrological active season. Our results show that groundwater is generally younger than one year and rarely exceeds four years. Overland flow is restricted to the 25 snowmelt period and after heavy rain events, while runoff is dominated by groundwater. Monitoring of thaw rates in the active layer indicates a rapid thawing in connection with running water, and meltwater from ground ice quickly becomes an important fraction of the runoff. Taken together, our data suggest that even in continuous permafrost landscapes with thin active layers and an absence of truly old groundwater, soil processes exert a strong influence on the chemical and stable isotopic signature of runoff, similar to what has been observed in other climatic settings.

30

Deleted:

Deleted: and groundwater

Deleted: in

35 1 Introduction

The water that falls as precipitation carries a signature that reflects the chemical conditions in the atmosphere. This chemical signature – or water quality – is subsequently altered as the water flows through a catchment, where it interacts with water stored in the landscape, vegetation, soil particles and bedrock {Sprenger, 2019 #3486}. The resulting water quality not only determines the ecological and chemical status of local and downstream aquatic systems {EU, 2002 #444}, it can also shine

40 light on hydrological pathways and biogeochemical cycling within catchments {Lyon, 2010 #2744} {Fischer, 2015 #3528} {Lidman, 2014 #2077} {Jutebring Sterte, 2022 #3499}. Knowledge, regarding the interplay between soil processes and water also help us understand how future changes in, e.g., the climate, might affect hydrological pathways and the biogeochemical cycling of elements {Frey, 2009 #962} {Vonk, 2015 #3000} {Winnick, 2017 #2619}.

Water transit time through a catchment depend on several things, including depth of the regolith and groundwater stores

45 {Condon, 2020 #3527}, and water transit times range from days in the shallow layers (0–10 cm) to several hundreds of years as depth increases. In addition to storage characteristics, the long and cold winters in high latitude regions restricts the flow of water during a considerable part of the year, resulting in the snow melt period being the single most important event of the hydrological year {Bring, 2016 #3484} {Johansson, 2015 #2313}. Not only is the runoff high, but the meltwater also flows through a system where ground ice limits the interaction between the meltwater and the soil particles {Johansson, 2015

50 #2313} {Bosson, 2013 #3522}. That is, at least during the initial phase of the snowmelt period the water that reaches a stream can be expected to mostly reflect the chemical signature of the melting snow {Chiasson-Poirier, 2020 #3494}.

As the upper soil layers thaw, meltwater from snow can infiltrate the ground surface and interact with decomposing plant material in the organic horizon and mineral soil particles in deeper layers {Cai, 2008 #3604} {Quinton, 2006 #433}. That the upper part of the ground thaws also means that recent snowmelt water can interact and mix with older water that was stored in

55 the ground prior to the onset of the snowmelt event (i.e., pre-event water; {Tetzlaff, 2018 #3534}). A prerequisite for the interaction between snowmelt water and soil particles is that the ground thaws while the snowmelt period is still ongoing. This is the case in forested catchments without permafrost in the boreal region, where stream-water DOC concentrations increase during the snowmelt period {Laudon, 2004 #937} {Jutebring Sterte, 2018 #3497}. However, in adjacent wetland catchments where the ice-rich peat results in slower thaw rates, the limited infiltration of snowmelt water results in a decrease in DOC

60 during the snowmelt period and shorter transit time of the water {Jutebring Sterte, 2018 #3497} {Laudon, 2004 #937} {Lyon, 2010 #3531}.

In permafrost regions the ground water storage can be expected to be smaller because the upper part of the ground that thaws each summer, i.e., the active layer, constitutes a much thinner aquifer than what is common in boreal systems without permafrost {Petrone, 2016 #2640}. A result of this can be seen in a study of a polygonal tundra site in Alaska {Throckmorton, 2016 #3520}, where no traces of snowmelt water were found in soil water collected during summer. Similarly, in a catchment scale study conducted in the Northwest Territories in Canada, Tetzlaff et al. (2018) reported that during the snowmelt period, streamflow was primarily governed by input from snowmelt and the transit times were short. Over the course of the summer

Deleted: the...catchment, where it interacts with water stored in the landscape, vegetation, soil particles and the
... [1]
Deleted: cd
Deleted: A thorough understanding...nowledge of...regarding the interplay between soil processes and water that moves through the landscape
... [2]
Deleted:
Deleted: allows for prediction...elp us understand how of
... [3]
Deleted: The...including atmospheric conditionsst
... [4]
Deleted: ate,
Deleted: and ...epth of the soil...egolith and groundwater stores determine the transit time of water
... [5]
Deleted:
Deleted: with...water transit times rangeing...from several ...ays in the shallow soil
... [6]
Deleted: durations
Deleted: exceeding
Deleted: ...everal hundreds of years as depth increases. In addition to storage characteristics, the long and cold winters in high latitude regions result in a reduced
... [7]
Deleted: wh...rsulting in the snow melt period being ere ...he single most important event of the hydrological year is the snowmelt period
... [8]
Deleted: the
Deleted: dead
Deleted: soil...haws also means that recent snowmelt water can interact and mix with preexisting ...lder water that was stored in the ground prior to the onset of the snowmelt event (i.e., pre-event water; {Tetzlaff, 2018 #3534}). A prerequisite for the interaction between snowmelt water and soil particles is that the groundsoil...thaws while the snowmelt period is still ongoing. This is the case in forested catchments without permafrost in the boreal region, where stream-water DOC concentrations increase during the snowmelt period {Laudon, 2004 #937} {Jutebring Sterte, 2018 #3497}. However, in adjacent wetland catchments where the high heat capacity of t
... [9]
Deleted: As the upper soil layers thaw, the meltwater can infiltrate the ground surface. This not only leads to increased interactions between the meltwater and the soil particles, but it also means that recent snowmelt water can interact and mix with pre-existing older water that was stored prior to the onset of the snowmelt event (i.e., pre-event water; Tetzlaff et al., 2018). It is therefore reasonable to expect that the chemical signature changes and also starts to
... [10]
Deleted: soil
Deleted:,
Deleted: suggesting a low water storage capacity in the ac
... [11]
Deleted:
Deleted: {Petrone, 2016 #2640}
Deleted:
Deleted: This ...his can be seen in would be consistent wit
... [12]

period the transit times progressively increased to longer than 1.5 years, with a significant increase in the contribution of water from the subsurface system and riparian zones. This suggest that, during the snowmelt period, the presence of impermeable ground ice and slow thaw rate of this ice result in most of the meltwater leaving the system as overland flow or evaporation. In time, however, deeper flow paths are activated and older pre-event water that was stored prior to the onset of the snowmelt becomes more important for the chemical signature of the runoff.

As indicated above, thaw rates in the active layer are not only a consequence of air temperatures. On the one hand, the latent heat of ground ice also plays an important role, which implies that wetter soils can be expected to thaw slower {Clayton, 2021 #3492}. On the other hand, wet soils have a higher thermal conductivity and could thereby thaw quicker {Clayton, 2021 #3492}. In addition, running water contains considerable amounts of heat that could influence the thaw process {Sjöberg, 2016 #3496}. This advective heat transfer would suggest that wetter areas and areas in close connection to surface-water flow-paths could thaw faster than drier areas further away from running water. In addition, microtopography influences the distribution 245 of snow, and because snow insulates the ground during winter, it can be expected that low lying areas will have higher ground temperatures in spring {O'Connor, 2019 #3491}. Taken together this means that it can be difficult to predict how thaw rates and the thickness of the thawed layer vary spatially across the landscape.

After the intense snowmelt period follows a period with less water moving through the catchment and a progressively thicker thawed layer. In boreal systems without permafrost, deeper flow paths and increased water age generally leads to a chemical 250 signature more influenced by soil processes (e.g., weathering and decomposition of organic matter (OM); {Jutebring Sterte, 2021 #3498}). Higher temperatures also lead to increased evaporation, which concentrates both elements supplied with atmospheric deposition and those elements supplied through weathering and decomposition {Alvarez, 2015 #3500}. Taken together we could expect that water collected during the summer, when transit times are longer, should have a very different chemical signature compared to the snowmelt period. However, in areas with continuous permafrost the active layer can be 255 less than a meter even when fully developed in late summer {Petrone, 2016 #2640}. That is, even the deepest flow paths are very shallow compared to boreal systems without permafrost {Jutebring Sterte, 2021 #3129}. This implies that the average age of the runoff water in an area with continuous permafrost is younger, that the flow paths are shorter and that most of the water leaving the system has had a more limited time to interact with the soil particles compared to boreal areas without permafrost {Tetzlaff, 2018 #3534}. Hence, the question remains to what extent the water chemistry in areas with continuous 260 permafrost is affected by – and reflects – processes in the catchment, or if the water leaves the system too rapidly to pick up any discernible signature from the catchment.

This knowledge is essential to make reliable predictions regarding how future changes in the climate will affect biogeochemical cycling, especially in Arctic areas with continuous permafrost. However, despite being located in a global climate hotspot {Rantanen, 2022 #3533}, the processes influencing the water quantity and quality in the Arctic remain poorly understood, 265 partly because of a declining research infrastructure {Laudon, 2017 #3530}, and a limited availability of spatiotemporal data due to the region's remote location and extreme climatic conditions {Tetzlaff, 2018 #3534; Throckmorton, 2016 #3520}.

Deleted: The transit times progressively increased to longer than 1.5 years, with a significant increase in the contribution of water ... [13]

Deleted: the riparian zones to streamflow in late summer ... [14]

Deleted: ese findings

Deleted: permafrost ...haw rate of this ice result in most of the meltwater leaving the system as evaporation or ...overland flow ... [15]

Deleted: existing ...vent older ...ater that was stored prior to the onset of the snowmelt event ... [16]

Deleted: T

Deleted: should ...thaw slower {Clayton, 2021 #3492}. On the other hand, wet soils have a higher thermal conductivity and could thereby thaw quicker {Clayton, 2021 #3492}. In addition, running water contains considerable amounts of heat that could influence the thaw process {Sjöberg, 2016 #3496}. This advective heat transfer would suggest that wetter areas and areas in close connection to surface-water flow-paths could thaw faster than drier areas further away from running water. In addition, microtopography influences the distribution of snow, and because snow insulates the ground during winter, it can be expected that low lying areas will have higher ground temperatures in spring {O'Connor, 2019 #3491}. Taken together this means that it can be difficult to predict how thaw rates and the active layer ... [17]

Deleted: er active

Deleted: of the water

Deleted: OM

Deleted: an...increased evaporation, which concentrates both elements supplied with atmospheric deposition and those elements supplied through weathering and decomposition {Alvarez, 2015 #3500}. Taken together we could expect that water collected during the summer, when transit times are longer, should have a very different chemical signature compared to the snowmelt period ... [18]

Deleted:

Deleted: (~..

Deleted: at is

Deleted: .. cm), which means that ...ven the deepest flow paths are very shallow compared to boreal systems without permafrost ... [19]

Deleted:

Deleted: iglacial...landscape ... [20]

Deleted: h...eis ... [21]

Deleted: us systems ...Tetzlaff, 2018 #3534). Hence, the question remains to what extent the water chemistry in ... [22]

Deleted: permafrost landscapes...ermafrost without , characterized by the absence of confined stream-channel networks and the ... [23]

Deleted: cnotinuous

Deleted: D...spite being located in a global climate hotspot {Rantanen, 2022 #3533},...the processes influencing the wa ... [24]

Deleted: ew

Deleted: associated with ...he region's remote location and extreme climatic conditions {Tetzlaff, 2018 #3534; Throckmorton, 2016 #3520} ... [25]

In order to better understand how flow paths, water age and chemical signatures covary over different time scales in a
410 ~~periglacial landscape with continuous permafrost~~ we have used a well-studied catchment in West Greenland, i.e., the Two-
Boat Lake ~~catchment~~ {Johansson, 2015 #1835} {Lindborg, 2016 #2498} {Petrone, 2016 #2640} {Lindborg, 2020
#2903} {Rydberg, 2023 #3338} {Rydberg, 2016 #2308}. A key novelty of the present study is the coupling of field observations
of water chemistry and thaw rates in the active layer with a well constrained, distributed, hydrological model {Johansson, 2015
#2313}. This approach allows us to address the following specific research questions: i) ~~can we observe any relation between~~
415 ~~soil wetness and the thaw rate in the active layer during the snowmelt period, ii) does the chemical signature and stable isotopic~~
~~composition of the runoff suggest that the thaw in the active layer is fast enough to allow the meltwater from snow to interact~~
~~with soil particles and pre-event water during the snowmelt period, iii) considering the dry conditions and the thin aquifer, is~~
~~the interaction with soil particles the main factor in driving the chemical composition during the unfrozen season, or does our~~
~~samples suggest that there are other important factors that contribute in shaping the chemical signature of the water.~~

420 2 Methods

2.1 Study area

Two-Boat Lake (also referred to as SS903, lake area: 0.37 km²) and its terrestrial catchment (1.7 km²) is situated in West
Greenland (Lat 67.126° Long -50.180°), about 25 km east of the settlement of Kangerlussuaq (Fig. 1). Even though the
Greenland ice-sheet is only about 500 m from the lake, it receives no direct input of glacial meltwater from the ~~ice-sheet~~
425 {Johansson, 2015 #2313}. Permafrost in the Two-Boat Lake catchment is continuous and reaches down to about 400 m, except
under the lake itself where a through talik has formed {Claesson Liljedahl, 2016 #2902}. Bedrock consists mostly of tonalitic
and granodioritic gneisses {van Gool, 1996 #1696} and is covered by till or glaciofluvial deposits that are, in turn, overlain by
a layer of eolian material {Petrone, 2016 #2640}. The climate of this region is cold and dry, with a mean annual air temperature
for the Two-Boat Lake catchment of -4.4 °C {Johansson, 2015 #1835}. The annual precipitation for the period 2011-2013 was
430 270 mm yr⁻¹ (163-366 mm yr⁻¹) with about 40% falling as snow. The high evapotranspiration in the terrestrial part of the
catchment (138-199 mm yr⁻¹) results in the runoff to the lake being low (25-159 mm) and most of the runoff is associated with
the snowmelt period {Johansson et al., 2015a}. There are no permanent streams or confined stream channels in the catchment.
Instead, surface runoff occurs in small (typically <0.5 m wide), temporary surface streams that are active only during high
runoff situations, particularly the snowmelt period {Johansson, 2015 #1835}. The vegetation zone in the area can be
435 characterised as polar tundra or steppe {Bush, 2017 #3605} {Böcher, 1949 #3606}, and the vegetation of the Two-Boat Lake
catchment has been described in detail by Clarhäll {Clarhäll, 2011 #1660}. Between 2010 and 2019 the catchment has been
the study site of the Greenland Analogue Surface Project (GRASP), which was funded by the Swedish Nuclear Fuel and Waste
Management Company (SKB). During GRASP, data regarding meteorology, hydrology, Quaternary deposits, vegetation cover
and active layer thickness were collected together with samples from soils, groundwater, surface- and lake water for chemical

Deleted: ies
Deleted: of a lake
Deleted:
Deleted: One...key novelty featur (... [26])
Deleted: e
Deleted: our ...tudy is the coupling ofnew (... [27])
Deleted: direct
Deleted: that has been developed for this catchment
Deleted:
Deleted: From this hydrological model we could derive
information on the temporal variability in both total discharge
and the importance of different flow paths through the
landscape. We also used a particle tracking simulation to
determine the age of the groundwater. ...his approach allows us
to data was then compared to chemical signatures of the water
over both shorter (within season) and longer (between seasons
and years) time scales. We also used field observations otn that
depths in the active layer to (... [28])
Deleted:
Deleted: nsver
Deleted: what is the ...elation between soil wetness and the
thaw rate in the active layer during the snowmelt period, ii) does
the chemical signature and stable isotopic composition of the
runoff suggest that theis the ...thaw of ...n the active layer is fast
enough to allow the meltwater from snow to interact with soil
particles and pre-event water during the snowmelt period, iii)
considering the dry conditions and the shallow ...thin aquifer in
the active layer (... [29])
Deleted: can we see any substantial influence of groundwater in
the runoff to the lake (i.e., are
Deleted:
Deleted: the terrestrial soils
Deleted: are ther...hat there are e (... [30])
Deleted: hydrologically connected to the aquatic system)
Deleted: (TBL,
Deleted:
Deleted: ...Iso referred to as SS903, lake area: 0.37 km²) and its
terrestrial catchment (1.7 km²) is situated in West Greenland (Lat
67.126° Long -50.180°), about 25 km east of the settlement of
Kangerlussuaq (Fig. 1). Even though the Greenland ice-sheet
(GrIS)...is only about 500 m from the lake, it receives no direct input
of glacial meltwater from the ice-sheetGrIS ...{Johansson, 2(... [31])
Deleted: of the annual precipitation
Deleted: e...lings (... [32])
Deleted: range
Deleted: , and about half of the runoff (70 mm yr⁻¹) occur (... [33])
Deleted:
Deleted: ...active layer thickness wereas (... [34])

analysis. For this study we have focused on a sub-catchment (0.6 km^2) in the northern part of the Two-Boat Lake catchment (Fig. 1).

580 **Figure 1:** Map showing the location of the Two-Boat Lake catchment within West Greenland (panel A). Panel B shows the entire Two-Boat Lake catchment, including the location of the automated weather station (AWS), ground temperature loggers, and TDR-installations. The red outline corresponds to the sub-catchment used for this study, while the blue outline marks the entire catchment area. Panel C shows a close-up of the lower part of the studied sub-catchment, including the two AL-transsects that were used to monitor the thaw in the active layer during spring 2017 and the two temporary streams that were active during this period. It also shows the location of the groundwater well (GW-12) and two lysimeter installations that were used as observation points in the particle tracking simulation, as well as the four TDR depth-profiles. The digital elevation model used to create the contour lines (10-m contour intervals) and the regolith map have been developed within the GRASP-project and are described in detail in Petrone et al. (2016).

2.2 Modelling

590 2.2.1 Hydrological modelling

During GRASP, Johansson et al. (2015b) used the modelling system MIKE SHE to develop a distributed numerical hydrological model for the entire Two-Boat Lake catchment. Here we have extended that model to cover the period 2011–2019. The model uses meteorological data collected by an automated weather station (AWS) in the Two-Boat Lake catchment (Fig. 1), and has been thoroughly validated using onsite measurements of several hydrologic variables (see Johansson et al. 595 2015b for details on model setup and validation). The model domain has a horizontal resolution of $10 \times 10 \text{ m}$, and covers the entire catchment, as well as the area directly downstream of the lake outlet (to avoid boundary effects). Vertically, the model is composed of four 25-cm thick layers in the seasonally thawed active layer (top 100 cm), where water flow occurs seasonally, and four layers in the underlying permafrost (1–200 m depth), where water flow is extremely low due to the frozen conditions. Observed daily precipitation and potential evapotranspiration (calculated from observed meteorological data) are applied as 600 the upper boundary condition, and the model simulates the catchment water balance by partitioning the incoming precipitation into evapotranspiration, surface runoff or infiltration for each cell in the model. The subsurface is composed of an unsaturated zone from which water can evaporate via the soil matrix or transpire through plant roots, percolate to the saturated zone, or remain in storage. The unsaturated zone varies in thickness depending on the depth of the simulated groundwater table. In the saturated zone below the groundwater table water can move vertically and horizontally as simulated by Darcy's law. Because 605 MIKE SHE does not itself simulate freeze-thaw processes (i.e., permafrost), the impact of freeze-thaw processes on the hydrological flow in the active layer and permafrost were parameterized by spatially and temporally varying the hydraulic properties (hydraulic conductivities, surface roughness and infiltration capacity) of the ground substrates based on the observed ground temperatures at different depths and locations in the catchment. By using this approach, MIKE SHE handles permafrost

Deleted: A vegetation map ...ocation of over ... [35]
Deleted: ...he ... [36]
Deleted: ... Panel B shows the entire Two-Boat Lake catchment, including the with the ...ocations... of the automated weather station (AWS), and 2-m deep ... [37]
Deleted: s
Deleted: marked (Aa)... The rea... outline corresponds to the sub-catchment used for this study, while the blue outline marks the entire catchment area. The insert to the left (Bb) shows the Two-Boat Lake catchment in West Greenland. While the insert to the left (Cc) ... [38]
Deleted: with the ...wo AL-transsects that were used to monitor the thaw in the active layer during spring 2017 and ... [39]
Deleted: ...he two temporary streams that were active during this period. It also shows the location of the groundwater well (GW-12) and two lysimeter installations that were used as observation points in the particle tracking simulation, as well as the four TDR depth-profiles, where active layer depth was measured during the intense monitoring period May 2017 ... [40]
Deleted: the intense monitoring period
Deleted: May 2017 (orange lines), as well as the location of lysimeters (black dot) and groundwater wells (blue circles) that were used as registration points for the particle tracking ... [41]
Deleted:
Deleted: vegeta...egolithion ... [42]
Deleted: s
Deleted: and {Clarhäll, 2011 #1660}, respectively
Deleted: .
Deleted: There are no permanent streams or confined strea ... [43]
Deleted: te
Deleted: only during high runoff situations, particularly th ... [44]
Deleted:
Deleted:
Deleted: g...d by an automated weather station (AWS) pla ... [45]
Deleted:
Deleted: .
Deleted: 1
Deleted: The ...odel simulates the catchment water balanc ... [46]
Deleted: ,
Deleted: location...epth of the simulated groundwater tabl ... [47]
Deleted: support...tself simulate freeze-thaw thermal ... [48]
Deleted: model
Deleted: following a temporal pattern
Deleted:
Deleted: method

by simulating the hydrological consequences of frozen and thawed conditions rather than simulating ground temperatures

750 {Bosson, 2013 #3522}. That is, water mobility in the subsurface zones is effectively restricted when the ground is frozen. For more details regarding the model setup and validation, please refer to Johansson et al. (2015a, 2015b).

Code developments in MIKE SHE between the original model and the extended model run for the present study resulted in two model versions and associated evaluation periods. For the original 2010-2013 period, we use the output from the original modelling run made by Johansson et al. (2015a). For the 2013-2019 period the same model was used, but with the inclusion of an additional area to the catchment. This additional area occasionally contributes runoff to the lake, depending on the intensity and magnitude of the snowmelt and rain events and it is not connected to the rest of the catchment via a predefined stream network in the model. When ponded water accumulates in this area, it is routed downhill or infiltrated to reach downstream areas of the catchment as shallow groundwater flow.

2.2.2 Particle tracking simulation to estimate groundwater age

760 In order to estimate the age of the water in the saturated zone of the studied sub-catchment of the Two-Boat Lake catchment we used the particle tracking module in MIKE SHE together with the numerical hydrological model described above (Fig. 1). This module adds virtual “particles” to the water that enters the saturated zone of the hydrological model. These particles then move (conservative) with the water through the saturated zone until they leave the saturated zone to the lake, a temporary surface stream, standing surface water, the unsaturated zone or a model boundary. Based on the time when they entered the 765 saturated zone and when they reached one of the three observation points it is possible to get an estimate of the age of the ground water (Fig. 1).

The MIKE SHE particle tracking module releases particles along the established 3D flow field in the saturated zone only. The number of particles released was flow weighted, i.e., the more water that enters the saturated zone during a certain period, the more particles were released during that period. In this case one particle was released for each millimetre of added water.

770 Once a particle leaves the saturated zone, the particle is removed from the simulation. To ensure enough time for most particles to leave the saturated zone or reach the observation points, particles were only released during the first year of the 100-year simulation and the hydrological model (i.e., the MIKE SHE hydrologic model described above) was cycled to create a 100-year simulation using the 2016-2019 meteorological conditions. Groundwater age, i.e., the transit time in the saturated zone, was then estimated by noting the date the particle entered the saturated zone and the date when the particle reached an 775 observation point (i.e., one of the groundwater wells and the two lysimeter installations found within the sub-catchment, Fig. 1). Each observation point was subdivided into three vertical layers in accordance with the hydrological model (i.e., 0-25 cm, 25-50 cm, 50-75 cm).

Deleted: the change in

Deleted: , based on ground temperature measurements, are captured in the model... That is, water mobility in the subsurface zones is thereby ... [49]

Deleted:

Deleted: only mobile ... restricted when the ground is thaw ... [50]

Deleted: extended...2013-2019 period the same model was used, but with the inclusion of an additional area to the catchment. an extended model area was included as part of the catchment ... [51]

Deleted: .

Deleted:

Deleted: part

Deleted:

Deleted: transiently

Deleted: occasionally

Deleted:

Deleted: is a transient area and the runoff contribution from this area

Deleted:

Deleted: to the TBL

Deleted: s

Deleted: summer

Deleted: . Therefore, it... is not connected to the rest of the catchment via a predefined stream network in the model. WhenIf...ponded water accumulates in this areaforms ... [52]

Deleted: in the model

Deleted: can be

Deleted: the

Deleted: The numerical model was also used to estimate the age of the groundwater using particle tracking.

Deleted: ...he MIKE SHE particle- ... [53]

Deleted: (in arbitrary units of water)

Deleted:

Deleted: Particles are tracked along the flow path and move via advective flow until they leave the saturated zone to a tempo ... [54]

Deleted:

Deleted: lost and...removed from the simulation. ... [55]

Deleted: 1

Deleted: registration...point (i.e., . The three registration ... [56]

Deleted: ...ne of the groundwater wells (GW-12)...and th ... [57]

Deleted: locations where water samples had been collected ... [58]

Deleted:

Deleted: depths in accordance with the established ...ertic ... [59]

2.3 Sample collections and field measurements

920 2.3.1 Monitoring of thaw rates in the active layer

Between May 18th and May 31st 2017 the progress of thaw in the active layer was monitored using a steel rod along two 50-m long transects (AL-transects; Fig. 1). Every second day (7 times in total) we measured the thickness of the thawed layer in 0.5 m intervals along the transects. Each measurement spot was also classified as wet (water table at or above the ground surface) or dry (water table more than 5 cm below the ground surface), and we measured the depth of any surface water. Thaw rates were then calculated by dividing the change in thaw depth between two consecutive monitoring dates by the time between the two dates. When measuring the thaw depth care was taken to not walk on the measured transect and we avoided to walk along the same path twice. No visible signs of tracks or rilling was observed either during the intense monitoring period or during the entire GRASP study period. Thaw rates for the whole monitoring period and for each spot along the transects were calculated as the average thaw rate for the entire period.

930

2.3.2 Meteorology and ground temperatures

Air temperature and precipitation (as both rain and snow) were recorded using an automated weather station (AWS) placed in the Two-Boat Lake catchment and ground temperatures were measured at two locations in the catchment using HOBO U12-008 sensors (Fig. 1; see {Johansson, 2015 #1835} for further details). Time Domain Reflectometry (TDR) sensors (Cambell Scientific, CS615 sensors connected to a CR1000 data logger) were located in three clusters, each consisting of either three or four depth profiles of four sensors evenly distributed from 5-10 cm below the ground surface down to 40-50 cm (Fig. 1; see {Johansson, 2015 #1835} for further details).

2.3.3 Estimate of the amount of ground ice

To estimate the amount of water released from melting ground ice during the intense monitoring period of 2017, we used the soil moisture content recorded by the TDR sensors in the sub-catchment at the time of freeze-up in the fall of 2016. This data allowed us to estimate the ground ice content at different depths, and thus, estimate the release of meltwater as the thaw progresses. This estimate should be considered as a minimum, because moisture migration towards the thaw front could give a higher ice content in spring compared to the fall conditions. The amount of water released from melting ground ice between May 18th and May 31st, 2017, was estimated based on the water content linearly interpolated for between observation depths (TDR sensors) and the thaw depth for each point along the transects at the end of the intense monitoring period.

Deleted: 1

Deleted: thaw

Deleted: measurements

Deleted: active layer thickness...nat every ... [60]

Deleted: measurement...onitoring dates s ... [61]

Deleted: same measurements

Deleted: consecutive

Deleted: During measurements...care was taken to not walk on the measured transect and we avoided to walk along the same path twice...N, and n... visible signs of tracks or rilling riling ... [62]

Deleted:

Deleted: observation

Deleted: point ...pot along the transects, ... [63]

Deleted: mean...verage thaw rate for all dates observed ... [64]

Deleted: An estimate of error in the thaw rates was calculated using negative changes in thaw depth between dates, based on the assumption that the thickness of the thawed active layer thickness never decreased during this period (air temperature was only below zero for a few hours on May 22nd), and that all negative changes are therefore solely due to measurement error.¹

Deleted: {Johansson, 2015 #1835}.... and g G ... [65]

Deleted: several

Deleted: were measured at different depths in the active layer using HOBO U12-008 sensors (Fig. 1; see {Johansson, 2015 #1835} for further details). Time Domain Reflectometry (TDR) sensors (Cambell Scientific, CS615 sensors connected to a CR1000 data logger) were located in three clusters, each consisting of either three or four depth profiles of four sensors evenly distributed from 5-10 cm below the ground surface down to 40-50 cm four points...Fig. 1; with each sensors at four depths in the active layer, in the studied sub-catchment ... [66]

Deleted: ,

Deleted:

Deleted: To estimate the amount of water how much water

Deleted: that

Deleted: was released from melting ground ice during the observation period, soil moisture content at the time of freeze-up in the fall, as recorded by the TDR sensors, was used to estimate ground ice content at thaw at different depths.

Deleted:

Deleted: observation...period of 2017, we used the soil moisture content recorded by the TDR sensors in the sub-catchment at ... [67]

Deleted: estimate...o estimate the ground ice content at the ... [68]

Deleted: depth of water

Deleted: 1

Deleted: calculated...based on the water content linearly ... [69]

Deleted: The depth of water released from melting ground ... [70]

2.3.4 Collection of water samples and chemical analysis

Precipitation (rain and snow; n=8 and n=13, respectively), surface-water (n=31), groundwater (groundwater wells and zero tension lysimeters, n=23 and n=22, respectively) and lake-water (n=28) samples have been collected at an irregular, low, frequency between 2010 and 2019 {Lindborg, 2016 #2498}. Groundwater wells are fully screened and collect water from the entire thawed layer, while lysimeters collect water at discrete depth (i.e., either 15 or 30/35 cm depth). The ceramic body of the lysimeters have a pore size of 1 µm and no additional filtering was done. For other sample types the majority were filtered in the field using 0.45 µm polycarbonate membrane filters (two lake water and two stream water samples were analysed unfiltered). All samples were frozen after sampling and were kept frozen until analysis. Water samples have been analysed for their elemental composition (n=129) using Inductively-Coupled Plasma Sector-Field Mass Spectroscopy (ICP-SFMS) at ALS in Luleå, and/or dissolved organic carbon (DOC; n=62) using the NPOC-method at either Stockholm University (Dept. of Ecology, Environment and Plant Science), ALS in Luleå or Umeå University (Dept. of Ecology and Environmental Science). See Lindborg et al. (2016) for further details.

In addition to this low frequency sampling, a number of samples were collected simultaneously with the intense monitoring period (i.e., between May 18th and May 31st, 2017). One set of samples was used for ICP-SFMS and DOC measurements. This sample set consists of samples from where one of the temporary surface streams enter Two-Boat Lake, the uppermost groundwater well (GW-12), one lysimeter (15-cm depth) and the snowpack above the groundwater well (Fig. 1). A second set of samples was used for analysing stable water isotopic signatures (δD and $\delta^{18}\text{O}$). Surface water was sampled every second day from two small temporary surface streams that crossed the transects used to monitor the thaw depth. Snow was sampled from three locations in the sub-catchment, and water from ground ice in the active layer was sampled in three locations along one of the temporary surface streams by thawing pieces of frozen ground in plastic bags and sampling the meltwater. All samples were taken as duplicate samples (field replicates), and the stable isotopic composition in each sample was analysed in triplicate (laboratory replicates). Stable water isotopes in all water samples from the 2017-sampling were analysed at Stockholm University using a Cavity Ring-Down Spectroscopic-Picarro (L2130-I Picarro Inc., manufacturer's precision of $\delta D < 0.1\text{‰}$ and $\delta^{18}\text{O} < 0.02\text{‰}$). The analysis scheme of Penna et al. {Penna, 2010 #3610} was adopted, and results were reported as δ -values in per mille (‰) relative to Vienna Standard Mean Ocean Water (VSMOW). All calculations and statistical treatments were made using the average stable isotopic composition of the laboratory replicates.

2.4 Data analysis

2.4.1 Principal component analysis

To evaluate and visualize similarities and differences between different types of water samples the chemical data from rain, snow, temporary surface streams, groundwater wells, lysimeters and the lake itself were subjected to a principal component analysis (PCA). For temporary surface streams, groundwater wells and lysimeters only samples from the sub-catchment were included. Prior to the PCA, elements for which the majority of observations were below the reporting limit in all compartments

Deleted: 7

Deleted: from temporary surface streams, groundwater wells and zero tension lysimeters

Deleted: open in their entire length

Deleted: installed to capture...ater from the entire thawed active layer, while and...ysimeters collect water at discrete depth (i.e., either are installed in pairsat ...5 or and

... [71]

Deleted: /

Deleted: -

Deleted: was done

Deleted: ...as done needed

... [72]

Deleted: ...but the groundwater well

... [73]

Deleted:

Deleted: samples were...filtered in the field using (...45 l

... [74]

Deleted: ...lake water and two...stream water samples were analysed unfiltered). All samples were frozen after sampling and were kept frozen until analysis. WThese w

... [75]

Deleted: ...issolved organic carbon (DOC; n=62) using the NPOC-method at either Stockholm University (Dept. of Ecology, Environment and Plant Science), ALS in Luleå or Umeå University (Dept. of Ecology and Environmental Science). See Lindborg et al. (2016) for further details; {Lindborg, 2016 #2498}).

... [76]

Deleted: as

Deleted: of the thaw in the active layer

Deleted: thaw

Deleted: ere

Deleted: a...snowpack above the groundwater wellGW-12

... [77]

Deleted: ere

Deleted: active layer

Deleted: on...fromat

... [78]

Deleted: on at

Deleted: (pieces of frozen ground whereas thawed...y thawing pieces of frozen ground in plastic bags,...and sampling the meltwater was sampled)

... [79]

Deleted: A...l water samples from the 2017-sampling were analyzed...nlysed at Stockholm University using a Cavity Ring-Down Spectroscopic-Picarro (L2130-I Picarro Inc., manufacturer's precision of $\delta D < 0.1\text{‰}$ and $\delta^{18}\text{O} < 0.02\text{‰}$).

The analysis scheme of Penna et al.(2010)

... [80]

Deleted: Emma valley ...ere included. Prior to the PCA, elements for which where

... [81]

were removed. For the remaining elements all values below the reporting limit were replaced with half the reporting limit, and
180 ~~the data set was~~ then converted to z-scores (average=0; variance=1) to remove any effects of scaling. After an initial PCA, we
also removed elements with communalities <0.7, as well as two snow samples that had elemental concentrations similar to
lake water indicating that they ~~had been~~ contaminated by lake water (collected 2014-04-11) and a single sample from a
groundwater well (GW-11, 2011-09-13) that had an ~~unproportionally~~ strong influence on the outcome of the PCA. This
resulted in a total of 35 elements and 55 observations (rain=8, snow=6, surface water=7, groundwater=23, lake water=11). All
185 principal components (PCs) with Eigenvalues above one were extracted, and a Varimax rotated solution was used.

2.4.2 Correlation analysis

All statistical calculations for the comparisons between hydrological variables and the chemical signature were done using SPSS v.29 (www.IBM.com). Correlation coefficients were calculated as Pearson correlations (denoted r) if both variables were normally distributed (according to a Shapiro-Wilk test) or Spearman rank correlations (denoted r_s) if at least one variable
190 was non-normally distributed. For all tests a significance level of 0.05 was used. The majority of the runoff in the Two-Boat Lake catchment occurs as groundwater, and several of the hydrological parameters reported from the model are highly correlated. We have therefore only used the total runoff to the lake and the proportion of deep groundwater for the correlation analysis (these two parameters show no correlation to each other).

3 Results

3.1 Hydrological modelling 2013-2019

The observed ~~average~~ annual precipitation for the extended modelling period (i.e., 2013-2019) was 308 mm yr^{-1} , and varied from a minimum of 247 mm yr^{-1} in 2014 and a maximum of 407 mm yr^{-1} in 2017. Based on the local meteorological observations, the hydrological model estimates that ~~on average, two thirds of~~ the precipitation left the system as evapotranspiration (65%), and the period from late April through October was characterized by a precipitation deficit (i.e.,
195 precipitation minus evapotranspiration was less than zero), whereas the winter period had a precipitation surplus. On an annual basis the ~~average~~, modelled, net input of water to the catchment (i.e., precipitation minus evapotranspiration) was 109 mm yr^{-1} , with a variation from 64 mm yr^{-1} (2018) to 170 mm yr^{-1} (2017). ~~Viewed over the 2011-2019 period most of this excess water left the terrestrial system as runoff (on average 98 mm) and entered the lake. The snowmelt period was the dominant runoff event in all modelled years and most commonly the runoff peaked in early June (Fig. 2). During the early snowmelt period a substantial part of the runoff occurred as overland flow directly to the lake (i.e., water that had not been in contact with the subsurface), but for the latter part of the snowmelt period and the summer season the runoff was dominated by groundwater discharging directly to the lake or via temporary surface streams (Fig. 2). The exception to this pattern was 2018, when overland flow also occurred late in the snowmelt period and during summer. On an annual basis overland flow made up 7-52% of the~~

Deleted: the
Deleted: as
Deleted: ted
Deleted: are
Deleted: n
Deleted: ot
Deleted: ,
Deleted: (
Deleted: very
Deleted: (scores were instead assigned passively to these data points)...
Deleted: 2
Deleted: 8

Deleted: Meteorology and h

Deleted: –
Deleted: 1
Deleted: mean
Deleted: most of
Deleted:
Deleted: aves
Deleted: mean
Deleted: 8
Deleted: aves
Deleted: s

Deleted: during
Deleted:

1235 annual runoff (average 28%), with 2016 and 2018 standing out from the other years with about half the water leaving the catchment as overland flow.

Observed ground temperatures down to 2 meters depth showed a clear seasonal pattern that became muted with depth (Fig. 2). On average for the 2011-2018 period the maximum thaw depth, which occurred in August, reached the temperature sensor at 0.75 m. The thaw period at 25 cm started in late May (May 29th) and reached 50 cm by mid-June (June 20th). The ground then stayed unfrozen for about four months, and froze at 25 cm in late September and in mid-October at 50 cm. That the deeper parts of the active layer (at 50 cm) stayed unfrozen for almost a month after air temperatures dropped below zero degrees and the surface layers froze means that groundwater flow could occur also after the ground surface had frozen.

1245 Figure 2. The upper panel (A) shows the modelled mean daily runoff (total runoff and as groundwater) to Two-Boat Lake for the entire modelling period (March 2011 to July 2019). The vertical line denotes the division between the original modelling run presented in Johansson et al. (Johansson et al., 2015a), and the extended period presented here. The shaded area indicates the intense monitoring period in 2017. The lower panel (B) shows the observed ground temperature (daily mean for 2011-2018) measured down to 2 m depth (cf. Fig. 1 for location)

1250 Figure 3. Age distribution for water particles reaching the three observation points used in the particle tracking simulation for three depth layers (A: 0-25 cm, B: 25-50 cm and C: 50-75 cm). Note that the scale differs between panel A compared to panel B and C.

1255 Figure 4. Modelled average daily runoff from the hydrological model for the period 2016-10-01 to 2017-9-30 (a), observed daily air temperature (mean) for the Two-Boat Lake catchment for the same period (b), and precipitation as snow or rain for the same period (c). The intense monitoring period (May 18th to May 31st) is indicated by the shaded area

3.2 Particle tracking simulation and groundwater age

1260 The particle tracking simulation suggest that most of the tracked particles moved through the uppermost layer of the model (i.e., 0-25 cm; Fig. 3). From the start of the snowmelt period until the end of June, when most particles are registered at the observation points, the 0-25 cm layer was dominated by very young water that generally entered the saturated zone within the previous 3 months. As the unfrozen season progressed the average age of the tracked particles increased in all three layers, and the flow also shifted to deeper flow paths as the unfrozen season progressed. In deeper layers the peak in number of 1265 registered particles occurred later in the season (May-June and September for 25-50 cm and 50-75 cm, respectively), and the particles registered in the deeper soil layers also tended to have higher ages (Fig. 3). Almost all the particles that moved through the deepest part of the active layer had spent more than a year in the saturated zone, and about two thirds of the particles were older than two years. It should be noted that the ages only relate to particles released as water enter the saturated zone, hence,

Deleted: mean...28 ... [82]
Deleted: . Here... with 2016 and 2018 standing out from the other remainder of the the ... [83]
Deleted: G
Deleted: omes
Deleted: s...in August, reacheds ... [84]
Deleted: cd
Deleted: s...in late May (May 29th) and reacheds...50 cm by mid-June (June 20th). The ground then stayeds...unfrozen for about four months, and freezezees ... [85]
Deleted: goes
Deleted: s...below zero degrees and the surface layers freezeze...means that groundwater flow couldan...occur also after the ground surface hads ... [86]
Deleted: ... shows the modelled medi...n daily runoff (total runoff and as groundwater) to Two-Boat Lake for the entire modelling period (March 2011 to July 2019). The horizontal vertical line denotes the division between the original modelling run presented in Johansson et al. (Johansson et al., 2015a), and the extended period presented here. The shaded area indicates the intense monitoring period in 2017. The lower panel (B ... [87]
Deleted: 4
Deleted: registration...bservation points used in the particle tracking simulation for three depth layers (Aa... 0-25 cm, Bb... 25-50 cm and Cc... 50-75 cm). Note that the scale differs between panel A compared to panel B and C. ... [88]
Deleted: 3
Deleted: mean
Deleted: grey box
Deleted: G
Deleted: was done for the period 2016-2019, and
Deleted:
Deleted: during this period ...ost of the groundwater ...raked particles moved through the uppermost layer of the model of the active layer saturated zone ... [89]
Deleted: 4... From the start of the snowmelt period until the end of June ... [90]
Deleted:
Deleted:
Deleted: upper...-25 cm layer of the saturated zone ...as dominated by very young water that i.e. ...nearly entered the saturated zoneinfiltrated ... [91]
Deleted: last
Deleted:
Deleted: , and most particles were registered at the model ... [92]
Deleted: 4
Deleted: water ...articles that moved through the deepest p ... [93]

1395 it is not possible to track the age of water that was present in the saturated zone at the start of the simulation. Also, because the 100-year simulation does not include any warming trend (it repeatedly cycles the 2016-2019 meteorological conditions), it does not include any release of water from thawing permafrost.

3.3 Intense monitoring period in spring 2017

During the winter 2016/2017, which preceded the intense monitoring period in late May 2017, the precipitation AWS in the Two-Boat Lake catchment indicate that 260 mm of snow-water equivalent accumulated in the catchment. According to the 1400 hydrological model 26.5 mm of this water were lost due to sublimation or evaporation (Fig. 4). Based on the measured air temperature, the hydrological model indicates that the snowmelt started on April 30th, with about 8% of the snowmelt-associated runoff occurring before May 13th, mainly as overland flow directly to the lake (Fig. 4). This means that a substantial part of the accumulated snowpack had already melted (or sublimated) at the beginning of the intense monitoring period (May 18th to May 31st), and snow patches were mainly confined to higher elevations in the catchment. Even so, multiple small temporary 1405 surface streams were still observed across the catchment, and according to the hydrological model the runoff remained high until June 10th, but, during the latter period most of the water had spent some time as groundwater before entering a temporary surface stream or reaching the lake.

Time Domain Reflectometry (TDR) sensors installed in the sub-catchment showed a soil moisture content of approximately 30% during soil freeze-up in the fall of 2016. Furthermore, the ground temperature sensors in the sub-catchment showed that 1410 thawing of the ground at 5 cm depth started on May 10th, and reached 15 cm depth on May 20th. The melting of ground ice in the active layer corresponds to a total water release of at least 18 mm of water during the sampling period, assuming that the recorded soil temperatures and water content at the TDR sensors are representative for the entire sub-catchment. During the intense monitoring period (May 18th to May 31st) there was also an input of total of 7 mm of rain, with the largest rainfall event of 0.8 mm occurring on May 30th.

1415 3.4 Thaw rates in the active layer

The average thaw depth along the two AL transects closely resembled the thaw depth observed using the ground temperature sensors in the sub-catchment, but there was considerable variability in ground thaw along the two transects (Fig. 1). At the start of the intense monitoring period (May 18th) the average thaw depth along the studied transects was 10.4 cm, and by the 1420 end of the period (May 31st) it had increased to 15.3 cm. On the first day of sampling, May 18th, 30% of the measurement points had a water level at or above the ground surface, and 7% were covered by surface water. The surface water formed several puddles, and two temporary surface streams crossed the upper transect of which one stream also crossed the lower transect (Fig. 1). During the monitored period wet locations (with water table at or above the ground surface) exhibited a higher 1425 thaw rate (0.8 cm day⁻¹) than dry locations (0.6 cm day⁻¹, p-value <0.0001). The maximum observed thaw occurred under one of the temporary surface streams, where the thawed layer reached down to 48 cm below the ground surface on the last day of the monitoring period (May 31st).

Deleted: and that no
Deleted: of
Deleted: ¶ ... [94]

Deleted: measurements in
Deleted: s
Deleted: , of which the hydrological model estimate that
Deleted: evaporation or
Deleted: 3
Deleted: According
Deleted: to
Deleted: indicate
Deleted: ling
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted: 3
Deleted: at the beginning of the intense monitoring period (May 18th to May 31st),
Deleted: then
Deleted:
Deleted: at different depths in the ground at four locations on the hillslope ...
Deleted: ,
Deleted:
Deleted:
Deleted: active layer
Deleted: thaw
Deleted: Active layer
Deleted: t
Deleted: to May 31st
Deleted: (±0.2)
Deleted: (±0.2)
Deleted:
Deleted:
Deleted:
Deleted:
Deleted: ,
Deleted: active

3.5 Stable water isotopes

The stable water isotopic composition of water from temporary surface streams sampled in May 2017, as well as average for precipitation and lake water taken in 2011, 2014, 2017, and 2019, is shown in Fig. 5 and SI-Fig. 1. For the precipitation there was a clear seasonality in the composition with more negative values in the snow samples (average $\delta D = -159.7 \text{ ‰}$, standard deviation 12.5 ‰) compared to rain samples (average $\delta D = -115.8 \text{ ‰}$, standard deviation 9.3 ‰). The compositions in samples from surface water (average $\delta D = -140.6 \text{ ‰}$, standard deviation 2.0 ‰) and ground ice (average = -137.5 ‰, standard deviation 0.8 ‰) showed a much smaller spread, and the stable water isotopic values fall between the values for snow and rain (Fig. 5).

Figure 5, Panel A, consists of a combined loadings and score plot for the first two PCs (PC-1 and PC-2) intended to provide an overview of how the chemical signature varies between sample types. Precipitation samples are found in the lower left-hand corner, while lake water samples are found in the upper left-hand corner. Surface water and soil water samples (lysimeter and groundwater wells) generally have similar or higher PC-1 scores compared to precipitation and lake water, with the highest scores found in soil water samples. For PC-2 surface and soil water are intermediate to precipitation and lake water samples. The insert shows the three water chemistry samples from the intense monitoring period, with the arrow indicating the trend with time. Panel B shows the stable water isotopic composition (δD and $\delta^{18}\text{O}$) in snow, rain, ground ice samples and surface water samples. The symbols indicate the sample means, while the error bars indicate the standard deviation of all samples collected over the entire study period. The insert shows the stable isotopic composition in the six stream water samples and the melted ground ice sampled in May 2017. The arrow indicates the trend with time, and error bars represent the variability between replicates. For access to the full datasets for both water chemistry and stable isotopic composition we refer to Lindborg et al. (2016) and its associated Pangaea data bases. Panel C shows how the fraction of runoff from melting ground ice and/or rain increases in the surface water over the intense monitoring period. The mixing model is based on the change in δD in the temporary surface stream and using the average of rain (including ground ice) and snow as endmembers.

During the two-week intense monitoring period the stable isotopic composition in samples from the temporary surface streams changed considerably (Fig. 5). At the end of the monitoring period the δD signature of the surface water was heavier and more closely resembled ground ice or rain than snow. The mixing model – which was based on the δD in temporary surface streams, rain (including ground ice), and snow samples – showed that on the first day of sampling 39% of the surface water originated from rain, while 49% can from rain on the last day of sampling (Fig. 5). The uncertainty range is high due to the high spread of values in snow and rain samples. Only 7 mm of rain fell during the sampling period (and 3 mm the week before), while the estimated water released from melting of ground ice in the thawed part of the active layer was 18 mm. Most of the rainwater therefore likely originated from rain that fell during the previous year and that had been stored as ground ice during winter.

3.6 Surface water chemistry

The PCA identified five principal components (PCs) with Eigenvalues above one, and together they explain 90% of the variance in the data (Fig. 5). The first PC (PC-1) is driven by differences in elements related to silicate minerals that can be

Deleted: 1
Deleted: signature
Deleted: samples
Deleted: samples

Deleted: winter ()
Deleted: summer ()
Deleted: values
Deleted: The upper left
Deleted: p
Deleted: ()
Deleted: a)
Deleted:
Deleted: In the upper right panel (b)
Deleted: 1
Deleted: replicate
Deleted: from the intense monitoring period
Deleted: , with the
Deleted: ing
Deleted: The lower
Deleted: panel ()
Deleted: c)
Deleted: mean

Deleted: rain
Deleted:
Deleted: Deuterium signatures
Deleted:
Deleted: in the active layer

assumed to be released through weathering (e.g., Al, Ce, Nd, La, Pr, Sc, Th, Y, Zr. P: {Deer, 1992 #1481}). A part of the variability in Mg, Sr and Ca, which also are released through weathering, is also associated with this PC (the elements plot in the upper right-hand quadrant). Samples with high PC-1 scores comes from lysimeters and groundwater wells, i.e., water that has had more contact with soil particles, and samples from precipitation and lake water have negative scores. DOC, which couldn't be included in the PCA because it was not analysed in all of the samples used for ICP-MS analyses, showed a high positive correlation with PC-1 scores ($r_s=0.95$, p-value <0.001). The second PC (PC-2) is driven by elements that originate from the ocean (e.g., Cl and Na), and that are delivered to the catchment with precipitation. In addition, a part of the variability in elements like Ca, Mg, Sr and K – which are all present in the precipitation but that could also be released during interaction with soil particles – is associated with PC-2. For PC-2 there is a split between samples from the lake on the positive side and precipitation on the negative side (with soil water samples in the middle). That the stream and lake water has considerably higher concentrations of elements not released by weathering (e.g., Cl, Na) as compared to the precipitation indicates that an enrichment caused by evaporation (cf. {Rydberg, 2023 #3338}). The remaining three PCs are driven primarily by a small number of samples without any obvious trends, and they are therefore difficult to interpret in terms of general processes. For the remainder of this paper, we will focus on PC-1 and PC-2, which both reflect processes that vary over the course of the year, e.g., depending on the source of the water, the air temperature and the intensity in the runoff.

3.7 Correlations between hydrology and chemical signature of surface and soil water

During the intense monitoring period samples for geochemical analyses were collected on three occasions (May 19th, 25th and 31st). During this period the hydrological modelling suggests that the total runoff as both groundwater and overland flow decreased (from 9.4 mm to 4.2 mm between May 19th and May 25th), and that it then increased slightly to 6.0 mm on May 31st.

During the same period the proportion of deep groundwater increased from 2.5, to 4.1 and finally 4.4% of the total runoff. Looking at the PC-scores, both PC-1 and PC-2 scores increase over the intense monitoring period. The PC-1 scores went from -0.36 on May 19th, to -0.30 and then -0.25 on May 31st. For PC-2 the main shift occurred between the 19th and 25th when the score increased from -0.56 to -0.41. On May 31st the PC-2 score was essentially the same as on May 25th (-0.40). During this period DOC changed from 20.8 mg L⁻¹ to 13.5 mg L⁻¹ and finally 14.7 mg L⁻¹.

If we look at surface-water samples collected in the studied sub-catchment during the entire 2011-2019 period (n=7) the chemical signature in the surface water varies considerably. When the proportion of deep groundwater is high, there is an increase in the concentrations of weathering products released from soil particles (i.e., PC-1 scores). This results in a positive correlation between PC-1 and proportion of deep groundwater ($r_s=0.79$, p=0.036). For elements where the source mainly is precipitation and that is enriched through evaporation (i.e., PC-2), there is an increase in the concentrations as the total runoff decreases over the course of the unfrozen season. For example, PC-2 scores are positively correlated with day-of-year (DOY; $r_s=0.89$, p=0.007), and there is a negative correlation between PC-2 scores and total runoff ($r=-0.81$, p=0.029). For the surface-water samples neither PC-1 nor PC-2 scores are correlated with DOC, but similar to PC-2 scores, DOC is negatively correlated to the total runoff ($r=-0.59$, p=0.017).

Deleted:
Deleted: and part of variability in Mag, Sr and
Deleted: ;
Deleted: Deer et al. 1992
Deleted:
Deleted: ing
Deleted: of
Deleted: geochemical
Deleted: , Br,
Deleted: a
Deleted: are also
Deleted:
Deleted: Here we can see
Deleted: these
Deleted: , Sr, Mg, K, Ca
Deleted: .
Deleted: the
Deleted: is
Deleted: differences that are reasonable to assume should

Deleted: stry

Deleted: between May 19th and May 25th, f
Deleted: the
Deleted:

Deleted: (PC-2)

When looking at the lysimeters and groundwater wells – i.e., the soil water – a different pattern emerges. First, the chemical signature in the soil water is even more variable compared to the surface water. Second, PC-1 and PC-2 are correlated ($r_s=0.47$; 1590 $p=0.021$), and both are correlated with DOC ($r=0.92$, $p=0.001$ and $r=0.86$, $p=0.001$, respectively). This indicates that even if the processes driving PC-1 (weathering), PC-2 (evapotranspiration) and DOC (organic matter decomposition) are not related, there is a tendency that soil water is enriched in all three in a similar way. In the soil water, DOC shows a negative correlation with total runoff ($r_s=-0.92$, $p<0.001$), while neither PC-1 nor PC-2 scores for the soil water are correlated to any of the hydrological variables, and neither PC-1, PC-2 nor DOC are correlated to sampling depth.

1595

4 Discussion

4.1 Young water and shallow flow paths dominates the runoff

The output from the extended hydrological modelling period (2013-2019) largely corroborates the findings from the original modelling period (2011-2013; {Johansson, 2015 #2313}. That is, Two-Boat Lake is situated in a dry periglacial landscape, where a considerable fraction of the precipitation (55-80%) is lost through sublimation or evapotranspiration in the terrestrial system, and where surface water runoff is mostly confined to high flow situations during snowmelt period. That there aren't any major differences in the hydrological situation is in line with findings that the study area has not experienced any significant change in climate over this period (2001-2019), even though a long-term (1981-2019) warming trend has been suggested for the region {Hanna, 2021 #3536}. All years except 2017, which was slightly wetter (405 mm yr^{-1}) compared to the previously 600 wettest year, i.e., 2012 (366 mm yr^{-1}), fall within the range of 2011-2013 for precipitation, evapotranspiration and total runoff from the catchment to the lake (Fig. 2). The annual pattern in runoff is also very similar. It is highest during the snowmelt period, which accounts for about half of the annual runoff to the lake {Johansson, 2015 #2313}. During summer the total runoff decreases as a response to increased evapotranspiration (which generally exceeds the input of water during this period), while in the fall (August-September), evaporation decreases and the total runoff to the lake increases again (Fig. 2).

605 According to our particle tracking simulation most of the water that moves through the sub-catchment is young, especially during the snowmelt period when almost all groundwater is young (i.e., less than 1-year old). The model also suggests that old groundwater (i.e., more than 10 years) is lacking in Two-Boat Lake, which is in line with other studies from supra-permafrost groundwater systems in areas with continuous permafrost {Walvoord, 2016 #3541}. The results of our particle tracking simulation also aligns with studies of water transit times in permafrost areas using tracer methods, indicating that it is common 610 that most of the water moves through permafrost landscapes is young (e.g. {Tetzlaff, 2018 #3534} {Throckmorton, 2016 #3520} {Cochand, 2020 #3540}). However, a high proportion of young water is actually common in streams in all climate zones {Jasechko, 2016 #3485}, but in continuous permafrost landscapes it appears that water ages are even lower than in areas without permafrost {Wang, 2022 #3542} {Hiyama, 2013 #3543}. For example, a similar particle tracking simulation made for a boreal forested catchment without permafrost indicated that most of the water also was between 0.8- and 3.7-years old

Deleted: Fast and shallow flow paths controls water chemistry
Deleted:
Deleted: is
Deleted:
Deleted: detected
Deleted: s
Deleted: both
Deleted: 1
Deleted: the
Deleted: Similar to the original modelling period by Johansson et al. (2015a), the runoff is dominated by groundwater, either directly to the lake or via the temporary surface streams, but the extended modelling period reveals more between-year variability. Even though the annual precipitation is relatively similar between 2014, 2015, 2016 and 2018 (247, 284, 286 and 261 mm yr^{-1} , respectively) the amount of overland flow varies considerably. 2014 and 2015 have a very low contribution of overland flow (less than 15 % of total runoff), whereas in 2016 and 2018 almost 50 % of the annual runoff occurred as overland flow either directly to the lake or via temporary surface streams. 1
Deleted: and
Deleted: is
Deleted:
Deleted: O
Deleted: and that is typically associated with deep and long flow paths. This lack of old water
Deleted: , which are generally lacking in
Deleted: Because our simulation does not include any warming trend that could induce permafrost thaw, there is no considerable release of older groundwater from melting of permafrost ground ice.
Deleted: permafrost
Deleted: the
Deleted: 1
A...

{Jutebring Sterte, 2021 #3129}. However, unlike for the Two-Boat Lake catchment, where the maximum age of water was a few years, a considerable fraction (~25%) of the water in the boreal system had an age of between 10 and 1000 years. In continuous permafrost areas in northern Alaska, water emanating from springs exhibited similar traces of mixture with older water that could have moved through deeper taliks {Koch, 2024 #3489}. That this effect cannot be seen in Two-Boat Lake is likely related to the recharging nature of the talik under Two-Boat Lake (Johansson et al. 2015b). It should be noted that our model only simulates the age of groundwater in the saturated zone, and that during the snowmelt period runoff occurs also as overland flow in the temporary stream network. Therefore, our simulated water ages cannot be directly compared to results from tracer-based methods.

Even if the groundwater in Two-Boat Lake generally is young, there is a clear seasonal trend with increasing water age as the unfrozen season progresses. This pattern can be seen in the 0-25 cm layer, but it is especially pronounced in the 25-50 cm layer. At the deepest layer, i.e., 50-75 cm, there is no clear seasonal trend, but most of the water that moves in this layer is older than two years. These patterns imply several things. First, the movement of water in the uppermost layer (i.e., 0-25 cm) is mostly restricted to the snowmelt period, and as the thaw depth increases, the groundwater takes deeper flow paths. Similar patterns have been documented from other permafrost regions {Zastruzny, 2024 #3544} {Lebedeva, 2019 #3545} {Juhs, 2020 #3546}. Second, the turnover time of the water in the uppermost layers is relatively short, but the time that the water has spent in contact with the soil particles increases as the unfrozen season progresses. Third, for the deepest analysed layer (i.e., 50-75 cm) the turnover time is longer, and most of the water has spent several seasons in the saturated zone, i.e., this water has undergone at least one freeze-thaw cycle.

4.2 The effect of fast and shallow flow paths on the water chemistry

Most of the variability in water chemistry can be explained by either the amount of weathering products (PC-1) that has accumulated through interactions with soil particles or the degree of evaporative loss the water has experienced (PC-2). Based on the correlations between the PC-1 and PC-2 scores for the surface-water samples and the hydrological variables from the hydrological modelling it seems as if these two components are controlled by separate hydrological factors. For surface-water samples, PC-2 scores – which represent elements supplied with precipitation and that are concentrated through evapotranspiration – show a negative correlation with total runoff. In spring, when large volumes of snowmelt water move through the system, the chemical signature is more diluted and closer to that of precipitation. The PC-2 scores then progressively increases over the unfrozen season, and the chemical signature of the stream water shifts towards a signature that is more characteristic for the lake water (Fig. 5). That is, as the water from precipitation moves through the catchment, it becomes more concentrated in elements that were present in the precipitation when it fell (e.g., chlorine, Cl). This interpretation is also consistent with the PC-2 scores being positively correlated with DOY, and with water ages increasing as the unfrozen season progresses (Fig. 3). That evapotranspiration is an important process in this dry landscape can be seen in the hydrological model, where two-thirds to four-fifths of the annual precipitation leaves the terrestrial system as sublimation or evapotranspiration. This loss of water translates to a concentration factor of 3-5, which is consistent with the 4.1 times

Deleted:

Deleted: calculates

Deleted: to a varying degree

Deleted: soil

Deleted: active layer

Deleted: .

Deleted: Similar to the original modelling period for TBL by Johansson et al. (2015a), the runoff in the catchment is dominated by groundwater, either directly to the lake or via the temporary surface streams, but the extended modelling period reveals more between-year variability also for years with relatively similar amounts of precipitation. Even though the annual precipitation is relatively similar between 2014, 2015, 2016 and 2018 (247, 284, 286 and 261 mm yr⁻¹, respectively) the amount of overland flow varies considerably. 2014 and 2015 have a very low contribution of overland flow (less than 15 % of total runoff), whereas in 2016 and 2018 almost 50 % of the annual runoff occurred as overland flow either directly to the lake or via temporary surface streams. Our results from combined hydrological modelling and water sampling over several years, show that his interannual variability in runoff processes is an important determinant for water chemistry in the catchment.⁴

Deleted: affect

Deleted: s

Deleted:

Deleted: in the water

Deleted: .

Deleted: which is supported by the

Deleted: – which

Deleted: (PC-2)

Deleted: moves

Deleted: , but when runoff

Deleted: de

Deleted: the

Deleted: one that

Deleted: resides in

Deleted: 4

increase in Cl concentration between precipitation and stream water (SI-Table 1). Chlorine is almost exclusively supplied via precipitation and is often used as a conservative tracer for the input of solutes via the precipitation {Johnson, 2000 #370; {Lockwood, 1995 #3160}.

For elements supplied through weathering it is not primarily the amount of runoff that is of importance. Instead, it is the proportion of runoff classified as deep groundwater (i.e., 50–75 cm depth in our model) that has an effect. In July and August,

the majority of this deep groundwater had spent more than two years in the saturated zone (Fig. 3). That older and deeper groundwater is richer in weathering products is consistent with studies in other systems and other regions {Jutebring Sterte, 2021 #3129} {Williams, 2015 #3487}. When looking at the in concentrations in calcium (Ca, supplied both via precipitation and weathering), lanthanum (La; supplied primarily via weathering) and Cl in different precipitation and stream water they show different enrichment {Deer, 1992 #1481} {Johnson, 2000 #370}. As mentioned above, Cl increase about 4 times between precipitation and stream water, and can therefore be explained by evapotranspiration alone. For La and Ca the difference is

much higher, 11 and 8.4 times respectively (SI-Table 1), which indicates that these elements are also supplied by an internal process in the catchment soils, i.e., weathering. This interpretation is also in line with the mass-balance budget that Rydberg et al. (2023) developed for Two-Boat Lake, and suggests that La is exclusively supplied by weathering. Cl almost exclusively via precipitation and Ca is supplied by both processes.

Even if DOC was not measured on all sampling occasions, and could not be included in the PCA, the correlation between PC-

1, PC-2 and DOC helped us to assess if organic carbon behaves like weathering products or elements supplied with precipitation. For the surface-water samples there is no correlation between PC-1, PC-2 and DOC, but similarly to PC-2, DOC is negatively correlated with the total runoff. The different behaviours of weathering products (PC-1) and DOC could be related to where in the soil profile these products originate. DOC production is highest in uppermost soil layers, where the decomposition of relatively fresh OM is highest {Clark, 2008 #3514}. These surficial layers thaw relatively rapidly, and hence,

the DOC source is activated already during the snowmelt period. This means that, like the elements represented by PC-2, DOC is diluted when the runoff is high. However, unlike the elements that are constantly resupplied with the precipitation, DOC in the upper soil layers can become depleted with time, and PC-2 and DOC are therefore not correlated {Stewart, 2022 #3516}.

Weathering products on the other hand are primarily produced deeper in the soil profile {Fouché, 2021 #3515} {Cai, 2008 #3604}, and it is not until later in the season when these deeper layers thaw – and the proportion of deep groundwater increases

– that this source becomes activated. A similar shift in the chemical composition when the thaw in the active layer reaches below the upper organic rich soil layer, has been observed in other areas with continuous permafrost {Cai, 2008 #3604} {Chiasson-Poirier, 2020 #3494}.

Looking at the soil water sampled using lysimeters and in groundwater wells, PC-1, PC-2 and DOC are all correlated, which could indicate that older, and deeper, groundwater is enriched in both weathering products, elements supplied with precipitation and DOC. One explanation for this is that a high DOC concentration can also lead to a higher solubility of many elements, particularly weathering products that otherwise can have a low solubility in water {Lidman, 2017 #2984} {Broder, 2015 #2278}. That ground water is enriched in elements is also consistent with previous studies that have shown that deeper

Deleted: , while about one third to one fourth of the water at 25–50 cm had been therein the saturated zone for less than one year

Deleted: 4

Deleted: water types it is evident that they are controlled by different processes

Deleted: s

Deleted: which

Deleted: shows that

Deleted: hence,

Deleted: to

Deleted: surficial

Deleted: , but

Deleted: PC-2

Deleted: The same transition in

Deleted: water

Deleted: stry as the active layer thaws

Deleted: , most

Deleted: 1

Deleted: groundwater

Deleted:

Deleted: is would be

Deleted: many

1780 and older groundwater often has elevated concentrations for a large selection of elements {Clark, 2008 #3514} {Fouché, 2021 #3515} {Stewart, 2022 #3516}. However, neither PC-1, PC-2 or DOC showed any correlation to lysimeter depth, which likely have several reasons. First, the depths where the lysimeters are installed (15 and 30/35 cm) corresponds to the two upper layers used in the particle tracking simulation (i.e., 0-25 and 25-50 cm). In these two layers the age of the water is relatively similar, and it is possible that a clearer pattern would have emerged if the deepest lysimeter had been placed in the deepest layer used

1785 in the particle tracking simulation (i.e., 50-75 cm) where the water is considerably older. Second, the deeper lysimeters could only be sampled late in the season when the total runoff is low because they are frozen during the entire snowmelt period. The lack of trend with depth could therefore be a result of this bias in the data. Third, the generally similar age for the two upper layers in the particle tracking simulation suggests that there is a considerable vertical movement of water in the thin unfrozen layer that results in mixing of the water. This mixing would prevent the development of any vertical trend in the chemical
1790 composition.

4.3 Variability in thaw rates during snowmelt on different time-scales

Similar to the original modelling period by Johansson et al. (2015a), the runoff is dominated by groundwater, either directly to the lake or via temporary surface streams, but the extended modelling period reveals more between-year variability. Even though the annual precipitation is relatively similar between 2014, 2015, 2016 and 2018 (247, 284, 286 and 261 mm yr⁻¹, respectively) the amount of overland flow varies considerably. 2014 and 2015 have a very low contribution of overland flow (less than 15% of total runoff), whereas in 2016 and 2018 around 50% of the annual runoff occurred as overland flow either directly to the lake or via temporary surface streams. This differences in the partitioning between groundwater and overland flow from one year to the other can likely be linked to both the amount of accumulated snow in the catchment and the thaw rate in the active layer, especially early in the thaw season. The amount of winter precipitation (October to March), which dominantly fell as snow was relatively close to the average during the winters preceding the snowmelt periods of 2014 and 2015 (105 and 155 mm, respectively) and the snowmelt started relatively late (mid to late May). This resulted in a low proportion of the runoff leaving as overland flow during these years. In 2016, considerably more snow fell during the preceding winter (220 mm) and the snowmelt started in early April, which resulted in a higher proportion of the runoff leaving the catchment as overland flow. For 2018, the amount of accumulated snow was slightly lower (91 mm) and the snowmelt period started in mid-May, i.e., similarly as 2014 and 2015. Still, during 2018 a much larger percentage of the water left the terrestrial catchment as overland flow (52 %) compared to during 2014 and 2015 (7 and 13 %, respectively). This can most likely be attributed to the preceding year, 2017, being considerably wetter compared to other years (407 mm yr⁻¹ of annual precipitation). This resulted in a high soil moisture and high groundwater levels at the time when the active layer froze in the autumn of 2017. A high content of ground ice in the active layer implies that the capacity for infiltration during the snowmelt period was limited, and the latent heat content in the ice likely contributed to a slower thaw rate in the active layer this year {Clayton, 2021 #3492}. As the ground surface thawed, the high soil moisture content may also have contributed to saturation-excess overland-flow

Deleted: of

Deleted: ,

Deleted: and

Deleted: , are all in

Deleted:

Deleted: 1

Deleted: shallow

Deleted: active

Deleted:

Deleted: This is supported by the generally similar age for the two upper layers in the particle tracking simulation. ¶

Deleted: T

Deleted: variability

during the late snowmelt and summer periods. For all other years, overland flow did not occur during summer, presumably because the generally dry conditions (evapotranspiration exceeds precipitation) normally result in high infiltration. For example, observations in the field confirm that temporary surface streams only appear during limited periods during the snowmelt period and during wet periods during fall.

1830 While the long-term hydrological modelling indicated that interannual variability in thaw in the active layer exerts a strong control on runoff patterns, our field observations during the intense monitoring period revealed that – on a finer scale spatial – the hydrology also controls thaw rates. The thaw-depth monitoring during May 2017 showed that wet locations thawed significantly faster than drier locations. This would support earlier findings from areas with continuous permafrost, where variability in the active layer thickness has been attributed to the development of a hillslope groundwater drainage system {Chiasson-Poirier, 2020 #3494}. The fastest thaw rates and largest thaw depths in the Two-Boat Lake catchment were measured in the wet locations of the slope and directly under the temporary surface streams. This would suggest that advective heat transport with surface and near-surface water plays an important role in determining the thaw rate, as has been observed elsewhere in the Arctic {Dagenais, 2020 #3538; de Grandpré, 2012 #3537} {Sjöberg, 2016 #3496}. When compared to earlier investigations in the Two-Boat Lake catchment, it is noticeable that the maximum measured thaw depth during the intense monitoring period (48 cm \pm 9 cm), was almost the same as the average active layer thickness observed under similar vegetation cover (i.e., wetland) in August 2011 by Petrone et al. (2016). This indicates that the ground in connection to temporary surface streams thaws rapidly during the snowmelt period, but that the rate of thaw is much slower during the remainder of the summer season. At the drier location, where the ground temperatures are monitored down to 2-m depth the thaw developed slower. In 2017 the 50-cm sensor reported above zero temperatures on June 9th and the 75-cm sensor on July 27th. Taken together with the drier locations having a deeper maximum thaw depths compared to wetlands (70-80 cm; {Petrone, 2016 #2640}), this indicate that even if wetter locations thaw more rapidly in spring due to advective heat transfer, the effect of the latent heat in wet soils become more important in determining the maximum thaw depth later in the season {Clayton, 2021 #3492}. This fine-scale variability in thaw rates in the active layer was not included in our hydrological modelling and subsequent particle tracking simulation. The finding that the thaw rate is faster under the temporary stream network suggests that water that reaches the lake during the snowmelt may interact more with soil particles than what our modelling indicates. Our simulated groundwater ages may also underestimate the content of older water earlier in the season, as considerably deeper soil layers are thawed earlier in the season and possibly in a connected drainage pattern, similar to that observed by Chiasson-Poirier (2020) in northern Canada.

4.4 The influence of melting ground ice on the chemical composition during the snowmelt period

1855 Looking at the isotopic composition of the water samples from Two-Boat Lake they were roughly 5‰ heavier than surface waters from Pituffik in northern Greenland {Akers, 2024 #3615}, the Scotty Creek drainage system in Canada {Hayashi, 2004 #3617}, and surface waters in the Yukon region of Canada and Alaska {Lachniet, 2016 #3616; SI-Fig.1}. This heavier signal is likely related to dominant wind patterns and relatively warm sea surface temperatures in the source area for the water

Deleted: The differences in the partitioning of simulated between groundwater and overland flow from one year to the other between years is can be linked to both the amount of accumulated snow in the catchment and the thaw rate of the active layer, especially early in the thaw season. The amount of winter precipitation (October to March), which dominantly fell as snow was relatively close to the average during the winters preceding the snowmelt periods of 2014 and 2015 (105 and 155 mm, respectively) and the snowmelt started relatively late (mid to late May). This, which resulted in a low proportion of the runoff leaving as overland flow during these years. In 2016, considerably more snow fell during the preceding winter (220 mm) and the snowmelt started in early April, which resulted in a higher proportion of the runoff leaving the catchment as overland flow. For 2018, the amount of accumulated snow was relatively slightly lower (91 mm) and the snowmelt period started in mid-May, i.e., similarly as 2014 and 2015. Still, during 2018 a much larger percentage of the water left the terrestrial catchment as overland flow (52 %) compared to during 2014 and 2015 (7 ... [95])

Deleted: our
Deleted: thaw
Deleted: hillslope
Deleted: processes
Deleted: connections between
Deleted:
Deleted: and
Deleted:
Deleted: in the active layer
Deleted: A
Deleted: near concentrated groundwater flow paths
Deleted: TBL
Deleted:
Deleted: active layer
Deleted: develops
Deleted: (on the border between heath and wetland vegetation)
Deleted: 00-c
Deleted: depth
Deleted: vegetation types
Deleted: sprin
Deleted: g
Deleted: might
Deleted: thaw rates
Deleted: active layer
Deleted: s
Deleted: Chemical evolution in water
Deleted:
Deleted: stry

1945 *{Sodemann, 2008 #3618}. For the stable isotopic composition in stream samples collected during the intense monitoring period there is a temporal trend that roughly follow the evaporation line (Fig. 5B). This could suggest fractionation during evapotranspiration, sublimation, condensation, or freezing–thawing processes, but because the deviation away from the evaporation line at the end of the monitoring period is directed toward the composition of rain and ground ice it could also be related to a shift in the source of the stream water (Fig. 5B). An influence of melting ground ice would be consistent with the mixing model (Fig. 5C), which suggests that the isotopic signature of the stream water is heavily influenced by melting ground ice (Fig. 5).*

1950 *Ground ice filling the pore spaces in the active layer most likely formed from the water present in the active layer during the previous fall when the ground froze, although some infiltration and migration of meltwater during warm periods during the winter cannot be completely excluded. According to the particle tracking simulation, most water present in the active layer during the fall freeze-up is at least one year old and a substantial fraction of the water is older than four years. In light of this, the stable isotopic composition of the ground ice falling somewhere in the middle between those of snow and rain is to be expected and has also been found using similar methods in the continuous permafrost zone in northern Canada {Tetzlaff, 2018 #3534} {Wilcox, 2022 #3611}. In comparison to findings in lowland polygonal tundra in the continuous permafrost zone in Alaska, where winter precipitation did not contribute to the stable isotopic signature of active layer pore waters, water in the active layer in Two-Boat Lake appear to be more well mixed at least in the fall {Throckmorton, 2016 #3520}.*

1955 *Similar to the stable isotopic signature, there is a shift in the chemical signature during this period. PC-1 increased, PC-2 first increased and then remained stable, and DOC first decreased and then increased slightly. The increase in PC-1 is consistent with patterns observed over the entire unfrozen period, and it increases as the proportion of deep groundwater increases. For PC-2 and DOC, the trends during the intense monitoring period do not show the same negative correlation with total runoff as during the entire unfrozen season. For PC-2 the initial increase from May 19th and May 25th, when the total runoff decreases, is consistent with the expected trend (Fig. 5A). However, when the total runoff then increases again to May 31st, the PC-2 scores remain virtually the same as on May 25th. The DOC decreases when the total runoff decreases from May 19th to May 25th, and it then increases slightly until May 31st. Even if the PC-2 scores for the last two sampling occasions are similar, the long-term data would suggest a stronger response to changes in the total runoff. However, the chemical and stable isotopic signature is not merely a question of more or less water, we also need to consider where the water comes from. From the stable isotopic signature of the ground ice, we can see that there is a considerable influence of melting ground ice over the intense monitoring period. The water from the melting ground ice will not only be isotopically heavier (δD and $\delta^{18}O$) compared to the meltwater from snow, the pre-event water that has resided in the ground for an extended time will also be enriched in elements related to both PC-1, PC-2 and have higher DOC concentrations.*

1960 *That ground ice and the thaw of permafrost have a profound effect on the chemical signature of soil water in permafrost regions have also been reported from sites in Alaska {Fouché, 2021 #3515}, and that pre-event water and elements that can be flushed from surficial soil layer have been shown to be important also under a wide variety of environmental settings {Juhls, 2020 #3546} {Fischer, 2017 #3518} {Ross, 2017 #3519}. Furthermore, presumably most of the melted ground ice comes from the*

Deleted: ¶

... [96]

2000 near stream zone, where the thaw rate is highest. This suggests that these temporary “riparian” zones are important for the evolution of the stable isotopic and chemical signature of the surface water, which is analogous to the importance of the riparian zone in other systems {Lidman, 2017 #2984} {Jutebring Sterte, 2022 #3499}.

Conclusions

2005 Our monitoring of thaw rates in the active layer during the 2017 snowmelt period shows that, even if drier areas tend to have a thicker active layer by August (Petrone et al. 2016), areas in connection with temporary surface streams thaw more rapidly in the early stages. The rapid formation of an unfrozen zone beneath these temporary streams allows meltwater to interact with soil particles and pre-event water already early in the snowmelt period. This is reflected in, e.g., the stable isotopic signature of stream water, which initially resembles that of snow but quickly shifts toward a signature more similar to melting ground ice.

2010 Based on the hydrological modelling, we can also conclude that although interannual differences in the hydrological conditions can result in up to half of the runoff occurring as overland flow in some years, runoff to Two-Boat Lake is generally dominated by groundwater. The particle tracking simulation shows that while most of this groundwater is young—i.e., less than one year—indicating limited interaction with soil particles, a considerable fraction of the water in deeper soil layers (i.e., 50–75 cm) is older than three years. This “deep” groundwater plays an important role for the chemical signature in the runoff to Two-Boat

2015 Lake, especially for elements released through weathering.

2020 However, although the interaction between the runoff and soil particles is important, it is not the only process influencing the chemical signature of the runoff. For elements supplied via precipitation, our data suggest that extensive evapotranspiration in this dry landscape also strongly affects the concentrations in the runoff. Taken together, this indicates that even if the runoff is dominated by the snowmelt period, the groundwater generally is young, and the continuous permafrost restricts water

2025 movement to the thin active layer, there remains a strong connection between terrestrial processes and the chemical signature of the runoff.

This connection is especially important when considering the substantial variability in both hydrological conditions and thaw rates—both spatially and temporally—and it highlights the importance of accounting for the effect of soil processes and mixing with pre-event water when assessing water quality and element transport in Arctic landscapes with continuous permafrost.

Deleted: 1

Deleted: 1

Deleted:

Deleted:

Data availability

The data used in this study is available mainly through three publications, Johansson et al. (2015b), Lindborg et al. (2016) and Petrone et al. (2016), each with an adjoined Pangaea database (doi:10.1594/PANGAEA.845258, doi:10.1594/PANGAEA.860961 and doi.pangaea.de/10.1594/PANGAEA.836178, respectively). For Johansson et al. (2015b)

and Lindborg et al. (2016) additional data has been made public through additional Pangaea databases [that are linked to the original publications](#). Meteorological data from the automated weather station (labelled KAN_B) is available via www.promice.org.

2040 **Author contribution**

JR: Conceptualization, Formal analysis, Investigation, Writing – Original draft, **EL**: Conceptualization, Methodology, Formal analysis, Writing – Review & Editing, **CB**: Formal analysis, Writing – Review & Editing, **BMCF**: Writing – Review & Editing, **TL**: Conceptualization, Investigation, Writing – Review & Editing, **YS**: Conceptualization, Formal analysis, Investigation, Writing – Original draft.

2045 **Competing interests**

Ylva Sjöberg is a member of the editorial board of The Cryosphere

Acknowledgement

This study was funded by Swedish nuclear fuel and waste management company (SKB) within the Greenland Analogue Surface Project (GRASP) and CatchNet project. [We also thank two anonymous reviewers for valuable input during the review process.](#)

2050 **References**

Page 2: [1] Deleted	Microsoft Office User	03/07/2025 10:49:00
▼		
Page 2: [1] Deleted	Microsoft Office User	03/07/2025 10:49:00
▼		
Page 2: [2] Deleted	Johan Rydberg	25/08/2025 12:22:00
▼		
Page 2: [2] Deleted	Johan Rydberg	25/08/2025 12:22:00
▼		
Page 2: [2] Deleted	Johan Rydberg	25/08/2025 12:22:00
▼		
Page 2: [3] Deleted	Johan Rydberg	25/08/2025 12:23:00
▼		
Page 2: [3] Deleted	Johan Rydberg	25/08/2025 12:23:00
▼		
Page 2: [4] Deleted	Johan Rydberg	29/08/2025 06:11:00
▼		
Page 2: [4] Deleted	Johan Rydberg	29/08/2025 06:11:00
▼		
Page 2: [5] Deleted	Johan Rydberg	29/08/2025 06:10:00
▼		
Page 2: [5] Deleted	Johan Rydberg	29/08/2025 06:10:00
▼		
Page 2: [5] Deleted	Johan Rydberg	29/08/2025 06:10:00
▼		
Page 2: [6] Deleted	Johan Rydberg	29/08/2025 06:23:00
▼		
Page 2: [6] Deleted	Johan Rydberg	29/08/2025 06:23:00
▼		
Page 2: [6] Deleted	Johan Rydberg	29/08/2025 06:23:00
▼		
Page 2: [6] Deleted	Johan Rydberg	29/08/2025 06:23:00

Page 2: [7] Deleted	Microsoft Office User	29/08/2025 11:15:00
Page 2: [7] Deleted	Microsoft Office User	29/08/2025 11:15:00
Page 2: [8] Deleted	Johan Rydberg	29/08/2025 06:20:00
Page 2: [8] Deleted	Johan Rydberg	29/08/2025 06:20:00
Page 2: [8] Deleted	Johan Rydberg	29/08/2025 06:20:00
Page 2: [9] Deleted	Johan Rydberg	25/08/2025 08:56:00
Page 2: [9] Deleted	Johan Rydberg	25/08/2025 08:56:00
Page 2: [9] Deleted	Johan Rydberg	25/08/2025 08:56:00
Page 2: [9] Deleted	Johan Rydberg	25/08/2025 08:56:00
Page 2: [10] Deleted	Microsoft Office User	03/07/2025 10:52:00
Page 2: [11] Deleted	Johan Rydberg	25/08/2025 12:30:00
Page 2: [12] Deleted	Johan Rydberg	25/08/2025 12:31:00
Page 2: [12] Deleted	Johan Rydberg	25/08/2025 12:31:00
Page 2: [12] Deleted	Johan Rydberg	25/08/2025 12:31:00
Page 3: [13] Deleted	Johan Rydberg	25/08/2025 09:01:00

Page 3: [13] Deleted	Johan Rydberg	25/08/2025 09:01:00
Page 3: [13] Deleted	Johan Rydberg	25/08/2025 09:01:00
Page 3: [14] Deleted	Microsoft Office User	03/07/2025 10:53:00
Page 3: [14] Deleted	Microsoft Office User	03/07/2025 10:53:00
Page 3: [15] Deleted	Microsoft Office User	03/07/2025 10:54:00
Page 3: [15] Deleted	Microsoft Office User	03/07/2025 10:54:00
Page 3: [15] Deleted	Microsoft Office User	03/07/2025 10:54:00
Page 3: [16] Deleted	Johan Rydberg	19/08/2025 11:07:00
Page 3: [16] Deleted	Johan Rydberg	19/08/2025 11:07:00
Page 3: [16] Deleted	Johan Rydberg	19/08/2025 11:07:00
Page 3: [17] Deleted	Johan Rydberg	19/08/2025 11:08:00
Page 3: [17] Deleted	Johan Rydberg	19/08/2025 11:08:00
Page 3: [18] Deleted	Johan Rydberg	25/08/2025 12:34:00
Page 3: [18] Deleted	Johan Rydberg	25/08/2025 12:34:00
Page 3: [18] Deleted	Johan Rydberg	25/08/2025 12:34:00

Page 3: [19] Deleted	Johan Rydberg	25/08/2025 05:48:00
▼		
Page 3: [19] Deleted	Johan Rydberg	25/08/2025 05:48:00
▼		
Page 3: [19] Deleted	Johan Rydberg	25/08/2025 05:48:00
▼		
Page 3: [20] Deleted	Johan Rydberg	19/08/2025 13:02:00
▼		
Page 3: [20] Deleted	Johan Rydberg	19/08/2025 13:02:00
▼		
Page 3: [21] Deleted	Microsoft Office User	29/08/2025 11:23:00
▼		
Page 3: [21] Deleted	Microsoft Office User	29/08/2025 11:23:00
▼		
Page 3: [22] Deleted	Johan Rydberg	22/08/2025 07:16:00
▼		
Page 3: [22] Deleted	Johan Rydberg	22/08/2025 07:16:00
▼		
Page 3: [23] Deleted	Microsoft Office User	29/08/2025 11:24:00
▼		
Page 3: [23] Deleted	Microsoft Office User	29/08/2025 11:24:00
▼		
Page 3: [24] Deleted	Johan Rydberg	25/08/2025 12:46:00
▼		
Page 3: [24] Deleted	Johan Rydberg	25/08/2025 12:46:00
▼		
Page 3: [24] Deleted	Johan Rydberg	25/08/2025 12:46:00
▼		
Page 3: [24] Deleted	Johan Rydberg	25/08/2025 12:46:00

Page 3: [24] Deleted	Johan Rydberg	25/08/2025 12:46:00
Page 3: [25] Deleted	Johan Rydberg	25/08/2025 12:42:00
Page 3: [25] Deleted	Johan Rydberg	25/08/2025 12:42:00
Page 4: [26] Deleted	Johan Rydberg	22/08/2025 11:48:00
Page 4: [26] Deleted	Johan Rydberg	22/08/2025 11:48:00
Page 4: [27] Deleted	Johan Rydberg	25/08/2025 05:52:00
Page 4: [27] Deleted	Johan Rydberg	25/08/2025 05:52:00
Page 4: [28] Deleted	Johan Rydberg	22/08/2025 11:49:00
Page 4: [28] Deleted	Johan Rydberg	22/08/2025 11:49:00
Page 4: [29] Deleted	Microsoft Office User	29/08/2025 11:27:00
Page 4: [29] Deleted	Microsoft Office User	29/08/2025 11:27:00
Page 4: [29] Deleted	Microsoft Office User	29/08/2025 11:27:00
Page 4: [29] Deleted	Microsoft Office User	29/08/2025 11:27:00
Page 4: [29] Deleted	Microsoft Office User	29/08/2025 11:27:00
Page 4: [30] Deleted	Microsoft Office User	29/08/2025 11:33:00

Page 4: [30] Deleted	Microsoft Office User	29/08/2025 11:33:00
▼		
Page 4: [31] Deleted	Microsoft Office User	29/08/2025 11:34:00
▼		
Page 4: [31] Deleted	Microsoft Office User	29/08/2025 11:34:00
▼		
Page 4: [31] Deleted	Microsoft Office User	29/08/2025 11:34:00
▼		
Page 4: [31] Deleted	Microsoft Office User	29/08/2025 11:34:00
▼		
Page 4: [32] Deleted	Microsoft Office User	03/07/2025 09:36:00
▼		
Page 4: [32] Deleted	Microsoft Office User	03/07/2025 09:36:00
▼		
Page 4: [33] Deleted	Microsoft Office User	03/07/2025 09:36:00
▼		
Page 4: [34] Deleted	Microsoft Office User	29/08/2025 11:37:00
▼		
Page 4: [34] Deleted	Microsoft Office User	29/08/2025 11:37:00
▼		
Page 5: [35] Deleted	Johan Rydberg	29/08/2025 06:34:00
▼		
Page 5: [35] Deleted	Johan Rydberg	29/08/2025 06:34:00
▼		
Page 5: [36] Deleted	Microsoft Office User	29/08/2025 11:38:00
▼		
Page 5: [36] Deleted	Microsoft Office User	29/08/2025 11:38:00
▼		
Page 5: [37] Deleted	Johan Rydberg	29/08/2025 06:35:00

Page 5: [37] Deleted **Johan Rydberg** **29/08/2025 06:35:00**

Page 5: [37] Deleted **Johan Rydberg** **29/08/2025 06:35:00**

Page 5: [37] Deleted **Johan Rydberg** **29/08/2025 06:35:00**

Page 5: [38] Deleted **Johan Rydberg** **29/08/2025 06:30:00**

Page 5: [38] Deleted **Johan Rydberg** **29/08/2025 06:30:00**

Page 5: [38] Deleted **Johan Rydberg** **29/08/2025 06:30:00**

Page 5: [39] Deleted **Microsoft Office User** **29/08/2025 11:39:00**

Page 5: [39] Deleted **Microsoft Office User** **29/08/2025 11:39:00**

Page 5: [40] Deleted **Johan Rydberg** **29/08/2025 06:32:00**

Page 5: [40] Deleted **Johan Rydberg** **29/08/2025 06:32:00**

Page 5: [41] Deleted **Johan Rydberg** **29/08/2025 06:33:00**

Page 5: [42] Deleted **Johan Rydberg** **29/08/2025 06:34:00**

Page 5: [42] Deleted **Johan Rydberg** **29/08/2025 06:34:00**

Page 5: [43] Deleted **Johan Rydberg** **21/08/2025 10:29:00**

Page 5: [44] Deleted **Johan Rydberg** **21/08/2025 10:29:00**

Page 5: [44] Deleted **Johan Rydberg** **21/08/2025 10:29:00**

Page 5: [45] Deleted	Ylva Sjöberg	21/08/2025 09:13:00
▼		
Page 5: [45] Deleted	Ylva Sjöberg	21/08/2025 09:13:00
▼		
Page 5: [46] Deleted	Johan Rydberg	26/08/2025 14:06:00
▼		
Page 5: [46] Deleted	Johan Rydberg	26/08/2025 14:06:00
▼		
Page 5: [46] Deleted	Johan Rydberg	26/08/2025 14:06:00
▼		
Page 5: [46] Deleted	Johan Rydberg	26/08/2025 14:06:00
▼		
Page 5: [47] Deleted	Johan Rydberg	22/08/2025 07:22:00
▼		
Page 5: [47] Deleted	Johan Rydberg	22/08/2025 07:22:00
▼		
Page 5: [48] Deleted	Ylva Sjöberg	21/08/2025 09:17:00
▼		
Page 5: [48] Deleted	Ylva Sjöberg	21/08/2025 09:17:00
▼		
Page 5: [48] Deleted	Ylva Sjöberg	21/08/2025 09:17:00
▼		
Page 5: [48] Deleted	Ylva Sjöberg	21/08/2025 09:17:00
▼		
Page 6: [49] Deleted	Johan Rydberg	20/08/2025 12:02:00
▼		
Page 6: [49] Deleted	Johan Rydberg	20/08/2025 12:02:00
▼		
Page 6: [49] Deleted	Johan Rydberg	20/08/2025 12:02:00
▼		
Page 6: [50] Deleted	Johan Rydberg	22/08/2025 07:24:00

Page 6: [50] Deleted	Johan Rydberg	22/08/2025 07:24:00
▼		
Page 6: [51] Deleted	Johan Rydberg	22/08/2025 07:27:00
▼		
Page 6: [51] Deleted	Johan Rydberg	22/08/2025 07:27:00
▼		
Page 6: [52] Deleted	Ylva Sjöberg	21/08/2025 09:24:00
▼		
Page 6: [52] Deleted	Ylva Sjöberg	21/08/2025 09:24:00
▼		
Page 6: [52] Deleted	Ylva Sjöberg	21/08/2025 09:24:00
▼		
Page 6: [53] Deleted	Microsoft Office User	29/08/2025 11:47:00
▼		
Page 6: [53] Deleted	Microsoft Office User	29/08/2025 11:47:00
▼		
Page 6: [54] Deleted	Johan Rydberg	21/08/2025 07:08:00
▼		
Page 6: [54] Deleted	Johan Rydberg	21/08/2025 07:08:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		

Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [55] Deleted	Johan Rydberg	20/08/2025 12:21:00
▼		
Page 6: [56] Deleted	Johan Rydberg	21/08/2025 13:05:00
▼		
Page 6: [56] Deleted	Johan Rydberg	21/08/2025 13:05:00
▼		
Page 6: [57] Deleted	Microsoft Office User	29/08/2025 11:48:00
▼		
Page 6: [57] Deleted	Microsoft Office User	29/08/2025 11:48:00
▼		
Page 6: [57] Deleted	Microsoft Office User	29/08/2025 11:48:00
▼		
Page 6: [58] Deleted	Johan Rydberg	20/08/2025 12:25:00
▼		
Page 6: [58] Deleted	Johan Rydberg	20/08/2025 12:25:00
▼		
Page 6: [58] Deleted	Johan Rydberg	20/08/2025 12:25:00
▼		
Page 6: [58] Deleted	Johan Rydberg	20/08/2025 12:25:00
▼		
Page 6: [59] Deleted	Johan Rydberg	21/08/2025 13:07:00
▼		
Page 6: [59] Deleted	Johan Rydberg	21/08/2025 13:07:00

Page 7: [60] Deleted	Microsoft Office User	03/07/2025 11:45:00
Page 7: [60] Deleted	Microsoft Office User	03/07/2025 11:45:00
Page 7: [61] Deleted	Johan Rydberg	25/08/2025 06:21:00
Page 7: [61] Deleted	Johan Rydberg	25/08/2025 06:21:00
Page 7: [62] Deleted	Johan Rydberg	25/08/2025 06:20:00
Page 7: [62] Deleted	Johan Rydberg	25/08/2025 06:20:00
Page 7: [62] Deleted	Johan Rydberg	25/08/2025 06:20:00
Page 7: [62] Deleted	Johan Rydberg	25/08/2025 06:20:00
Page 7: [63] Deleted	Microsoft Office User	29/08/2025 11:51:00
Page 7: [63] Deleted	Microsoft Office User	29/08/2025 11:51:00
Page 7: [64] Deleted	Johan Rydberg	25/08/2025 06:23:00
Page 7: [64] Deleted	Johan Rydberg	25/08/2025 06:23:00
Page 7: [65] Deleted	Johan Rydberg	21/08/2025 09:42:00
Page 7: [65] Deleted	Johan Rydberg	21/08/2025 09:42:00
Page 7: [66] Deleted	Johan Rydberg	21/08/2025 09:47:00

Page 7: [66] Deleted	Johan Rydberg	21/08/2025 09:47:00
▼		
Page 7: [66] Deleted	Johan Rydberg	21/08/2025 09:47:00
▼		
Page 7: [66] Deleted	Johan Rydberg	21/08/2025 09:47:00
▼		
Page 7: [67] Deleted	Johan Rydberg	25/08/2025 06:25:00
▼		
Page 7: [67] Deleted	Johan Rydberg	25/08/2025 06:25:00
▼		
Page 7: [68] Deleted	Microsoft Office User	29/08/2025 11:53:00
▼		
Page 7: [68] Deleted	Microsoft Office User	29/08/2025 11:53:00
▼		
Page 7: [69] Deleted	Johan Rydberg	25/08/2025 06:27:00
▼		
Page 7: [69] Deleted	Johan Rydberg	25/08/2025 06:27:00
▼		
Page 7: [69] Deleted	Johan Rydberg	25/08/2025 06:27:00
▼		
Page 7: [70] Deleted	Microsoft Office User	03/07/2025 10:19:00
▼		
Page 8: [71] Deleted	Johan Rydberg	21/08/2025 07:42:00
▼		
Page 8: [71] Deleted	Johan Rydberg	21/08/2025 07:42:00
▼		
Page 8: [71] Deleted	Johan Rydberg	21/08/2025 07:42:00
▼		
Page 8: [71] Deleted	Johan Rydberg	21/08/2025 07:42:00

Page 8: [71] Deleted	Johan Rydberg	21/08/2025 07:42:00
Page 8: [72] Deleted	Microsoft Office User	29/08/2025 11:55:00
Page 8: [72] Deleted	Microsoft Office User	29/08/2025 11:55:00
Page 8: [73] Deleted	Johan Rydberg	21/08/2025 07:54:00
Page 8: [73] Deleted	Johan Rydberg	21/08/2025 07:54:00
Page 8: [74] Deleted	Johan Rydberg	21/08/2025 09:28:00
Page 8: [74] Deleted	Johan Rydberg	21/08/2025 09:28:00
Page 8: [74] Deleted	Johan Rydberg	21/08/2025 09:28:00
Page 8: [75] Deleted	Microsoft Office User	29/08/2025 11:56:00
Page 8: [75] Deleted	Microsoft Office User	29/08/2025 11:56:00
Page 8: [75] Deleted	Microsoft Office User	29/08/2025 11:56:00
Page 8: [76] Deleted	Johan Rydberg	21/08/2025 07:44:00
Page 8: [76] Deleted	Johan Rydberg	21/08/2025 07:44:00
Page 8: [77] Deleted	Microsoft Office User	03/07/2025 11:10:00
Page 8: [77] Deleted	Microsoft Office User	03/07/2025 11:10:00

Page 8: [78] Deleted	Johan Rydberg	21/08/2025 07:56:00
▼		
Page 8: [78] Deleted	Johan Rydberg	21/08/2025 07:56:00
▼		
Page 8: [79] Deleted	Ylva Sjöberg	21/08/2025 10:51:00
▼		
Page 8: [79] Deleted	Ylva Sjöberg	21/08/2025 10:51:00
▼		
Page 8: [79] Deleted	Ylva Sjöberg	21/08/2025 10:51:00
▼		
Page 8: [80] Deleted	Johan Rydberg	25/08/2025 13:35:00
▼		
Page 8: [80] Deleted	Johan Rydberg	25/08/2025 13:35:00
▼		
Page 8: [80] Deleted	Johan Rydberg	25/08/2025 13:35:00
▼		
Page 8: [81] Deleted	Johan Rydberg	25/08/2025 06:33:00
▼		
Page 8: [81] Deleted	Johan Rydberg	25/08/2025 06:33:00
▼		
Page 10: [82] Deleted	Microsoft Office User	29/08/2025 12:20:00
▼		
Page 10: [82] Deleted	Microsoft Office User	29/08/2025 12:20:00
▼		
Page 10: [83] Deleted	Johan Rydberg	25/08/2025 13:47:00
▼		
Page 10: [83] Deleted	Johan Rydberg	25/08/2025 13:47:00
▼		
Page 10: [84] Deleted	Ylva Sjöberg	21/08/2025 10:55:00
▼		
Page 10: [84] Deleted	Ylva Sjöberg	21/08/2025 10:55:00

Page 10: [85] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [85] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [85] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [85] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [86] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [86] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [86] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [86] Deleted	Ylva Sjöberg	21/08/2025 10:56:00
Page 10: [87] Deleted	Microsoft Office User	29/08/2025 12:21:00
Page 10: [87] Deleted	Microsoft Office User	29/08/2025 12:21:00
Page 10: [87] Deleted	Microsoft Office User	29/08/2025 12:21:00
Page 10: [87] Deleted	Microsoft Office User	29/08/2025 12:21:00
Page 10: [88] Deleted	Johan Rydberg	21/08/2025 14:30:00
Page 10: [88] Deleted	Johan Rydberg	21/08/2025 14:30:00
Page 10: [88] Deleted	Johan Rydberg	21/08/2025 14:30:00
Page 10: [88] Deleted	Johan Rydberg	21/08/2025 14:30:00

Page 10: [88] Deleted	Johan Rydberg	21/08/2025 14:30:00
Page 10: [89] Deleted	Johan Rydberg	21/08/2025 09:13:00
Page 10: [89] Deleted	Johan Rydberg	21/08/2025 09:13:00
Page 10: [89] Deleted	Johan Rydberg	21/08/2025 09:13:00
Page 10: [90] Deleted	Microsoft Office User	03/07/2025 14:38:00
Page 10: [90] Deleted	Microsoft Office User	03/07/2025 14:38:00
Page 10: [91] Deleted	Johan Rydberg	21/08/2025 13:12:00
Page 10: [91] Deleted	Johan Rydberg	21/08/2025 13:12:00
Page 10: [91] Deleted	Johan Rydberg	21/08/2025 13:12:00
Page 10: [91] Deleted	Johan Rydberg	21/08/2025 13:12:00
Page 10: [92] Deleted	Johan Rydberg	21/08/2025 13:13:00
Page 10: [92] Deleted	Johan Rydberg	21/08/2025 13:13:00
Page 10: [92] Deleted	Johan Rydberg	21/08/2025 13:13:00
Page 10: [92] Deleted	Johan Rydberg	21/08/2025 13:13:00
Page 10: [92] Deleted	Johan Rydberg	21/08/2025 13:13:00

Page 10: [93] Deleted	Johan Rydberg	21/08/2025 13:20:00
▼		
Page 10: [93] Deleted	Johan Rydberg	21/08/2025 13:20:00
▼		
Page 10: [93] Deleted	Johan Rydberg	21/08/2025 13:20:00
▼		
Page 10: [93] Deleted	Johan Rydberg	21/08/2025 13:20:00
▼		
Page 11: [94] Deleted	Microsoft Office User	03/07/2025 14:37:00
▼		
Page 18: [95] Deleted	Microsoft Office User	29/08/2025 13:05:00
▼		
Page 19: [96] Deleted	Microsoft Office User	29/08/2025 13:15:00
▼		