

The Impact of Geological Structures on Groundwater Potential Assessment in Volcanic Rocks in the Borena Saynit district, Northwestern Ethiopian Plateau: A Review

Bishaw Mihret^{1*}, Ajebush Wuletaw²

¹Structural Geology and Tectonics, Natural and Computational Science, Debre Markos University, PoBox:269, Debre Markos, Ethiopia

²Economic Geology, Natural and Computational Science, Debre Markos University, PoBox:269, Debre Markos, Ethiopia.

*Corresponding Author Email: bishawmihret2022@gmail.com

Abstract

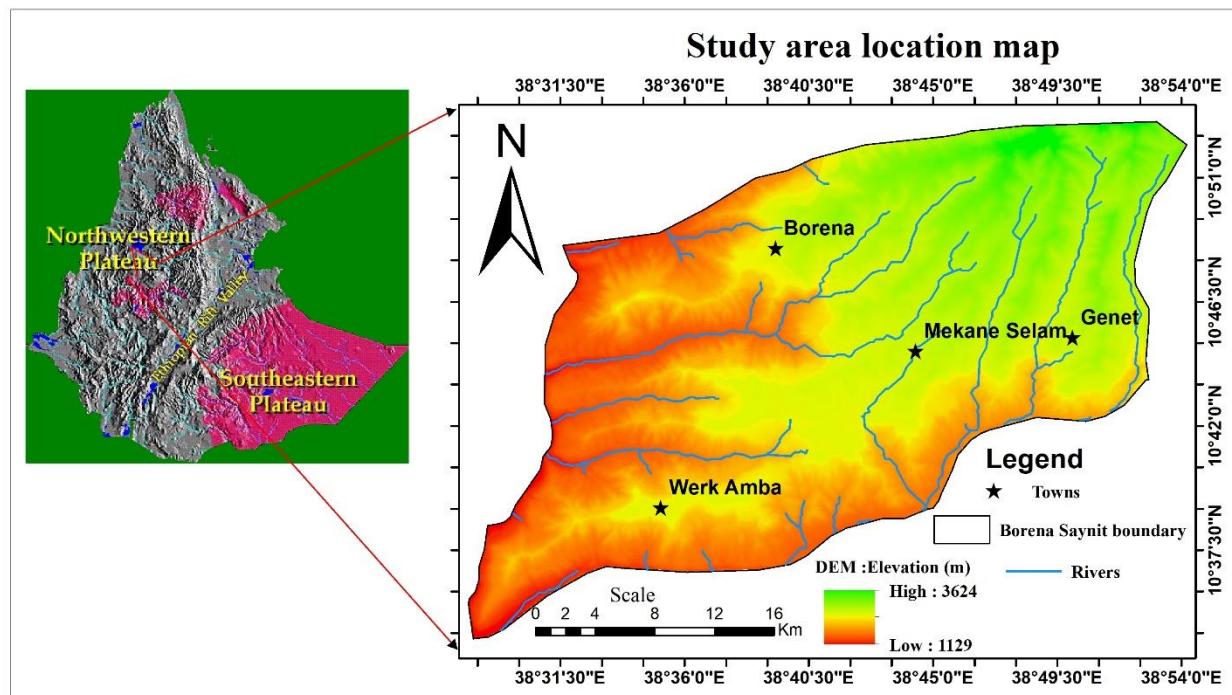
This review explores the influence of geological structures on groundwater potential in the Borena Saynit district, Northwestern Ethiopian Plateau. The region's tectonic complexity has shaped fractures, faults, and folds that critically affect groundwater storage and flow, particularly in volcanic terrains with limited primary porosity. Structural features such as faults, fractures, and lineaments enhance secondary porosity and control aquifer dynamics by guiding recharge, flow, and discharge processes. Case studies demonstrate how these features interact with volcanic lithology and tectonic processes, influencing groundwater movement. The review emphasizes the importance of integrating geological, geophysical, and hydrological methods for effective exploration and sustainable management of groundwater resources in structurally and lithologically complex volcanic regions.

21 **Keywords:** Geological structures, groundwater potential, volcanic rocks, Ethiopian plateau, hydrogeology

22 **1. Introduction**

23 The Ethiopian Rift (ER) is part of the East African Rift System (EARS) and comprises a series of rift zones
24 extending from the Afar triple junction at the Red Sea and Gulf of Aden intersection to the Kenya rift. The
25 Main Ethiopian Rift (MER) constitutes the northernmost part of the East African Rift System (EARS) trending
26 NE-SW, connecting the EARS with the Afar Triple Junction and is an area characterized by active extensional
27 tectonics and volcanism. The Northwestern Ethiopian Plateau, dominated by volcanic rocks formed by Tertiary
28 to Quaternary volcanic activities, is significantly influenced by tectonic processes, particularly those related to
29 the East African Rift System ([WoldeGabriel et al., 1990](#); [Chernet et al., 1998](#), [Fenta et al., 2020](#), [Tafesse and Alemaw, 2020](#)). Groundwater in volcanic areas is controlled by the physical properties of volcanic rocks and
30 the structural changes caused by tectonic activity. Key factors such as lithological heterogeneity, the degree of
31 fracturing, and weathering processes dictate the distribution of groundwater in these regions ([Freeze and Cherry, 1979](#)). The MER started to develop during Miocene time ([Davidson and Rex, 1980](#); [WoldeGabriel et al., 1990](#); [Chernet et al., 1998](#)) and it is also characterized by well-developed quaternary faulting that is mostly
32 related to rift zone geological structures ([Mohr, 1967](#); [Meyer et al., 1975](#); [Boccaletti et al., 1999](#); [Acocella et al., 2003](#)). The way in which faults and other geologic structures influence the groundwater flow and other
33 subsurface fluids. There is an increasing evidence for a close interaction between subsurface fluids and faulting
34 ([Hardbeck and Hauksson, 1999](#)). Groundwater is the major sources of fresh water that provides to domestic,
35 industrial and agricultural practice in many developing countries like Ethiopia ([Kebede et al., 2005](#); [Ayenew et al., 2008](#); [Azagegn et al., 2015](#)). It is generated through a large number of shallow and deep bore wells, and
36 dug wells. Ethiopia has a significant amount of groundwater resources, is designated as the Water Towers of
37 Northeast Africa due to the existence of many rivers that drains from the highlands to the lowlands and to the
38 neighboring countries ([Alemayehu, 2006](#)).

44 The occurrence and movement of groundwater in an area is controlled by geological structures, like faults,
45 fractures, joints, lineaments, and dykes significantly influence groundwater dynamics (Chowdhury et al.,
46 2010; Greenbaum, 1985; Jaiswal et al., 2003). In arid and semi-arid areas, and even in temperate climates
47 groundwater potential assessment and its flow direction is a key challenge in determining the sustainable
48 yield of aquifers (Crosbie et al., 2010). These structures can either act as barriers or conduits for groundwater
49 flow, depending on their characteristics such as orientation, density, connectivity, and permeability (Acocella
50 et al., 2003). Faults and fractures often facilitate groundwater flow, while folds and impermeable layers can
51 obstruct it. The interaction between subsurface fluids and faulting is well-documented (Hardbeck and
52 Hauksson, 1999), making the study of these structures essential for effective groundwater management,
53 particularly in areas where water resources are scarce. Due to inadequate surface water resource, most of the
54 requirements for irrigation, industry and domestic purposes are being met from groundwater resource.
55 Therefore, it is essential to ensure the availability of groundwater throughout the year. Among methods of
56 assessment the groundwater resource occurrence and flow interpreting the impacts of Geological structures
57 and geomorphological parameters are very important techniques that can be used for rapid assessment of
58 groundwater resources with detail field work and the advances and availability of satellite images, which are
59 possible to indirectly identify the ground conditions through the surface and subsurface features such as
60 topography, land use, drainage, geology and geomorphology (Srinivasa and Jugran, 2003; Mondal et al.
61 2007; Vasanthavigar et al. 2011). The flow and occurrence of groundwater is strongly controlled by the
62 geological structures and geomorphological setup of the volcanic rocks and associated sediments. These
63 geologic structures like dykes, lineaments, and fractures act as both carriers as well as barriers for
64 groundwater flow (Nilsen et al. 2003; Perrin et al. 2011).


65 The Borena Saynit district (Fig. 1) is situated in margin of Northern Main Ethiopian rift, which intensively
66 affected by rift tectonics and the source of groundwater in the watershed zone is controlled by rift structures.

67 In the study area the distribution and supply of daily water for urban and rural areas is groundwater, but not
68 evenly distribute due to highly populated, urbanization, increasing of rural drinking water and irrigated
69 demand. In spite of large-scale use groundwater in this area, it has not been classified based of potential zone
70 of groundwater flow and distribution. This review aims to provide a deeper understanding of how geological
71 structures shape groundwater potential in volcanic regions, and their interpretation with respect to the
72 groundwater potential zones, particularly in the Borena Saynit district, Northwestern Ethiopian Plateau.

73

74

75

76

77 *Figure 1. The location map of the study area*

78

79 **2. Methods for Assessing Structural Influence on Groundwater Potential**

80 Assessing groundwater potential in volcanic terrains requires a multi-faceted approach, integrating geological,
81 geophysical, remote sensing, GIS, and hydrogeological methods.

82 **2.1. Geological Mapping**

83 Geological mapping is a crucial tool for understanding the distribution of faults, fractures, and folds in volcanic
84 regions. Detailed structural mapping helps identify key areas for groundwater recharge and defines aquifer
85 boundaries (Mohr and Zanettin, 1988, Abiye, 2020). This method allows for the identification of fault zones,
86 fractures, and variations in rock types critical to groundwater exploration (Kebede, 2013). Field studies are
87 essential for observing surface fractures and correlating them with groundwater potential. Mapping fracture
88 zones helps to assess their orientation, density, and connectivity, which are important for groundwater flow
89 (Fetter, 2001, Kebede et al., 2008). Remote sensing techniques, combined with GIS, enhance lineament
90 detection and analysis. High-resolution satellite images, such as those from Landsat and Sentinel-2, and Digital
91 Elevation Models (DEMs) help identify and analyze lineaments, while GIS tools assist in calculating lineament
92 density, providing valuable information for groundwater mapping (Abiye, 2020).

93

94 **2.2. Geophysical Techniques**

95 Geophysical methods, including electrical resistivity, seismic surveys, and magnetic techniques, are commonly
96 used to explore subsurface structures and aquifers. These methods are effective in detecting fault zones
97 associated with groundwater movement (Fetter, 2001) and in mapping fracture zones within aquifers (Abiye,
98 2020). Electrical resistivity surveys, in particular, are valuable for high-resolution mapping of shallow
99 fractures, helping to delineate areas with significant groundwater potential (Heath, 1983).

100

101 **2.3. Remote Sensing and GIS**

102 Remote sensing and GIS are powerful tools for lineament mapping and spatial analysis of groundwater
103 potential. By combining remote sensing data with field observations, these tools have improved the efficiency
104 of groundwater exploration (Tsfaye et al., 2020). Satellite imagery, such as from Landsat or Sentinel-2, can
105 be used to map lineaments, revealing fracture patterns that directly correlate with groundwater potential. The
106 integration of GIS allows for spatial analysis that enhances the understanding of groundwater systems and aids
107 in predicting areas of high groundwater yield (Tsfaye et al., 2020).

108

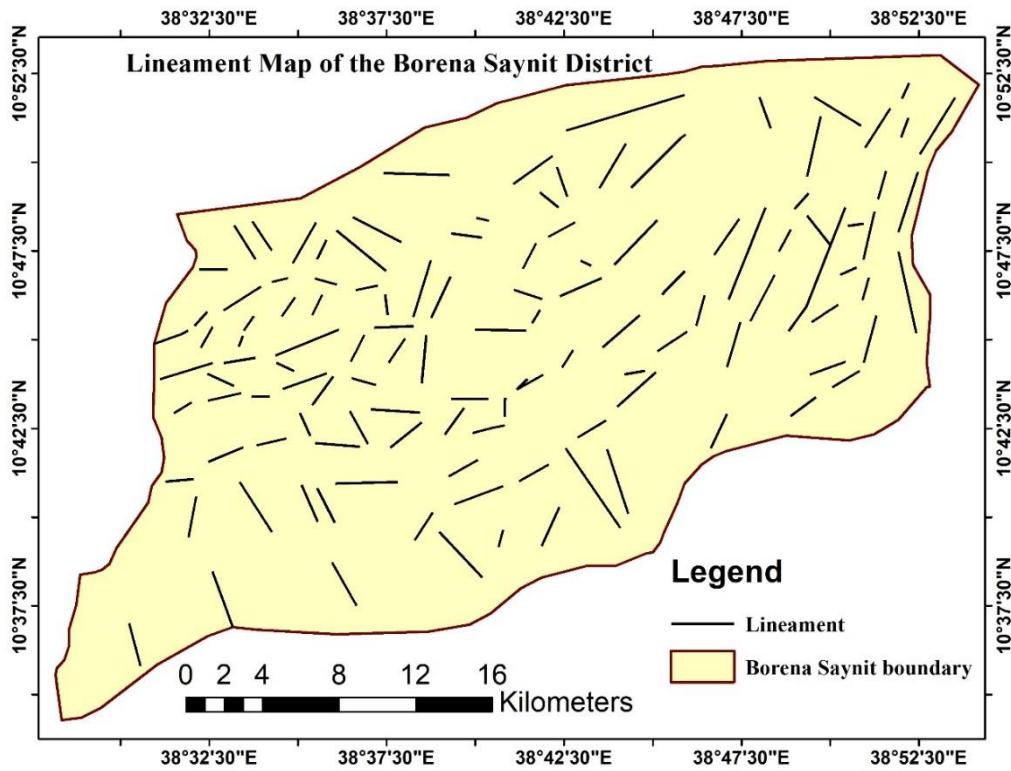
109 **2.4. Hydrogeological Studies**

110 Hydrogeological studies, including aquifer tests, tracer studies, and water table monitoring, are essential for
111 understanding aquifer properties and groundwater movement. These studies provide insights into recharge
112 rates, flow mechanisms, and the dynamics of fractured aquifers. Hydraulic tests, such as pumping and slug
113 tests, help quantify key parameters like hydraulic conductivity and transmissivity in fractured aquifers (Freeze
114 & Cherry, 1979). The results are vital for assessing the productivity of groundwater systems influenced by
115 geological structures. Areas with dense lineament patterns often correlate with high-yield groundwater wells,
116 particularly where lineament intersections occur, as they enhance permeability and groundwater flow (Kebede,
117 2013). Combining lineament analysis with other hydrogeological data provides a comprehensive understanding
118 of groundwater potential, especially in arid and semi-arid regions, where groundwater is a vital resource
119 (Tsfaye et al., 2020).

120 **3. Role of Geological Structures in Groundwater potential**

121 **3.1. Faults and Their Role in Groundwater Systems**

122 Faults play a significant role in shaping groundwater potential by creating pathways for water flow or acting
123 as barriers. Normal faults often facilitate groundwater recharge, while reverse faults can restrict flow due to
124 compression and low permeability (Freeze & Cherry, 1979). The hydraulic conductivity of fault zones varies
125 depending on the infilling material; materials like clay or gouge reduce permeability, while open fractures
126 enhance it, allowing for easier water movement (Abiye, 2020). In cases where faults are filled with low-
127 permeability materials, such as clay or calcite, they may act as barriers, disrupting groundwater flow and
128 forming perched water tables or isolated groundwater systems (Abiye, 2020). Faults can enhance groundwater
129 movement in volcanic terrains, particularly where fracturing and brecciation have occurred. These fractures
130 and fault planes create preferential pathways for water, linking aquifers and increasing recharge (Fetter, 2001).
131 In volcanic regions, fault zones often correspond with high-yielding wells due to the secondary porosity they
132 create (Kebede, 2013). Faults are also associated with springs, where groundwater rises to the surface through
133 fault intersections with aquifers. These springs serve as important indicators of subsurface hydrogeology and
134 are commonly utilized as drinking water sources in fault-prone areas (Freeze & Cherry, 1979). However, faults
135 filled with impermeable materials such as clay or silica can reduce permeability and restrict groundwater flow,
136 making them barriers. The permeability of fault zones is influenced by factors like fault orientation, the stress
137 field, and the direction of groundwater flow. Vertical faults generally promote vertical water flow, while
138 horizontal or shallow faults can act as barriers (Fetter, 2001). The width of the fault zone also affects its ability
139 to facilitate water flow; narrow, well-fractured faults tend to enhance flow, while wider zones filled with gouge
140 material may impede it (Chernet, 1993). The surrounding lithology further influences fault behavior, with faults
141 in basaltic rock typically enhancing flow due to the rock's fractured nature, while those in pyroclastic material
142 may have more variable effects, depending on consolidation and weathering (Kebede, 2013).


143 **3.2. Fractures and Secondary Porosity**

144 Fractures play a crucial role in enhancing secondary porosity, which significantly influences groundwater
145 storage and movement in consolidated rocks. In highly fractured zones, groundwater yields tend to be higher
146 due to increased permeability and connectivity (Fetter, 2001). In volcanic terrains, for instance, fractured
147 basalts act as primary aquifers, while unfractured basalts typically serve as aquitards (Kebede, 2013). Fractures
148 allow surface water to penetrate deeper into the subsurface, enhancing recharge in areas with dense fracturing,
149 which often results in higher groundwater potential (Chernet, 1993). The effectiveness of fractures as
150 groundwater conduits largely depends on their connectivity. Well-connected fractures form extensive networks
151 that facilitate both lateral and vertical water flow, whereas isolated fractures may restrict groundwater
152 movement (Heath, 1983). In hard rocks, like basalt, granite, and gneiss, groundwater storage is almost entirely
153 dependent on the presence of fractures, as these rocks generally have low primary porosity (Freeze and Cherry,
154 1979). The aperture or width of fractures also plays a significant role in their hydraulic conductivity. Wider
155 fractures allow for greater water flow, while narrow fractures may impede movement. Fractures infilled with
156 materials such as clay or calcite can reduce hydraulic conductivity and limit water movement (Fetter, 2001).
157 Additionally, the orientation of fractures relative to the regional stress field and topography influences
158 groundwater flow. Fractures aligned with the hydraulic gradient promote flow, whereas those oriented
159 perpendicular to it may hinder movement (Freeze and Cherry, 1979). Higher fracture density is generally
160 associated with increased groundwater storage and flow, although excessive fracturing can lead to water loss
161 due to rapid drainage into deeper zones (Abiye, 2020).

162 **3.3. Lineaments and Groundwater Potential**

163 Lineaments, which are surface expressions of subsurface geological structures, play a crucial role in
164 groundwater exploration. Studies using remote sensing and GIS have shown that areas with high lineament
165 density tend to have higher groundwater yields (Tesfaye et al., 2020). These linear features often mark zones

166 of increased permeability and recharge potential. Lineaments provide direct pathways for surface water to
167 infiltrate into the subsurface, enhancing recharge in regions where primary porosity is limited. The Borena
168 Saynit district has dense distribution and different orientations of lineaments this indicates the drainage network
169 is associated with fractures (Fig.2). Areas with dense lineaments generally exhibit improved groundwater
170 potential due to the enhanced connectivity between fractures (Chernet, 1993). Lineaments serve as conduits for
171 groundwater flow, particularly in terrains lacking significant primary porosity. Their orientation and
172 connectivity are critical in determining regional groundwater flow patterns (Freeze & Cherry, 1979). In hard-
173 rock and volcanic terrains, lineaments often define areas with increased secondary porosity, which can enhance
174 aquifer storage capacity. These regions are commonly targeted for high-yield wells (Kebede, 2013). The
175 effectiveness of lineaments in influencing groundwater dynamics depends on their depth, width, and the degree
176 of weathering of the underlying rocks (Tsfaye et al., 2020).

177

178

Figure 2. The lineament map of the study area (Borena Saynit district)

179

180 **4. Regional Structural and Hydrogeological Setting**

181 **4.1. Northwestern Ethiopian Plateau**

182 The Northwestern Ethiopian Plateau, part of the larger Ethiopian Highlands, is a significant region for
 183 groundwater resources, providing water for both rural and urban populations (Mamo et al. 2020). The plateau
 184 features a complex geological setting, with basaltic volcanic rocks, faulting, and sedimentary layers, all of
 185 which affect groundwater availability and movement. This case study examines the geological, hydrological,
 186 and environmental factors that influence groundwater potential in the Northwestern Ethiopian Plateau (Duguma
 187 and Duguma, 2022, Asrade, 2024). Groundwater potential in the volcanic regions of the Northwestern
 188 Ethiopian Plateau is significantly influenced by geological structures and lithology. In this area, fractured

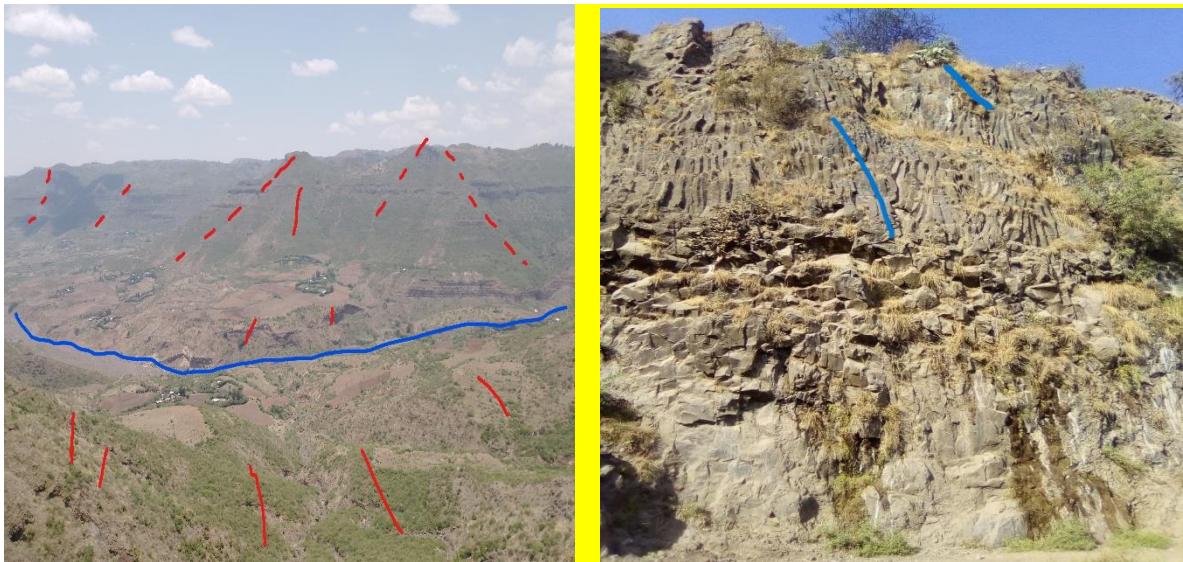
189 basalts and fault zones act as primary aquifers, while interbedded pyroclastic deposits often serve as aquitards
190 (Kassune et al., 2018). Geophysical surveys and lineament mapping have been effectively utilized to identify
191 areas with high groundwater yields, contributing to the efficient management of water resources in the region
192 (Kebede, 2013; Tesfaye et al., 2020). These techniques have proven particularly useful in locating high-yielding
193 wells, which are often found near major lineaments, highlighting their critical role in groundwater exploration
194 and development (Tesfaye et al., 2020). The Northwestern Ethiopian Plateau lies within the Northern Main
195 Ethiopian Rift (NMER) of the East African Rift System (EARS), which trends NE-SW and connects with the
196 Afar Triple Junction. This region is characterized by active tectonic extension and volcanism (WoldeGabriel
197 et al., 1990; Chernet et al., 1998). The NMER region also exhibits significant Quaternary faulting and a
198 complex geomorphological landscape, which further influences groundwater availability (Acocella et al.,
199 2002). Thus, The Northwestern Ethiopian Plateau particularly Borena Saynit district has significant
200 groundwater potential due to its unique geological structures, such as volcanic rocks, fault zones, and
201 sedimentary layers. However, this potential is threatened by over-extraction, environmental degradation, and
202 climate change. Sustainable groundwater management strategies, including mapping geological structures, land
203 conservation and reforestation, are essential to ensure the long-term availability of water for both agricultural
204 and urban needs.

205

206 **4.2. East African Rift System**

207 The East African Rift System (EARS) is one of the most significant geological features in the world, stretching
208 from the Red Sea in the north to Mozambique in the south. This tectonic plate boundary is characterized by
209 faulting, volcanic activity, and the formation of deep rift valleys. The geological structures in the EARS such
210 as faults, fractures, volcanic rocks, and sedimentary deposits play a crucial role in groundwater storage and
211 flow. Understanding the hydrogeology of the region is essential for assessing the groundwater potential,

especially in areas where surface water resources are scarce or unreliable. A study by [Kebede et al. \(2021\)](#) explored the groundwater potential of the East African Rift System by examining the hydrogeological properties of the region, including geological mapping, borehole data, and geophysical surveys. The East African Rift System (EARS) serves as a key example of how tectonic processes influence groundwater potential in volcanic regions. In this system, faults and fractures enhance secondary porosity, leading to the development of extensive aquifer systems. However, the complex variability in volcanic lithology can present challenges in groundwater exploration ([Abiye, 2020](#)). Fault zones in the EARS play a crucial role in groundwater dynamics by acting as recharge pathways, while impermeable volcanic layers limit lateral water flow ([Abiye, 2020](#)). Fractures associated with tectonic activity in the rift are particularly important for groundwater recharge and storage. Normal faults, along with the fractures they generate, facilitate recharge and support the storage of water in rift valley aquifers, which is essential for supplying water to arid regions ([Abiye, 2020](#)). Additionally, lineaments formed by faults further enhance recharge and water storage in fractured aquifers, making them critical sources of groundwater in these drought-prone areas ([Abiye, 2020](#)). Folding in volcanic terrains along the EARS creates alternating layers of permeable and impermeable materials. Recharge primarily occurs along the flanks of anticlines, while synclinal troughs act as natural storage zones. These folded structures are vital for regional water supply, especially in arid zones where surface water is scarce ([Abiye, 2020](#)). In Ethiopia, groundwater is a major source of fresh water for domestic, industrial, and agricultural needs, particularly in the absence of reliable surface water. Ethiopia, often referred to as the "Water Tower of Northeast Africa," is home to numerous rivers that flow from the highlands to lowland areas and neighboring countries ([Alemayehu, 2006](#)). Given the critical role of groundwater, it is essential to ensure its year-round availability by conducting detailed field investigations, incorporating satellite imagery, and assessing the region's geological structures and geomorphological features ([Srinivasa and Jugran, 2003](#); [Mondal et al., 2007](#)). Thus, the East African Rift System offers significant groundwater potential due to its


235 complex geological structures, including volcanic rocks, fault zones, and sedimentary basins. Borena Syanit
236 district has situated within East African Rift System which offers groundwater potential with complex
237 geological structures. However, this potential varies greatly across the region, and careful management is
238 required to prevent over-extraction and degradation. Integrated geological and structural mapping practices,
239 enhanced groundwater recharge, and proper monitoring are essential to ensure the sustainability of groundwater
240 resources in this critical region.

241

242 **5. Case Studies**

243 **5.1. Fracture-Controlled Aquifers in Volcanic Terrain**

244 Studies from other regions have demonstrated how fractures and faults in volcanic rocks can significantly
245 influence groundwater availability. For instance, in areas with basaltic flows, groundwater flow paths are often
246 determined by the presence of intersecting fractures that enhance permeability. These fractures act as conduits,
247 enabling water recharge and storage in aquifers that otherwise lack primary porosity. The Borena Saynit region
248 has many fractures and faults some examples figure below (Fig.3). Investigations into tectonically active
249 volcanic regions have revealed the dual role of faults: while some faults enhance groundwater flow, others act
250 as barriers due to mineralization or impermeable fault gouge. Understanding these contrasting behaviors is vital
251 for accurate hydrogeological mapping and resource management.

252

253 *Figure 3. The field photoagrhaphs of local thrust and listric faults (The Left Image) and the fractures of*
 254 *columnar joints in Borena region.*

255

256 **5.2. Lineament Mapping for Groundwater Potential**

257 Research in volcanic terrains has utilized remote sensing and GIS-based lineament mapping to identify key
 258 structural features indicative of groundwater potential. For example, in geologically complex areas, lineaments
 259 aligned with fault zones have been found to host significant groundwater reserves due to increased permeability
 260 along these structures. **The Borena Saynit district has dense distribution and different orientations of lineaments**
 261 **this indicates the drainage network is associated with fractures (Fig.3).**

262 **6. Challenges and Opportunities**

263 **6.1. Challenges and Limitations**

264 Groundwater exploration in the volcanic terrains of the Northwestern Ethiopian Plateau faces several
 265 challenges:

266 **- Data Scarcity:** A major limitation is the lack of high-resolution geological and geophysical data, which
 267 hinders a thorough understanding of the structural controls on groundwater potential. Additionally, the

268 resolution of remote sensing data may not be sufficient to accurately map lineaments, which are critical for
269 groundwater exploration.

270 **- Structural Complexity:** The variation in fault orientations, fracture densities, and lithological diversity
271 complicates the prediction of groundwater flow paths. The anisotropic nature of fractured and folded aquifers
272 further complicates flow modeling and groundwater movement predictions.

273 **- Climate Variability:** Unpredictable rainfall patterns impact recharge rates and groundwater availability.
274 Changes in precipitation due to climate fluctuations affect the reliability of structurally controlled aquifers,
275 especially in regions with complex geological structures. Variations in recharge rates can undermine the
276 consistency of groundwater resources, especially in folded aquifer systems where recharge mechanisms are
277 less predictable.

278 **- Complex Flow Paths:** In volcanic regions, groundwater movement often follows intricate and unpredictable
279 flow paths, exacerbating difficulties in estimating groundwater availability and potential. The interactions
280 between structural features, such as faults and fractures, with surface and subsurface conditions are not easily
281 modeled.

282 **6.2. Opportunities**

283 **- Advanced Mapping Techniques:** Remote sensing and Geographic Information Systems (GIS) offer valuable
284 tools for mapping and characterizing geological structures like folds, faults, and fractures in volcanic terrains.
285 These technologies enable more accurate identification of groundwater recharge zones and flow pathways.
286 Furthermore, advancements in geophysical techniques, such as electrical resistivity and seismic surveys, allow
287 for better mapping of fault zones and aquifer systems.

288 **- Integrated Approaches:** Combining geological, geophysical, and hydrogeological data is a promising
289 strategy for improving groundwater management, especially in complex volcanic regions. Integrated

290 approaches allow for a more comprehensive understanding of the dynamics of fault-controlled aquifers and
291 fractured groundwater systems. By synthesizing multiple datasets, more accurate predictions of groundwater
292 availability and sustainable management strategies can be developed.

293 **- Innovative Tools and Algorithms:** The use of advanced algorithms to automate the detection and analysis
294 of lineaments and other geological structures can significantly enhance the accuracy and efficiency of
295 groundwater exploration. These innovations also allow for improved mapping of fracture-controlled aquifers,
296 which are critical in volcanic terrains where primary porosity is often absent.

297

298 **7. Conclusion**

299 Geological structures are fundamental in determining groundwater dynamics in the volcanic rocks of the
300 Northwestern Ethiopian Plateau. This review synthesizes existing research, emphasizing the critical role of
301 faults, fractures, and lithological variations in groundwater potential assessments. The integration of advanced
302 techniques and addressing data gaps will be vital for ensuring sustainable groundwater resource management
303 in the region. Faults have a dual impact on groundwater potential, acting both as conduits and barriers,
304 depending on their structural features and the materials that fill them. A comprehensive understanding of the
305 hydrogeological behavior of faults is essential for effective groundwater exploration and management.
306 Advances in mapping technologies, geophysics, and remote sensing are increasingly enhancing our ability to
307 assess fault-controlled aquifers and develop sustainable groundwater systems. Fractures are a key component
308 in groundwater systems, particularly in hard-rock and volcanic terrains where primary porosity is often
309 minimal. Their effectiveness as groundwater conduits and storage zones is determined by factors such as
310 orientation, density, and connectivity. Advances in geophysical methods, remote sensing, and hydrogeological
311 studies have significantly improved our understanding of fracture-controlled aquifers, which are vital in many

312 volcanic regions. Lineaments are crucial for exploring groundwater systems, particularly in areas with low
313 primary porosity. These structural features serve as conduits for recharge and groundwater flow, making them
314 prime targets for high-yielding wells and sustainable water resource management. The development of remote
315 sensing, GIS, and geophysical tools has greatly enhanced lineament analysis, providing new opportunities for
316 groundwater exploration in complex geological environments. Folding, particularly in volcanic rocks,
317 significantly impacts aquifer systems by influencing groundwater storage, flow, and recharge. Anticlines and
318 synclines, along with their associated fractures, shape groundwater dynamics, making an understanding of
319 folded volcanic terrains essential for effective exploration. The complexity of these folded systems highlights
320 the importance of integrating structural and lithological data for successful groundwater management. Thus,
321 by integrating multidisciplinary approaches—combining geology, geophysics, hydrogeology, remote sensing,
322 and GIS—is crucial for improving groundwater resource management in the volcanic terrains of the
323 Northwestern Ethiopian Plateau and similar regions. Addressing current challenges and leveraging new
324 technologies will enable the development of sustainable groundwater resources to meet the needs of growing
325 populations in such areas.

326

327 **8. Recommendations and Future Directions**

328 To enhance groundwater potential assessment in the Northwestern Ethiopian Plateau, the following steps are
329 recommended:

330 **1. Integrated Approaches:** Combining geological, geophysical, and hydrological techniques for
331 comprehensive groundwater assessments is crucial. A multidisciplinary approach will provide a more holistic
332 understanding of the region's groundwater systems and improve the accuracy of potential zones identification.

333 **2. High-Resolution Mapping:** The use of advanced remote sensing and GIS technologies is essential for
334 improving the identification of groundwater potential zones. High-resolution imagery, coupled with GIS tools,
335 will help delineate fault zones, fractures, and other structural features that influence groundwater availability,
336 leading to more accurate and efficient exploration efforts.

337 **3. Long-Term Monitoring:** Establishing monitoring networks across key regions will allow for the ongoing
338 assessment of groundwater systems, particularly to track the impact of climatic fluctuations and structural
339 changes on groundwater recharge and flow patterns. Long-term data will help in predicting future groundwater
340 trends and guide sustainable resource management.

341 **4. Develop Robust Models:** Future research should focus on developing advanced models that integrate
342 structural geology, hydrological, and climatic data. These models would provide a dynamic and predictive
343 understanding of groundwater systems, enabling more effective and sustainable groundwater management.
344 Simulating various scenarios, such as climate change or land-use modifications, will be essential for ensuring
345 the long-term viability of groundwater resources in volcanic terrains.

346 **Data Availability Statement**

347 The data supporting the findings of this study are provided within the manuscript.

348 **Author Contributions**

349 **Mihret:** conceptualized the study, designed the methodology, experimented, and performed data analysis.
350 **Wuletaw:** contributed to writing the manuscript, provided supervision, reviewed the manuscript, and
351 contributed to critical revisions. All authors read and approved the final manuscript.

352 **Competing Interests Declaration**

353 The authors declare that they have no competing interests.

354 **Funding**

355 The authors declare that no specific funding was received for conducting this study.

356 **References**

357 Abiye, T. (2020). Hydrogeology of Ethiopia: Sustainability and Water Resources. Springer.

358 Acocella, V., Korme, T., & Salvini, F. (2002). Formation of normal faults along the axial zone of
359 the Ethiopian Rift. *Journal of Structural Geology*, 25(4), 503–513.

360 [https://doi.org/10.1016/s0191-8141\(02\)00047-0](https://doi.org/10.1016/s0191-8141(02)00047-0)

361 Asrade, T. M. (2024). Groundwater potential mapping and its sustainable management using
362 AHP and FR models in the Jedebe watershed, Upper Blue Nile Basin, Ethiopia. *Water
363 Science & Technology Water Supply*, 24(10), 3617–3638.

364 <https://doi.org/10.2166/ws.2024.226>

365 Ayenew, T., Demlie, M., & Wohnlich, S. (2008). Hydrogeological framework and occurrence of
366 groundwater in the Ethiopian aquifers. *Journal of African Earth Sciences*, 52(3), 97–113.

367 <https://doi.org/10.1016/j.jafrearsci.2008.06.006>

368 Azagegn T, Asrat A, Ayenew T, Kebede S (2015) Litho-structural control on interbasin
369 groundwater transfer in central Ethiopia, Elsevier. *J Afr Earth Sci* 101:383–395

370 Boccaletti, M., Mazzuoli, R., Bonini, M., Trua, T., and Abebe, B., (1999). Plio
371 Quaternary volcano tectonic activity in the northern sector of the Main
372 Ethiopian Rift: relationship with oblique rifting. *Journal of African Earth
373 Science*, 29, 679-698.

374 Chernet, T. (1993). Hydrogeology of Ethiopia and Water Resources Development. *Hydrological
375 Sciences Journal*, 38(5), 423–437.

376 Chernet, T., Hart, W., Aronson, J.L. and Walter, R.C., (1998). New age constraints on
377 the timing of volcanism and tectonism in the northern Ethiopian Rift-
378 southern Afar transition zone (Ethiopia). *Journal of Volcanology,
379 Geothermal Resource*. 80, 267-280.

380 Chowdhury, A., Jha, M.K., Chowdary, V.M., 2010. Delineation of groundwater
381 recharge zones and identification of artificial recharge sites in West
382 Medinipur District, West Bengal using RS, GIS, and MCDM techniques.
383 Environ. Earth Sci. 59 (6), 1209–1222 2009.

384 Crosbie, R., Jolly, L., Leaney, F., Petheram, C., Wohling, D., 2010. Review of
385 Australian groundwater recharge studies CSIRO: water for a healthy country
386 National Research Flagship, 82p.

387 Davidson, A. and Rex, D.C., 1980. Age of volcanism and rifting in southwestern
388 Ethiopia. Nature, 283, 657-658.

389 Duguma, T. A., & Duguma, G. A. (2022). Assessment of Groundwater Potential Zones of Upper
390 Blue Nile River Basin Using Multi-Influencing Factors under GIS and RS Environment:
391 A Case Study on Guder Watersheds, Abay Basin, Oromia Region, Ethiopia. *Geofluids*,
392 2022, 1–26. <https://doi.org/10.1155/2022/1172039>

393 Hardbeck and Hauksson, 1999. Fracturing and hydrothermal alterations in normal fault zones.
394 Pure and Applied geophysics 142, 609-644.

395 Hayward, N. J. and Ebinger, C. J., 1996: Variations in the along-axis segmentation
396 of the Afar Rift system, Tectonics, 15, 244-257,
397 <https://doi.org/10.1029/95TC02292>.

398 Heath, R. C. (1983). Basic Ground-Water Hydrology. U.S. Geological Survey Water-Supply
399 Paper 2220.

400 Jaiswal, R.K., Mukherjee, S., Krishnamurthy, J., Saxena, R., 2003. Role of remote
401 sensing and GIS techniques for generation of groundwater prospect zones
402 towards rural development—an approach. Int. J. Remote Sens. 24 (5), 993–
403 1008.

404 Kassune, M., Tafesse, N. T., & Hagos, M. (2018). Characteristics and productivity of volcanic
405 rock aquifers in Kola Diba Well Field, North-Central Ethiopia. *Universal Journal of
406 Geoscience*, 6(4), 103–113. <https://doi.org/10.13189/ujg.2018.060401>

407 Kazmin, V. (1975). Explanation of the geological map of Ethiopia. Provisional
408 Military Government of Socialist Ethiopia, Ministry of Mines, Energy and
409 Water Resources, Geological Survey of Ethiopia, Addis Ababa, Ethiopia.14p.

410 Kazmin, V. (1975). Explanation of the geological map of Ethiopia. Provisional
411 Military Government of Socialist Ethiopia, Ministry of Mines, Energy and
412 Water Resources, Geological Survey of Ethiopia, Addis Ababa, Ethiopia.14p.

413 Kebede S, Yves T, Alemayehu T, Ayenew T (2005). Groundwater recharge, circulation and
414 geochemical evolution in the source region of the Blue Nile River. *Ethiop Appl Geochem*
415 20:1658–1676

416 Kebede, S. (2013). *Groundwater in Ethiopia: Features, Numbers and Opportunities*. Springer.

417 Kebede, S. (2013). Groundwater in Ethiopia: Features, Numbers and Opportunities. Springer.

418 Kebede, S., Travi, Y., Asrat, A. et al. (2008). Groundwater origin and flow along selected
419 transects in Ethiopian rift volcanic aquifers. *Hydrogeol J* 16, 55–73
420 <https://doi.org/10.1007/s10040-007-0210-0>

421 Kebede, T., Basso, G., & Tsegaye, T. (2021). Groundwater Potential of the East African Rift
422 System: Hydrogeological Assessments and Management Strategies. *Hydrogeology
423 Journal*, 29(1), 33-46. <https://doi.org/10.1007/s10040-021-02574-4>

424 Mamo, M., Zewde, F., & Molla, M. (2020). Groundwater Potential of the Northwestern
425 Ethiopian Plateau: Geological and Hydrogeological Assessment. *Hydrogeology Journal*,
426 28(7), 2411-2426. <https://doi.org/10.1007/s10040-020-02280-1>

427 Mekonnen, D., Desta, L., & Abebe, A. (2021). The Impact of Climate Change on Groundwater
428 Resources in the Ethiopian Highlands. *Environmental Monitoring and Assessment*, 193,
429 320. <https://doi.org/10.1007/s10661-021-8911-2>

430 Meyer, W., Pilger, A., Rosler, A., Slets, J., 1975. Tectonic evolution of the northern
431 part of the Main Ethiopian Rift in southern Ethiopia. Pp. 352-362.

432 Mohr, P., 1967. Major volcano-tectonic lineament in the Ethiopian Rift System.
433 Nature, 213, 664- 665.

434 Mohr, P., Zanettin, B. (1988). The Ethiopian Flood Basalt Province. In: Macdougall, J.D. (eds)
435 Continental Flood Basalts. Petrology and Structural Geology, vol 3. Springer, Dordrecht.
436 https://doi.org/10.1007/978-94-015-7805-9_3

437 Mondal S, Md Pandey A C and Garg R D 2007 Groundwater prospects evaluation
438 based on hydrogeomorphological mapping using high resolution satellite
439 images: A case study in Uttarakhand; *J. Indian Soc. Remote Sens.* 36 69–76.

440 Mondal S, Md Pandey A C and Garg R. D. (2007). Groundwater prospects evaluation based on
441 hydrogeomorphological mapping using high resolution satellite images: A case study in
442 Uttarakhand; *J. Indian Soc. Remote Sens.* 36 69–76.

443 Nigate, F., Van Camp, M., Yenehun, A., Belay, A. S., & Walraevens, K. (2020). Recharge–
444 Discharge relations of groundwater in volcanic terrain of Semi-Humid tropical highlands
445 of Ethiopia: the case of Infranz Springs, in the Upper Blue Nile. *Water*, 12(3), 853.
446 <https://doi.org/10.3390/w12030853>

447 Nilsen K H, Sydnes M, Gudmundsson A and Larsen B T 2003: How dykes affect
448 groundwater transport in the northern part of the Oslo Graben, EGS-AGU-
449 EUG Joint assembly, Abstracts from the meeting held in Nice, France, pp.
450 6–11.

451 Ouedraogo, O., Diouf, A., & Toure, K. (2018). Geological Structures and Groundwater
452 Resources in the Granitic Terrain of West Africa. *Journal of African Earth Sciences*, 146,
453 227-236. <https://doi.org/10.1016/j.jafrearsci.2018.09.010>

454 Perrin J, Ahmed S and Hunkeler D., 2011: The effects of geological heterogeneities
455 and piezometric fluctuations on groundwater flow and chemistry in a hard-
456 rock aquifer, southern India; *Hydrogeol. J.*, doi: 10.1007/s10040-011-0745-
457 y.

458 Shube, H., Kebede, S., Azagegn, T., Nedaw, D., Haji, M., & Karuppannan, S. (2023). Estimating
459 groundwater flow velocity in shallow volcanic aquifers of the Ethiopian Highlands using
460 a geospatial technique. *Sustainability*, 15(19), 14490.
461 <https://doi.org/10.3390/su151914490>

462 Srinivasa R Y and Jugran K D 2003 Delineation of groundwater potential zones and
463 zones of groundwater quality suitable for domestic purposes using remote
464 sensing and GIS; *Hydrogeol. Sci. J.* 48 821–833.

465 Srinivasa R Y and Jugran, D. (2003). Delineation of groundwater potential zones and zones of
466 groundwater quality suitable for domestic purposes using remote sensing and GIS;
467 *Hydrogeol. Sci. J.* 48 821–833

468 Tafesse, N.T., Alemaw, B.F. (2020). Groundwater Occurrence, Recharge and Productivity in
469 Tertiary Volcanic Rocks of Ethiopia and Climate Change Implications. In: Matondo, J.I.,
470 Alemaw, B.F., Sandwidi, W.J.P. (eds) *Climate Variability and Change in Africa* .
471 Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-31543-6_8

473 Tamesgen, Y., Atlabachew, A., & Jothimani, M. (2023). Groundwater potential assessment in
474 the Blue Nile River catchment, Ethiopia, using geospatial and multi-criteria decision-
475 making techniques. *Heliyon*, 9(6), e17616. <https://doi.org/10.1016/j.heliyon.2023.e17616>

476 Tesfaye, A., Abdelsalam, M., & Mohammed, M. (2020). Lineament Mapping and Groundwater
477 Potential Assessment Using Remote Sensing and GIS: A Case Study from Northwestern
478 Ethiopia. *Hydrogeology Journal*, 28(7), 2135–2150.

479 Tesfaye, A., Abdelsalam, M., & Mohammed, M. (2020). Lineament Mapping and Groundwater
480 Potential Assessment Using Remote Sensing and GIS: A Case Study from Northwestern
481 Ethiopia. *Hydrogeology Journal*, 28(7), 2135–2150.

482 UNDP, 1973. Geology, geochemistry and hydrogeology of hot springs of the East
483 African Rift System within Ethiopia. New York.

484 Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Gopinath S and Sarma S.,
485 2011 Groundwater potential zoning in Thirumanimuttar sub-basin Tamil
486 Nadu, India – A GIS and remote sensing approach; *Geo-spatial Infor. Sci.*
487 14(1) 17–26.

488 Wolde, Gabriel., Aronson, J., and Walter, R., 1990. Geology, geochronology and rift basin
489 development in the central sector of the Main Ethiopian Rift. *Geological society of*
490 *American Bulletin*, 102. 439 – 458.

491 WoldeGabriel, G., Aronson, J., and Walter, R., 1990. Geology, geochronology and
492 rift basin development in the central sector of the Main Ethiopian Rift.
493 *Geological society of American Bulletin*, 102. 439 – 458.

494 Woldegabriel, G., Heiken, G., White, T. D., Asfaw, B., Hart, W. K., and Renne, P. R.,
495 2000: Volcanism, tectonism, sedimentation, and the paleo-anthropological
496 record in the Ethiopian Rift System, *Special papers-Geological Society of*
497 *America*, 83–99.

498 Yohannes, A., Tesfaye, A., & Tadesse, K. (2020). Groundwater Recharge and Sustainability in
499 the Ethiopian Highlands. *Journal of Hydrology*, 581, 124455.

500 <https://doi.org/10.1016/j.jhydrol.2019.124455>

502 **List of Figures**

503

504	Figure 1. The location map of the study area	4
505	Figure 2. The lineament map of the study area (Borena Saynit district)	10
506	Figure 3. The field photoographs of local thrust and listirc faults (The Left Image) and the fractures of	
507	columnnar joints in Borena region.....	14
508		