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Abstract. Internal tides are known to contain a substantial component that cannot be explained by (deterministic) harmonic

analysis, and the remaining nonharmonic component is considered to be caused by random oceanic variability. For nonhar-

monic internal tides originating from distributed sources, the superposition of many waves with different degrees of randomness

unfortunately makes process investigation more difficult. This paper develops a new framework for process-based modelling of

nonharmonic internal tides by combining adjoint, statistical, and stochastic approaches, and uses its implementation to inves-5

tigate important processes and parameters controlling nonharmonic internal-tide variance. A combination of adoint sensitivity

modelling and the frequency response analysis from Fourier theory provides distributed deterministic sources of internal tides

observed at a fixed location, which enables assignment of different degrees of randomness to waves from different sources.

The wave phases are randomized by the statistical model from Part I, using horizontally varying phase statistics calculated

by stochastic models. An example application to nonharmonic vertical-mode-one semidiurnal internal tides on the Australian10

North West Shelf shows that (i) phase-speed variability primarily makes internal tides nonharmonic through phase modulation,

and (ii) important controlling parameters include the variance and correlation length of phase speed, as well as anisotropy of

the horizontal correlation of phase modulation. The model suite also provides the map of nonharmonic internal-tide sources,

which is convenient for identifying important remote sources, such as the Lombok Strait in Indonesia. The proposed mod-

elling framework and model suite provide a new tool for process-based studies of nonharmonic internal tides from distributed15

sources.

Short summary

This study develops a new model suite for the random component of internal tides (internal waves at tidal frequencies). Its

example application shows that important parameters for the randomization are the magnitude and correlation length of phase-

speed variability, and directional dependence of the phase correlation. The model suite provides a new tool for investigating20

process and/or parameter dependence of observed random internal tides, and for identifying their important sources.
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1 Introduction

Internal tides are known to contain a substantial component that cannot be explained by harmonic analysis (based on the su-

perposition of sinusoids at tidal frequencies with constant amplitudes and phases). The remaining nonharmonic component is

considered to be caused by the random variability of stratification and background currents. For nonharmonic internal tides25

originating from distributed sources, the major difficulties for understanding the physics include the following two factors: (i)

statistical principles tend to make the observed variability insensitive to the underlying physical processes, and (ii) observed

nonharmonic internal tides often consist of many waves propagating towards different directions with different degrees of

randomness. To tackle the problem (ii) considering the difficulty (i), this study develops a new framework for process-based

modelling of nonharmonic internal tides observed at a fixed location by combining adjoint, statistical, and stochastic ap-30

proaches, and uses its implementation to investigate important processes and parameters controlling nonharmonic internal-tide

variance.

Internal tides are internal waves with tidal frequencies, primarily in the diurnal (≈24 h period) and semidiurnal (≈12 h

period) bands. They have different vertical structures, or modes, and lower modes have larger propagation speeds and usually

larger energies. (The internal-tide modes are referred to as "baroclinic" modes to distinguish them from the usual tides, or35

the "barotropic" mode. It is customary to count the first baroclinic mode as vertical mode one, or VM1.) Internal tides are

generated by the interaction of tidal currents with topographic slopes, which implies their coherence with the tide-generating

forces at the generation sites. However, they gradually become incoherent (or non-phase-locked) as they propagate away from

the generation sites (e.g., Rainville and Pinkel, 2006; Buijsman et al., 2017; Alford et al., 2019). This process is considered to be

caused primarily by phase modulation through the variability of the wave propagation speed (Rainville and Pinkel, 2006; Park40

and Watts, 2006), which is in turn caused by temporally and spatially varying pycnocline heaving and advection (Buijsman

et al., 2017; Zaron and Egbert, 2014). Although the variability of internal-tide generation can be substantial (Kerry et al., 2016),

the amplitude modulation is overall considered to be less important than the phase modulation (Zaron and Egbert, 2014; Colosi

and Munk, 2006).

Part I of this study (Shimizu, Companion Paper, hereafter referred to as Part I) developed a statistical model of nonharmonic45

internal tides, which is the basis of the modelling framework proposed in this study. (Following Part I, the term "nonharmonic"

internal tide is used for the random component of internal tides, which is also referred to as "incoherent"," nonstationary", or

"non-phase-locked" internal tides in previous studies.) The statistical model approximates nonharmonic internal tides observed

at a fixed location as the superposition of sinusoidal waves from an arbitrary number of independent sources. The model shows

that (i) the envelope-amplitude distribution approaches a universal form given by a generalization of the Rayleigh distribution50

when the number of independent wave sources is sufficiently large (or when the central limit theorem in statistics is applicable),

and (ii) this is likely to require only 3 to 10 independent sources in realistic oceanic conditions. The comparisons of model and

observed probability density functions (PDFs) showed the applicability of the limiting distribution to vertical-mode-one (VM1)

to vertical-mode-four (VM4) internal tides in the diurnal, semidiurnal, and quarterdiurnal (≈6 h period) frequency bands on a

continental shelf, provided that the spectra showed the corresponding tidal peaks clearly. When nonharmonic internal tides are55
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in the "many source" limit, one of the most important questions is what determines the variance, which controls the PDFs (and

the associated higher-order statistics).

The above statistical study is an important step forward; however, it also suggests difficulty in investigating the physical

processes of nonharmonic internal tides based on their variability at an observation location. This is because the PDFs tend

to approach the universal form by statistical principles, regardless of the details of individual wave components. For example,60

the phase of observed nonharmonic internal tides can be nearly uniformly distributed when the phases of individual wave

components vary less than 5% (of the total 2π), and the observed amplitude tends to show large variability when the amplitudes

of individual components do not vary at all. Furthermore, nonharmonic internal tides often result from the superposition of

many waves propagating towards different directions with different degrees of randomness. So, even when complete spatial and

temporal information are available, for example, from the outputs of hydrodynamic modelling, it is often not straightforward65

to identify wave components from a particular source region or a particular process. It appears that process-based studies are

most straightforward when internal tides originate from a localized source or a small number of adjacent sources, so that the

evolution of internal tides can be analysed based on the distance (or travel time) from the source(s) without interference. Using

hydrodynamic modelling, such studies have been done in regions around Hawaii and French Polynesian Islands (Zaron and

Egbert, 2014; Buijsman et al., 2017). However, this approach is applicable only to a small fraction of the world ocean, and70

not suitable for regions affected by distributed sources, including continental shelves facing open ocean. In addition, although

comprehensive literature survey is difficult, the methodologies developed for wave propagation in random media in other fields

of physics and engineering do not appear to be directly applicable to distributed sources, because they usually consider a signal

from a small number of point sources (e.g., Colosi, 2016, for underwater acoustics).

An alternative approach for process-based studies with wider applicability is a kind of inverse modelling of internal tides75

observed at a fixed location. By limiting the locations of interest, the adjoint of a hydrodynamic model can be used to trace

internal tides arriving at a fixed observation location back to the distributed sources (Shimizu, 2024a). This information in turn

enables assignment of different degrees of randomness to waves arriving from different sources. If the degrees of randomness

are calculated based on process understanding, it would be possible to calculate nonharmonic internal-tide variance, compare

it with observations, and investigate the dependence of the modelled variance on different processes and/or parameters. This80

"inverse" approach would also provide useful information such as the map of nonharmonic internal-tide sources and integrated

regional contributions. This type of modelling can be viewed not only as an inverse approach but also a "synthesis" approach,

because the model can be built up from process understanding, and the results can be used to check whether the current

understanding "adds up" to explain the observed variance.

This study aims to develop a new framework for process-based modelling of nonharmonic internal tides by combining the85

statistical model from Part I with adjoint and stochastic models, and then to use its implementation to investigate processes and

parameters controlling nonharmonic internal-tide variance. As an example application, the resultant model suite is applied to

VM1 semidiurnal internal tides observed at a mooring site on the Australian North West Shelf, and the results are compared

to the observed variance and PDF. Since this is the first application of the proposed modelling framework, the application is
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Figure 1. Overview of proposed modelling framework and its implementation in this study.

intended to be a feasibility test. The models are intentionally simplified, and used to understand the dependence of modelled90

variance on the model parameters, rather than attempting to provide a single best estimate.

This paper is organized as follows. Section 2 presents an overview of the proposed modelling framework and model suite,

and Section 3 presents the theoretical background of individual model components, including a short summary of the statistical

model developed in Part I. Section 4 presents methodology, particularly the details of numerical methods. The results of an

example application to the Australian North West Shelf are shown in Section 5, followed by discussion in Section 6. This paper95

ends with a list of conclusions in Section 7.

2 Modelling framework and its implementation

An overview of the proposed modelling framework is shown in Fig. 1a. The key component is the statistical model developed

in Part I. It calculates the statistics of nonharmonic internal tides by randomizing the phases (and optionally amplitudes)

of individual internal-tide components arriving at an observation location from deterministic sources using the statistics of100

random phase modulation. For distributed internal-tide sources in realistic oceanic applications, the horizontal distributions of
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the sources and phase statistics are necessary. The source distribution can be modelled using an adjoint sensitivity model and

barotropic tidal forcing. Currently, there appears to be no standard method to model the distributions of phase statistics. Since

phase statistics vary with wave propagation (i.e., nonstationary), its process-based modelling appears to require a stochastic

approach. In addition to random variability of the wave phases, the horizontal correlation of phase modulation is necessary105

because it introduces the correlation of waves arriving from individual sources, but the statistical model assumes independent

waves. So, this study proposes the modelling framework shown in Fig. 1a, whose detailed implementation can evolve in the

future.

An overview of the implementation of the modelling framework in this study is shown in Fig. 1b. Apart from the statistical

model, another key component is a new method referred to as "adjoint frequency response analysis", which is a combination of110

numerical adjoint sensitivity modelling and the frequency response analysis from Fourier theory. The output is the horizontally

distributed deterministic sources of internal tides observed at a fixed location, which is referred to as the "source function"

in this study. Stochastic models are separately developed to model the phase spread and the horizontal (two-dimensional)

correlation of phase modulation, both of which are assumed to be caused by random variability of phase speed. The results

of these models provide two input parameters of the statistical model: the strengths of independent sources and the phase115

spread of waves arriving from individual sources. One of the important model outputs is the horizontal source distribution of

nonharmonic internal-tide variance, which is referred to as the "nonharmonic variance source function" in this study. In turn,

this can be used to calculate the PDF of nonharmonic internal-tide amplitude, and the contributions of different source regions

to the variance.

The entire process in Fig. 1b can be viewed as applying two model-derived filters to the global and deterministic "forcing120

function" from the barotropic mode to individual baroclinic modes: the first filter transforms the forcing function to the source

function relevant only to a particular observation location, and the second filter transforms the deterministic source function to

the nonharmonic variance source function relevant only to the random component of internal tides (green boxes in Fig. 1b).

3 Theoretical background

3.1 Statistical model125

The basis of the modelling framework proposed in this paper is the statistical model developed in Part I. Only a fraction of the

model is needed in the majority of Part II, which primarily considers the variance of nonharmonic internal tides. This section

introduces relevant relationships from Part I for independent waves, and then extends them to correlated waves. The method

for calculating probability density function (PDF), which is used only briefly near the end of this paper, is described in Part I.

We first introduce relevant relationships from Part I. The statistical model in Part I considers internal tides with a single130

vertical-mode structure in a narrow frequency band observed at a fixed observation location, and approximates them as a

sinusoidal time series that has the deterministic angular frequency ω, a random amplitude A, and a random phase lag Θ.

Furthermore, it is assumed that this signal results from the superposition of independent and non-identically distributed N

sinusoidal wave components, each of which has a random amplitude Aj and a random phase lag Θj . Then, the signal can be
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expressed as135

Ae−iΘeiωt =
N∑

j=1

Aje
−iΘjeiωt, (1)

where t is time. Unlike Part I, only deterministic amplitudes Aj = aj are considered for individual wave components. The

phase PDF is assumed to be the wrapped normal (or Gaussian) distribution as in Part I:

fΘj (θj) =
1√

2πσj

∞∑

k=−∞
exp

(
− (θj −ϕj + 2πk)2

2σ2
j

)
, (2)

where ϕj is the phase lag, and σj is the standard deviation of the phase (short-hand notation for σΘj
). The wrapped normal140

distribution is a circular analogue of the Gaussian distribution, and defined for any one period of 2π. It approaches the Gaus-

sian distribution in the limit σj → 0, but approaches the uniform distribution in the limit σj →∞. Since harmonic analysis

determines harmonic amplitudes and phase lags using the method of least squares, the complex-valued amplitudes are further

decomposed into the expected values and deviations from them:

Ae−iΘ = re−iϕ +A′e−iϕe−iΘ′
145

=
N∑

j=1

(
rje
−iϕj +A′je

−iϕje−iΘ′
j

)
. (3)

Here, r and ϕ are the amplitude and phase lag of the expected complex-valued amplitude on the complex plane, and A′ and

Θ′ are the amplitude and phase lag of the deviation. Note that (r,ϕ) and (A′,Θ′) correspond to harmonic and nonharmonic

internal tides, respectively. Note also that the definition of Θ′ has been changed slightly from Part I. Assuming tentatively that

σj in Eq. (2) are known, and that all the wave components are independent, the expectation and variance of the complex-valued150

random amplitudes Aje−iΘj are

E
(
Aje

−iΘj
)

= rje
−iϕj = ajµje

−iϕj , (4a)

Var
(
Aje

−iΘj
)

= E
(
A′2j
)

= a2
j ς

2
j , (4b)

µj = e−σ
2
j/2, (4c)

ς2j = 1− e−σ2
j . (4d)155

Hereafter, E(·) and Var(·) denote the expected value and variance, respectively. For complex-valued variables, the variance is

defined as Var(X) = E((X −E(X))(X −E(X))∗). Hereafter, the superscript ∗ denotes complex conjugate. Then, because

of the independence of individual wave components, E
(
A′2
)

is given by (see Part I for justification):

E
(
A′2
)

=
N∑

j=1

E
(
A′2j
)
. (5)

Note that E
(
A′2
)

is the variance of the envelope amplitude of nonharmonic internal tides, and is twice the nonharmonic160

internal-tide variance because the sinusoidal "carrier" wave (i.e., eiωt in Eq. (1)) has the variance of 1/2. As previously shown
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by Colosi and Munk (2006), the phase spread σj is an important parameter that separates the total variance into harmonic and

nonharmonic parts.

The above argument assumes the independence of individual wave components; however, the horizontal correlation of phase

modulation along the propagation paths introduces the correlation of wave components arriving from individual sources. To165

consider the horizontal correlation, we remove the assumption of independent wave components in Eqs. (1) and (3), and

calculate the covariance of the ith and jth wave components. Using Aj = aj and Eq. (4b), we get

Cov
(
A′ie
−iϕie−iΘ′

i ,A′je
−iϕje−iΘ′

j

)
= siςiRijςjs

∗
j , (6)

where sj = aje
−iϕj are complex-valued pre-modulation wave amplitudes from individual sources (hereafter referred to as

"sources"), Rij = Cov
(
e−iΘ′

i ,e−iΘ′
j

)
, and the covariance is defined as Cov(X,Y ) = E((X −E(X))(Y −E(Y ))∗). Note170

that Θ′j do not follow the wrapped normal distribution, Eq. (2), but e−iΘ′
j can be expressed in terms of e−iΘj , µj , and ςj using

Eqs. (3) and (4). This yields

Rij =
1
ςiςj

(
exp
{
−1

2
E
(
∆Θ′′2

)}
−µiµj

)
, (7)

where ∆Θ′′ = Θ′′i −Θ′′j . The new phase variables Θ′′j = Θj −ϕj are wrapped-normal variables with zero mean phase. Since

the difference of correlated wrapped-normal variables is a wrapped-normal variable, the expectation in the above equation is175

obtained using

E
(
e−i∆Θ′′)

= exp
{
−1

2
E
(
∆Θ′′2

)}
, (8)

which is the same relationship as for normally distributed phase, derived previously by Colosi and Munk (2006) and Geoffroy

and Nycander (2022). To proceed, these studies assumed the correlation functions of Θ′′i and Θ′′j , but we aim to express the

above expectation as a function of the variance and correlation length of phase speed. This is done by stochastic modelling, as180

described in Section 3.5.

The correlation coefficients, Eq. (7), can be used to convert correlated sources (e.g., from hydrodynamic modelling) to

effectively independent sources that can be used in the statistical model. To do so, we write the complex-valued amplitude

of nonharmonic internal tides A′e−iϕe−iΘ′
in two ways. On the one hand, we assume that the waves from individual sources

sj = aje
−iϕj are later modulated by horizontally correlated random phase shifts, yielding185

A′e−iϕe−iΘ′
= sTphysΣncorr. (9)

Here, s is the vector containing sj , and Σ is a diagonal matrix whose diagonal components are ςj defined in Eq. (4d). Hereafter,

the superscript T denotes transpose. The above form is chosen so that the vectorn, with its components ς−1
j

(
e−iΘ′′

j −E
(
e−iΘ′′

j

))
,

is a vector containing random variables with zero mean and unit variance (but not Gaussian) on the complex plane. The sub-

script "phys" emphasizes that the variable is calculated based on physics (in this study, by the adjoint frequency response190

analysis introduced in the next section), and the subscript "corr" emphasizes horizontally correlated random variables. The
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statistical model, on the other hand, requires independent random variables:

A′e−iϕe−iΘ′
= sTstatΣn, (10)

where the vector sstat contains the amplitudes of independent sources. Now, we may assume that two random vectors are

related as ncorr = R1/2n, where R = R1/2RT/2 is the horizontal correlation coefficient matrix whose components are given195

by Eq. (7). Assuming tentatively that R1/2 is known, the comparison of the above two equations shows

sstat = Σ−1RT/2Σsphys. (11)

We use this relationship to convert horizontally correlated sources calculated based on physics to effectively independent

sources that can be used in the statistical model. Then, considering Eqs. (4b) and (5) in a matrix form, twice the nonharmonic

internal-tide variance E
(
A′2
)

can be written as200

E
(
A′2
)

= sHstatΣ
2sstat

= sHphysΣRΣsphys. (12)

Hereafter, the superscript H denotes conjugate transpose. Note that the (i, j) component in the summation corresponds to

Eq. (6).

Before proceeding further, it is worth noting three detailed points regarding the above treatment of horizontal correlation.205

The first point is that R1/2 is not unique for the same R. For example, if sources at two locations are perfectly correlated

with zero harmonic phase lag, the same amplitude a0, and the same coefficient of variation ς0, R is a matrix with all the

elements being unity. The Cholesky decomposition, a common numerical method to calculate R1/2, yields

R1/2 =


1 0

1 0


 . (13)

Then, sstat = [2a0 0]T . This is reasonable in that statistically independent sources consist of a single source whose amplitude210

is the sum of those of two perfectly correlated sources. But it also has a problem that the ordering of vector elements in s

determines where this single source is located. An alternative choice of R1/2 is

R1/2 =
1√
2


1 1

1 1


 . (14)

In this case, sstat = [
√

2a0

√
2a0]T . It is not intuitive to have two supposedly independent sources for two perfectly correlated

sources. However, it has an advantage that the result does not depend on the ordering of vector elements in s, and there is a215

numerical method to calculate this type of R1/2 much more efficiently than the Cholesky decomposition for large problems.

Importantly, in both cases, E
(
A′2
)

= 4a2
0ς

2
0 from Eq. (12), because R = R1/2RT/2 is the same. These examples suggest

that sstat provides effectively independent sources that can be used in the statistical model to calculate nonharmonic internal-

tide variance, but the horizontal distribution of the independent sources is uncertain within the correlation length of phase

modulation.220
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The second point is that the horizontal phase correlation has a large impact on nonharmonic internal-tide variance. As a

simple example, consider waves arriving from N grid points with the same amplitude a0 and coefficient of variation ς0 in a

numerical hydrodynamic model. In the absence of horizontal correlation (R = I), the variance is Na2
0ς

2
0 from Eq. (12). If the

waves are perfectly correlated, R is a matrix with all the elements being unity. Then, the variance is N2a2
0ς

2
0 . Considering one

source region resolved by N grid points, this shows that the horizontal correlation has to be considered for gridded sources,225

otherwise the results would be highly dependent on grid resolution. Physically, this also suggests that the horizontal extent of

source regions can be an important factor controlling nonharmonic internal-tide variance.

The third point is that, strictly speaking, the above treatment of horizontal correlation cannot be used to investigate the

details of the PDF or higher moments, because the statistical model uses a non-Gaussian distribution on the complex plane

for individual wave components. However, the above method works in the limit of many independent sources (or when the230

central limit theorem is applicable), because the limiting distribution is determined by the (co)variance of the joint Gaussian

distribution on the complex plane, which can be calculated, for example, based on Eq. (5), regardless of the PDF of individual

sources. The results of Part I suggest that this "many source" limit would be common for internal tides.

The above statistical model suggests that process-based modelling of nonharmonic internal tides is possible if process-based

models of the deterministic internal-tide sources (or pre-modulation amplitudes) sj = aje
−iϕj , the phase variance σ2

j , and the235

variance of horizontal phase difference E
(
∆Θ′′2

)
are available. These three models are developed in turn in the following

sections.

3.2 Adjoint sensitivity model and adjoint frequency response analysis

In order to calculate the deterministic sources of internal tides for a fixed observation location, we use a combination of adjoint

sensitivity modelling and the frequency response analysis from Fourier theory. To introduce the method, let us start from a240

quick overview of the adjoint method, which is often used in the so-called four-dimensional variational data assimilation (e.g.,

Bennett, 2002; Wunsch, 2006).

The adjoint method is based on a so-called forward model and an objective (or cost) function. We consider a spatially-

discretized linear numerical hydrodynamic model:

∂x

∂t
=−Lx+f , (15)245

where x(t) is the model state vector containing the model’s prognostic variables at all the grid points, L is the matrix operator

representing the linear dynamics, and f is the external forcing. For the purpose of describing theoretical background, the model

is assumed to be formulated for a single baroclinic mode forced by barotropic tides, so that the equations have a form analogous

to the shallow water equations for a homogeneous fluid (Shimizu, 2011, 2017, 2019). Since the model is linear, the solution

can be written as250

x(t) =

t∫

−∞

H(t− τ)f(τ)dτ, (16)
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where each column of the matrix H contains the impulse response function. Using the model solution, we consider a linear

objective function J =wHx, tentatively defined at a particular time tj . The variable w is the weight vector used to define J .

There are various expressions for J :

J(tj) =wHx(tj) (17a)255

=wH

tj∫

−∞

H(tj − τ)f(τ)dτ (17b)

=

tj∫

−∞

(
HH(tj − τ)w

)H
f(τ)dτ (17c)

=

tj∫

−∞

λH(tj − τ)f(τ)dτ. (17d)

This manipulation is equivalent to the linear and continuous version of the derivation by Marotzke et al. (1999). The variable

λ is so-called adjoint sensitivity, or the sensitivity of J to x. It can be calculated from the adjoint model associated with260

Eqs. (15) and (17a):

−∂λ
∂t

=−LHλ, (18a)

λ=w at t= tj . (18b)

The above differential equations are integrated backwards in time from the "initial" condition given at t= tj .

For periodic or oscillatory problems, it is often convenient to consider the above problems in the frequency domain. Since265

Eq. (16) is convolution in time, the convolution theorem in Fourier theory shows that its Fourier transform is

x̃(ω) = H̃(ω)f̃(ω), (19)

where H̃ contains the frequency response function. Hereafter, tilde is used for Fourier-transformed variables. If we now allow

tj to vary and consider time-dependent J (but with time-independentw), a similar method can be used for J , because Eq. (17d)

in the frequency domain is270

J̃(ω) = λ̃(ω)H f̃(ω). (20)

In this study, λ̃ is referred to as the "adjoint frequency response function", and analysis based on the above relationship as

"adjoint frequency response analysis". Although J̃ can also be calculated aswH x̃, the adjoint frequency response function has

an important advantage in this study, which becomes clear later.

In the above derivation, the time-dependent adjoint model Eq. (18) and Fourier transform are used to calculate λ̃; however, it275

is more straightforward to calculate λ̃ by assuming a periodic solution from the beginning. Assuming x= x̃eiωt and f = f̃eiωt

in Eq. (15), it follows that the corresponding adjoint model is

−iωλ̃=−LH λ̃+w. (21)

10

https://doi.org/10.5194/egusphere-2024-4193
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Longitude (°E)

Longitude (°E)

L
at

it
ud

e 
(°

S
)

110 112 114 116 118 120 122 124

7

9

11

13

15

17

19

21

115 116 117 118 119 120

17

18

19

20

115.5115.0 116.0 116.5 117.0 119.0 119.5

8.0

8.5

9.0

9.5

a) b) c)

d)

b) c)

d)

10
0 

m

10 m

20
0 

m
50

0 
m

1500 m30
00

 m

50
00

 m

PIL200

N o r t h
 W e s t S h e l f

Lombok
Strait Alas

Strait

Sape
Strait

100 m

3000 m

200 m
500 m

1500 m

3000 m

1500 m

500 m

1500 m

-2.0 -1.5 -1.0 -0.5  0 0.5 1.0 1.5 2.0
Forcing function from VM0 to VM1 M2 tide (10-3 m s-1)

10 m

Figure 2. Forcing function from barotropic-mode (VM0) to vertical-mode-one (VM1) M2 tide (at zero Greenwich phase lag). It corresponds

to f̃ in Eq. (23). Panels (b-d) show zoomed views of green boxes in (a). Grey shading shows regions where VM1 celerity is less than

0.1 m s−1.

To apply the adjoint frequency response analysis to single-vertical-mode internal tides observed at a fixed location, we use

the vertical-mode amplitude of isopycnal displacement as the objective function, and use the model formulation based on280

vertical-mode decomposition in Shimizu (2011) and Shimizu (2019). The formulation employs horizontally varying vertical

modes that are calculated using local water depths and stratification, in order to include the effects of steep slopes (for linear

waves). More details are described in Appendix A. An advantage of this formulation is that it yields the evolutionary equations

of the form Eq. (15) with explicit forcing function from barotropic tides to individual baroclinic modes, which depends on

barotropic tidal currents, bottom slope, and vertical-mode structure. As an example, the forcing function from barotropic to285

VM1 M2 tide is shown in Fig. 2.

It is convenient to write Eq. (20) in different ways for later purposes. The equation can be written as

2J̃ =
N∑

j=1

sj =
N∑

j=1

aje
−iϕj , (22)

where sj is twice the jth component of the vector sum on the right-hand-side of Eq. (20), and the subscript j is a horizontal

grid index that indicates the value at horizontal location −→x j (assuming only one vertical mode in the model). The variable290

sj = aje
−iϕj is sought-after wave sources corresponding to sphys in Eq. (11). The factor 2 is multiplied to J̃ because the use of
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the convolution theorem requires J̃ to be two-sided (ω in Eq. (20) can be positive or negative), but harmonic analysis and the

statistical model assume one-sided spectra (positive ω only).

If only one vertical mode is considered in the hydrodynamic model, Eq. (20) can also be written in a continuous form as

2J̃ =
∫
s(−→x )d−→x =

∫
2λ̃∗(−→x )f̃(−→x )d−→x , (23)295

where s, λ̃, and f̃ are the continuous versions of s, λ̃, and f̃ , respectively. The function s(−→x ) is hereafter referred to as the

"source function" (more correctly, source density function). The middle expression shows that, because the horizontal integral

of the source function yields 2J̃ , s can be mapped to identify important source regions. Also, a regional integral of s yields

the contribution of that region to the total 2J̃ . The right expression shows that the adjoint frequency response function λ̃ acts

as a transfer function from the forcing function f̃ , which provides forcing in a global sense, to the source function s, which300

provides forcing relevant to a specific variable at an observation location (where w is nonzero). The maps of f̃ and λ̃ can be

used to identify regions where forcing and dynamic response are large. The important advantage of the source function in this

study is that it provides horizontally distributed sources of internal tides observed at a fixed location, so that different phase

statistics can be assigned to different (for example, local and remote) sources. If the model includes multiple vertical modes,

the maps of f̃ , λ̃, and s can be produced for individual modes, and the total 2J̃ is given by the sum over all available modes.305

Applying the same reasoning to Eq. (12) divided by 2, the continuous version of Eq. (12) can be written as

1
2

E
(
A′2
)

=
∫
snh(−→x )d−→x

=
∫ ∫

1
2
s(−→x 1)ς(−→x 1)R(−→x 1,

−→x 2)ς(−→x 2)s(−→x 2)d−→x 1d
−→x 2. (24)

The variable snh is referred to as the "nonharmonic variance source function" in this study. It can also be mapped or region-

ally integrated. However, unlike the source function, snh is not unique within the correlation length of phase modulation, as310

explained in Section 3.1.

3.3 Covariance equations for stochastic variables

In order to model phase variance σ2
j and the variance of horizontal phase difference E

(
∆Θ′′2

)
, we develop linear stochastic

models in the following sections. To do so, it is convenient to use general relationships for stochastic differential equations

(Särkkä and Solin, 2019), and a brief summary is provided here.315

Let us consider linear simultaneous stochastic differential equations

dx= Axdt+ Bdb, (25)

where x(t) is a vector containing the model prognostic variables. The vector b(t) contains so-called Brownian motion (see

e.g., Särkkä and Solin, 2019, chap. 4.1). The increment db is a vector containing white Gaussian noise with zero mean and

the covariance E
(
dbdbT

)
= Qdt, where Q is the so-called "diffusion coefficient" matrix of the Brownian process. Intuitively,320

the above equations can be formally divided by dt and db/dt regarded as a vector containing white noise, although this view
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and blue circles indicate hypothetical regions of random phase-speed variability caused by eddies. Grey shading shows regions where VM1

celerity is less than 0.1 m s−1.

is mathematically incorrect in general. The matrices A and B may depend on t, but not on x in linear stochastic differential

equations. The matrix Q is independent of t and x.

The covariance equations associated with Eq. (25) are (Särkkä and Solin, 2019, chap. 6.1)

dP
dt

= AP + PAT + BQBT , (26)325

where P(t) = E
(
(x−E(x))(x−E(x))T

)
is the covariance matrix. Note that we need to integrate only the above ordinary

differential equations in this study, although the formulation is based on stochastic differential equations, Eq. (25). Hereafter,

the components of P and Q are denoted by two subscripts corresponding to prognostic variables. For example, if one of the

components in x is the phase speed c, then Pcc = σ2
C is the phase-speed variance.

3.4 Stochastic phase spread model330

We now consider the calculation of the phase variance σ2
j in Eq. (4). Following Zaron and Egbert (2014), σ2

j can be calculated

considering the variation of the wave phase θ and the phase speed c in the phase relationship dθ = ω(dt− c−1dξ), where ξ is

the coordinate along the wave propagation path. Some examples of wave propagation paths are shown in Fig. 3a. To introduce

random components in θ and c, we write θ = θ+θ′′ and c= c+ c′, where θ and c are the respective mean components, and θ′′

and c′ are the respective stochastic components with zero mean. Assuming |c′| � c, the relationship between θ′′ and c′ from335
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the phase relationship is

dθ′′ ∼ ωc′

c2
dξ ∼ ωc′

c
dt. (27)

Although we consider spatial integration, the independent variable is changed from ξ to t in the right expression. This is partly

because time is usually used as the independent variable in stochastic differential equations, and partly because it is more

convenient to use the same independent variable as in standard ray tracing, which is used to calculate wave propagation paths340

(described in Section 4.3).

Since θ′′ and c′ are stochastic variables, Eq. (27) is a stochastic differential equation. Stochastic differential equations are

commonly forced by white Gaussian noise, but it is undesirable to assume c′ as white noise because c′ certainly has spatial

correlation. A common "trick" used to deal with correlated noise is to introduce an additional stochastic equation driven by

white noise which yields the desired correlation function (see e.g., Särkkä and Solin, 2019, chap. 12.3). In our case, we assume345

that c′ follows

dc′ =− c

LC
c′dt+

√
c

LC
db, (28)

where LC is the e-folding correlation length of c′. The "diffusion coefficient" Qcc of the Brownian motion b is unknown at

this stage, but determined shortly. Assuming that c and LC remain locally constant, the above equation implies that the power

spectrum of c′ is Lorentzian, and the (along-path) correlation function is (Särkkä and Solin, 2019, chap. 6.5)350

Rc = e−c|∆t|/LC ∼ e−|∆ξ|/LC , (29)

where ∆t and ∆ξ are lags in time and space, respectively.

To solve Eqs. (27) and (28), we put these equations in the form of the simultaneous stochastic differential equations, Eq. (25),

and consider the associated covariance equations, Eq. (26). We assume that the phase-speed variance Pcc is stationary, yielding:

Pcc =
Qcc
2

= σ2
C . (30)355

This determines Qcc from σ2
C , which can be estimated more easily than the phase variance of nonharmonic internal tides from

observations or numerical hydrodynamic modelling. Then, Pcθ and Pθθ evolve following

dPcθ
dt

=− c

LC
Pcθ +

ω

c
σ2
C , (31a)

dPθθ
dt

= 2
ω

c
Pcθ. (31b)

If c and LC are constants, the solution under the initial condition Pcθ = Pθθ = 0 at t= 0 is360

Pθθ = 2
σ2
C

c2

(
ωLC
c

)2(
ct

LC
− 1 + e−ct/LC

)
. (32)

This agrees with Eq. (12) in Zaron and Egbert (2014) if the correlation function of c′ is assumed to be Eq. (29). Therefore,

the above model can be seen as an extension from Zaron and Egbert (2014) to include the along-path variability of c and LC ,
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which are important to deal with large water-depth change, for example, for wave propagation between a continental shelf and

deep ocean. Note that it is essential to consider the phase-speed correlation length LC , because small correlation length makes365

phase-speed variability less efficient in inducing phase variance.

The phase variance Pθθ from Eq. (31) is used as the phase variance σ2
j in the statistical model. Note that Eq. (31) yields

Pθθ that increases from the source towards the observation location, but we associate the final Pθθ with the source (the initial

location of integration) in the statistical model. This is because we consider internal tides observed at a location in an "inverse"

sense, and waves from remote sources are more random.370

Note that the above approach considers only phase variability from travel-time variability along the deterministic (or mean)

propagation path, and neglects the effects of path variability, horizontal scattering and diffraction, and "scattering" among

vertical modes caused by density variability (through L̂xnm and L̂ynm in Eq. (A3) in Appendix A). Despite these potential

deficiencies, the approach appears to be a reasonable first approximation. For example, Buijsman et al. (2017) compared the

phase deviation calculated from the travel-time variability with those derived from a plane-wave fit to their model outputs, and375

concluded that the method yielded reasonable phase spread.

It is worth noting an important detail in the above theory. Note that σ2
C is not only the variance of c′ but also a half of the

variance of formal white noise db/dt in Eq. (28). This means that, to estimate σ2
C from the time series of c′, for example, all

frequency components of the non-tidal variability need to be included even when low-frequency response is the interest. This

is because, as seen in the well-known example of random walk or Brownian motion, all frequency components of white noise380

contribute to the low-frequency response when the noise is integrated. So, applying a subinertial and/or subtidal low-pass filter

could lead to an underestimate of σ2
C , and hence the phase variance Pθθ.

3.5 Stochastic cross-path phase difference model

We now consider the calculation of the horizontal correlation coefficientsRij in Eq. (7). This requires the difference of random

phases at two locations ∆Θ′′. Note that full evaluation of Rij is difficult for relatively large problems because Rij depend on385

pairs of two source locations, which vary over the area considered (e.g., model domain), as well as possible wave propagation

paths between each source location and a fixed observation location. For this reason, a number of approximations are introduced

in the theory in this section and in numerical methods later in Section 4.4. To simplify the calculation of phase difference ∆Θ′′,

we consider ∆Θ′′ only in the cross-path direction in this section.

To evaluate ∆θ′′ (stochastic version of the random variable ∆Θ′′), we consider two waves that arrive at an observation390

location from two source locations after travelling through regions of random phase-speed variability (Fig. 3b). Then, we apply

Eq. (25) to x= [c′i c
′
j ∆θ′′]T , where c′i and c′j are phase speeds on paths that pass source locations −→x i and −→x j , respectively.

The stochastic differential equations for c′i and c′j are obtained by applying Eq. (28) individually, except for the cross-path

correlation of random forcing. The equation for ∆θ′′ is obtained by applying Eq. (27) to θ′′i and θ′′j individually and then taking

the difference. We take into account the variability of the mean phase speed c and the phase-speed correlation length LC along395

the propagation paths, but neglect their cross-path variability, effectively assuming that the two paths remain close to each

other. This appears to be a reasonable first approximation, except for paths that are roughly parallel to steep slopes, such as
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continental shelves. Then, A in Eq. (25) is given by

A =




−cL−1
C 0 0

0 −cL−1
C 0

ωc−1 −ωc−1 0


 . (33)

Since the distance between the two propagation paths ∆η (see Fig. 3b) and the correlation length can vary along the paths, the400

cross-path correlation of random forcing needs to be included in B instead of Q, which is assumed to be time-independent. In

what follows, we assume the following B and Q:

B =
√

c

LC

1√
1 + e−2|∆η|/l




1 e−|∆η|/l 0

e−|∆η|/l 1 0

0 0 0


 , (34a)

Q = 2σ2
C




1 0 0

0 1 0

0 0 0


 , (34b)

where l is a cross-path correlation length, determined shortly. Then, the covariance equations of c′i and c′j have the following405

stationary solutions

Pcici = Pcjcj = σ2
C , (35a)

Pcicj = σ2
CF (|∆η|/l), (35b)

where

F

( |∆η|
l

)
=

2e−|∆η|/l

1 + e−2|∆η|/l . (36)410

It is undesirable to have an anisotropic correlation function for phase speed; however, it appears unfortunately difficult to have

cross-path correlation of the exponential form, Eq. (29), when |∆η| and l vary along the paths. To keep the correlation as

isotropic as possible, we set the integral scales in the along- and cross-path directions the same, yielding

l = 2π−1LC . (37)

Then, the evolutionary equations of Pci∆θ, Pcj∆θ, and P∆θ∆θ are415

dPci∆θ

dt
=− c

LC
Pci∆θ +

ω

c
σ2
C

(
1−F

( |∆η|
l

))
, (38a)

dPcj∆θ

dt
=− c

LC
Pcj∆θ −

ω

c
σ2
C

(
1−F

( |∆η|
l

))
, (38b)

dP∆θ∆θ

dt
= 2

ω

c

(
Pci∆θ −Pcj∆θ

)
. (38c)
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Figure 4. Example realizations of stochastic phase θ′′ and variance of phase difference P∆θ∆θ , calculated by numerically solving

Eqs. (25), (33), and (34) with constant c and LC . Realizations for (a) ∆η = 5LC , (b) ∆η = LC , and (c) ∆η = 0.1LC , and (d) normal-

ized variance of along-path and cross-path phase difference for ∆ξ = ∆η, calculated from 1000 realizations. In (d), variance is normalized

by theoretical value Eq. (39) for given ∆η at ct/LC = 16. Parameters used are c = 2 m s−1, LC = 4.1×104 m, σ2
C = 1.2×10-2 m2 s−2, and

semidiurnal frequency.

Generally, P∆θ∆θ needs to be calculated numerically. However, if c, LC , and |∆η|/l are time-independent, the comparison of

the above equations with Eq. (31) leads to the explicit solution420

P∆θ∆θ = 2Pθθ (1−F (|∆η|/l)) . (39)

This shows that the cross-path correlation length of ∆θ′′ depends on the phase-speed correlation length LC through Eq. (37).

This is important because LC can be estimated from observations or hydrodynamic modelling more easily than the correlation

length of phase difference ∆θ′′.

The variance P∆θ∆θ from Eq. (38) corresponds to E
(
∆Θ′′2

)
in Eq. (7). (As in the case of Pθθ with Eq. (31), the resultant425

P∆θ∆θ is associated with the sources in the statistical model.) However, note that the analysis has been simplified substantially

by the assumptions introduced above. In the statistical model in Section 3.1, Rij and ∆Θ′′ are functions of two horizontal

locations −→x i and −→x j , but P∆θ∆θ calculated using Eq. (38) depends on along-path travel distance ξ(t) and cross-path distance

|∆η|. In particular, note that P∆θ∆θ = 0 at ∆η = 0, which implies Rij = 1 in Eq. (7), because Eq. (38) neglects along-path
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correlation. This choice was made because along-path correlation has the following awkward features for deterministic prop-430

agation paths. Along the same propagation path, the phase variance grows following Eq. (31), so E
(
∆Θ′′2

)
depends on the

relative distance |ξi−ξj | and the phase variance reaches an upper limit (for example, in Fig. 4a–c, consider phase difference be-

tween two points separated by ∆ξ on the same solid line). On the other hand, for two paths that are widely separated compared

to the correlation length of oceanic variability (e.g., eddy A rather than eddy B in Fig. 3b), E
(
∆Θ′′2

)
is the variance of the

difference of two independent random variables, and E
(
∆Θ′′2

)
is roughly twice Pθθ in Eq. (31). It keeps growing because Pθθ435

depends on the whole propagation distance ξi and ξj (for example, in Fig. 4a–c, consider phase difference between solid and

dashed lines with the same colour at the same travel distance). So, E
(
∆Θ′′2

)
tends to be much larger in the cross-path direction

than along-path direction, except near the sources (Fig. 4d). This implies larger correlation length in the along-path direction;

however, the model appears to have a deficiency in exaggerating this because it neglects path variability. Since path variability

is expected to grow with travel distance, averaging over modulated paths would gradually reduce the along-path correlation. To440

take into account the effects of along-path correlation neglected in the theory, an empirical adjustment is introduced to P∆θ∆θ

later in Section 4.4.

4 Methods

4.1 Application to VM1 semidiurnal internal tides at PIL200 location

To illustrate application of the proposed model suite, we took vertical mode one (VM1) semidiurnal internal tides at the445

PIL200 mooring site (115.915◦E, 19.435◦S, ≈200 m deep) of the Australian Integrated Marine Observing System (IMOS) on

the Australian North West Shelf (Figs. 2 and 3) as an example. Part I analysed the nonharmonic VM1 to vertical mode four

(VM4) diurnal, semidiurnal, and quarterdiurnal internal tides in the observations.

In the modelling, we included the four major semidiurnal tidal constituents (M2, S2, K2, and N2) and four lowest baroclinic

modes (VM1–VM4). The major constituents were included as forcing of nonharmonic internal tides in the semidiurnal fre-450

quency band, because it was impractical to separate nonharmonic internal tides into constituents in the PIL200 observations.

It may sound confusing to include multiple baroclinic modes to model VM1 internal tides at the PIL200 location. This is re-

quired because barotropic forcing excites not only VM1 but also higher modes, which can be converted to VM1 by topographic

interaction before arriving at the PIL200 location (see Eq. (A3) in Appendix A). To distinguish overall barotropic forcing to

VM1 internal tides at the PIL200 location from barotropic forcing to individual baroclinic modes in the intermediate process,455

the latter is hereafter referred to as, for example, "barotropic-to-VM2" or "VM0-to-VM2" forcing.

4.2 Adjoint sensitivity and source function modelling

For adjoint frequency response analysis, we used a numerical hydrodynamic model based on the vertical-mode decomposition

of the conservation equations of volume and momentum, explained in Appendix A. We considered linear hydrostatic internal

tides under climatological stratification without background currents in this feasibility study. Mesoscale oceanic variability is460
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intentionally omitted because its effects are represented by random phase modulation in the statistical model. Since the model

is linear, the adjoint model was obtained simply by transposing the matrix operator of the forward model. A sinusoidal periodic

motion was assumed in the governing equations as in Eq. (21), so that the model directly calculates the adjoint frequency

response function. The objective function J was VM1-induced isopycnal-displacement amplitude at the PIL200 location,

which was scaled to have the value of extreme (maximum or minimum) displacement within the water column. This implicitly465

assumed omni-direcitonality of VM1 semidiurnal internal tides at the observation location in the adjoint model (Shimizu,

2024a), which is one of the uncertain assumptions in the model (see Discussion). We chose the above objective function

partly because of simplicity and the observational uncertainty, and partly because (either surface or isopycnal) displacement

amplitude has been commonly used in previous studies of nonharmonic internal tides.

Details of the model set-up were as follows. The model grid encompassed most of the Australian North West Shelf and part470

of the Lesser Sunda Islands in Indonesia (Fig. 2a). The horizontal coordinates were oriented in the cross-shelf (NNW–SSE)

and along-shelf (SSW–NNE) directions at the PIL200 location. The horizontal grid size was 0.01◦. The model extent and grid

resolution were not ideal, but limited by available computational resources. The four lowest baroclinic modes (VM1–VM4)

were included in the calculation. Vertical modes were calculated using the 2019 version of GEBCO bathymetry (GEBCO

Compilation Group, 2019), and stratification from the 2018 version of World Ocean Atlas (WOA) annual climatology over the475

2005-2017 period (Locarnini et al., 2018; Zweng et al., 2018). TEOS-10 (McDougall and Barker, 2011) was used to calculate

density. The model included horizontally-varying linear bottom friction, which was calculated using the quadratic bottom drag

coefficient of 10−3 and the barotropic tidal current speed from the TPXO9-atlas version 5 (updated from Egbert and Erofeeva

(2002)). To account for the contribution of internal tides to bottom friction in an approximate manner, the vertically-integrated

kinetic energy of barotropic tides and VM1 internal tides were assumed to be the same (Wunsch, 1997). Then, horizontally480

varying vertical modes were used to relate the kinetic energy to near-bottom velocity induced by VM1 internal tides. The

total root-mean-square near-bottom current speeds at individual grid points were calculated by taking time and phase mean,

assuming random phase between the barotropic tides and VM1 internal tides. The resultant current speeds were multiplied by

the quadratic drag coefficient to calculate linear friction coefficients. Other dissipative processes, such as horizontal and vertical

diffusion, were neglected. Since the grid resolution was not sufficiently high to resolve internal tides in regions with shallow485

water depths or weak stratification, we excluded regions where celerity of each (nth) vertical mode cn was less than 0.1 m s−1,

which roughly corresponds to four grid points per wavelength for semidiurnal tides. (In this study, the term "celerity" is

deliberately used for the propagation speed of non-rotating, long, linear gravity waves with one of the vertical-mode structures.)

The Flather open boundary condition (Flather, 1976; Blayo and Debreu, 2005) was applied to individual vertical modes at the

open boundaries. The objective function J was defined at one grid point closest to the PIL200 location. Such a sharp "initial"490

condition could be problematic in numerical models in general, but it worked well in this case. The adjoint frequency response

function was calculated separately for the M2, S2, K2, and N2 tidal frequencies.

The source function was calculated from the adjoint frequency response function for the four lowest baroclinic modes and

barotropic currents from the TPXO9-atlas for the four major semidiurnal constituents. This provided 16 source functions in

total.495
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4.3 Ray tracing and phase spread modelling

The phase variance Pθθ was calculated based on Eq. (31), but it required finding wave propagation paths from the PIL200

location. In this feasibility study, we took the simplest approach and calculated the propagation paths by standard ray theory

(e.g., Lighthill, 1978, chap. 4.5), but applying it backwards in time starting from the observation location. The initial location

was the PIL200 location and the initial angles were in 0.1◦ and 1◦ intervals for rays propagating towards offshore and onshore,500

respectively. Additional rays were used to ensure that some rays propagate into the southern part of the major straits in the

Lesser Sunda Islands, such as the Lombok Strait. Fig. 3a shows about 1/30 of the calculated ray paths as examples. This

ray tracing method had potential deficiencies, such as the neglect of interaction of vertical modes, wavelengths that are not

much shorter than the continental slopes, the existence of multiple paths to some regions, and the difficulty in calculating paths

passing through straits. However, these potential deficiencies were considered to be relatively minor to the overall results of this505

study. The reason is that travel time and the phase variance from Eq. (31) have relatively weak dependence on the details of ray

paths, because they are integrated quantities of spatially variable time-mean variables, such as phase speed and its correlation

length. Ray paths were calculated separately for the four lowest baroclinic modes using the M2 frequency.

Once ray paths were calculated, Eq. (31) could be integrated along individual ray paths to calculate Pθθ. However, this

straightforward approach was computationally inefficient, because it needed (forward) integration from each source location510

to the observation location. To reduce computational cost, we exploited the fact that Eq. (31) is linear, the equations could

be written in a matrix form as Eq. (15), and the associated adjoint model is Eq. (18) with the objective function being Pθθ at

the observation location. The adjoint sensitivity of Pθθ at the observation location to x= [Pcθ Pθθ]T at other locations were

calculated by integrating the equations adjoint to Eq. (31) along individual ray paths once, backwards in time from the PIL200

location and the initial condition w = [0 1]T . Then, Pθθ at the observation location was calculated as the convolution of the515

adjoint sensitivity and the forcing along the path using Eq. (17d).

The standard ray equations and the equations adjoint to Eq. (31) were integrated backwards in time, using the 4th-order

Runge-Kutta method for VM1 to VM4 semidiurnal internal tides. The time steps were 300, 450, 600, and 900 s for VM1,

VM2, VM3, and VM4, respectively. The convolution Eq. (17d) for the phase variance Pθθ was calculated from the adjoint

sensitivity at the full time steps of the Runge-Kutta integration. In the calculation, along-path variability of water depth, phase520

speed, and the Coriolis parameter were taken into account, but the frequency differences among semidiurnal constituents were

neglected. The M2 frequency was used in the modelling.

The phase-speed variance σ2
C in the model was chosen based on the PIL200 observations, which yielded σ2

C,PIL200 ≈ 12,

9.5, 8.2, and 8.2×10−3 m2 s−2 for VM1, VM2, VM3, and VM4 semidiurnal internal tides, respectively (see Appendix A in

Part I for the details). These values included the variability of the celerities of vertical modes (excluding seasonal cycle) and525

non-tidal background currents and isopycnal displacements over all frequencies. Although the observations were made on the

continental shelf at≈200 m water depth, the phase-speed variance of VM1 was not unreasonable for deep ocean. For example,

previous numerical modelling (Zaron and Egbert, 2014; Buijsman et al., 2017) suggests σC/c=1–3% in deep ocean for VM1

semidiurnal internal tides. Since these values include only low-frequency components, they are likely to be underestimates for
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σ2
C , which needs to include all frequency components as explained in Section 3.4. For example, the application of a subinertial530

and subtidal low-pass filter reduces σ2
C,PIL200 for VM1 by more than 40%. So, σ2

C ≈1.2×10−2 m2, which yields σC/c≈3.6%

assuming c=3 m s−1, appears to be roughly the upper limit of the current estimate of σ2
C for deep ocean. For higher modes,

phase-speed variance appeared to be unavailable except those from Part I. These facts suggested that horizontally constant

phase-speed variance was not a bad assumption, and σ2
C was calculated by scaling σ2

c,PIL200 as

σ2
C = αCσ

2
C,PIL200, (40)535

where αC is a model parameter. This choice was also a simple and convenient way to show the dependence of the results on

σ2
C . We used αC varying between 0.4 and 1.0. As already explained, αC = 1.0 is the estimate for the PIL200 location and

appears to be roughly the current upper limit for deep ocean. The choice αC = 0.4 (σC/c≈2.3%) is about the middle range

of the current estimate for deep ocean, but it would be a substantial underestimate for shallow water. We arbitrarily chose

αC = 0.7 as a reference value.540

The correlation length of phase speed LC was assumed to be proportional to the Rossby radius of deformation Rd = c1/f :

LC = αLRd, (41)

where f is the Coriolis parameter, and αL is a model parameter. This choice was made for two reasons. First, Rd is a common

length scale used for mesoscale oceanic variability. Second, LC is expected to vary substantially between continental shelves

and deep ocean, and the mean VM1 celerity c1 in the expression ofRd conveniently reflects at least some part of this variability.545

Note that c1 was used to calculate Rd for all the higher modes, considering that the phase-speed modulation of all vertical

modes are caused by the same oceanic variability. The phase-speed correlation length appears to be rarely evaluated, but Zaron

and Egbert (2014) showed that the correlation length was about three times Rd around Hawaii. This value might be affected

by the smoothing scale of the reanalysis product used in their study, and is larger than the typical radius of mesoscale eddies

for the latitude (e.g., Klocker and Abernathey, 2014). However, phase-speed correlation could be affected by processes that550

have length scale larger than eddies. Since typical eddy radius is roughly Rd for the latitude range of the model domain (e.g.,

Klocker and Abernathey, 2014), the realistic parameter range is αL & 1. We arbitrarily chose αL = 2 as a reference value. We

also considered αL < 1 to understand the dependence of nonharmonic internal-tide variance on phase-speed correlation length.

Note that the wavelength of VM1 semidiurnal internal tides is about 1–2 times Rd in the modelled region.

After the ray-based calculation, the travel time and phase variance Pθθ along the ray paths were horizontally interpolated to555

obtain gridded results using a Gaussian kernel. This interpolated Pθθ was used as σ2
j in the statistical model.

4.4 Horizontal phase correlation modelling

The horizontal correlation coefficient matrix R was implemented as a diffusion operator following Weaver and Courtier (2001),

which is a numerical technique commonly used in data assimilation (see e.g., Bennett, 2002, chap. 3.1.6). This is because,

although R could be calculated in principle using Eqs. (7) and (38), it was prohibitive to store the whole R on computer560

memory in practice. In addition to computational benefits, the method also has an advantage that it can handle realistic boundary
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shapes, which is important in oceanic applications. The method requires correlation lengths at individual grid points, which

are equivalent to the standard deviation of the Gaussian function (i.e., impulse response solution to the diffusion equation). For

this reason, it was convenient to approximate the first peak (around zero lag) of the horizontal correlation function as Gaussian.

Since Eq. (38) calculates the variance of the cross-path phase difference, Eqs. (7) and (38) yield only the cross-path correlation565

length ση , and the along-path correlation length σξ is still missing. In this study, an empirical relationship between ση and σξ

was introduced, and equivalent isotropic diffusion was assumed for simplicity. Then, the method required equivalent isotropic

correlation length at each grid point σr.

To determine σr, we assumed

|∆η|= α−1
r ∆r (42)570

in Eq. (38), where ∆r is the distance between the sources, and αr is an empirical parameter whose meaning is explained shortly.

This assumption had an advantage that P∆θ∆θ could be integrated (backwards in time) for various values of ∆r together with

the ray tracing and integration of Pθθ, and the results could be gridded in the same way. Substituting the resultant P∆θ∆θ

into E
(
∆Θ′′2

)
in Eq. (7) yielded the horizontal correlation function at each grid point R(∆r), by effectively considering Rij

between one ray path and other paths with various distance. (In Eq. (7), µi = µj and ςi = ςj were assumed.) The assumption575

also circumvented the dependence on ray theory to calculate ∆η. Then, by approximating the first peak of R(∆r) as a radial

Gaussian function, we get

R(∆r)∼ exp
(
− ∆r2

2α2
rσ

2
η

)
. (43)

The empirical factor αr represents two effects: anisotropy of the horizontal correlation of phase modulation, and the along-path

variation of cross-path distance. Typical values of αr for these effects are considered in the following.580

To estimate αr for anisotropic phase correlation, we tentatively regardRij in Eq. (7) as correlation functionR(∆ξ,∆η) (∆ξ

is the along-path distance of the two sources), and compare its integral scale with that of the equivalent isotropic correlation

function R(∆r). Assuming that the correlation functions are Gaussian and equating the integrals, we get

∞∫

−∞

∞∫

−∞

exp

(
−∆ξ2

2σ2
ξ

− ∆η2

2σ2
η

)
d∆ξd∆η ≈ 2π

∞∫

0

∆r exp
(
−∆r2

2σ2
r

)
d∆r, (44)

where σξ is unknown standard deviation in the along-path direction. This yields the relationship of the integral scales585

σξση ≈ σ2
r . (45)

The comparison of Eqs. (43)–(45) shows that αr =
√
σξ/ση , and αr = 1 for isotropic correlation function (σξ = ση). Note

the relatively weak dependence of αr on σξ. For example, the correlation function is highly anisotropic (approximately one

dimensional in the cross-path direction) for σξ = 9ση , but it yields αr = 3.

To estimate αr for the along-path variation of cross-path distance, we consider the linear variation of cross-path distance590

|∆η| between the observation location and source locations. Since the distance between the sources is ∆r, an intuitive value
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for average |∆η| over the paths is αr = 2 (i.e., the mean is a half of the maximum at one end). A more accurate way to evaluate

αr is to consider the path average of the Gaussian correlation function calculated tentatively with αr = 1, and then determine

the equivalent αr for the same ∆r. This shows that αr = 2 is a reasonable choice. However, note that ray tracing suggests

large along-path variability of |∆η| (Fig. 3a). For example, cross-path distance during the propagation can be larger than the595

distance between the two source locations.

Based on the above consideration, σr was calculated from Eqs. (7), (38), and (42) as follows. Considering both anisotropy

of the phase correlation and the along-path variation of cross-path distance, αr between 1 and 5 appeared to be reasonable.

To understand the dependence of nonharmonic internal-tide variance on horizontal phase correlation, it was also beneficial to

consider αr� 1, which corresponds to the lack of horizontal phase correlation. We considered αr to be a uncertain model600

parameter, and varied the value to test the dependence of the results on this parameter. We arbitrarily chose αr = 3 as a

reference value. From the equivalent isotropic correlation function obtained from Eqs. (7), (38), and (42), σr was calculated

by the least-squares fit of the Gaussian shape to the first peak of the correlation function. (This means σr = αrση in Eq. (43),

although ση was not calculated explicitly.) Since the correlation function R(∆r) generally has a broader tail than the Gaussian

distribution, the integral scale was unsuitable. The least-squares fitting was applied whereR(∆r)> 0.5, with the aim of getting605

reasonable σr at R(∆r)≈ 0.6 (corresponding to one standard deviation). This fitting procedure did not always work well in

shallow water where stratification was weak. To keep σr within a realistic range, the grid size and αrLC were imposed as the

lower and upper limits of σr, respectively. This σr was used as the correlation length in the diffusion model.

In addition to σr, the diffusion operator method also required normalization factors that impose Rii ≈ 1 after applying

the diffusion operator (i.e., the matrix Λ in Weaver and Courtier (2001)). The normalization factors were calculated by the610

ensemble method explained in Weaver and Courtier (2001). We used 200 ensemble members, which correspond to the standard

error of 5% in the normalization of R.

As in the ray tracing and phase spread modelling, the calculations of correlation lengths were done separately for the four

lowest baroclinic modes using the M2 frequency. The frequency differences among semidiurnal constituents were neglected.

4.5 Calculation of nonharmonic variance source function615

The nonharmonic variance source function was calculated from Eq. (12), using sphys from the source function, Σ calculated

from the phase variance Pθθ = σ2
j , and R implemented as a diffusion operator with the equivalent isotropic correlation length

of phase modulation σr; however, it required one more assumption, because it was not obvious which phase spread and phase

correlation should be applied to each source function. For example, if higher modes are directly excited by barotropic forcing

and converted to VM1 near the sources, and then the VM1 internal tides propagate to the observation location, the phase spread620

and correlation lengths for VM1 should be applied to the source functions for higher modes, because the phases are modulated

as VM1 internal tides. However, if higher modes are directly excited by barotropic forcing, propagate as higher modes, and

then converted to VM1 near the observation location, the phase spread and correlation lengths for higher modes should be

applied to the source functions of respective higher modes. The latter scenario was assumed in this study, because the PIL200

location is located in the continental shelf/slope region.625
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4.6 Equivalent degrees of freedom

It is convenient to have an estimate of the number of independent sources, which is one of the input parameters to the statistical

model and an indicator whether the central limit theorem is applicable. It should be provided by sstat in Eq. (11) in principle, but

unfortunately the use of RT/2 makes the estimate of statistically independent sources non-unique, as explained in Section 3.1.

Nonetheless, it would still be more useful to have a rough estimate than no estimate. In this study, the equivalent degrees630

of freedom of each grid point were calculated by dividing the horizontal cell area by the squared correlation length of phase

modulation, in a similar way to calculating the degrees of freedom of a time series using the integral time scale. This choice was

made because the diffusion operator method for R diffuses the source function as the simple example in Eq. (14), rather than

concentrates it as the example in Eq. (13). Note that, for horizontally distributed sources, the absolute number of sources (or

degrees of freedom) is not useful because there are grid points that have small or negligible contributions to the total variance,635

but such points are also counted as independent sources. So, we considered the functional relationship between cumulative

variance and cumulative number of independent sources (e.g., degrees of freedom to explain 90% of modelled variance) after

sorting the sources in descending order of per-cell and per-mode contributions to the variance.

5 Results

5.1 Adjoint frequency response function640

The adjoint frequency response function of VM1-induced isopycnal displacement at the PIL200 location to the barotropic-to-

VM1 forcing qualitatively shows a pattern of internal waves spreading from a point source, but affected by topography-induced

variation of the propagation speed (Fig. 5a). For internal-wave signals propagating offshore, wave spreading gradually reduces

the magnitudes. By the time the signals reach the Indonesian archipelago, the magnitudes are reduced by a factor of more than

10. For internal-wave signals propagating towards the Australian coast, the wavelengths decrease rapidly because shallower645

water depths and weaker stratification reduce the propagation speed. The signals disappear on the shelf shallower than 100 m,

partly because of bottom friction, and partly because the grid resolution gradually becomes insufficient to adequately resolve

internal tides there. This numerical dissipation does not change the overall results of this study, because the shallow shelf has

mild slopes and hence no important sources of internal tides at the PIL200 location.

The adjoint frequency response function to the barotropic-to-VM2 forcing also shows a pattern of internal waves spreading650

from a point source (Fig. 5b). The magnitudes are smaller than the VM1 signals because the VM2 (and other higher-mode)

signals result from the topographic conversion of VM1 signals on the continental slope. The shorter wavelength shows that the

signals are propagating as free VM2 internal-wave signal, at least as a first approximation. These features justify our choice

of applying the phase spread and horizontal phase correlation for VM2 to the VM2 source function (Section 4.5). This may

sound nothing special but should not be taken for granted, because the spatial pattern would be very different if the topographic655

conversion occurs near the sources, or if VM2 signals result from directly forced response rather than free-wave response.
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Figure 5. Adjoint frequency response function of vertical-mode-one (VM1)-induced isopycnal displacement at PIL200 location to M2 tidal

forcing at other locations (at zero Greenwich phase lag). It corresponds to λ̃ in Eq. (23). (a) Barotropic-mode (VM0) to VM1 forcing, and

(b) VM0 to vertical-mode-two (VM2) forcing. Black lines show isobaths at 10, 100, 200, 500, 1500, 3000, and 5000 m water depths. Grey

shading shows regions where celerity is less than 0.1 m s−1.

Additionally, these different scenarios affect which phase spread and horizontal phase correlation should be applied to the

VM2 (and higher-mode) source function.

5.2 Source function

The source function was calculated simply by multiplying the forcing function (Fig. 2) and the complex conjugate of the660

adjoint frequency response function (Fig. 5). Fig. 6 shows the source function of VM1 M2 internal tide at the PIL200 location

as an example. It shows alternating signs at the wavelength of VM1 M2 internal tide. Physically, it means, for example, that

the internal tides generated at half a wave length away from the PIL200 location and then propagated there have the opposite

phase from those locally and currently generated at the location. So, these waves tend to cancel each other, and the opposite

signs in the source function reflect this wave cancelling. Although the adjoint frequency response function decays with distance665

(Fig. 5a), remote locations with strong barotropic tides and/or steep bottom slopes can be as strong sources as those near the

observation location. For example, the magnitudes of the source function in the straits of the Indonesian archipelago, which

are well known source regions of internal tides, are comparable to those on the Australian shelf.

5.3 Phase spread

VM1 internal tides from most of the model domain except the Australian shelf are only partially random (Fig. 7b). The670

travel time τ for VM1 semidiurnal internal tides calculated by ray theory increases roughly radially from the PIL200 location
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M2 forcing (at zero Greenwich phase lag). It corresponds to s in Eq. (23). Panels (b-d) show zoomed views of green boxes in (a). Grey

shading shows regions where VM1 celerity is less than 0.1 m s−1.

(Fig. 7a), which agrees with the adjoint sensitivity (Fig. 5a). A clear exception is the Australian shelf where τ grows quickly

because of small group velocity. The phase variance Pθθ = σ2
j also increases roughly radially, but the rate of increase is faster

on the shelf because the phase-speed variance σ2
C relative to the squared mean phase speed c2 is much larger there (Fig. 7b).

Note that σj > 1 is a convenient threshold for mostly random sources (see Eq. (4d); also Fig. 2d in Part I for illustration).675

Unlike VM1, VM2 internal tides are mostly random (Fig. 7e). This is partly because the phase-speed variance σ2
C relative

to the squared mean phase speed c2 is larger for VM2 than VM1, so the rate of increase of phase variance is higher. Another

reason is that VM2 internal tides have about twice the travel time compare to VM1, and hence VM2 has more time to be

affected by random oceanic variability (Fig. 7d).

5.4 Horizontal correlation of phase modulation680

The equivalent isotropic correlation length of phase modulation σr shows an order-of-magnitude variability between the deep

ocean and continental shelf for VM1 (Fig. 7c), and tends to have magnitude comparable to but smaller than αrLC over a large

part of the model domain. The reason for this can be seen by considering Eqs. (7) and (39) in the limit of small Pθθ = σ2
j , which

suggests the length scale 2π−1αrLC . For example, the gradual increase of σr towards north reflects the latitudinal variation

26

https://doi.org/10.5194/egusphere-2024-4193
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



I
II

III

I
II

III

L
at

it
ud

e 
(°

S
)

112 114 116 118 120 122 112 114 116 118 120 122 112 114 116 118 120 122
Longitude (°E)

9

11

13

15

17

19

21

9

11

13

15

17

19

21

L
at

it
ud

e 
(°

S
)

0 2 4 6 8 10 12

0 1 2 3 4 5 6

Travel time τ (d)

0 102 4 6 8

0 0.2 0.4 0.6 0.8 1.0

Phase variance Pθθ (rad2)

0 240180

0 8060
Equivalent correlation length of 

phase modulation σr (km)

a) b) c)

d) e) f)

V
M

1 
S

D
 in

te
rn

al
 ti

de
V

M
2 

S
D

 in
te

rn
al

 ti
de

60

20

120

40

Figure 7. Maps of variables related to phase modulation of semidiurnal (SD) internal tide at PIL200 location in reference case:

(αC ,αL,αr) = (0.7,2,3). Left, middle, and right panels show travel time, phase variance, and equivalent isotropic correlation length of

phase modulation, respectively. Upper and lower panels are for vertical mode one (VM1) and mode two (VM2), respectively. Note the dif-

ferent scales for upper and lower panels. Yellow triangles indicate PIL200 location. Roman numerals in panels (c,f) show locations where

correlation functions are shown in Fig. 8. Black lines show isobaths at 10, 100, 200, 500, 1500, 3000, and 5000 m water depths. Grey shading

shows regions where celerity is less than 0.1 m s−1.

of the Rossby radius of deformation, which is assumed to be proportional to LC . The small σr on the continental shelf results685

from small celerity (and hence small Rossby radius of deformation). The modelled equivalent isotropic correlation function

at three contrasting locations are shown in Fig. 8a. The correlation function generally has a broader tail than the Gaussian
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Table 1. Nonharmonic vertical-mode-one (VM1) semidiurnal internal-tide variance (Var) in different regions and associated equivalent

degrees of freedom (DoF) that explain 60% and 90% of variance in reference case: (αC ,αL,αr) = (0.7,2,3). Variance is based on extreme

(maximum or minimum) isopycnal displacement within water column. Regions are shown in Fig. 9.

VM1 M2 only VM1–4, M2, S2, K2, N2

Region Var (m2) DoF (60%) DoF (90%) Var (m2) DoF (60%) DoF (90%)

LOC 3.2 12 23 6.0 65 247

NWS 4.9 18 40 8.2 92 457

LAS 7.9 1 2 13.5 10 50

SS 0.4 0 1 2.6 14 95

IND 2.9 6 16 7.5 263 1619

Total 19.4 37 82 37.8 443 2467

function. The modelled and fitted correlation functions agree around the correlation value of 0.6, which corresponds to one

standard deviation of the Gaussian function.

The equivalent isotropic correlation length σr for VM2 is substantially smaller than VM1 (Fig. 7f) and does not have the690

rough relationship with LC , although the same LC is used for VM1 and VM2. This is because the phase variance Pθθ = σ2
j

is much larger for VM2 than VM1 (Fig. 7b,e), which makes the gradient of P∆θ∆θ around |∆η|/l� 1 larger (see Eq. (39))

and the decay of the exponential function in Eq. (7) faster. As a result, the latitudinal variation does not exist for VM2, but

the order-of-magnitude variability between the deep ocean and continental shelf remains. Fig. 8b shows that the modelled and

fitted correlation functions agree well for correlation values larger than 0.6 for VM2.695
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Figure 9. Nonharmonic variance source function of isopycnal displacement induced by nonharmonic vertical-mode-one (VM1) semidiurnal

(SD) internal tide at PIL200 location in reference case: (αC ,αL,αr) = (0.7,2,3). Lowest four baroclinic modes and four major semidiurnal

constituents are included. Panels (b,c) show zoomed views of green boxes in (a). Grey shading shows regions where VM1 celerity is less

than 0.1 m s−1.

Table 2. Contributions of different vertical modes (VM) and tidal constituents to nonharmonic VM1 semidiurnal internal-tide variance

(in m2) at PIL200 location in reference case: (αC ,αL,αr) = (0.7,2,3). Variance is based on extreme (maximum or minimum) isopycnal

displacement within water column.

M2 S2 K2 N2 Total

VM1 19.4 6.8 0.8 0.5 27.5

VM2 4.7 1.6 0.2 0.1 6.6

VM3 1.9 0.4 0.1 0.0 2.4

VM4 0.9 0.2 0.0 0.0 1.2

Total 26.9 9.0 1.1 0.7 37.8
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5.5 Contributions of different source regions, vertical modes, and tidal constituents

The results of the modelling provide the contributions of different source regions, vertical modes, and tidal constituents to

the modelled nonharmonic internal tides, and their dependence on the model parameters. We look at different contributions

using the reference case (αC ,αL,αr) = (0.7,2,3) as an example in this section, and then the parameter dependence in the next

section. The total modelled nonharmonic VM1 semidiurnal internal-tide variance is 38 m2 in the reference case, compared700

to the observed variance of 45± 12 m2 (confidence interval based on twice the standard error). As explained in Section 4.2,

the variance is calculated based on VM1-induced extreme (maximum or minimum) isopycnal displacements within the water

column. The variance values can be converted to vertically integrated potential energies in J m−2 by multiplying 7.6, and the

variance of surface displacements in m2 by multiplying 7.1× 10−7 (without seasonal variation).

The contributions of different regions are shown in Fig. 9 as the map of nonharmonic variance source function, and in705

Table 1 as regionally integrated contributions. The following regions are arbitrary chosen for illustration purposes. The LOC

region is the local region near the PIL200 location on the Australian North West Shelf shallower than 1500 m, and the NWS

region is the Australian shelf region excluding the LOC region. The LAS and SS regions cover the Lombok and Alas straits

and Sape Strait, respectively. The IND region is the rest of the model domain, mostly deep Indian Ocean. These regions are

indicated by dashed blue lines in Fig. 9. Fig. 9 shows that important source regions are the Australian shelf, and the straits in the710

Indonesian archipelago. The nonharmonic variance source function appears much smoother than the source function in Fig. 6,

because the diffusion operator that approximates the correlation coefficient matrix R is applied, and the correlation lengths are

relatively large (Fig. 7c,f). The horizontal scale of the nonharmonic variance source function is smaller than the correlation

length for VM1 (Fig. 7c). This is partly because higher modes have smaller correlation lengths (Fig. 7f), and partly because the

diffusion operator averages the opposing contributions from the source function (e.g., red and blue patches in Fig. 6) when the715

correlation length is comparable to or larger than the wavelength, which reduces the length scale of the nonharmonic variance

source function. However, note that the locations of sources in the nonharmonic variance source function are uncertain within

the correlation length of phase modulation in the current approach, as explained in Section 3.1. This is why contributions from

relatively large regions are compared in Table 1.

Table 1 shows that remote regions are more important sources of the nonharmonic internal tides than local sources. For720

example, the contributions of the Australian shelf is smaller than those of the Indonesian straits, and the local contribution on

the Australian shelf is smaller than the rest of the shelf. This is because remote sources can be as strong as local sources before

phase modulation (Fig. 6), and it takes time for random phase-speed variability to make internal tides nonharmonic (Fig. 7b,e).

Although the magnitude of the nonharmonic variance source function in the deep ocean (IND region) is nearly two orders of

magnitude smaller than the peak values in the major sources (Fig. 9), Table 1 shows that the overall contribution is substantial725

because it occupies much larger area than the other regions. Fig. 9 also suggests that, although we used a relatively large model

domain for available computational resources, the current modelling is likely to have missed remote sources. It is likely that at

least a few m2 of variance is missing from deep Indian Ocean to the west of the model domain.
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Figure 10. Parameter dependence and probability distribution of nonharmonic vertical-mode-one (VM1) semidiurnal (SD) internal tide at

PIL200 location. (a) Dependence of internal-tide variance on normalized phase-speed variance αC and ratio of phase-speed correlation

length to Rossby radius of deformation αL, (b) dependence on αC and empirical parameter for horizontal correlation of phase modulation

αr , (c) comparison of modelled and observed probability distribution function of envelope amplitude normalized by standard deviation, and

(d) cumulative distribution of per-cell and per-mode contribution to internal-tide variance and equivalent degrees of freedom as a function

of grid points (sorted in descending order of per-cell and per-mode contribution). Panels (a) and (b) show results for αr = 3 and αL = 2,

respectively. Reference parameters (αC ,αL,αr) = (0.7,2,3) are used in (c) and (d). In (a) and (b), dotted vertical lines indicate values used

in reference case.

Table 2 shows the contributions of different vertical modes and tidal constituents to the modelled variance. The tabular entry

for VM2 and M2 represents, for example, the contribution of VM2 internal tide that is excited by the M2 barotropic forcing,730

and then converted to VM1 before arriving at the PIL200 location. Regarding the contributions of different vertical modes,

the model results show that VM1 contributes about 3/4 of the total variance, and the contributions decrease with increasing

mode number. Regarding the contributions of barortropic forcing from different tidal constituents, M2 and S2 forcing contribute

roughly 3/4 and 1/4 of the total variance, respectively. The contributions of K2 and N2 are small (1.8 m2). The VM1 directly

forced by M2 alone contributes roughly a half of the total variance. So, VM1 and M2 are dominant, but focusing only on VM1735

and M2 would cause substantial underestimation of the nonharmonic semidiurnal internal-tide variance in this case.
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5.6 Dependence on model parameters and comparisons with observations

The results shown in the previous section are based on the reference model parameters, but the parameters have relatively large

uncertainty. In this section, we investigate the dependence of the results on the model parameters, and compare the results with

observations at the PIL200 location. The model parameters are varied beyond the realistic range for process understanding.740

The results show that the modelled nonharmonic internal-tide variance strongly depends on the variance (αC or σ2
C) and

correlation length (αL or LC) of phase speed (Fig. 10a). These parameters affect the nonharmonic internal-tide variance in

two ways. First, they determine the partitioning of the variance into harmonic and nonharmonic components through the phase

variance σ2
j (see Eq. (4)). Second, they affect the phase correlation length σr through µj and ςj in Eq. (7), as well as the variance

of horizontal phase difference P∆θ∆θ in Eq. (38). The dependence on αL shows that it is essential to consider the phase-speed745

correlation length (see the small variance at αL = 0 in Fig. 10a), because phase-speed variability with small correlation length

is inefficient in producing phase variance (see Eq. (32)). The dependence on αL gradually decreases with increasing αL for

a few reasons. First, the ratio of the variance partitioned to nonharmonic component (ς2j in Eq. (4)) increases with the phase

variance σ2
j , but the rate of increase becomes much slower for σ2

j > 1 (see Eq. (4d); also Fig. 2d in Part I for illustration).

Second, the horizontal phase correlation tends to increase nonharmonic internal-tide variance as explained in Section 3.1, but750

the increase ceases when the equivalent isotropic correlation length σr becomes comparable to the internal-tide wavelength.

This is because regions separated by half a wavelength tend to have opposing contributions to internal-tide amplitude (see blue

and red patches in Fig. 6), and the opposing contributions are averaged in Eq. (11) when the correlation length is larger than

half the wavelength.

The nonharmonic internal-tide variance also strongly depends on αr (Fig. 10b). The dependence illustrates the aforemen-755

tioned roles played by the phase correlation length σr and internal-tide wavelength more clearly, because σr is roughly pro-

portional to αr. The phase correlation increases the nonharmonic internal-tide variance when αr is small. Although αr� 1

(negligible horizontal correlation) is unrealistic, small variance in this limit shows that it is essential to consider horizontal phase

correlation for gridded sources, as explained in Section 3.1. When αr becomes larger, the nonharmonic internal-tide variance

decreases gradually with increasing αr by the averaging of sources with opposite phases. The peak of the variance should occur760

when σr is around a quarter of the wavelength. Considering that the internal-tide wavelength is 1–2 times the Rossby radius

of deformation in the modelled region and σr tends to be comparable but smaller than αrLC for VM1, this suggests αLαr is

roughly 1/2 at the peak. Fig. 10b shows the peak around αr ≈ 1/2 for αL = 2. This shows that anisotropy of the horizontal

correlation of phase modulation is an important controlling parameter for a realistic parameter range (αL & 1,αr & 1), espe-

cially if αL ≈ 1. More generally, the result shows that the ratio of the correlation length of phase modulation and internal-tide765

wavelength is important for nonharmonic internal-tide variance.

The comparison of the model results and the PIL200 observations shows that the model results are not inconsistent with

the observations for a realistic parameter range (αL & 1,αr & 1), although the modelled variance tends to be smaller than the

observed mean. The larger phase-speed variance case (αC = 1.0) used phase-speed variance from the PIL200 location on the

continental shelf, which provides phase-speed variance that appeared to be roughly the upper limit of previous estimates for770
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deep ocean. In this case, the model results are around the observed mean for αL ≥ 1. The smaller phase-speed variance case

(αC = 0.4) used phase-speed variance that is about the middle of previous estimates for deep ocean, but is an underestimate

for shallow water. So, it is reasonable that the modelled variance is around or below the approximate 95% confidence interval

for αL ≥ 1. In the reference case for phase-speed variance (αC = 0.7), the model results are between the observed mean

and the lower bound of the approximate 95% confidence interval for αL ≥ 1. Considering the number of assumptions and775

simplifications used in the model suite, the results are encouraging. This demonstrates the feasibility of the proposed modelling

framework and model suite.

Finally, we compare the modelled and observed PDFs of nonharmonic VM1 semidiurnal internal tides (Fig. 10c). Since the

modelled and observed variance are not the same, PDFs are normalized by the respective standard deviation. The normalized

PDFs compare well. This result and analyses in Part I suggest that the degrees of freedom (DoF) of the modelled nonharmonic780

internal tides are high enough for the central limit theorem to be applicable. The estimate of effective DoF suggests that roughly

440 and 2500 effectively independent sources are required to explain 60% and 90% of the total modelled variance (Fig. 10d,

Table 1). Since higher modes have shorter phase correlation length and hence more DoF, Table 1 also shows effective DoF

only for the VM1 M2 component. The estimate suggests more than 30 independent sources are required to explain 60% of the

variance. Although these DoF are rough estimates, the results of Part I suggest that these DoF are high enough for the central785

limit theorem to be applicable in oceanic conditions. This justifies the assumptions used in the model suite, such as the use of

Eq. (11).

6 Discussion

This paper developed a new framework and model suite for process-based modelling of nonharmonic internal tides by com-

bining adjoint, statistical, and stochastic approaches. This required the development of a new method called adjoint frequency790

response analysis and new stochastic models based on stochastic differential equations. (The adjoint frequency response anal-

ysis is new in physical oceanography to my knowledge, although the use of the adjoint method in many fields makes more

comprehensive literature survey difficult.) The application of the model suite to nonharmonic vertical-mode-one (VM1) semid-

iurnal internal tides at the PIL200 location on the Australian North West Shelf added further support that the phase modulation

process is described by travel-time variability along deterministic (or mean) propagation paths (Zaron and Egbert, 2014) as a795

first approximation. The correlation length of phase speed and anisotropy of the horizontal correlation of phase modulation

were found to be important parameters controlling the nonharmonic internal-tide variance, in addition to phase-speed variance

which has been identified in previous studies (Zaron and Egbert, 2014; Buijsman et al., 2017). Furthermore, the nonharmonic

variance source function was shown to be a new convenient tool to identify important source regions of nonharmonic internal

tides. These are the major novel contributions of this study.800

In the proposed stochastic models, it was aimed to model stochastic wave-phase variables based on the variance and corre-

lation length of phase speed as much as possible. This is because these parameters can be obtained more easily than the phase

statistics of nonharmonic internal tides, for example, from reanalysis products that do not include tides. Hopefully, this leads
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to wider application of the proposed stochastic models in the future. In this study, the phase-speed variance and correlation

length were assumed to be proportional to the observed variance at the PIL200 location and the Rossby radius of deformation,805

respectively. These choices were made partly because this was a feasibility study, partly because it was convenient to show the

parameter dependence, and partly because it was not computationally cheap to calculate the horizontal distribution of phase-

speed variance and correlation length from reanalysis products, especially with capturing the variance from a wide frequency

range. The use of more realistic phase-speed variance and correlation length would be beneficial for comparing modelled and

observed variance in the future.810

The proposed model suite was aimed to be simple enough to include essential processes only, and this study appears to

have achieved the aim; however, the modelled variance tended to be smaller than the observed mean for a realistic range of the

model parameters (Fig. 10a,b). Furthermore, the modelled variance might be more underestimated than it appears in Fig. 10a,b,

because only semidiurnal internal tides were considered in the model suite, but the PIL200 observations showed that the

nonharmonic quarterdiurnal internal tides had roughly 20% of the variance of the semidiurnal counterpart. The underestimation815

could have been caused simply by numerical reasons (or available computational resources), including insufficient model

domain size and grid resolution. It appears likely that at least a few to half a dozen m2 of variance were missing for numerical

reasons. But the underestimation might also be caused by missing processes of secondary importance, and it would be worth

mentioning three potential causes here. First, the amplitude variability of wave sources was neglected. Part I showed that

the amplitude variability tends to increase nonharmonic internal-tide variance (see Shimizu, Companion Paper, Eq. (20b)),820

although it is less important than the phase variability. Second, the variability of propagation paths was neglected in the model.

The results in Zaron and Egbert (2014), Buijsman et al. (2017), and this study suggest that it is a good first approximation,

but the variability might have important second-order effects. It tends to increase phase modulation and make its horizontal

correlation more isotropic (effectively larger αL and smaller αr), both of which increase nonharmonic internal-tide variance

(Fig. 10a,b). Third, Shimizu (2024a) recently showed that the use of the vertical-mode amplitude of surface or isopycnal825

displacement as an objective function implicitly assumes omni-directional propagation of internal-wave signals in adjoint

models. This implicit assumption might be relevant, because the PIL200 observations show that roughly one half of the VM1

internal-tide energy is associated with directional waves (but with large uncertainty; see Part I). Compared to omni-directional

internal tides, internal tides propagating offshore would have higher sensitivity to remote sources in the straits between the

Lesser Sunda Islands in Indonesia, although it would have lower sensitivity to remote sources on the Australian shelf. It would830

also be valuable to check the dependence of the results on mean background currents and realistic horizontal distribution of

phase-speed variance and correlation length.

When comparing the results of this paper with other studies, it is important to remember that this study considered nonhar-

monic internal tides on a continental shelf, which is expected to have differences from those in deep ocean. The most important

difference would be the roles played by higher modes. Table 2 shows that the highest three of the four lowest modes contribute835

roughly 1/4 of the total variance. It is likely that this relatively large contribution is caused by the fact that the PIL200 location

is in the shelf/slope region, because the steep continental slope induces strong topographic interaction between VM1 and higher

modes (e.g., see the excitation of VM2 in the immediate vicinity of the PIL200 location in Fig. 5b). For internal tides over an
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abyssal plain, in contrast, VM1 and higher modes would propagate more independently, and a more relevant question would

be whether the topographic conversion of higher modes to VM1 is substantial away from the observation location.840

This study is the first study that took an "inverse" approach to the modelling of nonharmonic internal tides, and the results are

promising. Since this is a feasibility study of the new modelling framework, there are many aspects of the model suite that can

evolve in the future. For example, the adjoint frequency response analysis assumed linear dynamics, the standard ray theory was

used despite potential inadequacies, only phase variability from travel-time variability along deterministic propagation paths

was considered, and the stochastic model for the horizontal phase correlation was highly simplified. In principle, it would be845

possible to model relatively small variability of propagation paths and the along-path correlation of phase modulation based on

the variance and correlation length of phase speed, which might make the empirical parameter for horizontal phase correlation

αr redundant (but the importance of the anisotropy of horizontal phase correlation would remain). Compared to the usual

(forward) hydrodynamic modelling, the proposed model suite has complementary characteristics. The model suite focuses on

a specific observation location and the statistics of nonharmonic internal tides. It does not yield information for the whole model850

domain or for a specific time; however, it yields information that is not straightforward to obtain from the usual hydrodynamic

modelling, such as the contributions of different source regions (Fig. 9, Table 1), and the dependence on different processes

and/or parameters (Fig. 10a,b), for nonharmonic internal tides from distributed sources. It is hoped that the proposed modelling

framework provides a useful tool for studying nonharmonic internal tides in the future.

7 Conclusions855

Together with Part I, this study developed a new framework and its implementation for process-based modelling of non-

harmonic internal tides by combining adjoint, statistical, and stochastic approaches, and applied the resultant model suite to

nonharmonic vertical-mode-one (VM1) semidiurnal internal tides at PIL200 location on the Australian North West Shelf. The

proposed modelling framework provides a new tool for process-based studies of nonharmonic internal tides, when the su-

perposition of many waves with different degrees of randomness makes process investigation difficult. Also, the combination860

of adjoint sensitivity modelling and the frequency response analysis from Fourier theory provides a new convenient way to

calculate the deterministic sources of internal tides observed at a fixed location. The use of these methods led to the following

new findings.

– The modelled nonharmonic internal-tide variance was not inconsistent with the observed variance for a realistic range of

the model parameters, without considering the amplitude variability of the wave sources and the variability of wave prop-865

agation paths. This demonstrates the feasibility of the proposed modelling framework and model suite. This also means

that, as a first approximation, nonharmonic internal tides are caused by phase-speed variability along the deterministic

(or mean) propagation paths through travel time-induced phase modulation.
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– Important parameters controlling nonharmonic internal-tide variance include the correlation length of phase speed and

anisotropy of the horizontal correlation of phase modulation, in addition to phase-speed variance which has been identi-870

fied in previous studies.

– The map of nonharmonic variance source function and its regional integrals provide a new convenient tool to identify

important sources of nonharmonic internal tides. For the PIL200 location, important sources include the Australian North

West Shelf away from the observation location, and the straits between the Lesser Sunda Islands in Indonesia, such as

the Lombok Strait.875

– Higher vertical modes can be important even when VM1 internal tide is analysed. In the example application, the highest

three of the four lowest baroclinic modes contribute roughly 1/4 of the total variance.

– In addition to the above point, focusing only on VM1 and M2 tidal constituent can lead to substantial underestimation

of nonharmonic VM1 semidiurnal internal-tide variance, even when they are dominant. In the example application,

VM1 and M2 account for roughly a half of the total variance for the four lowest baroclinic modes and the four major880

semidiurnal constituents.

Data availability. Selected outputs of the model suite are available from Shimizu (2024b). (This data set can be accessed only by referees

until the acceptance of this manuscript. Access instruction was provided to the editor.) The 2019 version of GEBCO bathymetry and the

2018 version of World Ocean Atlas are publicly available from https://www.gebco.net/data_and_products/gridded_bathymetry_data and

https://www.ncei.noaa.gov/products/world-ocean-atlas, respectively. The version 5 of TPXO9-atlas was obtained from Dr. G. D. Egbert and885

Dr. S. Y. Erofeeva at Oregon State University, U.S.A.

Appendix A: Formulation of hydrodynamic model

The numerical hydrodynamic model used in this study is based on the vertical-mode decomposition of the governing equations

over steep slopes, which was originally proposed by Griffiths and Grimshaw (2007) to my knowledge, and formulated in a more

convenient form by Shimizu (2011, 2017, 2019). These studies used horizontally variable vertical modes, which are calculated890

using local water depth and background stratification. For example, using the generalized isopycnal coordinate s that depends

only on density ρ and explicitly writing the horizontal vector components (unlike the main body of this paper, −→x = (x,y)) for

clarity, the isopycnal displacement η and the horizontal velocity (u,v) can be decomposed as (Shimizu, 2019)

η(x,y,s, t) =
∑

n

ϕ̂n(x,y,s)η̂n(x,y, t), (A1a)

u(x,y,s, t) =
∑

n

π̂n(x,y,s)ûn(x,y, t), (A1b)895

v(x,y,s, t) =
∑

n

π̂n(x,y,s)v̂n(x,y, t), (A1c)
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where the sum is taken over all available vertical modes, η̂n, ûn, and v̂n are the nth vertical-mode amplitudes of the corre-

sponding prognostic variable, and ϕ̂n and π̂n are the nth vertical modes for isopycnal displacement and horizontal velocity,

respectively. Hereafter, the subscriptsm and n denote vertical mode indices, which are 0 for the barotropic mode, 1 for the first

baroclinic mode, etc. Each set of vertical modes (ϕ̂n, π̂n) has the associated celerity cn and normalization factor ĥn with the900

unit of water depth. The normalization factor is defined as

ρ̂ĥn =

st∫

sb

π̂nρ
dZ

ds
π̂nds, (A2a)

where ρ̂ is a reference density, and Z(s) is the background height of isopycnal. Hereafter, the superscripts t and b denote the

values at the surface and bottom, respectively. Since the choices of ρ̂ and ĥn are arbitrary, hat is used to denote variables whose

magnitudes depend on these normalization factors.905

For linear problems considered in this study, the multi-layer formulation in Shimizu (2011) and the continuous formulation

in Shimizu (2019) become equivalent after vertical-mode decomposition. We assume linear and hydrostatic dynamics and

cn� c0 for n > 0. Then, separating known barotropic (tidal) currents as external forcing, and neglecting other forcing and

dissipation processes except linear bottom friction, the governing equations for η̂n, ûn, and v̂n for n > 0 are approximately

given by910

∂η̂n
∂t

=− ∂

∂x

(
ĥnûn

)
− ∂

∂y

(
ĥnv̂n

)

+
∑

m>0

(
L̂xmnĥmûm + L̂ymnĥmv̂m

)
+ f̂ηn , (A3a)

∂ûn
∂t

=− ∂

∂x

(
c2n

ĥn
η̂n

)
−
∑

m>0

L̂xnm
c2m

ĥm
η̂m

+ fv̂n−
1

ĥn

∑

m>0

Γ̂nmûm, (A3b)

∂v̂n
∂t

=− ∂

∂y

(
c2n

ĥn
η̂n

)
−
∑

m>0

L̂ynm
c2m

ĥm
η̂m915

− fûn−
1

ĥn

∑

m>0

Γ̂nmv̂m. (A3c)

Here, f̂ηn represents the forcing function from the barotropic to nth baroclinic mode (shown in Fig. 2 for VM1 M2 tide),

(L̂xnm, L̂
y
nm) are topographic interaction coefficients, and Γ̂nm are modal friction coefficients. These variables are defined as

f̂ηn =L̂x0nĥ0û0 + L̂y0nĥ0v̂0, (A4a)

L̂xnm =
1

ρ̂ĥn

st∫

sb

π̂nρ
dZ

ds

∂π̂m
∂x

ds, (A4b)920

Γ̂nm =
γ

ρ̂
π̂bnρ

bπ̂bm, (A4c)
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where γ is the linear friction coefficient. The variable L̂ynm is defined similarly by replacing x by y in Eq. (A4b).

For numerical modelling, Eq. (A3) are discretized using the control volume (or finite volume) method on the staggered (or

Arakawa-C) grid, assuming a sinusoidal motion with angular frequency ω. Then, the matrix operator is set-up for the model

state vector [η̂1 η̂2 · · · û1 û2 · · · v̂1 v̂2 · · · ]T , and the matrix operator is transposed to obtain the operator for the adjoint model,925

LH in Eq. (21).
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