Supplement of

Ozone (O₃) observations in Saxony, Germany for 1997 - 2020: Trends, modelling and implications for O₃ control

Yaru Wang¹, Dominik van Pinxteren¹, Andreas Tilgner¹, Erik Hans Hoffmann¹, Max Hell¹, Susanne Bastian², Hartmut Herrmann^{1*}

¹Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, Leipzig, 04318, Germany

²Saxon State Office for the Environment, Agriculture, and Geology (LfULG), Pillnitzer Platz 3, Dresden Pillnitz, 01326, Germany

Correspondence to: Hartmut Herrmann (herrmann@tropos.de)

Table S1. Data availability and proportion of missing data of hourly concentrations of ozone in the Saxony air quality measurement network used in the project.

Station	Station type	Begin time	End time	Years	Missing values / %
DD-Nord	Traffic	01.01.1997 00:00	31.12.2020 23:00	24	3.2
Annaberg	Urban	02.01.1997 00:00	31.12.2020 23:00	24	2.3
Bautzen	Urban	01.01.2005 00:00	31.12.2020 23:00	16	0.9
DD-Winkelmannstr.	Urban	19.06.2008 23:00	31.12.2020 23:00	12.5	1.1
L-Thekla	Urban	02.04.2004 00:00	29.04.2020 18:00	16.1	1.6
L-West	Urban	01.01.2000 00:00	31.12.2020 23:00	21	1.8
Plauen-DWD	Urban	20.11.2003 13:00	14.07.2020 08:00	16.7	2.5
Zittau-Ost	Urban	10.01.1997 12:00	31.12.2020 23:00	24	2.3
Collmberg	Rural	30.09.1998 11:00	31.12.2020 23:00	22.3	2.1
Niesky	Rural	05.05.2003 15:00	31.12.2020 23:00	17.7	1.4
Radebeul-Wahnsd.	Rural	01.01.1974 00:00	31.12.2020 23:00	47	3.3
Schkeuditz	Rural	06.06.2003 13:00	31.12.2020 23:00	17.6	1
Carlsfeld	Mountain	01.01.1997 00:00	31.12.2020 23:00	24	2.3
Fichtelberg	Mountain	01.01.1997 00:00	31.12.2020 23:00	24	4.7
Schwartenberg	Mountain	11.02.1998 14:00	31.12.2020 23:00	22.9	2.1
Zinnwald	Mountain	02.01.1997 09:00	31.12.2020 23:00	24	2

Station	Station type	O 3	NO	NO ₂	NO _x	Т	GR	RH	WD	WS	Air pressure
DD-Nord	Traffic	Х	х	х	х	Х	Х	Х	х	х	х
Annaberg	Urban	Х	Х	Х	Х	Х	х	х	Х	Х	Х
Bautzen	Urban	х	Х	Х	Х	х	х	х	х	х	х
DD-Winkelmannstr.	Urban	х	х	Х	Х	х	х	х	х	х	х
L-Thekla	Urban	х				х	х	х	х	х	Х
L-West	Urban	х	х	Х	Х	х	х	х	х	х	Х
Plauen-DWD	Urban	х				х	х	х	х	х	Х
Zittau-Ost	Urban	х	х	х	х	х	х	х	х	х	Х
Collmberg	Rural	х	Х	Х	Х	Х	Х	Х	Х	Х	х
Niesky	Rural	х	Х	Х	Х	Х	х	х	х	х	х
Radebeul-Wahnsd.	Rural	х	х	Х	Х	х	х	х	х	х	Х
Schkeuditz	Rural	х	х	х	х	х	х	х	х	х	х
Carlsfeld	Mountain	Х				Х	х	х	Х	Х	Х
Fichtelberg	Mountain	х				х	х	х	х	х	Х
Schwartenberg	Mountain	х	х	х	х	х	х	х	х	х	х
Zinnwald	Mountain	х	х	х	х	х	х	х	х	х	Х

Table S2: Availability of further measurement parameters (O₃, NO, NO₂, NO_x, temperature (T), global radiation (GR), relative humidity (RH), wind direction (WD), wind speed (WS), and air pressure) per station.

Figure S1: The whole saxony as the emission area for modelling. The entire region was divided into three red rectangular areas and the emission data (here coloured by NO_x emission value (in kg m⁻²) from road transport in 2019) were averaged according to the ratio of area. The areas marked with A and B in pink, respectively, are suggestive of traffic and Leipzig urban area for averaging the emission data.

Model setting	Unit	Summer	Winter	Reference
Initial time		00:00 CET, 14 July, 2019	00:00CET, 14 January, 2019	
Meteorological conditions				
Temperature	°C	15	4	Measured
Pressure	hPa	1000	1000	Measured
Relative humidity	%	70	70	Measured
Ratio of Solar radiation*		0.7	0.4	Measured
Deposition rate				
NO_2	cm s ⁻¹	0.3	3	Rondón et al. (1993)
N_2O_5	cm s ⁻¹	100	2	Hoffmann et al. (2019)
O ₃	cm s ⁻¹	0.8	0.08	Clifton et al. (2020)
NO	cm s ⁻¹	0.05	0.05	Zhu et al. (2020)
HNO ₃	cm s ⁻¹	3.5	3.5	Zhu et al. (2020)
H_2O_2	cm s ⁻¹	1	1	Zhu et al. (2020)
СО	cm s ⁻¹	0.1	0.1	Zhu et al. (2020)
HCl	cm s ⁻¹	1	1	Zhu et al. (2020)
NH ₃	cm s ⁻¹	1	1	Zhu et al. (2020)
SO_2	cm s ⁻¹	1	1	Zhu et al. (2020)
HSO ₄	cm s ⁻¹	2	2	Zhu et al. (2020)
НСНО	cm s ⁻¹	1	1	Zhu et al. (2020)
CH ₃ OH	cm s ⁻¹	1	1	Zhu et al. (2020)
CH ₃ CH ₂ OH	cm s ⁻¹	0.5	0.5	Zhu et al. (2020)
PANs	cm s ⁻¹	0.7	0.7	Wu et al. (2012)
CHClO	cm s ⁻¹	0.2	0.2	Hoffmann et al. (2019)
CHBrO	cm s ⁻¹	0.2	0.2	Hoffmann et al. (2019)
Boundary layer height	(BLH)			
Daytime BLHs	m	500	2000	
Nighttime BLHs	m	250	1000	
Measured Chemical data				
O ₃	$\mu g m^{-3}$	63	43	Measured

Table S3. Modelling configuration and settings for summer and winter scenarios.

NO_2	μg m ⁻³	6.5	13.3	Measured
SO_2	μg m ⁻³	54	3	UBA website
СО	μg m ⁻³	178.1	178.1	Zellweger et al. (2009)
CH ₄	μg m ⁻³	1155.8	1155.8	Schaefer (2019)
HONO	ppb	0.5	0.5	Stieger et al. (2018)
PAN	ppb	0.5	0.5	Pandey Deolal et al. (2014)

* Ratio of solar radiation was derived from the measured solar radiation, it is equal to the mean value divided by the maximum.

Table S4. Dominant initial gas-phase concentrations applied in the final 24-hour simulations for summer and winter scenarios. The identity of each species is given as a compound string based on the CAPRAM and MCM models (*https://capram.tropos.de/index.html* and *https://mcm.york.ac.uk/*).

Summer		Winter	
Compound string	Unit	Compound string	Unit
Summer	molec cm ⁻³	Winter	molec cm ⁻³
С	4.34E+13	С	4.34E+13
H2	1.28E+13	H2	1.28E+13
СО	3.83E+12	СО	3.83E+12
O3	7.91E+11	O3	5.35E+11
CO2	9.10E+15	CO2	9.10E+15
[H2O]	5.10E+17	[H2O]	5.10E+17
[O2]	5.10E+18	[O2]	5.10E+18
[N2]	1.96E+19	[N2]	1.96E+19
SO2	2.82E+10	SO2	4.70E+10
H2O2	8.53E+09	H2O2	6.45E+09
NO2	8.56E+10	NO2	1.74E+11
HONO	1.23E+10	HONO	1.23E+10
OC	3.44E+07	OC	9.31E+06
C=O	9.46E+10	C=O	1.28E+11
CCO	4.87E+10	CCO	1.94E+10
CC=O	4.90E+10	CC=O	2.94E+11
CCCO	9.43E+06	CCCO	7.20E+07
CCC=O	3.25E+09	CCC=0	4.71E+10
CC(O)C	1.34E+09	CC(O)C	1.86E+10
CC(=O)C	9.85E+09	CC(=O)C	4.11E+10
CCCCO	2.40E+07	CCCCO	3.32E+08
CCCC=O	1.13E+09	CCCC=0	1.14E+10
CCC(O)C	1.27E+07	CCC(O)C	1.02E+08
CCC(=O)C	1.42E+11	CCC(=O)C	7.44E+10
CC(C)CO	2.04E+05	CC(C)CO	2.42E+04

CC(C)C=O	6.99E+07	CC(C)C=O	5.34E+08
CC(O)(C)C	2.48E+04	CC(O)(C)C	8.71E+02
CCC(O)CC	2.16E+04	CCC(0)CC	5.79E+04
CCC(=O)CC	3.56E+08	CCC(=O)CC	5.71E+08
CCC(C)CO	4.98E+04	CCC(C)CO	1.36E+05
CCC(C)C=O	4.79E+06	CCC(C)C=O	5.20E+07
CCC(O)(C)C	6.99E+03	CCC(O)(C)C	8.75E+03
CC(O)C(C)C	3.27E+04	CC(O)C(C)C	8.87E+04
CC(=O)C(C)C	5.30E+08	CC(=O)C(C)C	9.20E+08
C1CCC(O)CC1	2.95E+06	C1CCC(0)CC1	7.18E+07
C1CCC(=O)CC1	5.09E+08	C1CCC(=O)CC1	2.52E+09
CC(=O)CC(O)(C)C	6.00E+02	CC(=O)CC(O)(C)C	2.83E+02
OCCO	1.05E+07	OCCO	1.25E+07
OCC=O	9.45E+09	OCC=O	1.96E+10
CC(O)CO	2.28E+08	CC(O)CO	4.98E+09
CC(=O)CO	6.19E+09	CC(=O)CO	4.91E+09
CC(O)C=O	7.78E+07	CC(O)C=O	8.09E+08
CC(0)(C)C=0	4.50E+06	CC(O)(C)C=O	1.15E+06
C=C	2.00E+09	C=C	4.33E+10
CCCCC=O	2.25E+08	CCCCC=0	6.78E+09
O=CC=C	1.41E+09	O=CC=C	1.23E+10
O=CC=O	6.84E+09	O=CC=O	2.64E+10
CC(C=O)=C	9.58E+08	CC(C=O)=C	7.20E+08
CC(=O)C=O	3.03E+09	CC(=O)C=O	6.20E+09
CC=CC=O	9.91E+07	CC=CC=O	5.40E+08
С	4.62E+13	С	5.09E+13
CC	1.65E+10	CC	8.75E+10
CCC	1.91E+10	CCC	8.32E+09
CCCC	1.78E+11	CCCC	1.02E+11
CC(C)C	5.06E+09	CC(C)C	2.76E+09
CCCCC	1.03E+09	CCCCC	1.17E+10
CCC(C)C	1.89E+09	CCC(C)C	2.06E+10
CCCCCC	7.61E+08	CCCCCC	1.10E+10
CCCC(C)C	1.13E+09	CCCC(C)C	1.51E+10
CCC(C)CC	2.21E+08	CCC(C)CC	3.19E+09
CC(C)C(C)C	1.28E+08	CC(C)C(C)C	1.93E+09
CCCCCCC	3.60E+09	CCCCCCC	5.85E+10
CCCC(C)CC	6.53E+08	CCCC(C)CC	1.08E+10
CCCCCCCC	6.38E+08	CCCCCCCC	1.18E+10
CCCCCCCCC	2.33E+08	CCCCCCCCC	4.68E+09

CCCCCCCCC	1.54E+08	CCCCCCCCCC	3.26E+09
CCCCCCCCCC	3.64E+08	CCCCCCCCCC	8.19E+09
C1CCCCC1	5.58E+08	C1CCCCC1	9.16E+09
CC=C	8.70E+08	CC=C	2.12E+10
CCC=C	1.62E+08	CCC=C	4.03E+09
cCC=CC	6.24E+07	cCC=CC	1.75E+09
CC=CC	5.19E+07	CC=CC	1.38E+09
CC(C)=C	1.11E+06	CC(C)=C	5.73E+07
CCCC=C	1.04E+08	CCCC=C	2.32E+09
CCC(C)=C	3.35E+05	CCC(C)=C	1.46E+07
CC(C)C=C	1.75E+07	CC(C)C=C	3.90E+08
CC=C(C)C	2.52E+07	CC=C(C)C	8.88E+08
CCCCC=C	2.06E+08	CCCCC=C	5.01E+09
С	4.62E+13	С	5.09E+13
O=CO	3.28E+09	O=CO	1.73E+09
c1ccccc1	2.04E+09	c1ccccc1	1.12E+10
O=CC1OC1C=CC=O	9.75E+05	O=CC1OC1C=CC=O	3.73E+06
c1ccc(O)cc1	1.29E+07	c1ccc(O)cc1	6.18E+07
c1cccc1C	4.34E+09	c1cccc1C	6.65E+10
c1cccc(O)c1C	1.81E+08	c1cccc(O)c1C	5.84E+09
CC(=O)C=CC1OC1C=O	7.49E+06	CC(=0)C=CC10C1C=0	9.24E+07
Cc1cccc1C	1.60E+08	Cc1cccc1C	2.56E+09
CC1(C=O)OC1(C)C=CC=O	2.37E+06	CC1(C=O)OC1(C)C=CC=O	3.30E+07
Cc1cccc(O)c1C	9.67E+05	Cc1cccc(O)c1C	8.07E+06
c1c(C)cccc1C	3.84E+07	c1c(C)cccc1C	6.77E+08
CC(=O)C=CC1OC1(C)C=O	1.22E+06	CC(=0)C=CC10C1(C)C=0	2.33E+07
c1c(C)c(O)ccc1C	3.09E+05	c1c(C)c(O)ccc1C	3.06E+06
c1cc(C)ccc1C	2.06E+08	c1cc(C)ccc1C	3.35E+09
CC(=O)C=CC1(C)OC1C=O	1.20E+06	CC(=0)C=CC1(C)OC1C=O	1.69E+07
c1cc(C)c(O)cc1C	9.40E+05	c1cc(C)c(O)cc1C	7.90E+06
c1cccc1CC	3.97E+07	c1cccc1CC	6.98E+08
c1cccc(O)c1CC	2.69E+05	c1cccc(O)c1CC	2.83E+06
CCC(=0)C=CC10C1C=0	1.59E+05	CCC(=0)C=CC10C1C=0	2.34E+06
c1cccc1CCC	1.38E+07	c1cccc1CCC	2.14E+08
c1cccc(O)c1CCC	7.75E+04	c1cccc(O)c1CCC	7.17E+05
CCCC(=0)C=CC10C1C=O	4.54E+04	CCCC(=0)C=CC10C1C=0	5.83E+05
clcccclC(C)C	3.50E+06	c1cccc1C(C)C	5.75E+07
c1cccc(O)c1C(C)C	2.14E+04	c1cccc(O)c1C(C)C	2.10E+05
CC(C)C(=O)C=CC10C1C=O	1.25E+04	CC(C)C(=0)C=CC10C1C=0	1.72E+05
Cc1cccc(C)c1C	1.99E+07	Cc1cccc(C)c1C	3.44E+08

Cc1ccc(O)c(C)c1C	4.53E+04	Cc1ccc(O)c(C)c1C	4.88E+05
CC(=O)C=CC1OC1(C)C(=O)C	1.16E+06	CC(=0)C=CC10C1(C)C(=0)C	2.94E+07
Cc1ccc(C)cc1C	7.07E+07	Cc1ccc(C)cc1C	1.22E+09
Cc1c(O)c(C)ccc1C	1.60E+05	Cc1c(O)c(C)ccc1C	1.72E+06
CC(=O)C=CC1(C)OC1(C)C=O	2.79E+06	CC(=0)C=CC1(C)OC1(C)C=O	5.79E+07
c1c(C)cc(C)cc1C	4.95E+07	c1c(C)cc(C)cc1C	6.87E+08
c1c(C)c(O)c(C)cc1C	3.19E+05	c1c(C)c(O)c(C)cc1C	5.17E+06
CC(=O)C=C(C)C1OC1(C)C=O	6.17E+05	CC(=O)C=C(C)C1OC1(C)C=O	1.06E+07
Cc1cccc1CC	2.72E+07	Cc1ccccc1CC	4.14E+08
CCC1(C=O)OC1(C)C=CC=O	3.54E+05	CCC1(C=O)OC1(C)C=CC=O	4.61E+06
Cc1cccc(O)c1CC	1.44E+05	Cc1cccc(O)c1CC	1.14E+06
c1c(C)cccc1CC	1.20E+07	c1c(C)cccc1CC	2.08E+08
CCC(=O)C=CC1OC1(C)C=O	3.08E+05	CCC(=O)C=CC1OC1(C)C=O	5.42E+06
c1ccc(C)c(O)c1CC	8.47E+04	c1ccc(C)c(O)c1CC	7.69E+05
c1ccccc1C=C	5.83E+06	c1ccccc1C=C	3.57E+08
c1ccccc1C=O	1.47E+09	c1cccc1C=O	9.50E+09
CLC(CL)=C(CL)CL	1.99E+09	CLC(CL)=C(CL)CL	5.10E+08
CLC(CL)=CCL	3.19E+08	CLC(CL)=CCL	1.72E+08
CLCCCL	1.96E+08	CLCCCL	5.18E+07
CLC=C	5.84E+07	CLC=C	1.16E+09
O=CCL	1.01E+08	O=CCL	4.16E+08
C=CC=C	4.75E+07	C=CC=C	2.04E+09
C=CC(C)=C	8.42E+08	C=CC(C)=C	5.52E+07
CC(=O)C=C	1.80E+09	CC(=O)C=C	9.14E+07
CC(=C)CC=O	1.33E+07	CC(=C)CC=O	9.36E+05
CC(=O)CC=C	9.11E+07	CC(=O)CC=C	4.90E+06
COC=O	2.21E+10	COC=O	5.16E+09
CC(=O)OC	2.26E+09	CC(=O)OC	6.33E+08
CCOC(=O)C	2.78E+09	CCOC(=O)C	1.35E+09
CCCOC(=O)C	1.76E+08	CCCOC(=0)C	1.85E+09
CC(=O)OC(C)C	7.26E+09	CC(=O)OC(C)C	5.86E+09
CCCCOC(=O)C	4.54E+08	CCCCOC(=O)C	6.24E+09
COC	9.59E+09	COC	6.22E+09
CCOCC	2.45E+07	CCOCC	5.73E+08
COCCO	3.85E+08	COCCO	8.60E+09
COCC=O	4.98E+07	COCC=O	1.04E+09
CCOCCO	1.61E+03	CCOCCO	1.70E+04
CCOCC=0	3.76E+04	CCOCC=0	3.01E+05
CCCC(=O)C	1.37E+08	CCCC(=O)C	3.85E+08
CCCCC(=O)C	1.01E+08	CCCCC(=O)C	4.55E+08

CCCC(=O)CC	1.15E+08	CCCC(=O)CC	4.25E+08
CC(=O)CC(C)C	2.70E+07	CC(=O)CC(C)C	1.38E+08
C12CC(C1(C)C)CC=C2C	3.12E+08	C12CC(C1(C)C)CC=C2C	2.49E+08
CC1(C)C(CC12)CCC2=C	3.10E+08	CC1(C)C(CC12)CCC2=C	4.28E+08
CC1(C)C(C2)C(=O)CCC12	5.15E+09	CC1(C)C(C2)C(=O)CCC12	2.43E+09
C1CC(C)=CCC1C(C)=C	7.84E+07	C1CC(C)=CCC1C(C)=C	1.83E+09
CC(=0)0	3.59E+10	CC(=O)O	9.59E+10
CCC(=O)O	1.09E+09	CCC(=O)O	4.81E+09
C1OC1	8.56E+08	C1OC1	2.14E+08
OCCOO	1.54E+08	OCCOO	2.16E+08
OCCON(=O)=O	2.59E+08	OCCON(=O)=O	1.15E+08
OCCCOO	5.36E+07	OCCCOO	1.08E+07
OCCCON(=O)=O	1.29E+08	OCCCON(=O)=O	4.31E+07
OCCC=O	1.16E+09	OCCC=O	1.46E+09
OCCCO	1.34E+06	OCCCO	1.64E+05
CC(00)C0	1.54E+07	CC(OO)CO	3.10E+08
CC(ON(=O)=O)CO	2.97E+08	CC(ON(=O)=O)CO	1.03E+09
CC(O)COO	5.02E+06	CC(O)COO	5.83E+07
CC(0)CON(=0)=0	1.89E+07	CC(O)CON(=O)=O	6.49E+07
CCC(OO)CO	2.99E+06	CCC(OO)CO	7.39E+07
CCC(ON(=O)=O)CO	9.07E+07	CCC(ON(=O)=O)CO	4.19E+08
CCC(=O)CO	5.00E+07	CCC(=O)CO	9.92E+07
CCC(0)CO	6.19E+05	CCC(O)CO	2.66E+06
CC(OO)CCO	3.92E+05	CC(OO)CCO	7.14E+05
CC(ON(=O)=O)CCO	5.04E+06	CC(ON(=O)=O)CCO	8.84E+06
CC(0)CCO	1.45E+05	CC(O)CCO	3.22E+04
CC(=O)CCO	1.34E+08	CC(=O)CCO	4.09E+08
CC(0)C(00)C	7.58E+06	CC(0)C(00)C	1.54E+08
CC(0)C(0N(=0)=0)C	1.63E+08	CC(O)C(ON(=O)=O)C	1.47E+09
CC(O)C(=O)C	8.22E+07	CC(0)C(=0)C	3.57E+08
CC(0)C(0)C	3.04E+05	CC(0)C(0)C	4.13E+06
CC(OO)(C)CO	1.69E+05	CC(00)(C)CO	3.34E+06
CC(ON(=O)=O)(C)CO	7.33E+05	CC(ON(=O)=O)(C)CO	3.30E+06
CC(O)(C)CO	2.81E+04	CC(O)(C)CO	1.30E+04
CC(CO)COO	6.61E+04	CC(CO)COO	1.38E+04
CC(CO)CON(=O)=O	3.15E+05	CC(CO)CON(=O)=O	2.01E+05
CC(CO)C=O	1.84E+06	CC(CO)C=O	6.98E+06
CC(CO)CO	1.84E+03	CC(CO)CO	2.19E+02
CC(0)(C)COO	1.62E+06	CC(O)(C)COO	5.08E+05
CC(0)(C)CON(=0)=0	5.63E+06	CC(O)(C)CON(=O)=O	1.26E+06

CCC(0)CCOO	1.00E+06	CCC(0)CCOO	2.57E+05
CCC(O)CCON(=O)=O	2.78E+06	CCC(O)CCON(=O)=O	3.04E+06
CCC(O)CCO	3.64E+04	CCC(O)CCO	4.96E+03
CCC(O)CC=O	7.42E+06	CCC(O)CC=O	5.79E+06
CCC(O)C(OO)C	3.71E+06	CCC(O)C(OO)C	6.21E+07
CCC(O)C(ON(=O)=O)C	6.68E+07	CCC(O)C(ON(=O)=O)C	8.92E+08
CCC(O)C(O)C	2.44E+05	CCC(O)C(O)C	2.81E+06
CCC(O)C(=O)C	2.87E+07	CCC(O)C(=O)C	2.14E+08
CC(OO)C(C)CO	6.23E+04	CC(OO)C(C)CO	6.10E+04
CC(ON(=O)=O)C(C)CO	1.07E+06	CC(ON(=O)=O)C(C)CO	2.08E+06
CC(O)C(C)CO	6.15E+03	CC(O)C(C)CO	2.84E+03
CC(=O)C(C)CO	4.30E+06	CC(=O)C(C)CO	1.27E+07
CCC(OO)(C)CO	5.55E+04	CCC(OO)(C)CO	1.03E+06
CCC(ON(=O)=O)(C)CO	2.75E+05	CCC(ON(=O)=O)(C)CO	1.56E+06
CCC(O)(C)CO	2.57E+05	CCC(O)(C)CO	1.04E+04
CC(O)(C)CCO	2.39E+05	CC(O)(C)CCO	3.97E+04
CC(C)C(OO)CO	3.45E+05	CC(C)C(OO)CO	8.32E+06
CC(C)C(ON(=O)=O)CO	1.27E+07	CC(C)C(ON(=O)=O)CO	6.94E+07
CC(C)C(O)CO	2.14E+04	CC(C)C(O)CO	2.65E+05
CC(C)C(=O)CO	4.85E+06	CC(C)C(=O)CO	1.36E+07
CC(O)(C)CCOO	3.39E+06	CC(O)(C)CCOO	1.75E+06
CC(O)(C)CCON(=O)=O	3.96E+07	CC(O)(C)CCON(=O)=O	2.00E+07
CC(O)(C)CC=O	1.80E+07	CC(O)(C)CC=O	6.01E+07
CC(00)C(0)(C)C	1.78E+06	CC(00)C(0)(C)C	3.28E+07
CC(ON(=O)=O)C(O)(C)C	6.93E+07	CC(ON(=O)=O)C(O)(C)C	4.62E+08
CC(0)C(0)(C)C	6.44E+04	CC(0)C(0)(C)C	1.13E+06
CC(=O)C(O)(C)C	4.71E+08	CC(=O)C(O)(C)C	5.53E+09
CCC(O)(C)COO	2.30E+06	CCC(O)(C)COO	1.87E+05
CCC(0)(C)CON(=0)=0	7.91E+06	CCC(0)(C)CON(=0)=0	6.48E+05
CCC(O)(C)C=O	5.65E+06	CCC(0)(C)C=0	5.98E+05
CC(0)C(C)COO	1.11E+05	CC(0)C(C)COO	7.70E+04
CC(0)C(C)CON(=0)=0	2.43E+05	CC(O)C(C)CON(=O)=O	6.44E+05
CC(O)C(C)C=O	7.81E+05	CC(0)C(C)C=0	5.13E+06
CC(0)C(00)(C)C	5.48E+06	CC(0)C(00)(C)C	8.95E+07
CC(O)C(ON(=O)=O)(C)C	7.07E+07	CC(0)C(0N(=0)=0)(C)C	2.48E+08
C1CC(0)C(00)CC1	3.05E+04	C1CC(0)C(00)CC1	5.16E+05
C1CC(0)C(0N(=0)=0)CC1	3.26E+05	C1CC(0)C(0N(=0)=0)CC1	2.84E+06
C1CC(0)C(0)CC1	9.40E+02	C1CC(0)C(0)CC1	1.07E+04
C1CC(0)C(=0)CC1	1.67E+05	C1CC(O)C(=O)CC1	8.82E+05
CC(=O)C(OO)C(O)(C)C	2.31E+00	CC(=O)CC(O)(C)CO	7.43E+03

CC(=O)CC(O)(C)COO	1.08E+00	CC(=O)CC(O)(C)C=O	8.51E+02
CC(=O)CC(O)(C)CON(=O)=O	4.82E+00	CC(0)(C)CC(=0)COO	7.98E+05
CC(=0)CC(0)(C)CO	9.24E+03	CC(0)(C)CC(=0)CO	3.28E+04

Table S5. Changing the emission multiplier for NO_x and TNMVOC in the simulations. Total simulations numbers are 1600 (40 x 40).

Number	Emission Factor
1	0.001
2	0.005
3	0.01
4	0.05
5	0.1
6	0.5
7	1
8	1.5
9	2
10	2.5
11	3
12	3.5
13	4
14	4.5
15	5
16	5.5
17	6
18	6.5
19	7
20	7.5
21	8
22	8.5
23	9
24	9.5
25	10
26	10.5
27	11
28	11.5
29	12
30	15
31	20
32	25

33	30
34	35
35	40
36	45
37	50
38	60
39	70
40	80

Figure S2: Smooth trends in annual means of O₃ for A) all stations from 1997 (or later) to 2020 and B) Radebeul-Wahnsdorf from 1974 - 2020.

Table S6. Trends of the mean ozone concentration at the stations of the Saxony air quality monitoring network for three different time periods. Statistically non-significant values with p > 0.05 are put in brackets. * means the years begin from 2008.

		All available years		15 year	s	10 years	
		1997 (or later) ı	until 2020	2006 to 20	020	2011 to 2020	
Station	Station type	abs. Trend	rel. Trend	abs. Trend	rel. Trend	abs. Trend	rel. Trend
		µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹
DD-Nord	Traffic	0.65	2.30	0.75	2.27	1.19	3.50
Annaberg	Urban	0.17	0.38	0.28	0.63	0.51	1.14
Bautzen	Urban	0.24	0.47	0.35	0.72	0.59	1.19
DD- Winkelmannstr.	Urban	0.65	1.57	0.65*	1.57*	0.74	1.75
L-West	Urban	0.19	0.42	0.38	0.83	0.64	1.42
L-Thekla	Urban	(0.15)	(0.37)	(0.13)	(0.32)	0.51	1.28
Plauen-DWD	Urban	(-0.09)	(-0.17)	(0.09)	(0.20)	(0.41)	(0.85)
Zittau-Ost	Urban	-0.14	-0.27	(0.03)	(0.06)	(0.24)	(0.51)
Collmberg	Rural	(-0.03)	(-0.05)	0.26	0.45	0.53	0.92
Niesky	Rural	(-0.13)	(-0.23)	(0.05)	(0.10)	(0.15)	(0.28)
Radebeul- Wahnsd.	Rural	(0.05)	(0.09)	0.27	0.52	0.71	1.38
Schkeuditz	Rural	0.25	0.53	0.43	0.93	0.68	1.49
Carlsfeld	Mountain	-0.26	-0.35	(-0.12)	(-0.17)	(0.00)	(-0.01)
Fichtelberg	Mountain	-0.31	-0.37	-0.37	-0.45	-0.79	-0.95
Schwartenberg	Mountain	(-0.05)	(-0.06)	(0.15)	(0.22)	(0.26)	(0.37)
Zinnwald	Mountain	(-0.02)	(-0.03)	(0.15)	(0.22)	(0.14)	(0.20)

Table S7. Trends for all available years since 1997, 15 years from 2006 to 2020 and 10 years from 2011 to 2020 of NO_x (A), NO (B), NO₂ (C), and O_x (D). Statistically non-significant values with p > 0.05 are put in brackets. * means the years begin from 2008.

(A)								
NOx		All available years 1997 or later - 2020		15 yea	ars	10 yea	10 years	
				2006 - 2020		2011 - 2020		
Station	Station type	abs. Trend	rel. Trend	abs. Trend	rel. Trend	abs. Trend	ıbs. Trend rel. Trend	
		µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹	
DD-Nord	Traffic	-2.96	-2.57	-3.32	-3.54	-3.83	-4.77	
Annaberg	Urban	-1.66	-2.46	-1.6	-2.98	-1.56	-3.42	
Bautzen	Urban	-1.13	-3.09	-1.13	-3.19	-1.32	-4.27	
DD- Winkelmannstr.	Urban	-0.9	-2.75	-0.90*	-2.75*	-0.9	-3.03	

L-West	Urban	-0.57	-1.88	-0.58	-2.17	-0.75	-3.06
L-Thekla	Urban						
Plauen-DWD	Urban						
Zittau-Ost	Urban	-0.3	-1.35	-0.22	-1.18	-0.5	-2.59
Collmberg	Rural	-0.31	-1.89	-0.36	-2.55	-0.37	-2.99
Niesky	Rural	-0.24	-2.04	-0.24	-2.04	-0.15	-1.41
Radebeul- Wahnsd.	Rural	-0.44	-1.77	-0.48	-2.26	-0.56	-2.97
Schkeuditz	Rural						
Carlsfeld	Mountain						
Fichtelberg	Mountain						
Schwartenberg	Mountain	-0.36	-2.13	-0.4	-2.91	-0.3	-2.71
Zinnwald	Mountain	-0.4	-2.22	-0.46	-3.27	-0.32	-2.92

(B)

NO	NO		All available years		ars	10 years	
		1997 or lat	er - 2020	2006 -	2020	2011 - 2020	
Station	Station type	abs. Trend	rel. Trend	abs. Trend	rel. Trend	abs. Trend	rel. Trend
Station	Station type	µg m ⁻³ year ⁻¹	% year-1	µg m ⁻³ year ⁻¹	% year-1	µg m ⁻³ year ⁻¹	% year-1
DD-Nord	Traffic	-1.22	-2.93	-1.27	-4.02	-1.49	-5.53
Annaberg	Urban	-0.65	-2.78	-0.6	-3.33	-0.7	-4.61
Bautzen	Urban	-0.29	-3.46	-0.29	-3.62	-0.31	-4.59
DD-Winkelmannstr.	Urban	-0.11	-2.09	-0.11*	-2.09*	-0.15	-2.96
L-West	Urban	-0.07	-1.62	-0.05	-1.34	-0.1	-2.74
L-Thekla	Urban						
Plauen-DWD	Urban						
Zittau-Ost	Urban	-0.02	-0.78	-0.01	-0.6	-0.1	-2.98
Collmberg	Rural	-0.01	-0.44	0	-0.18	-0.01	-0.48
Niesky	Rural	-0.01	-0.85	-0.01	-0.85	-0.02	-1.26
Radebeul-Wahnsd.	Rural	-0.03	-1.07	-0.02	-0.9	-0.05	-2.04
Schkeuditz	Rural						
Carlsfeld	Mountain						

Fichtelberg	Mountain						
Schwartenberg	Mountain	-0.01	-0.69	-0.01	-1.01	-0.02	-1.53
Zinnwald	Mountain	-0.02	-1.24	-0.01	-0.99	(-0.01)	(-0.43)

(C)

NO	NO ₂	All available years		15 ye	ars	10 years		
1102		1997 or later - 2020		2006 - 2020		2011 - 2020		
Station	Station type	abs. Trend	rel. Trend	abs. Trend	rel. Trend	abs. Trend	rel. Trend	
	Station type	µg m ⁻³ year ⁻¹	% year-1	µg m ⁻³ year ⁻¹	% year-1	µg m ⁻³ year ⁻¹	% year-1	
DD-Nord	Traffic	-1.06	-2.06	-1.4	-3.1	-1.56	-3.99	
Annaberg	Urban	-0.65	-2.02	-0.69	-2.61	-0.57	-2.54	
Bautzen	Urban	-0.68	-2.82	-0.68	-2.95	-0.78	-3.84	
DD-Winkelmannstr.	Urban	-0.63	-2.65	-0.63*	-2.65*	-0.58	-2.71	
L-West	Urban	-0.45	-1.91	-0.51	-2.39	-0.57	-3.04	
L-Thekla	Urban							
Plauen-DWD	Urban							
Zittau-Ost	Urban	-0.26	-1.5	-0.25	-1.64	-0.32	-2.24	
Collmberg	Rural	-0.29	-2.04	-0.35	-2.83	-0.34	-3.33	
Niesky	Rural	-0.21	-2.25	-0.21	-2.25	(-0.10)	(-1.20)	
Radebeul-Wahnsd.	Rural	-0.39	-1.86	-0.44	-2.48	-0.51	-3.25	
Schkeuditz	Rural							
Carlsfeld	Mountain							
Fichtelberg	Mountain							
Schwartenberg	Mountain	-0.33	-2.34	-0.38	-3.28	-0.29	-3.23	
Zinnwald	Mountain	-0.36	-2.39	-0.43	-3.77	-0.35	-3.89	

(D)

.

0	All available years	15 years	10 years	
Ux	1997 or later - 2020	2006 - 2020	2011 - 2020	

Station	Station	abs. Trend	rel. Trend	abs. Trend	rel. Trend	abs. Trend	rel. Trend
	type	µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹	µg m ⁻³ year ⁻¹	% year ⁻¹
DD-Nord	Traffic	-0.21	-0.52	-0.33	-0.82	-0.26	-0.68
Annaberg	Urban	-0.24	-0.62	-0.23	-0.63	(-0.09)	(-0.25)
Bautzen	Urban	-0.25	-0.67	-0.21	-0.56	(-0.20)	(-0.55)
DD- Winkelmannstr.	Urban	(-0.07)	(-0.22)	(-0.07) *	(-0.22) *	(-0.03)	(-0.07)
L-West	Urban	-0.14	-0.4	(-0.10)	(-0.28)	(-0.07)	(-0.21)
L-Thekla	Urban						
Plauen-DWD	Urban						
Zittau-Ost	Urban	-0.22	-0.63	-0.14	-0.43	(-0.13)	(-0.41)
Collmberg	Rural	-0.16	-0.43	(-0.08)	(-0.24)	-0.02	-0.05
Niesky	Rural	(-0.13)	(-0.40)	(-0.13)	(-0.40)	(-0.04)	(-0.12)
Radebeul- Wahnsd.	Rural	-0.17	-0.45	-0.1	-0.29	-0.03	-0.1
Schkeuditz	Rural						
Carlsfeld	Mountain						
Fichtelberg	Mountain						
Schwartenberg	Mountain	-0.2	-0.46	-0.17	-0.41	(-0.08)	(-0.21)
Zinnwald	Mountain	-0.18	-0.42	-0.17	-0.43	(-0.16)	(-0.41)

Figure S3: Relationships between O₃ trends and NO, NO₂ trends across all stations for three different time periods. Transparent dots indicate statistically non-significant O₃ trends.

Figure S4: Correlations between measured averaged noon (12:00 - 13:00) NO_x in ppb (~0.82 times and 0.53 times for NO and NO₂, respectively, concentrations in µg m⁻³) and O₃ in ppb (~0.51 times O₃ concentration in µg m⁻³) of four station types in summer over 5 years (2000, 2005, 2010, 2015 and 2019).

Figure S5: Correlations between measured averaged noon (12:00 - 13:00) NO_x (~0.82 times and 0.53 times for NO and NO₂, respectively, concentrations in μ g m⁻³) and O₃ in ppb (~0.51 times O₃ concentration in μ g m⁻³) of four station types in winter over 5 years (2000, 2005, 2010, 2015 and 2019).

Figure S6: Diurnal profiles of the modelled net O_3 production rate (NetPO₃ in ppb h⁻¹) and measured O_3 change rate (dO₃/dt, ppb h⁻¹) for summer (A) and winter (B), respectively. Linear correlation coefficient (r) between modelled and measured rates is larger than 0.8 in both seasons.

Fable S8. TNMVOC concentrations for the summer scenario used to include station type data into the isopleth diagram (Fig. 10 $\scriptscriptstyle A$	\) .
These are derived from comparing measured and modelled NO_{x_2} as well as measured dO_3/dt and modelled $NetPO_3$ values.	

				Measured			Model	led
Year	Period	Hour	Station type	NOx	dO ₃ /dt	NOx	NetPO ₃	TNMVOC
				ppb	ppb h ⁻¹	ppb	ppb h ⁻¹	ppb
2000	Summer	6 - 12	Traffic	65.22	2.74	65.27	2.74	91.87
2000	Summer	6 - 12	Urban	19.07	4.13	19.02	4.13	54.06
2000	Summer	6 - 12	Rural	8.49	2.89			
2000	Summer	6 - 12	Mountain	7.15	1.2			
2005	Summer	6 - 12	Traffic	59.17	3.69	59.16	3.69	90.7
2005	Summer	6 - 12	Urban	18.27	4.27	18.22	4.27	53.8
2005	Summer	6 - 12	Rural	7.06	3.45			
2005	Summer	6 - 12	Mountain	6.22	1.16			
2010	Summer	6 - 12	Traffic	45.62	3.87	45.65	3.87	78.79
2010	Summer	6 - 12	Urban	15.08	4.63	15.12	4.63	52.05

2010	Summer	6 - 12	Rural	5.94	3.42			
2010	Summer	6 - 12	Mountain	5.53	1.18			
2015	Summer	6 - 12	Traffic	34.27	4.32	34.23	4.32	69.81
2015	Summer	6 - 12	Urban	11.48	4.75	11.51	4.75	48.6
2015	Summer	6 - 12	Rural	4.96	3.73			
2015	Summer	6 - 12	Mountain	3.94	1.3			
2019	Summer	6 - 12	Traffic	23.87	4.55	23.82	4.55	60.64
2019	Summer	6 - 12	Urban	9.59	4.88	9.61	4.87	46.91
2019	Summer	6 - 12	Rural	4.54	3.89			
2019	Summer	6 - 12	Mountain	3.67	1.64			

Table S9. TNMVOC concentrations for the winter scenario used to include station type data into the isopleth diagram (Fig. 10 B). These are derived from comparing measured and modelled NO_x, as well as measured dO₃/dt and modelled NetPO₃ values.

				Mea	asured		Model	led
Year	Period	Hour	Station type	NOx	dO ₃ /dt	NOx	NetPO ₃	TNMVOC
				ppb	ppb h ⁻¹	ppb	ppb h ⁻¹	ppb
2000	Winter	8 - 12	Traffic	80.56	0.78	80.58	0.78	178.88
2000	Winter	8 - 12	Urban	31.48	1.45	31.43	1.46	108.46
2000	Winter	8 - 12	Rural	16.38	0.97			
2000	Winter	8 - 12	Mountain	10.46	0.69			
2005	Winter	8 - 12	Traffic	68.96	0.85	68.97	0.85	164.34
2005	Winter	8 - 12	Urban	23.16	1.22	23.12	1.22	92.69
2005	Winter	8 - 12	Rural	12.87	0.99			
2005	Winter	8 - 12	Mountain	8.42	0.44			
2010	Winter	8 - 12	Traffic	63.24	0.98	63.26	0.98	157.86
2010	Winter	8 - 12	Urban	29.75	1.32	29.73	1.32	104.25
2010	Winter	8 - 12	Rural	15.34	1.30			
2010	Winter	8 - 12	Mountain	10.08	0.68			
2015	Winter	8 - 12	Traffic	55.01	1.42	55.06	1.42	150.5
2015	Winter	8 - 12	Urban	20.24	1.61	20.22	1.61	93.22
2015	Winter	8 - 12	Rural	9.11	1.17			
2015	Winter	8 - 12	Mountain	5.97	0.48			
2019	Winter	8 - 12	Traffic	43.47	1.59	43.44	1.59	131.06
2019	Winter	8 - 12	Urban	18.16	1.65	18.12	1.65	90.94
2019	Winter	8 - 12	Rural	8.85	1.17			
2019	Winter	8 - 12	Mountain	5.67	0.35			

Number	Compounds		
1	1-Butene		
2	1-Hexene		
3	1-Pentene		
4	1,2,3-Trimethylbenzene		
5	1,2,4-Trimethylbenzene		
6	1,3-Butadiene		
7	1,3,5-Trimethylbenzene		
8	2-Methylheptane		
9	2-Methylhexane		
10	2-Methylpentane		
11	2,2-Dimethylbutane		
12	2,2,4-Trimethylpentane		
13	2,3-Dimethylbutane		
14	2,3-Dimethylpentane		
15	2,3,4-Trimethylpentane		
16	2,4-Dimethylpentane		
17	3-Methylheptane		
18	3-Methylhexane		
19	3-Methylpentane		
20	a-Pinene		
21	Acetylene		
22	b-Pinene		
23	Benzene		
24	cis-2-Butene		
25	cis-2-Pentene		
26	Cyclohexane		
27	Cyclopentane		
28	Ethane		
29	Ethene		
30	Ethylbenzene		
31	i-Butane		
32	i-Butene		
33	i-Pentane		
34	i-Propylbenzene		
35	Isoprene		
36	Limonene		
37	m-Diethylbenzene		

Table S10. The species list of NMVOCs measured by online thermodesorption gas chromatography with flame ionization dectection in Borna, south of Leipzig, Germany.

38	m-Ethyltoluene
39	m,p-Xylene
40	Methylcyclohexane
41	Methylcyclopentane
42	n-Butane
43	n-Decane
44	n-Dodecane
45	n-Heptane
46	n-Hexane
47	n-Nonane
48	n-Octane
49	n-Pentane
50	n-Propylbenzene
51	n-Undecane
52	o-Ethyltoluene
53	o-Xylene
54	p-Diethylbenzene
55	p-Ethyltoluene
56	Propane
57	Propene
58	Styrene
59	Toluene
60	trans-2-Butene
61	trans-2-Pentene
62	1-Hexene
63	2,2-Dimethylbutane
64	3-Methylpentane
65	Butadiene
66	n-Hexane

Table S11. Statistical summary of total measured NMVOCs (unit in ppb) throughout the year 2022 in Borna.

NMVOCs	Mean	Max
Summer	3.55	29.72
Winter	6.04	204.55

Figure S7: Diurnal summer profiles of hourly averaged measured O₃ over five years (2000, 2005, 2010, 2015, and 2019) across four station types.

Figure S8: Diurnal winter profiles of hourly averaged measured O₃ over five years (2000, 2005, 2010, 2015, and 2019) across four station types.

Figure S9: Saxony anthropogenic emissions of NO_x. Emission data were averaged over the selected Saxony regions (Fig. S1).

Figure S10: Traffic anthropogenic emissions of NMVOCs. Emission data were averaged over the selected traffic area (Fig. S1).

Figure S11: Traffic anthropogenic emission of NO_x. Emission data were averaged over the selected traffic area (Fig. S1).

Figure S12: Leipzig urban anthropogenic emission NMVOCs. Emission data were averaged over the selected urban area (Fig. S1).

Figure S13: Leipzig urban anthropogenic emission NO_x. Emission data were averaged over the selected urban area (Fig. S1).

Figure S14: Biogenic emissions of isoprene (ISO) and alpha-pinene (API) in Saxony for the year 2019, along with anthropogenic and biogenic emission data for limonene (LIM) in the same year, were averaged over the selected regions in Saxony (as shown in Fig. S1). Emission inventories in 2019 from the German Environment Agency (UBA) for Germany and Thürkow et al. (2024).

Figure S15: Biogenic emissions of isoprene (ISO) and alpha-pinene (API) in selected Leipzig urban area (Fig. S1) for the year 2019, along with anthropogenic and biogenic emission data for limonene (LIM) in the same year. Emission inventories in 2019 from the German Environment Agency (UBA) for Germany and Thürkow et al. (2024).

Reference

Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M., Emberson, L., Fares, S., Farmer, D. K., Gentine, P., and Gerosa, G.: Dry deposition of ozone over land: processes, measurement, and modeling, Reviews of Geophysics, 58, e2019RG000670, 2020.

Hoffmann, E. H., Tilgner, A., Vogelsberg, U., Wolke, R., and Herrmann, H.: Near-explicit multiphase modeling of halogen chemistry in a mixed urban and maritime coastal area, ACS Earth Space Chem., *3*, 2452-2471, 2019.

Pandey Deolal, S., Henne, S., Ries, L., Gilge, S., Weers, U., Steinbacher, M., Staehelin, J., and Peter, T.: Analysis of elevated springtime levels of Peroxyacetyl nitrate (PAN) at the high Alpine research sites Jungfraujoch and Zugspitze, Atmospheric Chemistry and Physics, 14, 12553-12571, 2014.

Rondón, A., Johansson, C., and Granat, L.: Dry deposition of nitrogen dioxide and ozone to coniferous forests, Journal of Geophysical Research: Atmospheres, 98, 5159-5172, 1993.

Schaefer, H.: On the causes and consequences of recent trends in atmospheric methane, Current Climate Change Reports, 5, 259-274, 2019.

Stieger, B., Spindler, G., Fahlbusch, B., Müller, K., Grüner, A., Poulain, L., Thöni, L., Seitler, E., Wallasch, M., and Herrmann, H.: Measurements of PM 10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany– A five-year study, Journal of Atmospheric Chemistry, 75, 33-70, 2018. Thürkow, M., Schaap, M., Kranenburg, R., Pfäfflin, F., Neunhäuserer, L., Wolke, R., Heinold, B., Stoll, J., Lupaşcu, A., and Nordmann, S.: Dynamic evaluation of modeled ozone concentrations in Germany with four chemistry transport models, Science of the Total Environment, 906, 167665, 2024.

Wu, Z., Wang, X., Turnipseed, A. A., Chen, F., Zhang, L., Guenther, A. B., Karl, T., Huey, L., Niyogi, D., and Xia, B.: Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest, Journal of Geophysical Research: Atmospheres, 117, 2012.

Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., and Buchmann, B.: Inter-comparison of four different carbon monoxide measurement techniques and evaluation of the long-term carbon monoxide time series of Jungfraujoch, Atmospheric Chemistry and Physics, 9, 3491-3503, 2009.

Zhu, Y., Tilgner, A., Hoffmann, E. H., Herrmann, H., Kawamura, K., Yang, L., Xue, L., and Wang, W.: Multiphase MCM– CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014, Atmospheric Chemistry and Physics, 20, 6725-6747, 2020.