
This manuscript presents an unprecedented evaluation of 23 (sub)daily (quasi)global 

precipitation (P)datasets across 16,295 catchments worldwide using hydrological 

modeling. The 23 P datasets belong to six major families of data sources: satellite 

only, reanalysis only, rain gauge only, satellite and rain gauge, satellite and 

reanalysis; and satellite, reanalysis and rain gauge. The conceptual hydrological 

model HBV was used to simulate the conversion of precipitation into streamflow at 

the daily temporal scale. Each P dataset, along with air temperature (from MSWX) 

and potential evapotranspiration (computed using the Hargreaves formula), are used 

to drive the hydrological simulations. The modified Kling-Gupta efficiency (KGE’) is 

used to evaluate the performance of the simulated streamflows against daily 

observations, and serves as a proxy for the performance of the P datasets. 

This manuscript addresses an important topic for the hydrometeorological 

community. The manuscript is well written, concise and clear, with updated 

references. Unfortunately, the manuscript lacks a clear scientific question or 

hypothesis to be tested, and the Methodology section does not provide enough 

scientific detail to fully understand what was done and how, which prevents 

adequate reproducibility of the results. In addition, some conclusions are speculative 

and are not supported by the results included in the manuscript. Finally, some 

references are not used in the text and others contain minor errors. To summarise, 

the manuscript in its current form does not represent a substantial contribution to the 

global hydrometeorological community; but all the problems mentioned could be 

addresed by the authors during the review process. The following lines describe the 

major and minor problems detected in the manuscript. 

Response: We are thankful to the reviewer for reviewing the manuscript and providing 

useful comments. We also welcome the critic of the reviewer and suggestions. Your 

detailed comments have helped us to revisit our analysis and to find some bugs which 

significantly improved the manuscript. We have revised the manuscript in accordance 

with your suggestions. We would also like to mention that we have used a revised and 

updated streamflow database, which includes a higher number of data sources 

(increased from 22 to 29), improved temporal coverage, and bug fixes—particularly 

for streamflow records from Africa (ADHI). The extended temporal coverage has led 

to an increase in the number of catchments with sufficient data for model calibration. 

As a result, the total number of catchments for which HBV parameters were optimized 

against observed streamflow increased from 16,295 to 18,428. We have also removed 

CMORPH-RAW and included CMORPH-CDR, following your recommendation. While 

the overall findings remain consistent with those in the previous version, we have 

updated the manuscript wherever new insights emerged. Please note that the line 

numbers and figure numbers in our responses correspond to the updated manuscript. 

Major comments: 

1. MC1. The motivation for the article is not well developed. The manuscript 

does a really good job of pointing out the limitations of previous evaluations of 



P datasets. However, what is the ultimate purpose of this comprehensive 

evaluation of P datasets on a global scale? Is it just to provide some numbers 

on a global scale, or is it to test a hypothesis or answer a scientific question, 

or to provide recommendations for the selection of P products for specific 

applications or specific geographic regions? If so, the hypothesis, the 

scientific question or the ultimate purpose of the manuscript should be 

explicitly stated. 

Response: Thank you for your critical comment. The purpose of this study was to 

analyze strengths and weaknesses of different P datasets at various geographical and 

climatological zones and to provide guidance to users on their suitability for various 

hydrological applications. We have added this sentence in the last paragraph of the 

introduction section.  

 

Lines 58-60: “In this study, we present the most comprehensive evaluation to date of 

gridded (sub-)daily (quasi-)global P datasets, aiming to identify their strengths and 

limitations across diverse geographical and climatological settings, and to inform their 

suitability for hydrological applications. ”. 

 

 

2. MC2. Usage of the outdated CMORPH-RAW (Joyce et al., 2004) and the 

unknown CMORPH-RT (Xie et al., 2017) instead of the new bias-corrected 

CMORPH-CDR v.1 (Xie et al., 2017, 2018). In the manuscript it is mentioned 

that the old CMORPH-RAW and CMORPH-RT are available from 2019 

onwards (which seriously limit the hydrological modeling runs), while the 

newest version of CMORPH, termed CMORPH-CDR, is available from 1998 

onwards (not from 2019 onwards). Moreover, it is not clear what is the product 

CMORPH-RT used in this study, every time that Xie et al. (2017) describe 

CMORPH-CDR version 1, which is available since 1998 and not from 2019. 

Therefore, I request the authors to remove the usage of the outdated 

CMORPH-RAW (version 0) and the unknown CMORPH-RT and use the 

relatively new bias-corrected CMORPH-CDR version 1, which is available 

since 1998, and it is described by Xie et al. (2017) and Xie et al. (2018). 

 Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.: 

Reprocessed, Bias-Corrected CMORPH Global High-Resolution 

Precipitation Estimates from 1998, Journal of Hydrometeorology, 18, 1617–

1641, doi:10.1175/JHM-D-16-0168.1, 2017. 

 Xie, P., Joyce, R., Wu, S., Yoo, S., Yarosh, Y., Sun, F., Lin, R., and NOAA 

CDR Program: NOAA Climate Data Record (CDR) of CPC Morphing 

Technique (CMORPH) High Resolution Global Precipitation Estimates, 

Version 1, doi:10.25921/W9VA-Q159, URL 

https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00948, 2018. 

Response: Thank you for your suggestion. We have included the CMORPH-CDR 

dataset which starts from 1998 and have removed CMORPH-RAW. However, we have 



retained CMORPH-RT. The reason for this being that CMORPH-RT (median KGE: 

0.57) performed better than CMORPH-CDR (median KGE: 0.53).  The CMORPH-RT 

dataset refers to satellite only realtime production of CMORPH and was obtained from 

https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/: last accessed July 

1 2025. (Joyce et al., 2017). This dataset has recently been used in several studies 

for evaluation and comparison with other P datasets (Hussain et al., 2018; Liu et al., 

2022; Nguyen et al., 2025; Omay et al., 2025). Although the data for CMORPH-RT 

starts from 2019, the total number of catchments that fulfill the filter criteria for 

calibration for CMORPH-RT are 7876.       

 

1. MC3. Use of the under-revision PERSIANN-CCS-CDR (Sadeghi et al., 2021). 

This paper uses PERSIANN-CCS-CDR (Sadeghi et al., 2021) as one of the 

23 P datasets to be evaluated. However, the 

websitehttps://chrsdata.eng.uci.edu/ clearly states that “PERSIANN-CCS-

CDR is currently under revision and unavailable for download”. Therefore, I 

request the authors to remove the use of PERSIANN-CCS-CDR from this 

study or clarify the data version used in this study and indicate whether the 

chosen version is problematic or not. 

Response: The reason for this revision of PERSIANN-CCS-CDR is that it uses two 

sources of infrared for different time ranges. For the period from 1983 to February 

2000, it uses GridSat-B1 data which is 3-hourly. From March 2000 onwards, it uses 

NOAA Climate Prediction Center (CPC-4km) data which has 30 minute resolution. 

This has led to some inconsistencies as reported by Sadeghi et al. (2021). However, 

the authors of the dataset maintain that the overall performance of their product is 

consistent at global scale. A new version is expected to overcome these consistencies 

however it will not be significantly different from the existing version of the product. We 

have added the clarification in the manuscript       

 

Lines 216 - 218: “PERSIANN-CCS-CDR is currently under revision due to 

inconsistencies in the infrared input data before and after 2000 (Sadeghi et al., 2021); 

however, this issue is unlikely to significantly affect hydrological modeling 

performance.” 

 

2. MC4. Catchment selection. To ensure the suitability of the catchments used in 

the analyses, five selection criteria were applied in the manuscript to the 

34,768 streamflow stations that passed the duplication check. However, the 

following two decisions are entirely subjective and require more detailed 

explanation (in the manuscript) by the authors: i) discarding streamflow 

stations where both the station location and the corresponding catchment 

centroid were within 5 km of those of another station (how does the spatial 

resolution of the individual P products influence this criterion?); ii) the number 

of events had to be greater than 10 non-consecutive (how does the duration 

of each selected event affect this criterion?; are 11 non-consecutive days with 

https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/GLOBE/data/


Q >= 5 mm d-1 sufficient to ensure a robust calibration of a hydrological 

model?) 

Response: We appreciate the comment. Some of the streamflow sources that we 

employed for this study contained overlapping stations. For example the GRDC 

dataset contains catchments from around the world which overlaps with other 

regional data sources. In order to avoid using the same catchment twice, we 

performed the duplication check using the method mentioned in the manuscript i.e. 

if the centroid and outlet of one catchment is within 5 km of another catchment, one 

of them was discarded. The spatial resolution of P datasets does not affect this 

filter criteria.  

 

3. MC5. Use of an unknown version of the HBV hydrological model. The 

manuscript does not contain a description about the version of the HBV 

hydrological model used in all analyses. L107 indicates that the HBV-light 

software described by Seibert and Vis (2012) was the software version used 

in this study. However, it seems unlikely that a Windows-based version of 

HBV was selected to simulate 16,295 catchments worldwide. I request the 

authors to provide details of the version of HBV used in this study. In the 

event that the authors use their own version of HBV, I request them to provide 

a link to the source code of the model in the “Code Availability” section 

requested by HESS (https://www.hydrology-and-earth-system-

sciences.net/submission.html#templates). 

Response:  We used a Python version of HBV-light which has been used in 

several previous studies (Beck et al., 2020; Feng et a., 2024, Feng et al., 2023). 

For transparency in results we have open sourced the code and it is available at 

https://github.com/hyex-research/hydro_clim_scen_analysis/blob/main/hbv.py . 

 

4. MC6. Use of catchment-mean P time series to drive the hydrological model 

(L89-90, L114-115). The use of catchment mean P time series to drive the 

hydrological model HBV could lead to important problems in the 

representation of observed streamflows in catchments with mixed hydrological 

regimes (i.e. snow-dominated or snow-influenced hydrological regimes), 

which should be reflected in low KGE values. Therefore, I request the authors 

to provide -in the supplementary material- five to seven example catchments 

where the HBV is able to reproduce their mixed hydrological regime by using 

catchment-mean P time series to drive the hydrological model (I request not 

only the presentation of the KGE values and the daily time series of the 

observed Q compared to the simulated Q, but also a comparison of the mean 

monthly streamflows). If the model is not able to acceptably reproduce the 

daily and mean monthly observed streamflows of catchments with mixed 

hydrological regimes, I suggest the authors to implement different elevation 

bands in these catchments. A publicly available open-source version of an 

HBV-like hydrological model can be found at: https://cran.r-

https://www.hydrology-and-earth-system-sciences.net/submission.html#templates
https://www.hydrology-and-earth-system-sciences.net/submission.html#templates
https://github.com/hyex-research/hydro_clim_scen_analysis/blob/main/hbv.py


project.org/package=TUWmodel, which allows the use of up to 10 elevation 

bands in each catchment. 

Response:  We agree with the reviewer that using catchment averaged forcing 

data do not account for variations within a catchment such as elevation or land 

cover change. Implementing a semi-distributed HBV with elevation bands can 

result in a more representative hydrological model. However, for such a large 

sample study, calibrating each catchment with elevation bands will significantly 

increase the computation demand. We therefore consider it to be beyond the scope 

of this study. However, we agree with the reviewer’s suggestion and we have 

described how the current study can be improved by making use of elevation bands 

for a future project in section 3.3. 

 

Lines 344 – 348: “Additionally, it does not account for spatio-temporal variations in 

land cover or use and relies on catchment-averaged meteorological forcings, 

omitting sub-catchment variability in climate and terrain. More complex (semi-

)distributed models with hydrologic response units or elevation bands may yield 

improved simulations (Gu et al., 2023). However, we do not expect this to materially 

affect the relative performance ranking of the P datasets or the main conclusions.” 

 

5. MC7. Using the Hargreaves (1994) equation to calculate potential 

evapotranspiration (PET) to drive the hydrological model. I request the 

authors to justify this choice after knowing that Oudin 2005a proposed a 

different temperature-based PET model after evaluating 27 potential 

evapotranspiration models in terms of streamflow simulation efficiency in a 

large sample of 308 catchments in France, Australia and the United States. 

Response: We have rerun all the simulations with Penman-Monteith formulation of 

potential evapotranspiration (PET). Penman-Monteith is a complex method and it 

requires temperature, relative humidity, radiation and wind speed for calculation of 

PET. A major conclusion from the study of Oudin et al. (2005) was that the PET 

methods relying only on radiation and temperature are as efficient as more complex 

methods. All the figures and tables in our revised manuscript are recreated using the 

Penman-Monteith method. However, this did not alter the major conclusions of this 

study or the ranking of P products for different geographical and climatological zones.  

  

6. MC8. Range used for the calibration of the PCORR parameter of HBV. Table 

2 shows that the PCORR parameter is used as a multiplier to mitigate the 

systematic underestimation of P characteristics of some P products, and 

therefore a range of [1, 2] is used in the optimisation of this parameter. This 

decision could lead to low KGE values in arid or hyper-arid catchments (see 

Table 3), where some P datasets overestimate the true (and unknown) P 

amount. Therefore, I request the authors to extend this range to [0.5, 2] so 

that the calibration procedure can compensate not only for an underestimation 

of P but also for an overestimation of it. 



Response: Thank you for the useful comment. We compared the performance of the 

P datasets by calibrating KGE values under four different scenarios. In the first 

scenario, PCORR was allowed to vary between 0.0 and 2.0. In the second scenario, 

PCORR was restricted to the range 0.5–2.0. In the third scenario, both PCORR and 

SFCF were fixed at 1.0, as suggested by the reviewer (the 3rd reviewer). The fourth 

scenario corresponds to the one used in our original setup, where both PCORR and 

SFCF ranged from 1.0 to 2.0. The resulting ranking of precipitation datasets based on 

KGE is illustrated in the figure below 

 
Fig. S26. Kling-Gupta Efficiency values for P datasets in different scenarios of 

PCORR and SFCF calibration. 

 

These results indicate that the overall ranking of P datasets do not vary significantly in 

all four scenarios. However, in scenario three (PCORR: 1.0, SFCF 1.0), the ranking of 

GPCP V3.2 and ERA5 improved. However, this improvement in ranking of these P 

datasets is not due to their improved KGE value since the overall median KGE value 

in scenario three is lower as compared to other three scenarios. The following figure 

illustrates the decrease in KGE when PCORR and SFCF were kept constant during 

calibration (third scenario) as compared to the default scenario when their values were 

allowed to vary between 1.0 to 2.0.  



 

Fig. Decrease in KGE values when PCORR and SFCF were kept constant during 

calibration (1.0) as compared to when they were allowed to vary between 1.0 to 1.0. 

 

The distribution of PCORR values across the four calibration scenarios (as shown in 

the following figure) reveals that only a few precipitation datasets exhibit significant 

adjustment below 1.0 when PCORR is allowed to vary from 0.0 to 2.0. Specifically, 

PDIR-Now, GSMaP V7, PERSIANN-CCS-CDR, and IMERG-Late V6 show a notable 

portion of calibrated PCORR values falling below 1.0. This indicates that, for these 

datasets, the raw precipitation input tends to overestimate actual precipitation in a 

substantial number of catchments.  



 
Fig S27. Comparison of distribution of calibrated PCORR values from four 

calibration scenarios.  

 

We have added the following sentences in our manuscript to describe this. 

 

Lines 138 - 145 : “To assess the influence of systematic P bias correction using the 

PCORR and SFCF adjustment factors on model performance, we explored four 

calibration scenarios with varying bounds for the PCORR and SFCF parameters. In 

the first scenario, PCORR was allowed to vary between 0.0 and 2.0, providing full 

flexibility to adjust for both under- and overestimation of P, while SFCF was allowed 

to vary between 1.0 to 2.0. The second scenario limited PCORR to the range 0.5–2.0, 

while keeping the range of SFCF between 1.0 and 2.0. The third scenario fixed both 

PCORR and SFCF parameters at 1.0, effectively disabling P bias correction. The 

fourth scenario constrained both PCORR and SFCF to the range 1.0–2.0, allowing 

only upward correction. These scenarios enabled us to evaluate the sensitivity of 

model performance to P bias correction and assess the robustness of P dataset 

rankings under varying calibration constraints.” 

 

Lines 240 - 246 : “The overall ranking of P datasets remained largely consistent across 

the four PCORR calibration scenarios (Supplement Fig. S26). However, in the 

scenario where PCORR and SFCF were fixed at 1.0, GPCP V3.2 and ERA5 showed 

improved relative rankings—not due to higher performance, but because other 



datasets experienced greater performance drops under this constraint. Most datasets 

showed little sensitivity to the PCORR bound below 1.0, but a few—namely PDIR-

Now, GSMaP V7, PERSIANN-CCS-CDR, and IMERG-Late V6—exhibited notable 

use of PCORR values below 1.0 (Supplement Fig. S27). This suggests that these 

datasets tend to overestimate P in certain catchments, and that downward rescaling 

improves their hydrological performance”. 

 

 

7. MC9. Use of an unknown version of the (µ+λ) evolutionary algorithm used to 

calibrate the HBV hydrological model. The manuscript does not contain a 

description of the version of the (µ+λ) evolutionary algorithm used to calibrate 

the HBV hydrological model. From L124, the reader can infer that the DEAP 

Python software was used to calibrate the HBV model. However, I request the 

authors to clarify the name and version of the software used to implement the 

(µ+λ) evolutionary algorithm and to describe how this algorithm was coupled 

to the (unknown) version of the HBV hydrological model (see MC5). Finally, I 

request the authors to describe whether they can ensure that the (µ+λ) 

evolutionary algorithm has converged to a stable KGE value after 1200 model 

runs (L125) or not. 

Response: We used version 1.4 of the Distributed Evolutionary Algorithms in Python 

(DEAP) library. For the HBV, as responded previously, we used the HBV-light version 

of Seibert and Vis implemented in Python and used in previous studies (Beck et al., 

2016, Beck et al., 2020, Feng et al., 2023, Feng et al., 204). During calibration of each 

catchment, the HBV model was run to simulate streamflow using the parameters 

suggested by the DEAP algorithm. The simulated streamflow is then compared 

against observed streamflow to calculate KGE values (Eq. 1 in the manuscript) which 

is then returned to the optimization algorithm as a feedback signal to its suggested 

parameters. The evolutionary algorithm of DEAP iteratively improves the suggested 

parameters which can improve KGE values. In order to ensure the convergence during 

calibration, we slightly modified the stopping criteria. The minimum number of 

generations was set to 25 and the calibration process was stopped if the KGE value 

did not improve more than 0.01 for more than 5 generations. However, to avoid 

computation loss, we set the maximum number of generations to 40. We found that 

less than 1% of stations were run for 40 generations which was the upper limit of the 

number of generations. This showed that for the overwhelming majority of catchments, 

the convergence was achieved before reaching the maximum number of generations 

and that further improvements were not possible, indicating that the optimal parameter 

set has been obtained. 



 
Fig. Percentage of stations for which the total number of generations reached 40 

during calibration for each P dataset. We set 40 as the maximum number of 

generations to run for each catchment during calibration. 

 

We have modified the corresponding lines in section 2.4 to elaborate this. 

 

Lines 130 - 137 : “We used a (μ + λ) evolutionary algorithm, which is a population-

based optimization method that iteratively evolves solutions through selection, 

crossover, and mutation to maximize the Kling-Gupta Efficiency (KGE) objective. The 

algorithm was implemented using the Distributed Evolutionary Algorithms in Python 

(DEAP) library (version 1.4; Ashlock, 2010; Fortin et al., 2012), with a population size 

(μ) of 20 and an offspring pool size (λ) of 48. Crossover was applied with a probability 

of 90%, and mutation was applied with a probability of 10% using a Gaussian-based 

mutation operator. To ensure convergence, the optimization process was terminated 



if the best KGE value did not improve by more than 0.01 for five consecutive 

generations after a minimum of 25 generations.” 

 

8. MC10. Selection of temporal period used for the calibration of the individual 

catchments. It is not clear from the manuscript whether the period used to 

calibrate the HBV hydrological model with each P dataset was the same or 

whether it depended on the data availability of the respective P product. I 

request the authors to clarify this situation in the manuscript. In the case that 

the temporal period used for the calibration of each catchment depends on 

the data availability of each P product, and therefore, it was not the same for 

all the P products used as forcing in each catchment, I request the authors to 

use the same temporal period for the calibration of all P products in each 

catchment, to ensure a fair comparison of the performance of different P 

datasets in a given catchment. Of course, the temporal periods may be 

different from one catchment to another, but for the same catchment the same 

temporal period should be used to calibrate the HBV model with all P 

datasets. 

Response: The temporal range of the data used to calibrate HBV for each P 

product is different because of differences in the availability period of the P 

products. Moreover, the temporal range of observed streamflow also varies from 

catchment to catchment and from data source to data source. Therefore we used 

the full period of overlapping streamflow and P data for each catchment. Using a 

common temporal range for all P datasets and all catchments would significantly 

decrease the number of P datasets and catchments considered in this study, and 

would result in less generalizable results. 

 

9. MC11. Based on the boxplots summarising the performance of each of the 23 

P datasets used in this study, it is quite surprising that the CPC Unified 

dataset, which is based solely on rain gauge information and has the coarsest 

spatial resolution of all P datasets (0.5°), ranked second among all datasets. I 

request the authors to add a paragraph suggesting possible reasons for this 

unexpected behaviour. 

Response: You are correct in pointing out that this study demonstrates that 

datasets with higher spatial resolution do not necessarily result in better 

performance for hydrological modeling. This finding is consistent with previous 

studies, including Bador et al. (2020), Huang et al. (2019), and Chan et al. (2013). 

We have incorporated the following discussion into the manuscript to reflect this 

point. 

 

Lines 226 – 232: “Our results reaffirm that higher-resolution P datasets do not 

necessarily yield better streamflow simulations compared to lower-resolution 

datasets, consistent with previous assessments (e.g., Bador et al., 2020; Huang et 

al., 2019; Chan et al., 2013). Notably, the 0.04◦ resolution infrared-based datasets 

(PERSIANN-CCS and -CCS-CDR, and PDIR-Now;220 median KGE of 0.46, 0.50, 



and 0.45, respectively) — the highest resolution datasets included in our 

assessment — do not consistently perform better neither globally nor for any 

Köppen-Geiger climate zones. This is likely because streamflow aggregates P over 

space and time, dampening local details captured by high-resolution datasets. 

Alternatively, coarser datasets may average out small-scale noise, yielding more 

reliable estimates”. 

. 

10. MC12. To provide an initial assessment of the ability of all 23 P datasets used 

in this study to reproduce the mean annual precipitation at a given location, I 

request the authors to create a new figure with the mean annual precipitation 

for 2007-2015 (the longest period for which all datasets have data, after 

removing the two CMORPH products described in MC2), computed as the 

average of the mean annual values obtained for each of the 23 P datasets for 

that period (Pavg). In addition, I request the authors to prepare 23 new figures 

showing the difference between the mean annual precipitation of each P 

dataset for 2007-2015 (Pi) and Pavg, i.e., Pi - Pavg. All the figures requested 

in this comment should be included in the supplementary material only, and 

they will allow to identify major problems in the representation of mean annual 

values of a given P dataset in some specific regions of the world. 

Response: We have prepared the figures requested by the reviewer. The mean 

annual values obtained for each for the 21 P datasets (excluding GDAS and 

CMORPH-RT) for the period (2007 – 2015) as well as the difference between 

mean annual P of individual P from the Pavg is illustrated in next figures and 

added in supplementary material. 

 

 
Fig S30. Average of the mean annual precipitation (mm/day) from 23 datasets. 

 



 
 

Fig S31. Difference between mean annual precipitation of CHIRP and average of 

mean annual precipitation of all datasets (Pavg). 

 
 

Fig S32. Difference between mean annual precipitation of CHIRPS V2.0 and 

average of mean annual precipitation of all datasets (Pavg).  

 



 
Fig S33. Difference between mean annual precipitation of CMORPH-CDR and 

average of mean annual precipitation of all datasets (Pavg). 

 

 

 
Fig S34. Difference between mean annual precipitation of CPC-Unified and 

average of mean annual precipitation of all datasets (Pavg). 

 

 



 
Fig S35. Difference between mean annual precipitation of ERA5 and average of 

mean annual precipitation of all datasets (Pavg). 

 

 
Fig S36. Difference between mean annual precipitation of GPCP V3.2 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 



 
Fig S37. Difference between mean annual precipitation of GPM+SM2RAIN and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
Fig S38. Difference between mean annual precipitation of GSMaP V7 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 



 
Fig S39. Difference between mean annual precipitation of GSMaP V8 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
 

Fig S40. Difference between mean annual precipitation of IMERG-Early V7 and 

average of mean annual precipitation of all datasets (Pavg). 

 



 
 

Fig S41. Difference between mean annual precipitation of IMERG-Final V7 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
 

Fig S42. Difference between mean annual precipitation of IMERG-Late V6 and 

average of mean annual precipitation of all datasets (Pavg). 

 



 
 

Fig S43. Difference between mean annual precipitation of IMERG-Late V7 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
Fig S44. Difference between mean annual precipitation of JRA-3Q and average 

of mean annual precipitation of all datasets (Pavg). 

 



 
 

Fig S45. Difference between mean annual precipitation of MSWEP V2.8 and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
 

Fig S46. Difference between mean annual precipitation of MSWEP-ng V2.8 and 

average of mean annual precipitation of all datasets (Pavg). 



 
 

 

Fig S47. Difference between mean annual precipitation of PDIR-Now and 

average of mean annual precipitation of all datasets (Pavg). 

 

 
 

Fig S48. Difference between mean annual precipitation of PERSIANN-CCS-CDR 

and average of mean annual precipitation of all datasets (Pavg). 



 
 

Fig S49. Difference between mean annual precipitation of PERSIANN-CCS and 

average of mean annual precipitation of all datasets (Pavg). 

 
 

Fig S50. Difference between mean annual precipitation of SM2RAIN-ASCAT and 

average of mean annual precipitation of all datasets (Pavg). 

 



 
 

Fig S51. Difference between mean annual precipitation of SM2RAIN-CCI and 

average of mean annual precipitation of all datasets (Pavg). 

 

11. MC13. To facilitate the “generalizability of their findings” (L50, L57) for readers 

from different countries, I request the authors to add a new figure to the main 

body of the manuscript: a map showing, in different colours, the KGE values 

obtained in each catchment. This figure will allow us to identify the spatial 

distribution of the high and low performance of each P dataset in the 

simulation of daily streamflows. This new figure will make it possible to 

support several statements in the “Results and Discussion” section that are 

currently not supported by any figure in the manuscript. 

Response: The maps of KGE values along with variability (γ) and bias (β) for each 

of the 18,428 catchment and for each of the 23 P datasets are already illustrated in 

supplementary material as Fig. S1 – S23.  

 

12. MC14. To facilitate even more the “generalizability of their findings” (L50, L57) 

to readers from the same country but from catchments with different 

hydrological regimes, I strongly suggest (and do not request) the authors to 

make an extra effort and classify the hydrological regimes of each of the 

16,295 catchments (e.g., pluvial, glacial, snow-dominated, snow-influenced, 

tropical). This would allow readers to use the results of the articles to select 

one or more P datasets to use for analysing specific case studies in their own 

countries. If this suggestion could not be addressed by the authors, I request 

them to insert three new columns in Table 3: low solid P fraction, medium 

solid P fraction and high solid P fraction, where the thresholds to distinguish 

between low, medium and high values of solid P fraction should be proposed 

by the authors based on their knowledge and the values of solid P fraction of 

all 16,295 catchments.he values of the solid P fraction of all the 16,295 

catchments. 



Response: In order to analyze the behaviour of P datasets in different climate 

settings, we divided the catchments according to Köppen-Geiger climate zones i.e. 

polar, tropical, arid, temperate and continental. The performance of each of the 23 P 

datasets in these five Köppen-Geiger Zones is illustrated in the following boxplot. 

 
Fig S23. Performance of 23 P datasets in major Köppen-Geiger climate zones. 

 

A more detailed spatial KGE map of the best performing P dataset (MSWEP 2.8) in 

each catchment in each of the Köppen-Geiger zone is shown below. However, even 

though MSWEP V2.8 performs best, it does not perform best for each of the 18,428 

catchments. For this reason we added Fig. 3 in the manuscript which shows the best 

P dataset for each catchment among the top five P datasets. 

 



 
Fig. Spatial maps and distribution of Kling-Gupta Efficiency for MSWEP V2.8 

dataset. 

 

13. MC15a. Poor performance of HBV in arid climates. Although the manuscript 

does not explicitly mention this, it can be inferred that the authors assume that 

the performance of HBV is likely to be poor in arid climates (L226), because 

“P in arid regions tends to be brief and intense, making it challenging to detect 

and model accurately(Beck et al., 2017b; Sun et al., 2018; El Kenawy et al., 

2019; Beck et al., 2019a)” (L227-228). However, Seibert and Bergström 

(2022) mention in their review that the HBV is routinely used to model the 

impacts of climate change on water resources around the world, including 

regions as arid as the Nile (Booij et al., 2011) and, threfore, aridity per se 

should therefore not be a reason to explain a poor performance of the HBV 

model. 



 Booij, M. J., Tollenaar, D., van Beek, E., and Kwadijk, J. C. J.: Simulating 

impacts of climate change on river discharges in the Nile basin, Phys. 

Chem. Earth, 36, 696–709, https://doi.org/10.1016/j.pce.2011.07.042, 2011. 

  

Response: First of all, we would like to mention that we found a bug in our 

preprocessing of the African streamflow dataset (ADHI). Since the ADHI dataset 

contributes to most of the stations in arid regions, fixing this bug improved the median 

KGE for arid regions from 0.51 to 0.60. Second, you are right in pointing out that HBV 

has been applied around the world. There have been applications of HBV in arid 

regions but on fewer catchments. There have been very few studies who applied HBV 

on a global scale. However, the low performance of HBV in arid regions has been 

reported in several other studies. Feng et al. (2024) applied HBV, LSTM and a hybrid 

model combining HBV and an LSTM model on a global dataset and found that both 

perform poorly in arid regions with a median KGE value below 0.4. This indicates that 

even the data-driven deep learning models such as LSTMs performed poorly in arid 

regions. Booij et al. (2011) applied HBV in 17 subbasins of the Nile river and obtained 

a median KGE value of 0.64. However, they had a very small sample size (n=17) as 

compared to our study (n=1300). By plotting the distribution of KGE for arid regions 

from all P datasets as boxplot, we can show that KGE for a significant number of 

catchments went beyond 0.64 as shown in the figure below. 



 
Fig. Distribution of KGE values of P datasets in arid regions. 

  

1. MC15b. Definition of the aridity index. In the main text of the manuscript, arid 

regions are associated with values of the aridity index greater than 1 (L250-

251, L266). However, this association is inconsistent with the definition of the 

aridity index in Table B1 of Appendix B, where the aridity index is defined as 

the ratio between mean annual P and potential evapotranspiration, and 

therefore values greater than 1 would indicate wet rather than dry catchments. 

Please clarify this discrepancy. 



Response: Thank you very much for highlighting this issue. We have corrected 

the definition of aridity index in Table B1 now as the ratio of mean PET/P.  

 

2. MC16. Efficiency of the filter used to select the study's catchmens. In Section 

3.2 (Regional performance differences) the authors mention aridity, 

groundwater use and/or anthropogenic water use as possible explanations for 

the low performance obtained for several P products in Australia, India, South 

Korea and Africa. Does this mean that the five criteria used in Section 2.2 to 

“ensure the suitability of the catchments for the present analysis” (L87) did not 

work as expected?. I request the authors to add a discussion of why the five 

criteria previously mentioned were not sufficient to filter out catchments that 

were not suitable for the present analysis. I also request the authors to 

consider whether it is necessary to add one or more criteria that would allow 

the presence of irrigation, hydrograph regulation and/or major consumptive 

water use to be detected, in order to screen out catchments that will not 

provide reliable results from the analysis. I suggest the authors analyse the 

criteria used by the Reference Observatory of Basins for INternational 

hydrological climate change detection (ROBIN; Kumar et al., 2024) to ensure 

that the streamflows observed in each selected catchment are free from 

anthropogenic influences. 

 Kumar, A., Hannaford, J., Turner, S., Barker, L. J., Dixon, H., Griffin, A., 

Suman, G., and Armitage, R.: Global trend and drought analysis of near-

natural river flows: The ROBIN Initiative, EGU General Assembly 2024, 

Vienna, Austria, 14–19 Apr 2024, EGU24-17249, 

https://doi.org/10.5194/egusphere-egu24-17249, 2024. 

Response: The five criteria used in Section 2.2 to ensure the suitability of the 

catchments for the present analysis (L87) did work according to our expectations. 

However, it is difficult to discard catchments with small dams, as these small dams are 

not represented by global dam datasets like GranD (Lehner et al., 2011; as mentioned 

on lines 304-305). Furthermore, despite the lower performance in arid regions, we did 

not want to exclude all arid catchments, because arid regions are still hydrologically 

important, and the performance is not too low (that is, the models still provide useful 

estimates). Similarly, we did not exclude catchment with considerable irrigation, as this 

would exclude numerous arid catchments. Regarding water use, there is unfortunately 

not a sufficiently reliable dataset we can use to account for this, and we do not know 

what degree of water use would render a catchment meaningless for our analysis. 

 

We also thank you for highlighting the ROBIN project. The stated aim of the ROBIN 

project is to investigate the impact of climate variability on hydrology. To this end, the 

project defined two tiers of catchment selection criteria: Tier 1 catchments are intended 

for the analysis of extreme events, while Tier 2 catchments are used for studying less 

sensitive hydrological variables. Some of the quantitative selection criteria in the 

ROBIN project overlap with those used in our study—for example, record length and 

limits on missing data. Notably, the ROBIN project restricts catchments to those with 



urbanization fractions below 10% for Tier 1 and 20% for Tier 2. Although we did not 

explicitly use urbanization fraction as a selection criterion, only 570 and 206 of our 

18,428 selected catchments exceed the 0.1 and 0.2 urbanization thresholds, 

respectively. Furthermore, we found that excluding these 206 catchments does not 

significantly affect our overall findings: MSWEP V2.8 remains the top-performing 

dataset, with CPC Unified, IMERG-Final V7, GDAS, and MSWEP-ng V2.8 consistently 

ranking among the top five. The performance of all P datasets after excluding 

catchments with urban fractions greater than 0.2 are shown in the following figure. 

 

 
Fig. Calibration KGE for catchments with urban fraction less than 0.2. 

 

1. MC17. Make the observed streamflow dataset publicly accessible. HESS 

request the authors to follow their data policy (https://www.hydrology-and-

earth-system-sciences.net/submission.html), which includes a statement on 

how the underlying research data can be accessed. If the data are not publicly 

accessible, a detailed explanation of why this is the case is required (e.g. 

applicable laws, university and research institution policies, funder terms, 

privacy, intellectual property and licensing agreements, and the ethical 

context of the research). In addition, the HESS data policy states the provision 

of unrestricted access to all data and materials underlying reported findings 

for which ethical or legal constraints do not apply. It is true that a URL or 

reference to the data source of the streamflow data used in this study is 

provided in Table A1. However, a researcher wishing to reproduce the results 



of this study will never be certain that the data downloaded from each URL 

corresponds exactly to the original 43,627 stations used in this study. 

Furthermore, in the hypothetical situation of having downloaded exactly the 

same 43,627 stations that were originally used in this study, it would not be 

possible to ensure that applying the five criteria, presented in Section 2.2 for 

filtering out stations, would result in exactly the 16,295 stations finally 

analysed in this study. Therefore, in practise, it would not be possible for a 

researcher to reproduce the results of this study. The entire scientific 

community will thank the authors of this study for providing public access to 

the daily streamflow data, the catchment boundaries and the location of the 

outlet of each catchment in order to improve this dataset for future analyses 

on a global scale. 

Response: We agree that open access to such a large corpus of streamflow data 

would greatly benefit the scientific community. However, the authors do not have the 

necessary permissions to share the observed streamflow data used in this study. The 

data were either obtained from the meteorological websites of respective countries or 

sourced from publicly available datasets such as CAMELS. The Python code used to 

fetch and harmonize the streamflow data from these sources is openly available in the 

AquaFetch GitHub repository (Abbas et al., 2025; https://github.com/hyex-

research/AquaFetch). While the exact number of stations may vary depending on the 

length of available records, this variability does not significantly affect the findings of 

the study, as stations with short records were already excluded from the analysis.  

Minor comments: 

1. In all the manuscript, I ask the authors to use the word “reanalysis” instead of 

“model” when referring to atmospheric models of the global climate (e.g., 

ERA5, JRA-3Q), to avoid confusion with the HBV hydrological model used in 

this study. 

Response: We have replaced the word “model” with reanalysis or analysis in the 

whole manuscript. The word “model” is now solely reserved for HBV. 

 

2. Provide the full name of all the abbreviations used in the manuscript the first 

instance they appear, as specified in the “English guidelines and house 

standards” of HESS (https://www.hydrology-and-earth-system-

sciences.net/submission.html). This is particularly important for all the 

precipitation products, which can not be assumed to be known by the wider 

scientific community. In addition, please provide a reference for each P 

dataset the first time they appear in the text. 

Response: Thank you for pointing this out. We have provided the full names of all 

dataset abbreviations in the abstract. Additionally, we have included a separate 

column in Table 2 that lists the full name of each dataset along with its corresponding 

reference.  

 

https://github.com/hyex-research/AquaFetch
https://github.com/hyex-research/AquaFetch
https://github.com/hyex-research/AquaFetch


3. Because CAMELS is a catchment dataset specifically developed for U.S., I 

request the authors to use CAMELS only for the US datasets, while when 

referring to CAMELS-like datasets developed for other countries, the 

individual names of the datasets should be used (e.g., CAMELS-GB, 

CAMELS-CL) or a generic name different from “CAMELS”. 

Response: Thank you for pointing out that the original CAMELS dataset was 

developed for the U.S. Since then, several CAMELS variants have been created for 

other regions. Based on the reviewer’s suggestion, we have adopted more specific 

names for each CAMELS-like dataset, such as CAMELS-CL for Chile and CAMELS-

GB for Britain. Please note that we did not use the CAMELS-US dataset (Addor et al., 

2015) due to its limited coverage (561 stations, ending in 2014). Instead, we obtained 

streamflow data for U.S. stations directly from the USGS website, and the 

corresponding catchment boundaries were acquired from the HYSETS dataset 

(Arsenault et al., 2020).  

 

4. To avoid possible ambiguities, use always in the text “streamflow” instead of 

“flow”. Also, when using “runoff” instead of “streamflow”, specify how runoff 

was obtained. 

Response: Thank you for pointing this out. We have replaced the word “flow” with 

“streamflow” in the whole manuscript. The runoff was calculated using streamflow 

record and area of catchment. We have elaborated it in Table B1 of the manuscript. 

 

5. L20-21. Provide a reference for the crucial role that the spatio-temporal 

distribution of P plays in water resources assessment. 

Response: We have added two more references in this sentence. The study of Dresel 

et al., (2018) investigated the effect of precipitation variability on water yield of multiple 

catchments in Victoria, Australia. McKinnon and Deser, 2021 studied the implications 

of precipitation distribution for water resources of Western U.S. 

 

Lines 20 – 22: “Understanding the spatio-temporal distribution of precipitation (P) is 

crucial for a wide range of applications, including water resources assessment, flood 

forecasting, agricultural monitoring, and disease tracking (Dresel et al., 2018; Liang 

and Gornish, 2019; McKinnon and Deser, 2021; Hinge et al., 2022; Dimitrova et al., 

2022)”. 

 

6. Table 1. Correct the reference provided for IMERG-Final V7, because 

Huffman et al. (2019) makes reference to version 6 and not to version 7. 

Response : As per the release notes of IMERG V7 

(https://gpm.nasa.gov/resources/documents/imerg-v07-release-notes: Last accessed 

30 April 2025), the core algorithm concept of IMERG is agnostic to version changes. 

 

7. Table 1. In the column “Temp. Cov.”, please explain the meaning of “NRT” in 

the caption of the table, and remove that term (assumed to mean “near real-

time”) for all the products which time latency is larger than 1 day. 

https://gpm.nasa.gov/resources/documents/imerg-v07-release-notes


Response : We have added the meaning of NRT in the caption of Table 1 and also 

removed NRT from P datasets with latency larger than 1 day. 

 

8. Table 1. Provide a “Time Latency” value for all the products lacking such 

information. 

Response : Table 1 has been modified to include latency information of all products 

which are still updated. 

 

9. Table 1, Table 3, Figure 2. Please check whether IMERG-Early V7 was used 

in this study or not, because L72 mentions only IMERG-Early V6 and not 

IMERG-Early V7. 

Response : Thanks for highlighting this issue. We used IMERG-Early V7 and not 

IMERG-Early V6. We have replaced IMERG-Early V6 with IMERG-Early V7 in L72. 

 

10. L69. It mentions that “The datasets fall into two main categories”. However, in 

L149 it is mentioned that “Among the six main categories of P datasets”, 

which is consistent with the six categories used in Table 1 (column ‘Data 

Source’) and Table 3 (column ‘Dataset Type’). I ask the authors to keep six 

categories in all the manuscript, using ‘Dataset Type’ as a consistent 

denomination name and using “S, R (reanalysis), G, S+G, S+R, S+R+G” as 

possible values for this denomination name (instead of “S; R (reanalysis); G; 

S,G; S,R; S,R,G” as used in Table 1). 

CAMELS-like instead of CAMELS. 

Response : We have modified the sentence as recommended by the reviewer. 

 

Lines 75 – 76: “The 23 P datasets are grouped into six categories based on their 

input data sources (see Table 2 for full dataset names and references”. 

 

11. L82. Change “and websites” by “or websites”, because Table A1 provide 

either a reference or a URL but not both. 

Response : We have modified the sentence. 

 

“Appendix A provides a detailed list of the data sources, along with corresponding 

references or websites”. 

 

12. L103-104. Provide the catchments areas corresponding to the 2.5 and 97.5 

percentiles as well. 

Response : The area corresponding to 2.5 and 97.5 percentiles 23 and 6165 Km2. 

We have revised the sentence to include these two values. 

 

13. Figure 1. Explain in the caption what is specifically shown in panels a) and b) 

of this figure. 

 



Response: Fig. 1a indicates locations of all 34, 768 gauge stations while Fig. 1b 

indicates the dominant Köppen-Geiger climate class based on the 1-km resolution 

map from Beck et al., (2023).  

 

14. Table 2. Please add a new column “units” to specify the measurement units of 

each HBV parameter. 

Response: Although we had mentioned the units of the HBV parameters in 

parenthesis, we have now added a separate column for the units based upon 

reviewer’s suggestion. 

 

15. L122-124. Provide more details about the statement: “Model initialization was 

done by running the model with 10 years of prior P data, if available. If 10 

years of prior P data were not available, the model was run multiple times 

using the available P data until a total of more than 10 years was 

accumulated”. In particular, clarify how running multiple times the HBV model 

allow to compensate the lack of P data. 

Response: The warm-up period is an adjustment process for the model storages to 

reach from an empty to an "equilibrium" state. A typical warm-up period ranges from 

one to several years however it leads to important data loss. Running the model 

repeatedly will eventually lead the internal storages of the model to their optimal state.  

 

16. L130. Remove GDAS from the examples of P datasets with short record, 

because its data start in 2001, in contrast to the two CMORPH versions which 

data starts in 2019. 

Response: In this study we used GDAS which is based on the most recent V16.3 from 

2022 of the Global Forecasting System (GFS) Numerical Weather Prediction (NWP) 

model. We did not use the data from 2001 which is based on a very old model and 

that model is not representative of the current model. We have corrected that 

information in Table 1. 

 

17. L144. Explain what do you mean by “γ reflects the shape of P probability 

distribution”. 

Response: We have modified this confusing part of part of the sentence as below: 

 

Lines 162 – 165: “While the PCORR and SFCF parameters, which account for 

systematic biases, were calibrated, the β component of KGE reflects residual biases 

that may persist due to limitations in the P dataset’s ability to accurately represent the 

spatial and temporal distribution of precipitation intensities and magnitudes (Sun et al., 

2017)”. 

 

18. L158. In the sentence “Specifically, gauge data enhance performance in …” 

do you mean something like “Specifically, bias correction using gauge data 

enhance performance in ….”? 



Response: Yes you are right. The gauge-based P datasets can benefit from bias-

correction from gauge-dense regions. We have improved the sentence in the 

manuscript to avoid this ambiguity. 

 

Line 180: “Specifically, bias correction using gauge data enhances performance in 

regions with dense rain gauge networks... ” 

 

19. L165-166. Please provide a reference that support the statement about the 

climatological rain gauge adjustment in IMERG-Late V7. This is requested 

because to the best of my knowledge the document 

“IMERG_V07_ReleaseNotes_final_230713.pdf”, only mentions “Applied 

climatological adjustment to the Final Run for Early and Late Runs”. 

Response:  Thank you for your concern. This is mentioned in section 3.9 of Huffman 

et al., (2023). We have added this reference to support this statement. 

 

20. L174-175. Provide a discussion about the poor performance of PDIR-now in 

UK, Denmark and Italy. 

Response: A detailed analysis of PDIR-Now’s performance in the UK, Denmark, and 

Italy indicates that its lower performance can be attributed to the restricted lower bound 

of PCORR during calibration. Initially, the lower limit of PCORR was set to 1.0; 

however, when this limit was reduced to 0.0, the calibrated PCORR values decreased. 

The median calibrated PCORR values dropped to 0.76 for CAMELS-GB, 0.74 for 

Denmark, and 1.04 for Italy. As a result, the median KGE values for these countries 

improved to 0.39, 0.49, and 0.37, respectively. These findings suggest a consistent 

overestimation of precipitation by PDIR-Now in these regions.  



 
Fig S29. Comparison of calibrated PCORR and corresponding KGE values from 531 

catchments from CAMELS-GB using PDIR-Now P dataset. 

 

We have added the following sentence in section 3.1 

 

Lines 250 – 251 : “Further analysis revealed that the largest decrease in median 

calibrated PCORR (1.0 to 0.7) and consequently improvement in KGE (0.15 to 0.37) 

was observed in CAMELS-GB (Supplement Fig. S29).” 

 

21. L179. Provide a reference for GDAS. 

Response: There is no peer-reviewed scientific publication introducing the GDAS 

precipitation dataset. The dataset is provided by the National Centers for 

Environmental Information (NCEI) of NOAA, United States. We have added the 

corresponding website reference in the manuscript. 

 



22. L202. Could you be more specific with the sentence “the importance of 

improving coverage in data sparse regions due to data sharing limitations” ? 

Response: Thank you for the suggestion. We have revised the sentence to clarify that 

the accuracy of gauge-corrected precipitation datasets depends heavily on the density 

and availability of ground-based rain gauge data. In many regions—particularly in 

parts of Africa, South America, and central Asia—limited data sharing policies or 

inadequate observational infrastructure restrict the integration of gauge data into 

global products. This leads to reduced correction quality and poorer performance in 

these regions. Therefore, expanding both the spatial coverage and accessibility of 

gauge observations is essential for improving the performance of precipitation 

datasets globally. 

 

Lines 212 – 225 : “This highlights the critical role national meteorological agencies play 

in feeding rain gauge data into global databases such as the Global Historical 

Climatology Network daily (GHCNd; Menne et al., 2012) and the need to expand 

gauge coverage and promote open data sharing, particularly in data-scarce regions, 

to improve the accuracy of P datasets in those areas.” 

 

23. L203. Where can we see the “comparison of PCORR parameter values 

obtained after calibration using different P datasets” ? 

Response: The spatial distribution of PCORR is shown in supplementary figures 

Figs S1-S23. However, for ease of comparison, we have also added the boxplot 

comparing the distribution of PCORR values obtained from all P datasets in 

supplementary. 

 

24. L209. How is it possible to obtain negative values of the PCORR parameter if 

the range specified for this parameter in Table 2 was [1, 2]? 

Response: We apologize for the confusion. The sentence in line 209 does not refer 

to negative PCORR values but to lower bias (beta) values for IMERG Early and Late 

V7 products (Fig. 2c). We have modified the sentence to correct this. 

 

25. Figure 2. Add to the caption of this figure the meaning of the horizontal black 

line shown in each boxplot. 

Response: The horizontal black line in each boxplot indicates the mean value. We 

have updated the caption to include this information. 

 

26. L237-L241. To avoid confusion, please use the same attribute names used in 

Figure 4 and Appendix B (e.g., use “Mean PET” instead of “low Mean PET”). 

Response: The word “low ” in the term “low Mean PET” here referred to lower values 

of mean potential evaporation values (Mean PET). Please note that we have replaced 

the word evapotranspiration with evaporation following the recommendations of 

Miralles et al., (2020). Both Fig. 4 and Table in appendix B has been updated. 

 



27. L240. Develop more the idea “…, as frontal P is prevalent under these 

conditions”. 

Response: The high solid precipitation fraction and low mean temperature are 

associated with frontal precipitation which affects ERA5 performance. Frontal 

precipitation typically occurs in mid- to high-latitude regions, where colder 

temperatures and snow-dominated conditions prevail (Milani and Kidd, 2023; Hénin et 

al., 2019). These large-scale frontal systems are well captured by reanalysis models 

like ERA5, leading to better agreement with observed streamflow. 

 

28. L243. Please introduce the concept “Rain Gauge Density map” before using it 

here. 

Response : We have modified the sentence as below 

 

Lines 294 – 296: “Rain Gauge Density, calculated as the number of gauges per 100 

km2 smoothed using an exponential filter (see Table B1 for details), showed a slight 

positive relationship with MSWEP v2.8 performance, suggesting that a higher gauge 

density contributes to improved accuracy, as expected”. 

 

29. L272. Correct “JRA-3” 

Response : We have corrected it. The revised sentence is below 

 

Lines 323 – 325 : “For (re)analysis-based datasets (ERA5, GDAS, and JRA-3Q), 

limited availability of surface, radiosonde, and aircraft observations for assimilation 

further reduces performance 

(https://charts.ecmwf.int/catalogue/packages/monitoring/)”. 

 

30. L275. Explain the meaning of TOVS-to-ATOVS. 

Response: The TOVS-to-ATOVS transition in ERA5 refers to a change in satellite 

observation systems. TOVS (TIROS Operational Vertical Sounder) was an older 

generation of sounders used from the 1970s to the 1990s. In 1998–1999, it was 

replaced by the more advanced ATOVS (Advanced TIROS Operational Vertical 

Sounder) system. 

 

31. L277-280. Where can we see the low performance obtained by PDIR-Now in 

Italy and Denmark, as well as the low performances obtained by JRA-3Q in 

Tahiland? 

Response : The lower performance of PDIR-Now in Italy and Denmark as well as the 

lower performance of JRA-3Q in Thailand is visible in heatmap Fig. 5. This heatmap 

indicates calibration KGE between streamflow data sources and P products. The dark 

blue color indicates lower KGE values. The exact median KGE values of PDIR-Now 

for Italy and Denmark are 0.27 and 0.29 respectively. For JRA-3Q, the median KGE 

value is -2.6. 

 



32. L288. To improve the clarity of the text, please change “bias-adjustment 

techniques” by “bias-adjustment techniques of P datasets”. 

Response: We have modified the sentence as you have recommended. 

 

33. L310-312. Can you provide any number to support the statement “our 

approach may slightly overestimate the relative performance of gauge-based 

and model-based datasets compared to satellite-only datasets"? 

Response: To support our argument, we compared the performance of precipitation 

datasets in regions with differing rain gauge densities. Specifically, we plotted KGE 

values for the 100 catchments with the highest gauge density and the 100 catchments 

with the lowest gauge density (see figure below). For the CPC Unified dataset, which 

is purely gauge-based, its ranking dropped from 2nd place in high-density regions to 

7th place in low-density regions. Conversely, the relative performance of satellite-only 

datasets such as GPM+SM2RAIN and SM2RAIN-CCI improved in areas with sparse 

rain gauge coverage. This demonstrates that gauge-based datasets tend to perform 

better in regions with high gauge density, potentially leading to an overestimation of 

their relative performance when evaluated globally. 



 
Fig. Comparison of P datasets for regions with high rain gauge density vs regions 

with low rain gauge density. 

 

34. L313. Remove GDAS from the examples of P datasets with short record, 

because its data start in 2001, in contrast to the two CMORPH versions which 

data starts in 2019. 

Response: In this study we used GDAS which is based on the most recent V16.3 from 

2022 of the Global Forecasting System (GFS) Numerical Weather Prediction (NWP) 

model. We did not use the data from 2001 which is based on a very old model and 

that model is not representative of the current model.  

 

35. L317-321. I suggest to move these lines into a new section termed “Future 

work”. 



Response: Since there are some other limitations of this work as well which – as we 

have indicated – can be overcome in a future work, we have modified the title of this 

section to “Potential Limitations and Future Work” 

 

36. L331. Given that GPM+SM2RAIN performed best among all the satellite-only 

P datasets, and considering that the developers of that product are among the 

authors of this work, can you provide some description of the reasons that 

prevent updating this product at least once a year? 

Response: GPM+SM2RAIN was a prototype of an European Space Agency (ESA) 

project that for being updated and maintained, would necessitate funds for the 

repossessing of all the products used for it. However, currently this activity is not 

funded by ESA and the processing of the product is therefore halted. 

 

37. L334. Stating that MSWEP is a “gauge-based” dataset gives the wrong idea 

that this product is only based on rain gauge information. I suggest to be more 

specific here and specify that this product uses information from rain gauges, 

among other sources. 

Response: This sentence compares precipitation datasets that incorporate gauge 

correction. To avoid confusion, we have revised the sentence as follows:  

 

“ MSWEP V2.8 led among the datasets which apply gauge correction, benefiting from 

its daily gauge corrections, unlike others with five-day or monthly gauge correction.” 

 

38. L339-340. The statement “while arid regions exhibited overall poor 

performance, with model-based datasets slightly outperforming others” is not 

correct, because Table 3 shows that IMERG-Final V7, GPCP v3.2 and CPC 

Unified outperformed reanalysis datasets in arid regions. Please correct. 

Response: Thank you for highlighting this. Among the five Köppen-Geiger climate 

zones, the lowest KGE (median KGE: 0.60) was obtained in arid regions (Table 3). 

We have modified the sentence to remove the later part which is incorrect. 

 

“ ... while arid regions exhibited overall poor performance”. 

 

Please note that we have replaced the word “model” with “reanalysis” as you 

recommended in your other comment. 

 

39. In the sections “Results and Discussion” and “Conclusions” please provide 

some analysis of the performance of the P datasets in mountainous regions, 

which is of utmost interest for the wider hydrological community. 

Response: We analyzed the behaviour of all 23 P datasets with variation in slope and 

the results are illustrated in the following figure as bar charts. The first part of the figure 

indicates the difference in HBV performance between catchments with average slope 

less than 1 degree and the catchments with average slope greater than 10 degrees. 

The negative values indicate that the performance increased for catchments with 



higher slope while positive values indicate decrease in performance in catchments 

with average slope greater than 10 degrees. The second part of the figure indicates 

the spearman correlation between HBV performance (median KGE) and slope. These 

figures indicate that the performance of P datasets which do not involve gauge-

correction increases with slope while the performance decreases with slope for 

catchments which involve gauge correction. We have added this in “Results and 

Discussion” section of the manuscript. 

 

 
Fig S52. Variation in HBV performance (KGE) with increase in slope. 

 

Lines 254 - 261 : “The difference in model performance (median KGE) between flat 

and steep catchments (average slope > 10°) indicates that the performance of gauge-

corrected P datasets tends to decrease in steep regions (Supplement Fig. S52a). This 

is reflected by a positive difference in median KGE between flat and steep catchments 

for gauge-corrected datasets. In contrast, for non-gauge-corrected P datasets, this 

difference is negative, indicating an increase in performance in steeper catchments. 

This pattern is further supported by the negative correlation between model 

performance (median KGE) and slope for most gauge-corrected datasets 

(Supplement Fig. S52b). This decrease in performance of gauge-corrected P datasets 

in mountainous regions can be explained by the sparsity of rain gauges (Kidd et al., 

2017), which limits the effectiveness of gauge correction in those areas.” 

 

40. In the Section “Conclusions” please mention something about the catchment 

attributes that would allow to predict -to some extent- a good performance of 



the P datasets, which is of utmost interest for the wider hydrological 

community. 

Response: We have added the following sentence in conclusion to describe the 

best predictors for high KGE of MSWEP V2.8 which is the best performing dataset. 

 

Lines 377 – 378 : The best predictors for high KGE of MSWEP~V2.8 are high Mean 

NDVI and Mean LAI as well as low Mean PE and low Aridity Index. 

 

41. L359. NOAA is written twice. Correct. 

Response : Thanks  for highlighting the typo. We have corrected the sentence by 

removing duplication of NOAA. The revised sentence is as below 

 

CPC Unified is available on the NOAA Physical Sciences Laboratory (PSL) website 

(https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html . 

 

42. L373. Change the capital “O” used in “Observed”. 

Response : Thanks for the highlight. We have corrected the sentence. The 

corrected sentence is as below 

 

For the remaining sources, except GRDC, daily observed streamflow data were 

obtained from the websites of the respective countries' hydrological or 

meteorological agencies. 

 

43. L377. Mention in the text where the radiation and humidity data are used in 

this work. 

Response : The radiation and humidity data was used to calculate evaporation 

according to the penman-monteith method (FAO-1998). We have stated this in the 

text. 

 

44. Table A1. Please separate the “Data source” column into two different 

columns: “Institution name” and “Country”, to have better information about 

the data source used for the observed streamflow data. 

Response: Thank you for your suggestion. However, not every entry in Table A1 is 

suitable for inclusion in the "Institution Name" column. For example, several datasets 

were obtained from previously published studies involving collaborations among 

multiple institutions. To enhance clarity, we have instead included a separate column 

specifying the spatial coverage of each dataset, since it is not evident from the dataset 

name.  

 

45. Table B1. Indicate the measurement unit used for the attribute “Rain gauge 

density”. 

Response: The units of rain gauge density are the number of gauges per 100 Km2. 

We have mentioned it in Table B1. 

 



46. Table B1. Incorrect citation to Legates and Bogart (2009). Please correct. 

Response: Thanks for the highlight. We have corrected the reference. 

 

“Fraction of total P falling as snow calculated according to Legates and Bogart 

(2009) 

using WorldClim V2 (Fick and Hijmans, 2017) for land and ERA5 (Hersbach et al., 

2020) 

for ocean”. 

 

47. Table B1. Considering the existence of the attribute “Permafrost fraction”, why 

the attribute “Glacier fraction” was not included in the analysis? 

Response: The reason for not including “glacier fraction” in Table B1 is that its 

behavior closely mirrors that of “permafrost fraction.” To support this point, we 

calculated the glacier fraction using the Randolph Glacier Inventory dataset Version 

7.0 (RGI 7.0, 2023). The relationship between HBV performance (median KGE) and 

both permafrost and glacier fractions is shown in the following figure. These charts 

indicate that for datasets such as CMORPH-CDR, MSWEP V2.8, CPC-Unified, and 

GPM+SM2RAIN, both glacier and permafrost fractions exhibit a negative correlation 

with KGE. In contrast, the remaining datasets show a positive correlation with both 

variables. This similarity in behavior suggests that permafrost and glaciers exert 

comparable influences on model performance, and therefore, we opted to include only 

the permafrost fraction in our analysis. 



 
Fig. Variation in HBV performance (median KGE) with permafrost fraction and glacier 

fraction for all 23 P datasets. 

 

48. L388-394. Please provide the correct acknowledgment to each one of the P 

datasets used in this study, as requested by each data source provider. 

Response: We have expanded the Acknowledgements section to properly 

recognize each precipitation dataset provider, in accordance with the guidelines of 

the respective organizations wherever applicable.  

 

49. L399. There is an incorrect character in the reference. Correct it. 

Response: We have corrected the reference. The updated reference is as below 

 



Aouissi, J., Benabdallah, S., Lili Chabaâne, Z., and Cudennec, C.: Evaluation of 

potential evapotranspiration assessment methods for hydrological modelling with 

SWAT — Application in data-scarce rural Tunisia, Agricultural Water Management, 

174, 39–51, https://doi.org/10.1016/j.agwat.2016.03.004, 2016 

 

50. L503-508. This reference is repeated twice. Correct it. 

Response : Thank you for the highlight. We have removed the duplication in 

reference. 

 

51. L612-615. This reference is repeated twice. Correct it. 

Response : Thank you for the highlight. We have removed the duplication in 

reference. 

 

52. L631. Correct the error in the URL. 

Response: We have corrected the URL and removed the repeated https at the start 

of url. The corre is“https://doi.org/10.1016/j.jhydrol.2021.126455” 
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