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Abstract. Internal tides are known to contain a substantial component that cannot be explained by (deterministic) harmonic

analysis, and the remaining nonharmonic component is considered to be caused by random oceanic variability. For nonhar-

monic internal tides originating from distributed sources, the superposition of many waves with different degrees of randomness

unfortunately makes process investigation difficult. This paper develops a new framework for process-based modelling of non-

harmonic internal tides by combining adjoint, statistical, and stochastic approaches, and uses its implementation to investigate5

important processes and parameters controlling nonharmonic internal-tide variance. A combination of adoint sensitivity mod-

elling and the frequency response analysis from Fourier theory is used to calculate distributed deterministic sources of internal

tides observed at a fixed location, which enables assignment of different degrees of randomness to waves from different sources.

The wave phases are randomized by the statistical model from Part I, using horizontally varying phase statistics calculated by

stochastic models. Essential inputs of the model suite are barotropic tidal currents, background stratification, and the variance10

and spatial correlation of internal-tide phase speed. An example application to nonharmonic vertical-mode-one semidiurnal

internal tides on the Australian North West Shelf shows that (i) phase-speed variability primarily makes internal tides non-

harmonic through phase modulation, and (ii) important controlling parameters include the variance and correlation length of

phase speed, as well as anisotropy of the horizontal correlation of phase modulation. The model suite also provides the map of

nonharmonic internal-tide sources, which is convenient for identifying important remote sources, such as the Lombok Strait in15

Indonesia. The proposed modelling framework and model suite provide a new tool for process-based studies of nonharmonic

internal tides from distributed sources.

Short summary

This study develops a new model suite for the random component of internal tides (internal waves at tidal frequencies). Its

example application shows that important parameters for the randomization are the magnitude and correlation length of phase-20

speed variability, and directional dependence of the phase correlation. The model suite provides a new tool for investigating

process and/or parameter dependence of observed random internal tides, and for identifying their important sources.
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1 Introduction

Internal tides are known to contain a substantial component that cannot be explained by harmonic analysis (based on the su-

perposition of sinusoids at tidal frequencies with constant amplitudes and phases). The remaining nonharmonic component is25

considered to be caused by the random variability of stratification and background currents. For nonharmonic internal tides

originating from distributed sources, the major difficulties for understanding the physics include the following two factors: (i)

statistical principles tend to make the observed variability insensitive to the underlying physical processes, and (ii) observed

nonharmonic internal tides often consist of many waves propagating towards different directions with different degrees of

randomness. To tackle the problem (ii) considering the difficulty (i), this study develops a new framework for process-based30

modelling of nonharmonic internal tides observed at a fixed location by combining adjoint, statistical, and stochastic ap-

proaches, and uses its implementation to investigate important processes and parameters controlling nonharmonic internal-tide

variance.

Internal tides are internal waves with tidal frequencies, primarily in the diurnal (≈24 h period) and semidiurnal (≈12 h

period) bands. They have different vertical structures, or modes, and lower modes have larger propagation speeds and usually35

larger energies. (The internal-tide modes are referred to as "baroclinic" modes to distinguish them from the usual tides, or the

"barotropic" mode. It is customary to count the first baroclinic mode as mode one, or vertical mode one.) Internal tides are

generated by the interaction of tidal currents with topographic slopes, which implies their coherence with the tide-generating

forces at the generation sites. However, they gradually become incoherent (or non-phase-locked) as they propagate away from

the generation sites (e.g., Rainville and Pinkel, 2006; Buijsman et al., 2017; Alford et al., 2019). This process is considered40

to be caused primarily by phase modulation through the variability of the wave propagation speed (Park and Watts, 2006;

Rainville and Pinkel, 2006), which is in turn caused by temporally and spatially varying pycnocline heaving and advection

(Zaron and Egbert, 2014; Buijsman et al., 2017). Although the variability of internal-tide generation can be substantial (Kerry

et al., 2016), the amplitude variability is overall considered to be less important than the phase variability (Colosi and Munk,

2006; Zaron and Egbert, 2014).45

Part I of this study (Shimizu, accepted, hereafter referred to as Part I) developed a statistical model of nonharmonic internal

tides, which is the basis of the modelling framework proposed in this study. (Following Part I, the term "nonharmonic" internal

tide is used for the random component of internal tides, which is also referred to as "incoherent"," nonstationary", or "non-

phase-locked" internal tides in previous studies.) The statistical model shows that the envelope-amplitude distribution observed

at a fixed location approaches a universal form given by a generalization of the Rayleigh distribution, when the number of50

independent wave sources is sufficiently large (or when the central limit theorem in statistics is applicable). The comparisons

of model and observed probability density functions (PDFs) showed the applicability of the limiting distribution to vertical-

mode-one (VM1) to vertical-mode-four (VM4) internal tides in the diurnal, semidiurnal, and quarterdiurnal (≈6 h period)

frequency bands on a continental shelf, provided that the spectra showed the corresponding tidal peaks clearly. Because the

(co)variance controls the PDFs (and the associated higher-order statistics) in the "many source" limit, this suggests that one of55

the most important questions is: "What determines the variance?"
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The above statistical study is an important step forward; however, it also suggests difficulty in investigating the physical

processes of nonharmonic internal tides based on their variability at an observation location. This is because the PDFs tend

to approach the universal form by statistical principles, regardless of the details of individual wave components. For example,

the phase of observed nonharmonic internal tides can be nearly uniformly distributed when the phases of individual wave60

components vary less than 5% (of the total 2π), and the observed amplitude tends to show large variability when the amplitudes

of individual components do not vary at all. Furthermore, nonharmonic internal tides often result from the superposition of

many waves propagating towards different directions with different degrees of randomness. So, even when complete spatial and

temporal information are available, for example, from the outputs of hydrodynamic modelling, it is often not straightforward

to identify wave components from a particular source region or a particular process. It appears that process-based studies65

are most straightforward when internal tides originate from a localized source or a small number of adjacent sources, so that

the evolution of internal tides can be analysed based on the distance (or travel time) from the source(s) without interference

(e.g., Zaron and Egbert, 2014; Buijsman et al., 2017). However, this approach is applicable only to a small fraction of the

world ocean, and not suitable for regions affected by distributed sources, including continental shelves facing open ocean. In

addition, although comprehensive literature survey is difficult, the results for wave propagation in random media in other fields70

of physics and engineering do not appear to be directly applicable to distributed sources, because they usually consider a signal

from a small number of sources (e.g., Ishimaru, 1997; Colosi, 2016; Born and Wolf, 2019).

An alternative approach for process-based studies with wider applicability is a kind of inverse modelling of internal tides

observed at a fixed location. By limiting the locations of interest, the adjoint of a hydrodynamic model can be used to trace

internal tides arriving at a fixed observation location back to the distributed sources (Shimizu, 2024a). This information in turn75

enables assignment of different degrees of randomness to waves arriving from different sources. If the degrees of randomness

are calculated based on process understanding, it would be possible to calculate nonharmonic internal-tide variance, compare

it with observations, and investigate the dependence of the modelled variance on different processes and/or parameters. This

"inverse" approach would also provide useful information such as the map of nonharmonic internal-tide sources and integrated

regional contributions. This type of modelling can also be viewed as a "synthesis" approach, because the model can be built up80

from process understanding, and the results can be used to check whether the current understanding "adds up" to explain the

observed variance.

This study aims to develop a new framework for process-based modelling of nonharmonic internal tides by combining the

statistical model from Part I with adjoint and stochastic models, and then to use its implementation to investigate processes and

parameters controlling nonharmonic internal-tide variance. As an example application, the resultant model suite is applied to85

VM1 semidiurnal internal tides observed at a mooring site on the Australian North West Shelf, and the results are compared

to the observed variance. Since this is the first application of the proposed modelling framework, the application is intended to

be a feasibility test. The models are intentionally simplified to be linear, and used to understand the dependence of modelled

variance on the model parameters, rather than attempting to provide a single best estimate. Justification for using a combination

of linear models is provided in Appendix A.90
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Figure 1. Overview of proposed modelling framework and its implementation in this study. The entire process applies two "filters": (i) to

transform global and deterministic forcing from barotropic to individual baroclinic modes (forcing function) to the corresponding forcing

relevant only to a particular observation location (source function); and then (ii) to transform this forcing to response relevant only to the

random component of internal tides (nonharmonic variance source function).

This paper is organized as follows. Section 2 presents an overview of the proposed modelling framework and model suite,

and Section 3 presents the theoretical background of individual model components, including a short summary of the statistical

model developed in Part I. Section 4 presents methodology, particularly the details of numerical methods. The results of an

example application to the Australian North West Shelf are shown in Section 5, followed by discussion in Section 6. This

paper ends with a list of conclusions in Section 7. Appendix B provides the description of internal-tide dynamics in terms of95

vertical-mode amplitudes, which is used in various parts of this paper.
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2 Modelling framework and its implementation

An overview of the proposed modelling framework is shown in Fig. 1. The key component is the statistical model developed

in Part I. It calculates the statistics of nonharmonic internal tides by randomizing the phases (and optionally amplitudes) of

individual internal-tide components arriving at an observation location from deterministic sources. For realistic oceanic appli-100

cations, horizontal distributions of the sources and phase statistics are necessary. The source distribution can be modelled using

an adjoint sensitivity model and barotropic tidal forcing. The implementation in this study uses a combination of numerical ad-

joint sensitivity modelling and the frequency response analysis from Fourier theory, referred to as "adjoint frequency response

analysis". Currently, there appears to be no standard method to model the distribution of phase statistics. Since phase statistics

vary with wave propagation (i.e., nonstationary), its process-based modelling appears to require a stochastic approach. The im-105

plementation in this study uses two stochastic models to model the spread of wave phases and the horizontal (two-dimensional)

correlation of phase modulation, both of which are assumed to be caused by random variability of the phase speed. The final re-

sult is the statistics of nonharmonic internal tides, such as their PDFs (not shown in this paper) and the horizontally distributed

sources of their variance.

3 Theoretical background110

3.1 Statistical model

The basis of the modelling framework proposed in this study is the statistical model developed in Part I. Only a fraction of

the model is needed in Part II, which primarily considers the variance of nonharmonic internal tides. This section introduces

relevant relationships from Part I for independent waves, and then extends them to correlated waves.

The statistical model in Part I considers internal tides with a single vertical-mode structure in a narrow frequency band115

observed at a fixed observation location, and approximates them as a sinusoidal time series that has the deterministic angular

frequency ω, the deterministic mean phase lag ϕ, a random amplitude A, and a random phase-lag deviation Θ. Furthermore,

it is assumed that this signal results from the superposition of independent and non-identically distributed N sinusoidal wave

components, each of which has the deterministic mean phase lag ϕj , a random amplitudeAj , and a random phase-lag deviation

Θj . Then, the signal can be expressed as120

Ae−i(ϕ+Θ)eiωt =

N∑
j=1

Aje−i(ϕj+Θj)eiωt, (1)

where t is time. Unlike Part I, the mean phase lags are subtracted from the total phase lags to make Θ and Θj random variables

with zero mean, and only deterministic amplitudes Aj = aj are hereafter considered for individual wave components. The

phase PDF is assumed to be the wrapped normal (or Gaussian) distribution as in Part I:

fΘj
(θj) =

1√
2πσj

∞∑
k=−∞

exp

(
− (θj + 2πk)2

2σ2
j

)
, (2)125
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Figure 2. Schematics of variables used in the statistical model and probability density function for individual wave components. xj + iyj

is (total) complex-valued amplitude (i.e., its magnitude represents wave amplitude and its angle represents wave phase as the coefficients of

complex Fourier series), x′j + iy′j is that with zero mean, and angles are positive clockwise because harmonic analysis conventionally uses

phase lags. Shading shows the probability density function of wrapped normal distribution, with narrow Gaussian amplitude spread to make

shading discernible. Note that aj is assumed to be constant, but a′j varies because of phase distribution. Note also that (aj ,θj) and (a′j ,θ
′
j)

are realizations of (Aj ,Θj) and (A′j ,Θ
′
j) in Eqs. (1) and (3), respectively. For illustration purposes, ϕj = π/4 and σj = 0.3π are used.

where σj is the standard deviation of the phase. The wrapped normal distribution is a circular analogue of the Gaussian

distribution, and defined for any one period of 2π. It approaches the Gaussian distribution in the limit σj → 0, but approaches

the uniform distribution in the limit σj →∞. Since harmonic analysis determines harmonic amplitudes and phase lags using

the method of least squares, the complex-valued amplitudes (i.e., their magnitudes represent wave amplitudes and their angles

represent wave phases as the coefficients of a complex Fourier series) are further decomposed into the expected values and130

deviations from them:

Ae−i(ϕ+Θ) = re−iϕ +A′e−i(ϕ+Θ′)

=

N∑
j=1

(
rje−iϕj +A′je

−i(ϕj+Θ′
j)
)
. (3)

Here, rj is the magnitude of the expected complex-valued amplitude on the complex plane, and A′j and Θ′j are the amplitude

and phase lag of the deviation, respectively (see Fig. 2). Note that (r,ϕ) and (A′,ϕ+ Θ′) correspond to harmonic and nonhar-135

monic internal tides, respectively. Note also that Θ′ and Θ′j are random variables with zero mean unlike Part I, and that A, A′,

and A′j are random variables even though aj is deterministic (see Fig. 2 and Part I). Assuming tentatively that σj in Eq. (2)
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are known, and that all the wave components are independent, the expectation and variance of the complex-valued random

amplitudes aje−i(ϕj+Θj) are (see Part I)

E
(
aje−i(ϕj+Θj)

)
= rje−iϕj = ajµje−iϕj , (4a)140

Var
(
aje−i(ϕj+Θj)

)
= E

(
A′2j
)

= a2
j ς

2
j , (4b)

µj = e−σ
2
j/2, (4c)

ς2j = 1− e−σ
2
j . (4d)

Hereafter, E(·) and Var(·) denote the expectation and variance, respectively. For complex-valued variables, the variance is

defined as Var(X) = E((X −E(X))(X −E(X))∗). Hereafter, the superscript ∗ denotes complex conjugate. Then, because of145

the independence of individual wave components, E
(
A′2
)

is given by (see Part I for justification):

E
(
A′2
)

=

N∑
j=1

E
(
A′2j
)
. (5)

Note that E
(
A′2
)

is the variance of the envelope amplitude of nonharmonic internal tides, and is twice the nonharmonic

internal-tide variance because the sinusoidal "carrier" wave (i.e., eiωt in Eq. (1)) has the variance of 1/2.

The above argument assumes the independence of individual wave components; however, the horizontal correlation of phase150

modulation along the propagation paths introduces the correlation of wave components arriving from individual sources. To

consider the horizontal correlation, we remove the assumption of independent wave components in Eqs. (1) and (3), and

calculate the covariance of the ith and jth wave components. Using Eqs. (1), (3), and (4), we get

Cov
(
A′ie
−iϕie−iΘ′

i ,A′je
−iϕj e−iΘ′

j

)
= siςiRijςjs

∗
j , (6)

where sj = aje−iϕj are complex-valued pre-modulation wave amplitudes from individual sources (hereafter referred to as155

"sources"),Rij is the correlation coefficient of e−iΘi and e−iΘj , and the covariance is defined as Cov(X,Y ) = E((X −E(X))(Y −E(Y ))∗).

Note that Θ′j do not follow the wrapped normal distribution, Eq. (2), but A′je
−iΘ′

j can be expressed in terms of aje−iΘj , µj ,

and ςj using Eqs. (1), (3), and (4). This yields

Rij =
1

ςiςj

(
exp
{
−1

2
E
(
∆Θ2

)}
−µiµj

)
, (7)

where ∆Θ = Θi−Θj . Since the difference of correlated wrapped-normal variables is a wrapped-normal variable, the expec-160

tation in the above equation is obtained using

E
(
e−i∆Θ

)
= exp

{
−1

2
E
(
∆Θ2

)}
, (8)

which is the same relationship as for normally distributed phase (Colosi and Munk, 2006; Geoffroy and Nycander, 2022). Note

that this relationship makes the correlation coefficients Rij real-valued, although the original variable, e−i∆Θ, is complex-

valued. To derive this convenient relationship, the definition of Θj is changed from Part I to have zero mean. To proceed,165
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Colosi and Munk (2006) and Geoffroy and Nycander (2022) assumed the correlation functions of Θi and Θj , but we aim to

express E
(
∆Θ2

)
as a function of the variance and correlation length of phase speed. This is done by stochastic modelling, as

described in Section 3.5.

The correlation coefficients, Eq. (7), can be used to convert correlated sources (e.g., from hydrodynamic modelling) to

effectively independent sources that can be used in the statistical model. To do so, we write the complex-valued amplitude of170

nonharmonic internal tides A′e−i(ϕ+Θ′) in Eq. (3) in two ways. On the one hand, we assume that the waves from individual

sources sj = aje−iϕj are later modulated by horizontally correlated random phase shifts, yielding

A′e−i(ϕ+Θ′) = sTphysΣncorr. (9)

Here, s is the vector containing sj , and Σ is a diagonal matrix whose diagonal components are ςj defined in Eq. (4d). Hereafter,

the superscript T denotes transpose. The above form is chosen so that the vectorn, with its components ς−1
j

(
e−iΘj −E

(
e−iΘj

))
,175

is a vector containing random variables with zero mean and unit variance (but not Gaussian) on the complex plane. The sub-

script "phys" emphasizes that the variable is calculated based on physics (in this study, by the adjoint frequency response

analysis introduced in Section 3.2), and the subscript "corr" emphasizes horizontally correlated random variables. The statisti-

cal model, on the other hand, requires independent random variables:

A′e−i(ϕ+Θ′) = sTstatΣn, (10)180

where the vector sstat contains the amplitudes of independent sources. Now, we may assume that two random vectors are

related as ncorr = R1/2n, where R = R1/2RT/2 is the horizontal correlation coefficient matrix whose components are given

by Eq. (7). Note that n is complex-valued, but R is real-valued because of Eq. (8). Assuming tentatively that R1/2 is known,

the comparison of the above two equations shows

sstat = Σ−1RT/2Σsphys. (11)185

We use this relationship to convert horizontally correlated sources calculated based on physics to effectively independent

sources that can be used in the statistical model. Then, considering Eqs. (4b) and (5) in a matrix form and E
(
n∗nT

)
= I, we

get

E
(
A′2
)

= sHstatΣ
2sstat

= (RT/2Σsphys)
HRT/2Σsphys. (12)190

Hereafter, the superscript H denotes conjugate transpose. Note that the (i, j) component in the summation corresponds to

Eq. (6). Appendix C provides detailed points regarding the above treatment of horizontal correlation using R1/2.
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The continuous version of Eq. (12) is useful in this study. The equation divided by 2 can be written as

1

2
E
(
A′2
)

=

∫
snh(−→x )d−→x

=
1

2

∫ (∫
R1/2(−→x ′,−→x )ς(−→x ′)s(−→x ′)d−→x ′

)∗
195

×
(∫

R1/2(−→x ′,−→x )ς(−→x ′)s(−→x ′)d−→x ′
)

d−→x . (13)

The variables s(−→x ) and snh(−→x ) are hereafter referred to as the "source function" and "nonharmonic variance source function"

(more correctly source density function), and s(−→x ), ς(−→x ), and R1/2(−→x ′,−→x ) are the continuous versions of sphys, Σ and

RT/2, respectively. (Note that Σ is a diagonal matrix.) The factor 1/2 is multiplied in the above equation so that the integral of

snh corresponds to the variance of a nonharmonic internal-tide time series from observations or numerical modelling, rather200

than the variance of the envelope amplitude. The above expression shows that, because the horizontal integral of snh yields

the total nonharmonic internal-tide variance, snh can be mapped to identify their important source regions. Also, a regional

integral of snh yields the contribution of that region to the total variance. Although not shown in this paper, snh can also be

used to calculate PDFs using the theory in Part I. (However, note that snh is non-unique within the correlation length of phase

modulation, because RT/2 in Eq. (12) or R1/2(−→x ′,−→x ) in Eq. (13) is non-unique, as explained in Appendix C.)205

3.2 Adjoint sensitivity modelling and calculation of deterministic internal-tide sources

In order to calculate the deterministic sources of internal tides for a fixed observation location, we use a combination of adjoint

sensitivity modelling and the frequency response analysis from Fourier theory, referred to as "adjoint frequency response

analysis" in this study. A brief summary and the major output of the method is described below. Appendix D provides the

overview of the adjoint method, which is often used in inverse problems, and the details of the adjoint frequency response210

analysis.

The basic idea of the adjoint frequency response analysis is as follows. Since internal tides are linear waves and their major

generation forces are deterministic as a first approximation, the forcing and so-called impulse response function can be used

to obtain spatially and temporally varying internal waves excited by forcing at a particular location and time. A problem

converse to this yields spatially and temporally varying sources of internal waves at a particular location and time (including215

both harmonic and nonharmonic components), by considering the forcing and the so-called adjoint sensitivity (or the Green’s

function; e.g., Bennett 2002). These methods can be extended to sinusoidal internal tides using the Fourier transform.

The application of the adjoint frequency response analysis to internal tides under realistic stratification and bathymetry

requires a linear numerical hydrodynamic model and its adjoint. In this paper, we use a linear hydrodynamic model based

on vertical-mode decomposition in Shimizu (2011) and Shimizu (2019). The formulation employs horizontally varying ver-220

tical modes that are calculated using local water depths and stratification, in order to include the effects of steep slopes (for

approximately linear waves). More details are described in Appendix B. An advantage of this formulation is that it yields

the evolutionary equations analogous to the shallow water equations with explicit forcing function from barotropic tides to

individual baroclinic modes. As an example, the forcing function from barotropic to VM1 M2 tide is shown in Fig. 3.
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Figure 3. Forcing function from barotropic-mode (VM0) to vertical-mode-one (VM1) M2 tide (at zero Greenwich phase lag). It corresponds

to f̃ in Eq. (14). Panels (b-d) show zoomed views of green boxes in (a). Grey shading shows regions where VM1 celerity is less than

0.1 m s−1.

If only one baroclinic mode is considered in the hydrodynamic model, the adjoint frequency response analysis allows us to225

write the complex-valued internal-tide amplitude as:

ae−iϕ =

∫
s(−→x )d−→x =

∫
2λ̃∗(−→x )f̃(−→x )d−→x , (14)

where a and ϕ are the pre-modulation amplitude and phase of isopycnal displacement due to the baroclinic mode of interest at

the location of interest, respectively. The variable f̃ is the forcing function from the barotropic tidal currents to the baroclinic

mode, and λ̃ is the adjoint frequency response function of ae−iϕ to f̃ at other locations, calculated by the adjoint of the linear230

hydrodynamic model. These variables are defined in Appendix D. The function s(−→x ) is the source function appearing in

Eq. (13). The middle expression shows that, because the horizontal integral of the source function yields the complex-valued

amplitude ae−iϕ, s can be mapped to identify important source regions. The right expression shows that the adjoint frequency

response function λ̃ acts as a transfer function from the forcing function f̃ , which provides forcing in a global sense, to the

source function s, which provides forcing relevant to the location of interest. The maps of f̃ and λ̃ can be used to identify235

regions where forcing and dynamic response are large. The important advantage of the source function in this study is that it
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difference modelling. Pink lines indicate ray paths. Panel (b) shows zoomed view of green box in (a) for two example ray paths. Grey

shading shows regions where VM1 celerity is less than 0.1 m s−1.

provides horizontally distributed sources of internal tides observed at a fixed location, so that different phase statistics can be

assigned to different sources.

It is also convenient to write Eq. (14) in a discretized form. The equation can be written as

ae−iϕ =

N∑
j=1

sj =

N∑
j=1

aje−iϕj , (15)240

where sj are the discretized version of s(−→x ). The variables sj = aje−iϕj are sought-after wave sources corresponding to sphys

in Eq. (11).

3.3 Stochastic differential equations for phase modelling

To develop stochastic models of phase statistics, we consider waves with a constant frequency that arrive at an observa-

tion location after travelling through regions of random phase-speed variability. Following Zaron and Egbert (2014) and245

the analysis in Appendix A, the random phase deviation along the wave propagation path between a source located at −→x j
and the observation location (say, jth path) can be calculated considering the variation of the total wave phase d(phase) =

ω(dt− c−1
j dξj)− d(ϕj + θj) and that of the phase speed cj , where ξj is the coordinate along the path. (Note that θj is the

stochastic version of Θj in Eq. (1).) Some examples of wave propagation paths are shown in Fig. 4a. To introduce random

components in the phase lag and phase speed, we write cj = cj+c′j , and assume that ϕj and cj are the respective mean compo-250
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nents, and θj and c′j are the respective stochastic components with zero mean. Assuming |c′j | � cj and following the constant

mean phase (dξj = cjdt), the deviation of total phase due to c′j or θj is given by c′jc
−2
j ωdξj and−dθj , respectively. This yields

(see Appendix A for alternative derivation)

dθj =−
ωc′j
cj

dt, (16)

where time t is used as the independent variable, because it is a convenient common coordinate variable for multiple paths.255

Since θj and c′j are stochastic variables, Eq. (16) is a stochastic differential equation. Stochastic differential equations are

commonly forced by white Gaussian noise, but it is undesirable to assume c′j is white noise because c′j certainly has spatial

correlation. A common "trick" used to deal with correlated noise is to introduce an additional stochastic equation driven by

white noise which yields the desired correlation function (see e.g., Särkkä and Solin, 2019, chap. 12.3). For example, we may

assume that c′j follows260

dc′j =− cj
LC

c′jdt+

√
cj
LC

dbj , (17)

where LC is the e-folding correlation length of c′j . The variable bj is a random variable called Brownian motion (see e.g.,

Särkkä and Solin, 2019, chap. 4.1). Intuitively, the above equation can be formally divided by dt and dbj/dt regarded as white

noise, although this view is mathematically incorrect in general.

The stochastic phase models used in this study are developed by considering covariance equations associated with the above265

two stochastic differential equations. The details of the derivation are given in Appendix E, and only the final equations used for

the modelling are provided in the following two sections. Note that we need to integrate only ordinary differential equations in

this study because the covariance equations are ordinary differential equations, although the formulation is based on stochastic

differential equations.

3.4 Stochastic phase spread model270

To model the phase variance σ2
j in Eq. (4), we consider Eqs. (16) and (17) along a single wave propagation path. The evolu-

tionary equations of the covariance between c′j and θj , Pcθ, and that between θj and θj , Pθθ, are given by

dPcθ
dt

=− c

LC
Pcθ −

ω

c
σ2
C , (18a)

dPθθ
dt

=−2
ω

c
Pcθ, (18b)

where σ2
C is the phase-speed variance, and the subscript j is suppressed for brevity. If c and LC remain constant, the solution275

under the initial condition Pcθ = Pθθ = 0 at t= 0 is

Pθθ = 2
σ2
C

c2

(
ωLC
c

)2(
ct

LC
− 1 + e−ct/LC

)
. (19)

This agrees with Eq. (12) in Zaron and Egbert (2014) if the correlation function of c′ is assumed to be exponential (Eq. (E5)

in Appendix E). Note that it is essential to consider the phase-speed correlation length LC , because small correlation length

makes phase-speed variability less efficient in inducing phase variance.280
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The straightforward approach for solving Eq. (18) is to integrate the equations from a source location to the observation

location; however, this approach is computationally inefficient, because it needs separate (forward) integration from each

source location along the same path. Alternatively, we can exploit the adjoint method described in Appendix D. The adjoint

sensitivity of Pθθ at the observation location to [Pcθ Pθθ]
T at other locations can be calculated by integrating the equations

adjoint to Eq. (18) once, backwards in time from the observation location. Then, Pθθ can be calculated as the convolution of285

the adjoint sensitivity and the forcing (i.e., the σ2
C term in Eq. (18)) along the path. The resultant phase variance Pθθ, which

grows with distance from the observation location, is used as the phase variance σ2
j in the statistical model. Note that Pθθ can

grow without a limit, but this does not cause any problem because the wrapped normal distribution, Eq. (2), can be used with

arbitrarily large phase spread σj .

3.5 Stochastic cross-path phase difference model290

We now consider the calculation of the variance of phase difference E
(
∆Θ2

)
in Eq. (7). Note that full evaluation of E

(
∆Θ2

)
is difficult for relatively large problems because E

(
∆Θ2

)
depends on pairs of two source locations, which vary over the area

considered (e.g., model domain). For this reason, a number of approximations are introduced in the theory in this section and

in numerical methods later in Section 4.4. To simplify the calculation of phase difference ∆Θ, we consider ∆Θ only in the

cross-path direction in this section.295

The modelling of cross-path phase difference ∆Θ is done by considering Eqs. (16) and (17) along two wave propagation

paths passing through the same observation location, and by calculating the phase difference ∆θ = θi−θj (∆θ is the stochastic

version of ∆Θ in Eq. (7)). In this section and Appendix E, the subscripts i and j indicate variables along the ith and jth paths,

respectively. We take into account the variability of the mean phase speed c and the phase-speed correlation length LC along

the propagation paths, but neglect their cross-path variability. The evolutionary equations of the covariance between c′i and ∆θ,300

Pci∆θ, that of c′j and ∆θ, Pcj∆θ, and that of ∆θ and ∆θ, P∆θ∆θ, are given by

dPci∆θ
dt

=− c

LC
Pci∆θ −

ω

c
σ2
C

(
1−Rη

(
|∆η|
l

))
, (20a)

dPcj∆θ

dt
=− c

LC
Pcj∆θ +

ω

c
σ2
C

(
1−Rη

(
|∆η|
l

))
, (20b)

dP∆θ∆θ

dt
=−2

ω

c

(
Pci∆θ −Pcj∆θ

)
, (20c)

where305

Rη

(
|∆η|
l

)
=

F (|∆η|/l)
1 +F 2(|∆η|/l)

(21)

is the cross-path correlation function of phase speed, ∆η is the cross-path distance,

F (|∆η|/l) = e−|∆η|/l, (22a)

l = 2π−1LC , (22b)
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Figure 5. Flow chart for application of the proposed model suite to multiple tidal constituents and vertical modes. Abbreviations are PDF:

probability density function, VM0: barotropic mode, VM1: vertical mode one, and VM2: vertical mode two.

and l is the cross-path correlation length. Generally, P∆θ∆θ needs to be calculated numerically. However, if c, LC , and |∆η|/l310

remain constant, the comparison of Eq. (20) and Eq. (18) leads to the explicit solution

P∆θ∆θ = 2Pθθ (1−Rη(|∆η|/l)) , (23)

where Pθθ is given by Eq. (19). (It may appear odd to assume constant |∆η|/l because |∆η| certainly varies; however, an

empirical relationship is introduced later in Section 4.4 to account for the variation.) This shows that the cross-path correlation

length of ∆θ depends on the phase-speed correlation length LC through Eq. (22). This is important because LC can be315

estimated from observations or hydrodynamic modelling more easily than the correlation length of phase difference ∆θ.

Similar to Eq. (18), Eq. (20) can be solved using the adjoint method explained in Appendix D, and the resultant variance

P∆θ∆θ corresponds to E
(
∆Θ2

)
in Eq. (7). However, note that the analysis has been simplified substantially by the assumptions

introduced above. In particular, note that P∆θ∆θ = 0 at ∆η = 0, which implies Rij = 1 in Eq. (7), because Eq. (20) neglects

along-path correlation. To take into account the effects of along-path correlation, an empirical adjustment is introduced later in320

Section 4.4.
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4 Methods

4.1 Application to VM1 semidiurnal internal tides at PIL200 location

To illustrate application of the proposed model suite, we took vertical-mode-one (VM1) semidiurnal internal tides at the PIL200

mooring site (115.915◦E, 19.435◦S, ≈200 m deep) of the Australian Integrated Marine Observing System on the Australian325

North West Shelf (Figs. 3 and 4) as an example. Part I analysed the nonharmonic VM1 to vertical-mode-four (VM4) diurnal,

semidiurnal, and quarterdiurnal internal tides in the observations.

In the model suite, we included the four major semidiurnal tidal constituents (M2, S2, K2, and N2) and four lowest baroclinic

modes (VM1–VM4). Fig. 5 shows a flow chart for the application of the proposed model suite to multiple tidal constituents and

vertical modes. Forcing from the major constituents were considered separately, assuming that the nonharmonic internal-tide330

variance (and the associated statistics) is calculated for a sufficiently long time series. Since it was impractical to separate

nonharmonic internal tides into constituents in the PIL200 observations (Part I), the resultant variance, E
(
A′2
)
/2 in Eq. (13),

and the nonharmonic variance source functions from individual constituents were summed to obtain the total for semidiurnal

internal tides. It may sound confusing to include multiple baroclinic modes to model VM1 internal tides at the PIL200 location.

This is required because barotropic forcing excites not only VM1 but also higher modes, which can be converted to VM1 by335

topographic interaction before arriving at the PIL200 location (see Fig. 5). To distinguish overall barotropic forcing to VM1

internal tides at the PIL200 location from barotropic forcing to individual baroclinic modes in the intermediate process, the

latter is hereafter referred to as, for example, "barotropic-to-VM2" or "VM0-to-VM2" forcing.

4.2 Adjoint frequency response function and source function modelling

In the hydrodynamic modelling, we considered linear hydrostatic internal tides under climatological stratification without340

background currents. Note that mesoscale oceanic variability is intentionally omitted because its effects are represented by

random phase-speed variability in the stochastic models (see Appendix A for the justification of this treatment). A sinusoidal

periodic motion was assumed (as in Eq. (D7) in Appendix D) in the governing equations (Eq. (B3) in Appendix B without the

nonlinear terms), so that the hydrodynamic model directly calculates the adjoint frequency response function (λ̃ in Eq. (14)).

The frequency response function was calculated for complex-valued VM1 isopycnal-displacement amplitude at the PIL200345

location (i.e., ae−iϕ in Eq. (14)), whose magnitude is scaled to have the value of extreme (maximum or minimum) displacement

within the water column.

Details of the hydrodynamic model set-up are as follows. The model grid encompass most of the Australian North West Shelf

and part of the Lesser Sunda Islands in Indonesia (Fig. 3a). The horizontal coordinates are oriented in the cross-shelf (NNW–

SSE) and along-shelf (SSW–NNE) directions at the PIL200 location. The horizontal grid size is 0.01◦. The model extent and350

grid resolution are not ideal, but were limited by available computational resources. The four lowest baroclinic modes (VM1–

VM4) are included in the calculation. Vertical modes are calculated using the 2019 version of GEBCO bathymetry (GEBCO

Compilation Group, 2019), and stratification from the 2018 version of World Ocean Atlas annual climatology over the 2005–

2017 period (Locarnini et al., 2018; Zweng et al., 2018). TEOS-10 (McDougall and Barker, 2011) is used to calculate density.
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The model includes horizontally-varying linear bottom friction, which is calculated using the (non-dimensional) quadratic355

bottom drag coefficient of 10−3 and the barotropic tidal current speed from the TPXO9-atlas version 5 (updated from Egbert

and Erofeeva (2002)). Since the grid resolution is not sufficiently high to resolve internal tides in regions with shallow water

depths or weak stratification, we exclude regions where celerity of each (nth) vertical mode cn is less than 0.1 m s−1, which

roughly corresponds to four grid points per wavelength for semidiurnal tides. (In this study, the term "celerity" is deliberately

used for the propagation speed of non-rotating, long, linear gravity waves with one of the vertical-mode structures, which360

differs from the phase speed of internal tides.) The Flather open boundary condition (Flather 1976; see also Blayo and Debreu

2005) is applied to individual vertical modes at the open boundaries. The adjoint frequency response function was calculated

separately for the M2, S2, K2, and N2 tidal frequencies.

The source function (s(−→x ) in Eq. (14)) was calculated from the adjoint frequency response function for the four lowest

baroclinic modes and barotropic currents from the TPXO9-atlas for the four major semidiurnal constituents. This provided 16365

source functions in total.

4.3 Ray tracing and phase spread modelling

The phase variance Pθθ was calculated based on Eq. (18), but it required finding wave propagation paths from the PIL200

location. We took the simplest approach and calculated the propagation paths by standard ray theory (e.g., Lighthill, 1978,

chap. 4.5), but applying it backwards in time. The initial location is the PIL200 location and the initial angles are in 0.1◦ and370

1◦ intervals for rays propagating towards offshore and onshore, respectively. Additional rays are used to ensure that some rays

propagate into the southern part of the major straits in the Lesser Sunda Islands, such as the Lombok Strait. Fig. 4a shows about

1/30 of the calculated ray paths as examples.

The standard ray equations and the equations adjoint to Eq. (18) were integrated backwards in time, using the 4th-order

Runge-Kutta method, for VM1 to VM4 semidiurnal internal tides. The time steps are 300, 450, 600, and 900 s for VM1,375

VM2, VM3, and VM4, respectively. In the calculation, along-path variability of water depth, phase speed, and the Coriolis

parameter are taken into account. Since the results were insensitive to small frequency differences among the major semidiurnal

constituents, the M2 frequency was used in the modelling.

The phase-speed variance σ2
C in the model was chosen based on the PIL200 observations, which yielded σ2

C,PIL200 ≈ 12, 9.5,

8.2, and 8.2×10−3 m2 s−2 for VM1, VM2, VM3, and VM4 semidiurnal internal tides, respectively (Appendix F). Although380

the observations were made on the continental shelf at ≈200 m water depth, the phase-speed variance of VM1 is not unrea-

sonable for deep ocean. For example, previous numerical modelling (Zaron and Egbert, 2014; Buijsman et al., 2017) suggests

σC/c=1–3% in deep ocean for VM1 semidiurnal internal tides. Since these values include only low-frequency components,

they are likely to be underestimates for σ2
C , which needs to include all frequency components as explained in Appendix F.

So, σ2
C ≈1.2×10−2 m2 s−2, which yields σC/c≈3.6% assuming c=3 m s−1, appears to be roughly the upper limit of the385

current estimate of σ2
C for deep ocean. For higher modes, phase-speed variance appeared to be unavailable except those from

Appendix F. These facts suggest that horizontally constant phase-speed variance is not a bad assumption, so we chose σ2
C by
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scaling σ2
C,PIL200 as

σ2
C = αCσ

2
C,PIL200, (24)

where αC is a model parameter. This choice is also a simple and convenient way to show the dependence of the results on σ2
C .390

We used αC varying between 0.4 and 1.0. As already explained, αC = 1.0 is the estimate for the PIL200 location and appears

to be roughly the current upper limit for deep ocean. The choice αC = 0.4 (σC/c≈2.3%) is about the middle range of the

current estimate for deep ocean, but it would be a substantial underestimate for shallow water. We chose the middle of these

likely upper and lower limits, αC = 0.7, as a reference value.

Regarding the correlation length of phase speed LC , we assumed LC to be proportional to the Rossby radius of deformation395

Rd = c1/f :

LC = αLRd, (25)

where f is the Coriolis parameter, and αL is a model parameter. This choice was made for two reasons. First, Rd is a common

length scale used for mesoscale oceanic variability. Second, LC is expected to vary substantially between continental shelves

and deep ocean, and the mean VM1 celerity c1 in the expression ofRd conveniently reflects at least some part of this variability.400

Note that the same c1 is used to calculate LC for all the higher modes, considering that the phase-speed modulation of all

vertical modes are caused by the same oceanic variability. The phase-speed correlation length appears to be rarely evaluated,

but Zaron and Egbert (2014) showed that the correlation length was about three times Rd around Hawaii. This value might be

affected by the smoothing scale of the reanalysis product used in their study, and is larger than the typical radius of mesoscale

eddies for the latitude (e.g., Klocker and Abernathey, 2014). However, phase-speed correlation could be affected by processes405

that have length scale larger than eddies (e.g., Buijsman et al., 2017). Since typical eddy radius is roughly Rd for the latitude

range of the model domain (e.g., Klocker and Abernathey, 2014), the realistic parameter range is αL & 1. We chose the middle-

ground value of αL = 2 as a reference value. Note that the wavelength of VM1 semidiurnal internal tides is about 1–2 times

Rd in the modelled region.

After the ray-based calculation, the travel time and phase variance Pθθ along the ray paths were horizontally interpolated to410

obtain gridded results using a Gaussian kernel. This interpolated Pθθ was used as σ2
j in the statistical model.

4.4 Horizontal phase correlation modelling

The horizontal correlation coefficient matrix R was implemented as a diffusion operator following Weaver and Courtier (2001),

which is a numerical technique commonly used in data assimilation (see e.g., Bennett, 2002, chap. 3.1.6). This is because,

although R could be calculated in principle using Eqs. (7) and (20), it was prohibitive to store the whole R on computer415

memory in practice. The method approximates the correlation function as Gaussian, and requires the correlation lengths at

individual grid points, which are equivalent to the standard deviation of the Gaussian function (i.e., impulse response solution

to the diffusion equation). Since Eq. (20) calculates the variance of the cross-path phase difference for different cross-path

distance |∆η|, Eqs. (7) and (20) yield only the cross-path correlation length ση , and the along-path correlation length σξ is
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still missing. In this study, an empirical relationship between ση and σξ was introduced, and equivalent isotropic diffusion420

was assumed for simplicity. Then, the phase correlation modelling requires equivalent isotropic correlation length of phase

modulation at each grid point σr calculated from P∆θ∆θ in Eq. (20).

To determine σr, we assume

|∆η|= α−1
r ∆r (26)

in Eq. (20), where ∆r is the distance between the sources, and αr is an empirical parameter whose meaning is explained shortly.425

This assumption has an advantage that P∆θ∆θ could be integrated (backwards in time) for various values of ∆r together with

the ray tracing and integration of Pθθ, and the results can be gridded in the same way. Substituting the resultant P∆θ∆θ into

E
(
∆Θ2

)
in Eq. (7) yields the horizontal correlation function at each grid point R(∆r). (In Eq. (7), µi = µj and ςi = ςj are

assumed.) Then, by approximating the first peak of R(∆r) as Gaussian, we get

R(∆r)≈ exp

(
− ∆r2

2α2
rσ

2
η

)
. (27)430

The empirical factor αr represents two effects: anisotropy of the horizontal correlation of phase modulation, and the along-path

variation of cross-path distance. Typical values of αr for these effects are considered in the following.

To estimate αr for anisotropic phase correlation, we tentatively regardRij in Eq. (7) as correlation functionR(∆ξ,∆η) (∆ξ

is a lag distance in the along-path direction), and compare its integral scale with that of the equivalent isotropic correlation

function R(∆r). Assuming that the correlation functions are Gaussian and equating the integrals, we get435

∞∫
−∞

∞∫
−∞

exp

(
−∆ξ2

2σ2
ξ

− ∆η2

2σ2
η

)
d∆ξd∆η

≈ 2π

∞∫
0

∆r exp

(
−∆r2

2σ2
r

)
d∆r, (28)

where σξ is unknown standard deviation in the along-path direction. This yields the relationship of the integral scales

σξση ≈ σ2
r . (29)

The comparison of Eqs. (27)–(29) shows that αr =
√
σξ/ση , and αr = 1 for isotropic correlation function (σξ = ση). Note the440

relatively weak dependence of αr on σξ. For example, the correlation function is highly anisotropic for σξ = 9ση , but it yields

αr = 3.

To estimate αr for the along-path variation of cross-path distance, we consider the linear variation of cross-path distance

|∆η| between the observation location and source locations. Since the distance between the sources is ∆r, an intuitive value

for average |∆η| over the paths is αr = 2. However, note that ray tracing suggests large along-path variability of |∆η| (Fig. 4a).445

Based on the above consideration, the equivalent isotropic correlation length of phase modulation σr was calculated from

Eqs. (7), (20), and (26) as follows. Considering both anisotropy of the phase correlation and the along-path variation of cross-

path distance, αr between 1 and 5 appears to be reasonable. We chose the middle of these likely upper and lower limits,
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αr = 3, as a reference value. Using Eq. (26) with a chosen αr, P∆θ∆θ from Eq. (20) was substituted into Eq. (7) to calculate

the correlation coefficient for different source distance ∆r. This yielded isotropic correlation function R(∆r). Since σr is450

required for the diffusion operator method, the Gaussian shape was fitted to the first peak of the correlation function where

R(∆r)> 0.5 by the least-squares method, and the resultant standard deviation is used as σr in the diffusion operator method.

In addition to σr, the diffusion operator method also requires normalization factors that impose Rii ≈ 1 after applying the

diffusion operator (i.e., the matrix Λ in Weaver and Courtier (2001)). The normalization factors are calculated by the ensemble

method explained in Weaver and Courtier (2001). We used 200 ensemble members, which correspond to the standard error of455

5% in the normalization of R.

As in the ray tracing and phase spread modelling, σr and the normalization factors were calculated separately for the four

lowest baroclinic modes using the M2 frequency. The frequency differences among semidiurnal constituents were neglected.

4.5 Calculation of nonharmonic variance source function

The nonharmonic variance source function was calculated for each constituent from Eq. (12), using sphys from the source func-460

tion, Σ calculated from the phase variance Pθθ = σ2
j , and R implemented as a diffusion operator with the equivalent isotropic

correlation length of phase modulation σr; however, it required one more assumption, because it was not obvious which phase

spread and phase correlation should be applied to each source function. For example, if higher modes are directly excited

by barotropic forcing and converted to VM1 near the sources, and then the VM1 internal tides propagate to the observation

location (follow VM0-to-VM2 forcing, left-hand-side "Topographic interaction", and then VM1 propagation in Fig. 5), the465

phase spread and correlation lengths for VM1 should be applied to the source functions for higher modes, because the phases

are modulated as VM1 internal tides. However, if higher modes are directly excited by barotropic forcing, propagate as higher

modes, and then converted to VM1 near the observation location (follow VM0-to-VM2 forcing, VM2 propagation, right-hand-

side "Topographic interaction", and then VM1 propagation in Fig. 5), the phase spread and correlation lengths for higher modes

should be applied to the source functions of respective higher modes. The latter scenario is assumed in this study, because the470

continental slope near the PIL200 location induces strong topographic interaction between VM1 and higher modes, as shown

later.

5 Results

5.1 Adjoint frequency response function

The adjoint frequency response function (λ̃ in Eq. (14)) of VM1-induced isopycnal displacement at the PIL200 location to the475

barotropic (VM0)-to-VM1 forcing qualitatively shows a pattern of internal waves spreading from a point source, but affected

by topography-induced variation of the propagation speed (Fig. 6a). For internal-wave signals propagating offshore, wave

spreading gradually reduces the magnitudes. By the time the signals reach the Indonesian archipelago, the magnitudes are

reduced by a factor of more than 10. For internal-wave signals propagating towards the Australian coast, the wavelengths
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Figure 6. Adjoint frequency response function of vertical-mode-one (VM1)-induced isopycnal displacement at PIL200 location to M2 tidal

forcing at other locations (at zero Greenwich phase lag). It corresponds to λ̃ in Eq. (14). (a) Barotropic-mode (VM0) to VM1 forcing, and

(b) VM0 to vertical-mode-two (VM2) forcing. Black lines show isobaths at 10, 100, 200, 500, 1500, 3000, and 5000 m water depths. Grey

shading shows regions where celerity is less than 0.1 m s−1.

decrease rapidly because shallower water depths and weaker stratification reduce the propagation speed. The signals disappear480

on the shelf shallower than 100 m, partly because of bottom friction, and partly because the grid resolution gradually becomes

insufficient to adequately resolve internal tides there. This numerical dissipation does not change the overall results of this

study, because the shallow shelf has mild slopes and hence no important sources of internal tides at the PIL200 location.

The adjoint frequency response function to the VM0-to-VM2 forcing also shows a pattern of internal waves spreading

from a point source (Fig. 6b). The magnitudes are smaller than the VM1 signals because the VM2 (and other higher-mode)485

signals result from the topographic conversion of VM1 signals on the continental slope. The shorter wavelength shows that the

signals are propagating as free VM2 internal-wave signal, at least as a first approximation. These features justify our choice of

applying the phase spread and horizontal phase correlation for VM2 to the VM2 source function (Section 4.5). This observation

is significant because the spatial pattern would be very different if the topographic conversion occurs near the sources, or if

VM2 signals result from directly forced response rather than free-wave response. Additionally, these different scenarios affect490

which phase spread and horizontal phase correlation should be applied to the VM2 (and higher-mode) source function.

5.2 Source function

The source function (s(−→x ) in Eq. (14)) was calculated simply by multiplying the forcing function (Fig. 3) and the complex

conjugate of the adjoint frequency response function (Fig. 6). Fig. 7 shows the source function of VM1 M2 internal tide at the

PIL200 location as an example. It shows alternating signs at the wavelength of VM1 M2 internal tide. Physically, it means, for495
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Figure 7. Source function of vertical-mode-one (VM1)-induced isopycnal displacement at PIL200 location for barotropic (VM0)-to-VM1

M2 forcing (at zero Greenwich phase lag). It corresponds to s in Eq. (14). Panels (b-d) show zoomed views of green boxes in (a). Grey

shading shows regions where VM1 celerity is less than 0.1 m s−1.

example, that the internal tides generated at half a wave length away from the PIL200 location and then propagated there have

the opposite phase from those locally and currently generated at the location. So, these waves tend to cancel each other, and the

opposite signs in the source function reflect this wave cancelling. Although the adjoint frequency response function decays with

distance (Fig. 6a), remote locations with strong barotropic tides and/or steep bottom slopes can be as strong sources as those

near the observation location. For example, the magnitudes of the source function in the straits of the Indonesian archipelago,500

which are well known source regions of internal tides, are comparable to those on the Australian shelf.

5.3 Phase spread

VM1 internal tides from most of the model domain except the Australian shelf are only partially random (Fig. 8b). The

travel time τ for VM1 semidiurnal internal tides calculated by ray theory increases roughly radially from the PIL200 location

(Fig. 8a), which agrees with the adjoint sensitivity (Fig. 6a). A clear exception is the Australian shelf where τ grows quickly505

because of small group velocity. The phase variance Pθθ = σ2
j also increases roughly radially, but the rate of increase is faster

on the shelf because the phase-speed variance σ2
C relative to the squared mean phase speed c2 is much larger there (Fig. 8b).

Note that σj > 1 is a convenient threshold for random sources (see Eq. (4d); also Fig. 2d in Part I for illustration).
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Figure 8. Maps of variables related to phase modulation of semidiurnal (SD) internal tide at PIL200 location in reference case:

(αC ,αL,αr) = (0.7,2,3). Left, middle, and right panels show travel time, phase variance, and equivalent isotropic correlation length of

phase modulation, respectively. Upper and lower panels are for vertical mode one (VM1) and mode two (VM2), respectively. Note the differ-

ent scales for upper and lower panels. Roman numerals in panels (c,f) show locations where correlation functions are shown in Fig. 9. Yellow

triangles indicate PIL200 location. Black lines show isobaths at 10, 100, 200, 500, 1500, 3000, and 5000 m water depths. Grey shading

shows regions where celerity is less than 0.1 m s−1.

Unlike VM1, VM2 internal tides are mostly random (Fig. 8e). This is partly because the phase-speed variance σ2
C relative

to the squared mean phase speed c2 is larger for VM2 than VM1, so the rate of increase of phase variance is higher. Another510
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Vertical mode 1 (VM1) and (b) mode 2 (VM2). Dotted vertical lines indicate standard deviations determined by least-squares fit of the

Gaussian function, which is used as correlation length σr for the diffusion operator method by Weaver and Courtier (2001).

reason is that VM2 internal tides have about twice the travel time compare to VM1, and hence VM2 has more time to be

affected by random oceanic variability (Fig. 8d).

5.4 Horizontal correlation of phase modulation

Since the diffusion operator method by Weaver and Courtier (2001) was used to represent the horizontal correlation of phase

modulation, the equivalent isotropic phase correlation length σr characterises the horizontal correlation. It shows an order-of-515

magnitude variability between the deep ocean and continental shelf for VM1 (Fig. 8c), and tends to have magnitude comparable

to but smaller than αrLC over a large part of the model domain. The reason for this can be seen by considering Eqs. (7) and (23)

in the limit of small Pθθ = σ2
j , which suggests the length scale 2π−1αrLC . For example, the gradual increase of σr towards

north reflects the latitudinal variation of the Rossby radius of deformation, which is assumed to be proportional to LC . The

small σr on the continental shelf results from small celerity (and hence small Rossby radius of deformation). The modelled520

equivalent isotropic correlation function at three contrasting locations are shown in Fig. 9a. The correlation function generally

has a broader tail than the Gaussian function. The modelled and fitted correlation functions agree around the correlation value

of 0.6, which corresponds σr (standard deviation of the Gaussian function).

The equivalent isotropic correlation length σr for VM2 is substantially smaller than VM1 (Fig. 8f) and does not have the

rough relationship with LC , although the same LC is used for VM1 and VM2. This is because the phase variance Pθθ = σ2
j525

is much larger for VM2 than VM1 (Fig. 8b,e), which makes the gradient of P∆θ∆θ around |∆η|/l� 1 larger (see Eq. (23))

and the decay of the exponential function in Eq. (7) faster. As a result, the latitudinal variation does not exist for VM2, but

the order-of-magnitude variability between the deep ocean and continental shelf remains. Fig. 9b shows that the modelled and

fitted correlation functions agree well for correlation values larger than 0.6 for VM2.
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Figure 10. Nonharmonic variance source function of isopycnal displacement induced by nonharmonic vertical-mode-one (VM1) semidiurnal

(SD) internal tide at PIL200 location in reference case: (αC ,αL,αr) = (0.7,2,3). Lowest four baroclinic modes and four major semidiurnal

constituents are included. Panels (b,c) show zoomed views of green boxes in (a). Grey shading shows regions where VM1 celerity is less

than 0.1 m s−1.

5.5 Contributions of different source regions, vertical modes, and tidal constituents530

The results of the model suite provide the contributions of different source regions, vertical modes, and tidal constituents to

the modelled nonharmonic internal tides, and their dependence on the model parameters. We look at different contributions

using the reference case (αC ,αL,αr) = (0.7,2,3) as an example in this section, and then the parameter dependence in the next

section.

The total modelled nonharmonic VM1 semidiurnal internal-tide variance is 38 m2 in the reference case, compared to the535

observed variance of 45± 12 m2 (confidence interval based on twice the standard error). As explained in Section 4.2, the

variance is calculated based on VM1-induced extreme (maximum or minimum) isopycnal displacements within the water

column. The modelled variance can be converted to vertically integrated potential energies in J m−2 by multiplying 7.6, and

the variance of surface displacements in m2 by multiplying 7.1× 10−7 (without seasonal variation).
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Table 1. Contributions of different regions to nonharmonic vertical-mode-one (VM1) semidiurnal internal-tide variance (in m2) at PIL200

location in reference case: (αC ,αL,αr) = (0.7,2,3). Variance is based on time series of extreme (maximum or minimum) isopycnal dis-

placement within water column. Abbreviations for the regions are LOC: local region near PIL200 location shallower than 1500 m, NWS:

Australian North West Shelf region excluding LOC region, LAS: region around Lombok and Alas straits, SS: region around Sape Strait, and

IND: the rest of the model domain, mostly deep Indian Ocean. These regions are shown in Fig. 10.

Region VM1 M2 only VM1–4, M2, S2, K2, N2

LOC 3.2 6.0

NWS 4.9 8.2

LAS 7.9 13.5

SS 0.4 2.6

IND 2.9 7.5

Total 19.4 37.8

Table 2. Contributions of different vertical modes (VM) and tidal constituents to nonharmonic VM1 semidiurnal internal-tide variance (in

m2) at PIL200 location in reference case: (αC ,αL,αr) = (0.7,2,3). Variance is based on time series of extreme (maximum or minimum)

isopycnal displacement within water column.

M2 S2 K2 N2 Total

VM1 19.4 6.8 0.8 0.5 27.5

VM2 4.7 1.6 0.2 0.1 6.6

VM3 1.9 0.4 0.1 0.0 2.4

VM4 0.9 0.2 0.0 0.0 1.2

Total 26.9 9.0 1.1 0.7 37.8

The contributions of different regions are shown in Fig. 10 as the map of nonharmonic variance source function, and in540

Table 1 as regionally integrated contributions. The following regions are arbitrary chosen for illustration purposes. The LOC

region is the local region near the PIL200 location on the Australian North West Shelf shallower than 1500 m, and the NWS

region is the Australian shelf region excluding the LOC region. The LAS and SS regions cover the Lombok and Alas straits

and Sape Strait, respectively. The IND region is the rest of the model domain, mostly deep Indian Ocean. These regions are

indicated by dashed blue lines in Fig. 10. Fig. 10 shows that important source regions are the Australian shelf, and the straits545

in the Indonesian archipelago. The nonharmonic variance source function appears much smoother than the source function in

Fig. 7, because the diffusion operator that approximates the correlation coefficient matrix R is applied, and the phase correlation

lengths are relatively large (Fig. 8c,f). The horizontal scale of the nonharmonic variance source function is smaller than the

correlation length for VM1 (Fig. 8c). This is partly because higher modes have smaller correlation lengths (Fig. 8f), and partly
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show results for αr = 3 and αL = 2, respectively. Dotted vertical lines indicate values used in reference case.

because the diffusion operator averages the opposing contributions from the source function (e.g., red and blue patches in550

Fig. 7) when the correlation length is comparable to or larger than the wavelength. However, note that the locations of sources

in the nonharmonic variance source function are uncertain within the phase correlation length in the current approach, as

explained in Appendix C. This is why contributions from relatively large regions are compared in Table 1.

Table 1 shows that remote regions are more important sources of the nonharmonic internal tides than local sources. For

example, the contributions of the Australian shelf is smaller than those of the Indonesian straits, and the local contribution on555

the Australian shelf is smaller than the rest of the shelf. This is because remote sources can be as strong as local sources before

phase modulation (Fig. 7), and it takes time for random phase-speed variability to make internal tides nonharmonic (Fig. 8b,e).

Although the magnitude of the nonharmonic variance source function in the deep ocean (IND region) is nearly two orders of

magnitude smaller than the peak values in the major sources (Fig. 10), Table 1 shows that the overall contribution is substantial

because it occupies much larger area than the other regions. Fig. 10 also suggests that, although we used a relatively large560

model domain for available computational resources, the current modelling is likely to have missed remote sources. It is likely

that at least a few m2 of variance is missing from deep Indian Ocean to the west of the model domain.

Table 2 shows the contributions of different vertical modes and tidal constituents to the modelled variance. The tabular entry

for VM2 and M2 represents, for example, the contribution of VM2 internal tide that is excited by the M2 barotropic forcing,

and then converted to VM1 before arriving at the PIL200 location. Regarding the contributions of different vertical modes,565

the model results show that VM1 contributes about 3/4 of the total variance, and the contributions decrease with increasing

mode number. Regarding the contributions of different tidal constituents, M2 and S2 forcing contribute roughly 3/4 and 1/4

of the total variance, respectively. The contributions of K2 and N2 are small (1.8 m2). The VM1 directly forced by M2 alone

contributes roughly a half of the total variance. So, VM1 and M2 are dominant, but focusing only on VM1 and M2 would cause

substantial underestimation of the nonharmonic semidiurnal internal-tide variance in this case.570
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5.6 Dependence on model parameters and comparisons with observations

The results shown in the previous section are based on the reference model parameters, but the parameters have relatively large

uncertainty. In this section, we investigate the dependence of the results on the model parameters, and compare the results with

observations at the PIL200 location. The model parameters are varied beyond the realistic range for process understanding.

The results show that the modelled nonharmonic internal-tide variance strongly depends on the variance (αC or σ2
C) and575

correlation length (αL or LC) of phase speed (Fig. 11a). These parameters affect the nonharmonic internal-tide variance in

two ways. First, they determine the partitioning of the variance into harmonic and nonharmonic components through the phase

variance σ2
j (see Eq. (4)). Second, they affect the phase correlation length σr through µj and ςj in Eq. (7), as well as the variance

of horizontal phase difference P∆θ∆θ in Eq. (20). The dependence on αL shows that it is essential to consider the phase-speed

correlation length (see the small variance at αL = 0 in Fig. 11a), because phase-speed variability with small correlation length is580

inefficient in producing phase variance (see Eq. (19)). The dependence on αL gradually decreases with increasing αL for a few

reasons. First, the ratio of the variance partitioned to nonharmonic component (ς2j in Eq. (4)) increases with the phase variance

σ2
j , but the rate of increase becomes much slower for σ2

j > 1 (see Eq. (4d); also Fig. 2d in Part I for illustration). Second, the

horizontal phase correlation tends to increase nonharmonic internal-tide variance as explained in Appendix C, but the increase

ceases when the equivalent isotropic phase correlation length σr becomes comparable to the internal-tide wavelength. This is585

because regions separated by half a wavelength tend to have opposing contributions to internal-tide amplitude (see blue and

red patches in Fig. 7), and the opposing contributions are averaged in Eq. (11) when the correlation length is larger than half

the wavelength.

The nonharmonic internal-tide variance also strongly depends on αr (Fig. 11b). The dependence illustrates the aforemen-

tioned roles played by the phase correlation length σr and internal-tide wavelength more clearly, because σr is roughly pro-590

portional to αr. The phase correlation increases the nonharmonic internal-tide variance when αr is small. Although αr� 1

(negligible horizontal correlation) is unrealistic, small variance in this limit shows that it is essential to consider horizontal

phase correlation for gridded sources, as explained in Appendix C. When αr becomes larger, the nonharmonic internal-tide

variance decreases gradually with increasing αr by the averaging of sources with opposite phases. The peak of the variance

should occur when σr is around a quarter of the wavelength. Considering that the internal-tide wavelength is 1–2 times the595

Rossby radius of deformation in the modelled region and σr tends to be comparable but smaller than αrLC for VM1, this

suggests αLαr is roughly 1/2 at the peak. Fig. 11b shows the peak around αr ≈ 1/2 for αL = 2. This shows that anisotropy

of the horizontal correlation of phase is an important controlling parameter for a realistic parameter range (αL & 1,αr & 1),

especially if αL ≈ 1. More generally, the result shows that the ratio of the phase correlation length and internal-tide wavelength

is important for nonharmonic internal-tide variance.600

The comparison of the model results and the PIL200 observations shows that the model results are not inconsistent with

the observations for a realistic parameter range (αL & 1,αr & 1), although the modelled variance tends to be smaller than the

observed mean. The larger phase-speed variance case (αC = 1.0) used phase-speed variance from the PIL200 location on the

continental shelf, which provides phase-speed variance that appeared to be roughly the upper limit of previous estimates for
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deep ocean. In this case, the model results are around the observed mean for αL ≥ 1. The smaller phase-speed variance case605

(αC = 0.4) used phase-speed variance that is about the middle of previous estimates for deep ocean, but is an underestimate

for shallow water. So, it is reasonable that the modelled variance is around or below the approximate 95% confidence interval

for αL ≥ 1. In the reference case for phase-speed variance (αC = 0.7), the model results are between the observed mean

and the lower bound of the approximate 95% confidence interval for αL ≥ 1. Considering the number of assumptions and

simplifications used in the model suite, the results are encouraging. This demonstrates the feasibility of the proposed modelling610

framework and model suite.

6 Discussion

This paper developed a new framework and model suite for process-based modelling of nonharmonic internal tides by com-

bining adjoint, statistical, and stochastic approaches. This required the development of a new method called adjoint frequency

response analysis and new stochastic models based on stochastic differential equations. (The adjoint frequency response anal-615

ysis is new in physical oceanography to my knowledge, although the use of the adjoint method in many fields makes more

comprehensive literature survey difficult.) The application of the model suite to nonharmonic vertical-mode-one (VM1) semid-

iurnal internal tides at the PIL200 location on the Australian North West Shelf added further support that the phase modulation

process is caused by phase-speed variability along deterministic (or mean) propagation paths (Zaron and Egbert, 2014) as a

first approximation. The correlation length of phase speed and anisotropy of the horizontal correlation of phase modulation620

were found to be important parameters controlling the nonharmonic internal-tide variance, in addition to phase-speed variance

which has been identified in previous studies (Zaron and Egbert, 2014; Buijsman et al., 2017). Furthermore, the nonharmonic

variance source function was shown to be a new convenient tool to identify important source regions of nonharmonic internal

tides. These are the major novel contributions of this paper.

In the proposed stochastic models, it was aimed to model stochastic wave-phase variables based on the variance and corre-625

lation length of phase speed as much as possible. This is because these parameters can be obtained more easily than the phase

statistics of nonharmonic internal tides, for example, from reanalysis products that do not include tides. However, since such a

study has not been conducted in the modelled region, this study assumed that the phase-speed variance and correlation length

were proportional to the observed variance at the PIL200 location and the Rossby radius of deformation, respectively. The

use of more realistic phase-speed variance and correlation length would be beneficial for comparing modelled and observed630

variance in the future.

Since the analysis in Appendix A suggests that nonlinear effects do not have leading-order effects, the most important caveat

of the proposed approach appears to be the use of ray tracing and mean stratification to calculate wave propagation paths.

The use of ray tracing may be questioned because, when phase-speed variability is included in ray tracing, the length scale

of phase-speed variability can be comparable to or shorter than the wavelength (invalidating the slowly varying assumption),635

and ray paths could vary widely (Park and Watts, 2006; Rainville and Pinkel, 2006). However, studies on wave propagation

in random media in other fields (e.g., Ishimaru, 1997; Colosi, 2016) suggest that ray tracing may have wider applicability
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than it seems. For example, observed phase tends to be insensitive to small-scale phase-speed variability (consistent with

Fig. 11a). Even when ray paths diverge widely, the contributions to the observed phase lag may come only from paths around

the mean (unperturbed by phase-speed variability) propagation path, called a Fresnel zone. This is because waves arriving640

through widely perturbed paths tend to have different phases, and hence tend to average out through interference. They suggest

that phase statistics have relatively weak dependence on the details of ray paths and small-scale phase-speed variability, which

appears to be consistent with Buijsman et al. (2017). Ray tracing and mean stratification are used in this study as a compromise

among these factors and their simplicity. It would be worth investigating the impact of different methodologies for calculating

wave propagation paths in the future.645

The proposed model suite was aimed to be simple enough to include essential processes only, and this study appears to have

achieved the aim; however, the modelled variance tended to be smaller than the observed mean for a realistic range of the model

parameters (Fig. 11). The underestimation could have been caused simply by numerical reasons (or available computational

resources), including insufficient model domain size and grid resolution. It appears likely that at least a few to half a dozen

m2 of variance were missing for numerical reasons. But the underestimation might also be caused by missing processes of650

secondary importance, and it would be worth mentioning three potential causes here. First, the amplitude variability of wave

sources was neglected. Part I showed that the amplitude variability tends to increase nonharmonic internal-tide variance (see

Shimizu, accepted, Eq. (14b)), although it is less important than the phase variability. Second, the variability of propagation

paths was neglected in the model. It might increase phase modulation and make its horizontal correlation more isotropic

(effectively larger αL and smaller αr), both of which increase nonharmonic internal-tide variance (Fig. 11). Third, Shimizu655

(2024a) recently showed that the use of the vertical-mode amplitude of surface or isopycnal displacement as an objective

function implicitly assumes omni-directional propagation of internal-wave signals in adjoint models. This implicit assumption

might be relevant, because the PIL200 observations show that roughly a half of the VM1 internal-tide energy is associated with

directional waves (but with large uncertainty; see Part I). Compared to omni-directional internal tides, internal tides propagating

offshore would have higher sensitivity to remote sources in the straits between the Lesser Sunda Islands in Indonesia, although660

it would have lower sensitivity to remote sources on the Australian shelf.

This study is the first study that took an "inverse" approach to the modelling of nonharmonic internal tides, and the results are

promising. Since this is a feasibility study of the new modelling framework, there are many aspects of the model suite that can

evolve in the future. For example, the adjoint frequency response analysis assumed linear dynamics, the standard ray theory was

used despite potential inadequacies, only phase variability from phase-speed variability along deterministic propagation paths665

was considered, and the stochastic model for the horizontal phase correlation was highly simplified. Compared to the usual

(forward) hydrodynamic modelling, the proposed model suite has complementary characteristics. The model suite focuses on a

specific observation location and the statistics of nonharmonic internal tides. It does not yield information for the whole model

domain or for a specific time; however, it yields information that is not straightforward to obtain from the usual hydrodynamic

modelling, such as the contributions of different source regions (Fig. 10, Table 1), and the dependence on different processes670

and/or parameters (Fig. 11a,b), for nonharmonic internal tides from distributed sources. For investigating the predictability of

nonharmonic internal tides, the locations and quantitative contributions of internal-tide sources, such as Fig. 10, would provide
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useful baseline information. It is hoped that the proposed modelling framework provides a useful tool for studying nonharmonic

internal tides in the future.

7 Conclusions675

Together with Part I, this study developed a new framework and its implementation for process-based modelling of non-

harmonic internal tides by combining adjoint, statistical, and stochastic approaches, and applied the resultant model suite to

nonharmonic vertical-mode-one (VM1) semidiurnal internal tides at PIL200 location on the Australian North West Shelf. The

proposed modelling framework provides a new tool for process-based studies of nonharmonic internal tides, when the su-

perposition of many waves with different degrees of randomness makes process investigation difficult. Also, the combination680

of adjoint sensitivity modelling and the frequency response analysis from Fourier theory provides a new convenient way to

calculate the deterministic sources of internal tides observed at a fixed location. The use of these methods led to the following

new findings.

– The modelled nonharmonic internal-tide variance was not inconsistent with the observed variance for a realistic range

of the model parameters. This demonstrates the feasibility of the proposed modelling framework and model suite. This685

also means that, as a first approximation, nonharmonic internal tides are caused by phase-speed variability along the

deterministic (or mean) propagation paths.

– Important parameters controlling nonharmonic internal-tide variance include the correlation length of phase speed and

anisotropy of the horizontal correlation of phase modulation, in addition to phase-speed variance which has been identi-

fied in previous studies.690

– The map of nonharmonic variance source function and its regional integrals provide a new convenient tool to identify

important sources of nonharmonic internal tides. For the PIL200 location, important sources include the Australian North

West Shelf away from the observation location, and the straits between the Lesser Sunda Islands in Indonesia, such as

the Lombok Strait.

– Higher vertical modes can be important even when VM1 internal tide is analysed. In the example application, the highest695

three of the four lowest baroclinic modes contribute roughly 1/4 of the total variance.

– In addition to the above point, focusing only on VM1 and M2 tidal constituent can lead to substantial underestimation

of nonharmonic VM1 semidiurnal internal-tide variance, even when they are dominant. In the example application,

VM1 and M2 account for roughly a half of the total variance for the four lowest baroclinic modes and the four major

semidiurnal constituents.700

Data availability. Selected outputs of the model suite are available from Shimizu (2024b). (This data set can be accessed only by referees

until the acceptance of this manuscript. Access instruction was provided to the editor.) The 2019 version of GEBCO bathymetry and the
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2018 version of World Ocean Atlas are publicly available from https://www.gebco.net/data_and_products/gridded_bathymetry_data and

https://www.ncei.noaa.gov/products/world-ocean-atlas, respectively. The version 5 of TPXO9-atlas was obtained from Dr. G. D. Egbert and

Dr. S. Y. Erofeeva at Oregon State University, U.S.A.705

Appendix A: Nonlinear wave interactions and justification for using linear models

This appendix provides justification for using a combination of linear models as a first approximation in this study. We do so by

deriving the governing equation of approximately linear plane gravity waves affected by nonlinear resonant wave interactions

and the variability of background conditions, and then considering the order of magnitude of the terms for internal tides.

Before the derivation, however, it is worth noting that the cumulative effects of wave modulation caused by strongly nonlinear710

processes are not necessarily nonlinear in general. This is known in the study field called "wave propagation in random media".

For example, turbulence and short stochastic internal waves (approximately represented by the well-known Garrett-Munk

spectrum) are nonlinear, but a signal modulated by these processes can be modelled well by linear methods (e.g., Ishimaru,

1997; Colosi, 2016).

The following derivation has two major differences from many studies of resonant internal-wave interactions in oceanogra-715

phy (see e.g., Müller et al., 1986, for a review). First, we assume modal structure in the vertical instead of vertically propagating

internal waves, because internal tides are long waves. Second, we consider phase-resolving equations instead of energy or ac-

tion density equations, because we are interested in the phase modulation of internal tides. These approaches were taken in

early studies of the resonant wave interactions (e.g., Ball 1964; Hasselmann 1966; Thorpe 1966; see also Olbers and Herterich

1979 for formulation with the Coriolis effects).720

For brevity, the following derivation employs the shallow water equations over a flat bottom under Coriolis effects. This

is because the results can be translated to a single baroclinic mode using the vertical-mode formulation in Appendix B in a

relatively straightforward manner. The shallow water equations can be written as

∂η

∂t
=− ∂

∂x
((h+ η)u)− ∂

∂y
((h+ η)v) , (A1a)

∂u

∂t
=− ∂

∂x

(
c20
h
η

)
−u∂u

∂x
− v ∂u

∂y
+ fv, (A1b)725

∂v

∂t
=− ∂

∂y

(
c20
h
η

)
−u∂v

∂x
− v ∂v

∂y
− fu, (A1c)

where h is the constant water depth, c20 = gh is the squared celerity, and g is the acceleration due to gravity. Although

c20h
−1 = g, the above expression is used for analogy with the evolutionary equations of vertical-mode amplitudes (Eq. (B3) in

Appendix B). We assume that the prognostic variables consist of spatially and temporally varying wave components and spa-

tially uniform random components that are slowly varying in time compared to the wave components (representing mesoscale730

variability). We also assume that celerity c0 has a spatially uniform random component (representing, for example, interannual

variability of the background conditions), which is assumed to be much smaller than the non-random component. Then, we
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replace the variables in the the shallow water equations as
c0

η(x,y, t)

u(x,y, t)

v(x,y, t)

→

c0

0

0

0

+


C0

H

U

V

+


0

η(x,y, t)

u(x,y, t)

v(x,y, t)

 , (A2)

where (C0,H,U,V ) are the random components with zero mean (which may result from strongly nonlinear processes), and735

(η,u,v) are the wave components including harmonic and nonharmonic components. Furthermore, we assume that the wave

components can be expressed as the superposition of linear plane waves:

p=
∑
j

rjaj(t)e−iθ′′j (t)e−i(κjxcosχj+κjy sinχj−ωjt)

+ (complex conjugate), (A3a)

p=


η

u

v

 , rj =


1

1

κjh
(ωj cosχj − if sinχj)

1

κjh
(ωj sinχj + if cosχj)

 , (A3b)740

where θ′′j = ϕj + θj is the total phase lag, ωj is the angular frequency (assumed positive to be consistent with the rest of

this study), and (κj ,χj) are the magnitude and angle of wavenumber vector of the jth wave. Their (real-valued) amplitudes

and phases, aj(t) and θj(t) = θ′′j (t)−ϕ(t), correspond to the realization of Aj and Θj in Eq. (1). The vectors rj are right

eigenvectors of the linear operator of the shallow water equations:

L(κ,χ) =


0 κhcosχ κhsinχ

κc20h
−1 cosχ 0 −if

κc20h
−1 sinχ if 0

 , (A4)745

which depends on the wavenumber vector. The right eigenvector rj satisfies the eigenvalue problem:

ωjrj = L(κj ,χj)rj . (A5)

This eigenvalue problem also yields the dispersion relationship ω2
j = f2 + c20κ

2
j . We substitute Eq. (A3) into Eq. (A1) with

Eq. (A2), multiply the equations by exp(i(κjxcosχj +κjy sinχj −ωjt)), and integrate the equations over an area whose size

is much larger than the wave length and over time much longer than the wave period but shorter than the timescale of the750

random components. The result can be written as

rj

(
iωj +

∂

∂t

)
(aje−iθ′′j )

=i(L(κj ,χj) +κjM(χj))rjaje−iθ′′j

+i
∑

resonant k,l

κkN(rl,χk)rkalake−i(θ′′l +θ′′k ), (A6)
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where the sum in the last term is taken for combinations that satisfy the resonant triad conditions (Ball, 1964; Hasselmann,755

1966; Thorpe, 1966):

ωj ±ωk ±ωl = 0 (A7a)

−→κ j ±−→κ k ±−→κ l =
−→
0 , (A7b)

and −→κ = κ(cosχ,sinχ) is the wavenumber vector. The matrix operators are defined as

M(χ) =


U cosχ+V sinχ H cosχ H sinχ

2c0C0h
−1 cosχ U cosχ+V sinχ 0

2c0C0h
−1 sinχ 0 U cosχ+V sinχ

 , (A8a)760

N(p,χ) =


ucosχ+ v sinχ η cosχ η sinχ

0 ucosχ+ v sinχ 0

0 0 ucosχ+ v sinχ

 , (A8b)

where the argument p of N corresponds to (η,u,v) in the matrix, and |C0| � c0 is assumed in M. It is convenient to reduce

Eq. (A6) to a scalar differential equation. This can be done by using the left eigenvectors of L:

lj =


c20
h

1

κj
(ωj cosχj − if sinχj)

1

κj
(ωj sinχj + if cosχj)

 , (A9)

which forms a pair with rj . By left-multiplying Eq. (A6) by lHj , we get765 (
iωj +

∂

∂t

)
(aje−iθ′′j ) =iωj

(
1 +

c′

c
+nj

)
(aje−iθ′′j ), (A10)

where c= ωj/κj is the phase speed of the "carrier" wave (the exponential function in Eq. (A3)), c is the (mean) phase speed

in the absence of the random components (C0,H,U,V ), c′ is the phase-speed deviation due to modulation by the random

components, and nj is defined shortly. The first term on the right-hand side is obtained using Eq. (A5). The second term is

obtained using770

κj
lHj M(χj)rj

lHj rj

=

(
c0C0

c2
+
U cosχ+V sinχ

c
+

c20
2c2

H

h

)
ωj

=
c′

c
ωj . (A11)

The fact that c′ is the phase-speed deviation can be checked by deriving the dispersion relationship including the random

components. The first two terms of c′ agree with Zaron and Egbert (2014) (except for an error regarding c2p and gD in the775
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denominator in their Eq. (A12)). The third term is the resonant wave interaction term, where nj(aj ,ak,al,θ′′j ,θ
′′
k ,θ
′′
l ,χj ,χk,χl)

is defined as

nj =
eiθ′′j

ajωj

∑
resonant k,l

κk
lHj N(rl,χk)rk

lHj rj
alake−i(θ′′l +θ′′k )

=
c20
2c2

∑
resonant k,l

(
1 +

κk
κl
f1f2

)
ωk
ωj

alak
ajh

e−i(θ′′l +θ′′k−θ
′′
j ), (A12a)

f1 =1 +
(ωjωk + f2)cos(χj −χk) + if(ωj +ωk)sin(χj −χk)

c20κjκk
, (A12b)780

f2 =
ωl
ωk

cos(χl−χk)− i
f

ωk
sin(χl−χk). (A12c)

The first terms on both sides of Eq. (A10) obviously cancel each other, but they are retained to show the magnitude of the

unmodulated linear solution. Finally, by separating the real and imaginary parts of Eq. (A10) and recalling θ′′j = ϕj + θj , we

get the evolutionary equations of wave amplitudes and phases:

∂aj
∂t

=− ajωjIm(nj), (A13a)785

∂(ϕj + θj)

∂t
=−ωj

(
c′

c
+ Re(nj)

)
. (A13b)

The above analysis can be applied to internal tides using the vertical-mode formulation in Appendix B. To simplify the

argument, we consider only vertical mode one (VM1), although inter-mode interactions are required to satisfy the resonant

triad conditions, Eq. (A7), in general (Hasselmann, 1966). This is because (i) nonlinear wave excitation can also occur at

near-resonant conditions, (ii) the inclusion of vertical mode two (VM2) does not change the following order-of-magnitude790

argument for the PIL200 location, and (iii) it appears that there is no previous study that investigated nonharmonic internal-tide

variance for higher modes in the deep water within the model domain. To consider VM1, we replace c0 and h by the celerity

and normalisation factor of VM1, c1 and ĥ1, and the prognostic variables (η,u,v) by the corresponding VM1 amplitudes

(η̂1, û1, v̂1). We also make the corresponding changes to the random components (C0,H,U,V ), and multiply the matrix N by

the nonlinear interaction coefficient N̂111 defined in Eq. (B4c) in Appendix B.795

We now consider the order of magnitude of the unmodulated linear (first), modulated linear (second), and nonlinear (third)

terms on the right-hand side of Eq. (A10) for VM1 semidiurnal internal tides. The ratio of the modulated term to the unmodu-

lated term is c′/c, which is about 0.1 at the PIL200 location on the Australian North West Shelf (approx. 200 m water depth),

and 0.01 to 0.03 in deep ocean (see Appendix F and Section 4.3). For the nonlinear excitation of semidiurnal internal tides, the

major nonlinear contributions come from diurnal–diurnal interactions (e.g., ωK2 = ωK1 +ωK1) and semidiurnal–quarterdiurnal800

interactions (e.g., ωM2 = ωM4−ωM2). (Note that the effects of low-frequency variability are included in c′.) Neglecting O(1)

factors c20/c
2 and ωk/ωj in Eq. (A12), the ratio of the nonlinear term to the unmodulated linear term isO(|N̂111|alak/(ĥ1aj)).

For diurnal–diurnal and semidiurnal–quarterdiurnal interactions, the ratios are about 0.002 and 0.01 at the PIL200 location,

respectively. (These values are obtained using ĥ1=40 m, N̂111 = 0.17, aD = 1.5 m, aSD = 6.4 m, and aQD = 2.2 m for VM1 from

Part I, where aD, aSD, and aQD are the VM1 internal-tide amplitudes corresponding to half the harmonic plus nonharmonic805
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variance over diurnal, semidiurnal, and quarterdiurnal frequency bands, respectively.) For the deep ocean within the model

domain, VM1 semidiurnal (harmonic plus nonharmonic) internal-tide amplitudes appear to have the same order of magnitude

to the PIL200 location (e.g., compare the surface-displacement variance of 0.6 cm2, from Table 2 in Part I, with the "F-space"

approach by Nelson et al. (2019)). On the abbysal plain between the Australian North West Shelf and Indonesia (i.e., Argo

Abyssal Plain), for example, we get ĥ1 ≈ 700 m, N̂111 ≈ -0.9, and |N̂111|alak/(ĥ1aj) = 0.0005, by normalizing the vertical810

mode for isopycnal displacement by the maximum value, and by using aD and aSD from the PIL200 location and the clima-

tological stratification used in the adjoint modelling (Section 4.2). These values suggest that the nonlinear term is an order of

magnitude smaller than the modulation term both in the deep ocean and on the Australian continental shelf, probably excluding

shallower parts of the shelf (say, approximately or less than 100 m water depth). Note that the random components are assumed

to be spatially uniform for brevity in the above analysis; however, the contributions of background currents and background815

vorticity to c′ (Zaron and Egbert, 2014, Eq. (A12)) suggest that the assumption does not change the order of magnitude of the

terms provided that horizontal scale of the random variability is comparable to or larger than the Rossby radius of deformation.

The above analysis suggests that the nonlinear resonant wave interactions during wave propagation can be neglected as a first

approximation for VM1 semidiurnal internal tides. Then, recalling that ϕj are the expected (harmonic) phase lags defined in

the absence of c′, the mean of Eq. (A13) shows that the pre-modulation amplitudes aj and phase lags ϕj remain approximately820

constant. So, they can be evaluated at the sources, as done in the adjoint frequency response analysis. Also, by subtracting the

mean from Eq. (A13b), we get the evolutionary equations of θj(t), equivalent to Eq. (16), which is the basis of the proposed

linear stochastic phase modelling. They provide justification for using a combination of linear models as a first approximation

in this study. Also, Eq. (A13b) provides another justification for calculating phase deviation from phase-speed deviation, as

suggested by Zaron and Egbert (2014).825

Appendix B: Governing equations of vertical-mode amplitudes and formulation of hydrodynamic model

This appendix describes the evolutionary equations of vertical-mode amplitudes over steep slopes, which are used for three

purposes in this paper: (i) the numerical hydrodynamic model used for adjoint sensitivity modelling (Section 4.2), (ii) scaling

of the modulation and nonlinear terms to justify linear modelling (Appendix A), and (iii) the estimation of phase speed variance

from the PIL200 observations (Appendix F). The approach was originally proposed by Griffiths and Grimshaw (2007) to my830

knowledge, and formulated in a more convenient form and extended to include full nonlinear and nonhydrostatic effects by

Shimizu (2011, 2017, 2019). The linear formulation by Shimizu (2011) was adopted, for example, by Zaron and Egbert (2014)

and Kelly et al. (2016). These studies used horizontally variable vertical modes, which are calculated using local water depth

and background stratification. For example, using the generalized isopycnal coordinate s that depends only on density ρ and

explicitly writing the horizontal vector components (unlike the main body of this paper, −→x = (x,y)) for clarity, the isopycnal835
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displacement η and the horizontal velocity (u,v) can be decomposed as (Shimizu, 2019)

η(x,y,s, t) =
∑
n

φ̂n(x,y,s)η̂n(x,y, t), (B1a)

u(x,y,s, t) =
∑
n

π̂n(x,y,s)ûn(x,y, t), (B1b)

v(x,y,s, t) =
∑
n

π̂n(x,y,s)v̂n(x,y, t), (B1c)

where the sum is taken over all available vertical modes, η̂n, ûn, and v̂n are the nth vertical-mode amplitudes of the corre-840

sponding prognostic variable, and φ̂n and π̂n are the nth vertical modes for isopycnal displacement and horizontal velocity,

respectively. In this paper, the subscripts m and n denote vertical mode indices, which are 0 for the barotropic mode, 1 for the

first baroclinic mode, etc. Each set of vertical modes (φ̂n, π̂n) has the associated celerity (or the propagation of non-rotating

linear long gravity waves) cn and normalization factor ĥn with the unit of water depth. The normalization factor is defined as

ρ̂ĥn =

st∫
sb

π̂nρ
dZ
ds
π̂nds, (B2a)845

where ρ̂ is a reference density, and Z(x,y,s) is the background height of isopycnal. Hereafter, the superscripts t and b denote

the values at the surface and bottom, respectively. Since the choices of ρ̂ and ĥn are arbitrary, hat is used to denote variables

whose magnitudes depend on these normalization factors.

For approximately linear hydrostatic problems considered in this study, the multi-layer formulation in Shimizu (2011) and

the continuous formulation in Shimizu (2019) become equivalent after vertical-mode decomposition. We assume cn� c0 for850

n > 0, and retain the nonlinear terms for scaling purposes (but neglect mixed nonlinear–topographic terms). Then, separating

known barotropic (tidal) currents as external forcing, and neglecting other forcing and dissipation processes except linear
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bottom friction, the governing equations for η̂n, ûn, and v̂n for n > 0 are approximately given by

∂η̂n
∂t

=− ∂

∂x

(
ĥnûn

)
−
∑
l,m>0

∂

∂x

(
N̂mlnη̂lûm

)
− ∂

∂y

(
ĥnv̂n

)
−
∑
l,m>0

∂

∂y

(
N̂mlnη̂lv̂m

)
855

+
∑
m>0

(
L̂xmnĥmûm + L̂ymnĥmv̂m

)
+ f̂ηn , (B3a)

∂ûn
∂t

=− ∂

∂x

(
c2n

ĥn
η̂n

)
−
∑
l,m>0

N̂lnm

(
ûl
∂ûm
∂x

+ v̂l
∂ûm
∂y

)

−
∑
m>0

L̂xnm
c2m

ĥm
η̂m + fv̂n−

1

ĥn

∑
m>0

Γ̂nmûm, (B3b)

∂v̂n
∂t

=− ∂

∂y

(
c2n

ĥn
η̂n

)
−
∑
l,m>0

N̂lnm

(
ûl
∂v̂m
∂x

+ v̂l
∂v̂m
∂y

)

−
∑
m>0

L̂ynm
c2m

ĥm
η̂m− fûn−

1

ĥn

∑
m>0

Γ̂nmv̂m. (B3c)860

Here, f̂ηn represents the forcing function from the barotropic to nth baroclinic mode (shown in Fig. 3 for VM1 M2 tide),

(L̂xnm, L̂
y
nm) are topographic interaction coefficients, N̂nlm are nonlinear interaction coefficients, and Γ̂nm are modal friction

coefficients. These variables are defined as

f̂ηn =L̂x0nĥ0û0 + L̂y0nĥ0v̂0, (B4a)

L̂xnm =
1

ρ̂ĥn

st∫
sb

π̂nρ
dZ
ds

∂π̂m
∂x

ds, (B4b)865

N̂nlm =
1

ρ̂ĥl

st∫
sb

π̂nρ
dZ
ds
π̂lπ̂mds, (B4c)

Γ̂nm =
γ

ρ̂
π̂bnρ

bπ̂bm, (B4d)

where γ is the linear friction coefficient. The variable L̂ynm is defined similarly by replacing x by y in Eq. (B4b).

For numerical hydrodynamic modelling, Eq. (B3) excluding the nonlinear terms (i.e., those with N̂nlm) are discretized using

the control volume (or finite volume) method on the staggered (or Arakawa-C) grid, assuming a sinusoidal motion with angular870

frequency ω. Then, the matrix operator is set-up for the model state vector [η̂1 η̂2 · · · û1 û2 · · · v̂1 v̂2 · · · ]T , and the matrix operator

is transposed to obtain the operator for the adjoint model, LH in Eq. (D7) in Appendix D.

37



Appendix C: Detailed points regarding the treatment of horizontal correlation using R1/2

This appendix describes three detailed points regarding the treatment of horizontal correlation using R1/2 in Eqs. (11) and (12)

in Section 3.1.875

The first point is that R1/2 is not unique for the same R. For example, if sources at two locations are perfectly correlated

with sphys = [s0 s0]T and Σ = ς0I, R is a matrix with all the elements being unity. The Cholesky decomposition, a common

numerical method to calculate R1/2, yields

R1/2 =

1 0

1 0

 . (C1)

Then, sstat = [2s0 0]T from Eq. (11). This is reasonable in that statistically independent sources consist of a single source whose880

complex-valued amplitude is the sum of those of two perfectly correlated sources. But it also has a problem that the ordering

of vector elements in sphys determines where this single source is located. An alternative choice of R1/2 is

R1/2 =
1√
2

1 1

1 1

 . (C2)

In this case, sstat = [
√

2s0

√
2s0]T . It is not intuitive to have two supposedly independent sources for two perfectly correlated

sources. However, it has an advantage that the result does not depend on the ordering of vector elements in sphys, and there is a885

numerical method to calculate this type of R1/2 much more efficiently (the diffusion operator method by Weaver and Courtier

(2001)) than the Cholesky decomposition for large problems. Importantly, in both cases, E
(
A′2
)

= 4|s0|2ς20 from Eq. (12),

because R = R1/2RT/2 is the same. These examples suggest that sstat provides effectively independent sources that can be

used in the statistical model to calculate nonharmonic internal-tide variance, but the horizontal distribution of the independent

sources is uncertain within the correlation length of phase modulation.890

The second point is that the horizontal phase correlation has a large impact on nonharmonic internal-tide variance. As a

simple example, consider the above two-source case but in the absence of horizontal correlation. Then, R1/2 = I and E
(
A′2
)

=

2|s0|2ς20 from Eq. (12), which is half of the above perfectly correlated cases. It is important to relate this to grid resolution in

a numerical hydrodynamic model. If one source region is resolved by one grid point with sphys = [2s0] and Σ = ς0 in a low-

resolution model and two grid points with sphys = [s0 s0]T and Σ = ς0I in the corresponding high-resolution model, the sum of895

sphys (i.e., pre-modulation internal-tide amplitude) is the same (i.e., 2s0). However, if we neglect the horizontal correlation of

the sources, the variance is E
(
A′2
)

= 4|s0|2ς20 in the low resolution case and 2|s0|2ς20 in the high resolution case. The perfect

correlation considered in the last paragraph is required to make the variance the same at the two resolutions. This shows that

the horizontal correlation has to be considered for gridded sources, otherwise the results would be highly dependent on grid

resolution.900

The third point is that, strictly speaking, the treatment of horizontal correlation using R1/2 cannot be used to investigate the

details of the PDF or higher moments, because the statistical model uses a non-Gaussian distribution on the complex plane for

individual wave components. However, the method based on R1/2 works in the limit of many independent sources (or when
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the central limit theorem is applicable), because the limiting distribution is determined by the (co)variance, regardless of the

PDF of individual sources. The results of Part I suggest that this "many source" limit is common for internal tides.905

Appendix D: Adjoint method and adjoint frequency response analysis

This appendix describes the adjoint method and adjoint frequency response analysis, used to solve the covariance equations

and to calculate the source function. We start from a quick overview of the adjoint method, which is often used in the so-called

four-dimensional variational data assimilation in physical oceanography (e.g., Bennett, 2002; Wunsch, 2006).

The adjoint method is based on a so-called forward model and an objective (or cost) function. We consider a linear model:910

∂x

∂t
=−Lx+f , (D1)

where x(t) is the model state vector containing the model’s prognostic variables, L is the matrix operator representing the

linear dynamics, and f is the external forcing. Since the model is linear, the solution can be written as

x(t) =

t∫
−∞

H(t− τ)f(τ)dτ, (D2)

where each column of the matrix H contains the impulse response function. Using the model solution, we consider a linear915

function J =wHx, tentatively defined at a particular time tj . The variable w is the time-independent weight vector used to

define J . There are various expressions for J :

J(tj) =wHx(tj) (D3a)

=

tj∫
−∞

(
HH(tj − τ)w

)H
f(τ)dτ (D3b)

=

tj∫
−∞

λH(tj − τ)f(τ)dτ. (D3c)920

This manipulation is a linear and continuous version of the derivation by Marotzke et al. (1999). The variable λ is so-called

adjoint sensitivity, or the sensitivity of J to x. It can be calculated from the adjoint model associated with Eqs. (D1) and (D3a):

−∂λ
∂t

=−LHλ, (D4a)

λ=w at t= tj . (D4b)925

The above differential equations are integrated backwards in time from the "initial" condition given at t= tj .

For periodic or oscillatory problems, it is often convenient to consider the above problems in the frequency domain. Since

Eq. (D2) is convolution in time, the convolution theorem in Fourier theory shows that its Fourier transform is

x̃(ω) = H̃(ω)f̃(ω), (D5)
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where H̃ contains the frequency response function. Hereafter, tilde is used for Fourier-transformed variables. If we now allow930

tj to vary and consider time-dependent J , a similar method can be used for J , because Eq. (D3c) in the frequency domain is

J̃(ω) = λ̃H(ω)f̃(ω). (D6)

In this study, λ̃ is referred to as the "adjoint frequency response function", and analysis based on the above relationship as

"adjoint frequency response analysis".

In the above derivation, the time-dependent adjoint model Eq. (D4) and Fourier transform are used to calculate λ̃; however,935

for a linear forward model, it is more straightforward to calculate λ̃ by assuming a periodic solution from the beginning.

Assuming x= x̃eiωt and f = f̃eiωt in Eq. (D1), it follows that the corresponding adjoint model is

−iωλ̃=−LH λ̃+w. (D7)

This may appear inconsistent with Eq. (D4), but can be obtained by considering the Fourier integral of Eq. (D4a), and applying

integration by parts to the left-hand-side and the "initial" condition Eq. (D4b), assuming λ= 0 for t > tj .940

For the numerical computation of the adjoint frequency response function, the evolutionary equations of vertical-mode

amplitudes, Eq. (B3) in Appendix B, were used as Eq. (D1) after spatial discretization. Then, Eq. (D7) was obtained by

transposing the matrix operator L, and solved by matrix inversion. Although J̃ can be calculated as wH x̃, Eq. (D6) has an

important advantage that it provides horizontally distributed sources of internal tides observed at a fixed location, so that

different phase statistics can be assigned to different sources. Eq. (14) is the continuous version of twice Eq. (D6) with 2J̃ =945

ae−iϕ. (The factor 2 in Eq. (14) appears because the convolution theorem in the derivation requires λ̃ and f̃ to be two-sided

(the angular frequency ω can be positive or negative), but harmonic analysis and the statistical model assume one-sided spectra

(positive ω only).)

For the adjont modelling of the covariance equations, Eq. (18) or Eq. (20), the equations were written in a matrix form as

Eq. (D1), and the associated adjoint model Eq. (D4) was obtained by transposing the matrix operator L and setting J = Pθθ or950

J = P∆θ∆θ at the observation location, respectively. After calculating the adjoint sensitivity, Pθθ or P∆θ∆θ was calculated by

the convolution of the adjoint sensitivity and forcing using Eq. (D3c).

Appendix E: Covariance equations for stochastic variables and basis of stochastic phase models

This section briefly describes the basic relationships for stochastic differential equations (e.g., Särkkä and Solin, 2019), and the

basis of the stochastic phase models developed in Sections 3.4 and 3.5.955

To deal with multiple stochastic differential equations, such as Eqs. (16) and (17), we may consider simultaneous linear

stochastic differential equations of the form

dx= Axdt+ Bdb, (E1)

where x(t) is a vector containing the model prognostic variables, and b(t) contains the Brownian motion. The increment db

is a vector containing white Gaussian noise with zero mean and the covariance E
(
dbdbT

)
= Qdt, where Q is the so-called960
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"diffusion coefficient" matrix of the Brownian process (see e.g., Särkkä and Solin, 2019, chap. 4.1). The matrices A and B

may depend on t, but not on x in linear stochastic differential equations. The matrix Q is independent of t and x.

The covariance equations associated with Eq. (E1) are (Särkkä and Solin, 2019, chap. 6.1)

dP

dt
= AP + PAT + BQBT , (E2)

where P(t) = E
(
(x−E(x))(x−E(x))T

)
is the covariance matrix. In this paper, the components of P and Q are denoted by965

two subscripts corresponding to prognostic variables. For example, if one of the components in x is the phase speed c, then

Pcc = σ2
C is the phase-speed variance.

To model phase statistics, we put Eq. (16) and modified Eq. (17) for the ith and jth paths in the form of Eq. (E1), and consider

the associated covariance equations, Eq. (E2). This requires the modification of Eq. (17) to include the cross-path correlation

of phase-speed variability. We choose the vectors in Eq. (E1) to be x= [c′i c
′
j θi θj ]

T and b= [bi bj ]
T , and the cross-path970

correlation to be exponential. We take into account the variability of the mean phase speed c and the phase-speed correlation

length LC along the propagation paths, but neglect their cross-path variability, effectively assuming that the two paths remain

close to each other. This appears to be a reasonable first approximation, except for paths that are roughly parallel to steep

slopes, such as continental shelves. Then, the matrices in Eqs. (E1) and (E2) are given by

A =


−cL−1

C 0 0 0

0 −cL−1
C 0 0

−ωc−1 0 0 0

0 −ωc−1 0 0

 , (E3a)975

B =

√
c

LC

1√
1 +F 2(|∆η|/l)


1 F (|∆η|/l)

F (|∆η|/l) 1

0 0

0 0

 , (E3b)

Q =2σ2
C

1 0

0 1

 , (E3c)

where F and l are defined in Eq. (22). Note that, since the distance between the two propagation paths ∆η (see Fig. 4b) and the

correlation length l can vary along the paths, the cross-path correlation of random forcing needs to be included in B instead

of Q, which is assumed to be time-independent. In this paper, we assume that the phase-speed variance Pcicj is stationary in980

space and time as a first approximation (justified in Section 4.3). The matrices B and Q are chosen so that

Pcici = Pcjcj =
Qcici

2
=
Qcjcj

2
= σ2

C , (E4a)

Pcicj = σ2
CRη(|∆η|/l), (E4b)

where Rη is defined in Eq. (21).
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The cross-path correlation function of phase speed Rη has a different form from the along-path correlation function associ-985

ated with Eq. (17). Assuming that c and LC remain locally constant, Eq. (17) implies that the along-path correlation function

is (Särkkä and Solin, 2019, chap. 6.5)

Rξ = e−c|∆t|/LC ∼ e−|∆ξ|/LC , (E5)

where ∆t and ∆ξ are lags in time and along-path distance, respectively. It is undesirable to have an anisotropic correlation

function for phase speed; however, it appears unfortunately difficult to have cross-path correlation of the exponential form,990

when |∆η| and l vary along the paths. To keep the correlation as isotropic as possible, we set the integral scales in the along-

and cross-path directions the same, yielding Eq. (22).

We use the covariance equations, Eq. (E2), with the matrices in Eq. (E3) as the basis to model phase spread and cross-

path phase difference (Sections 3.4 and 3.5). Eq. (18) for the phase spread modelling is obtained from Eqs. (E2) and (E3)

by neglecting the rows and columns corresponding to the ith path and the cross-path correlation (i.e., F = 0), and by writing995

θj = θ and c′j = c′. Eq. (20) for the cross-path phase difference modelling is obtained from Eqs. (E2) and (E3) by modifying

the definition of x in Eq. (E1) as x= [c′i c
′
j θi− θj ]T , and by subtracting the fourth row from the third row in A and B. Note

that the matrices A and B are calculated for the background conditions, and that c′ aggregates the effects of interannual and

mesoscale variabilities. The processes inducing c′ can be strongly nonlinear, but the wave modulation process under given c′

is approximately linear, as shown in Appendix A.1000

Appendix F: Calculation of phase-speed variance from PIL200 data

This appendix describes the calculation of phase-speed variance σ2
C from the PIL200 data, which is used in the stochastic phase

modelling (Section 4.3; also see Part I for the PIL200 data).

To estimate σ2
C , we consider the phase speed of internal tides with a single vertical-mode structure under random, non-

tidal background isopycnal displacements and currents. The phase-speed deviation due to the random components, c′, is given1005

in Eq. (A11) in Appendix A for the barotropic mode. The result can be translated to a single baroclinic mode using the

vertical-mode formulation in Appendix B. To do so, we replace c0 and h by the celerity and normalisation factor of nth

baroclinic mode, cn and ĥn, and the prognostic variables (η,u,v) by the corresponding modal amplitudes (η̂n, ûn, v̂n). We

also replace the random components (C0,H,U,V ) by the corresponding baroclinic components (Cn, Ĥ
nt
n ,U

nt
n ,V ntn ), where

the superscript nt is used to denote the random, non-tidal version of the variable. The variables Ĥn and
−→
V n = (Un,Vn) are1010

equivalent background conditions for the nth mode in nonlinear terms, defined as

Ĥn =
∑
m

N̂nmnη̂m, (F1a)

−→
V n =

∑
m

N̂mnn
−̂→v m, (F1b)

where N̂nmn and N̂mnn are the nonlinear interaction coefficients defined in Eq. (B4c) in Appendix B. Considering that the

phase-speed deviation c′ is a sum of random variables with zero mean, Eq. (A11) leads to the expression for phase-speed1015
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variance σ2
C :

σ2
C

c2
∼ cn

2

c4
σ2
Cn

+
σ2

|
−→
V nt

n |

c2
+

1

4

cn
4

c4
σ̂2
Hnt

n

ĥ2
n

, (F2)

where c is the mean phase speed, cn is the mean celerity, and σ|−→V nt
n |

and σ̂Hnt
n

are the standard deviation of
√

(Untn )2 + (V ntn )2

and Ĥnt
n , respectively. Theoretically, the second term on the right-hand side should be based on background velocity in the

direction of wave propagation; however, current speed without directionality is used for simplicity.1020

The phase-speed variance σ2
C for VM1 at the PIL200 location was estimated as follows. The variance of c1 was calculated

after subtracting the annual and semi-annual cycles (solid minus dashed black line in Fig. 3a of Part I), because the seasonal cy-

cle is largely deterministic and presumably leads to the excitation of annual and semi-annual harmonics of the major harmonic

constituents. This yielded σ2
C1
≈ 2.7× 10−3 m2 s−2. The equivalent non-tidal background displacement Ĥnt

1 was calculated

from Eq. (F1) as follows. First, the variable Ĥ1 was calculated using the observed nonharmonic time series of the displace-1025

ment amplitudes (without band-pass filtering) as η̂m, and using N̂1m1 without the annual and semi-annual cycles. Since Ĥnt
1 is

assumed to be non-tidal but Ĥ1 contained nonharmonic internal tides, the variance associated with the cusps (if present) was es-

timated from the spectrum of Ĥ1 by the least-squares fitting of the double Lorentzian model as explained in Section 3.6 of Part

I, and the resultant variance was subtracted from the variance of Ĥ1 to obtain σ̂2
Hnt

1
. This yielded σ̂2

Hnt
1
/ĥ2

1 ≈ 6.7× 10−3. The

equivalent non-tidal background current speed |
−→
V nt

1 | was calculated in the same way, except that the low-frequency currents1030

(less than ≈62 h period) were also included. This is because background currents were neglected in the calculation of c1. This

yielded σ2

|
−→
V nt

1 |
≈ 8.4× 10−3 m2s−2. Then, for VM1, σ2

C ≈ 1.2× 10−2 m2s−2, or σC was 14% of the phase speed. Note that

Kunze (1985) and Zaron and Egbert (2014) did not include the contribution of background isopycnal displacements to phase

speed, but it has 8% contribution to the phase speed variance in this example. Presumably, the relatively large contributions of

background currents and isopycnal displacements result from the relatively shallow water depth at the PIL200 location.1035

The phase-speed variance for higher modes were also needed in the stochastic phase modelling. Applying the same procedure

to the PIL200 data yielded σ2
C ≈ 9.5, 8.2, and 8.2 ×10−3 m2s−2 for semidiurnal VM2, VM3, and VM4, respectively. The

background current is the dominant (>90%) contributor in these cases.

Note that σ2

|
−→
V nt

n |
and σ̂2

Hnt
n

calculated above include contributions from inertial and super-tidal frequencies. It was impractical

to exclude the inertial contribution because the spectra did not show narrow inertial peaks, although the spectral level was1040

elevated near the inertial period (qualitatively similar to Fig. 5 of Part I). The inclusion of super-tidal frequencies might appear

questionable, because the widths of the cusps (Fig. 5 of Part I) appear to suggest modulation by low-frequency processes.

However, this choice was made for the following two reasons. The first reason is that σ2
C is not only the variance of c′

but also a half of the variance of formal white noise db/dt in Eq. (E1) with Eq. (E3) in Appendix E. This means that, to

estimate σ2
C from the time series of c′, all frequency components of the non-tidal variability need to be included even when1045

low-frequency response is the interest. This is because, as seen in the well-known example of random walk or Brownian

motion, the accumulation of high-frequency random fluctuation can produce low-frequency fluctuation. The second reason is

that statistical and stochastic models usually use the variance of random variables without frequency cut-off, even when the

randomness has a clear time or length scale. For example, the variance in the Lorentzian model (σ2
A′ in Eq. (24) of Part I) is
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the variance over all frequencies, although the process has a decorrelation time. So, applying frequency cut-off could result in1050

substantial underestimation of random phase-speed variability, and the ensuing phase spread in statistical or stochastic analysis

and modelling. For example, the contributions of frequency components lower and higher than≈62 h period to the total σ2

|
−→
V nt

1 |
are about 60 and 40%, respectively. Neglecting this high-frequency component of σ2

|
−→
V nt

1 |
and σ̂2

Hnt
1

would result in more than

40% underestimation of σ2
C for VM1.
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