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7.3 Dark oxidation of Hg” accelerated by freeze-concentration effects 47 o ( tog bort: 46

during the Anthropocene. Mercury is currently one of the most targeted global pollutants, with methylmercury compounds being :

/ (tog bort: the

particularly neurotoxic. Over 5,000 tons of mercury are released into the atmosphere annually through primary emissions and (tog bort: that
K 1 tha
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Abstract y(tog bort: . )
Mercury is a volatile heavy element with no known biological function. It is present in trace amounts (on average, ~80 ppb) but is (formaterade ﬁ o]
not geochemically well,blended in the Earth's crust. As a result, it poccurs in extremely high concentrations (up to a few,percent) in / (tog bort: considered to be )
certain locations. It is found along tectonic plate faults in deposits of sulfide ores (cinnabar), and it has been extensively mobilized (“’9 bort: are the )
/ V.Ctog bort: to )
... [10]
.. [11] )
.. [12]
... [13] )
[14])

human activities, such as direct releases. Understanding the dynamics of the global Hg cycle is critical for assessing the impact of ; Cformaterade
emission reductions under the UN Minamata Convention, which became legally binding in 2017. This review of atmospheric / ’(formaterade
mercury focuses on fundamental advances in field, laboratory, and theoretical studies, including six stable Hg isotope analytical (formaterade
methods, which have contributed,jccently to a more mature understanding of the complexity of the atmospheric Hg cycle and its (formaterade
. . . ’ i ,Cformaterade
interactions with the Earth's surface ecosystem.
7 (tog bort: impact
1 Introduction ; (formaterade ... [15]
. . . v (tog bort: .

Mercury (Hg) is a potent neurotoxin that, via methylmercury (MMHg") food exposure, poses a global health jhreat (e.g,,IQ decrement and ;- formaterade

U ... [16]
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(tog bort: of

formaterade

. [17

heart attack) (Zhang et al., 2021b). The atmosphere plays a pivotal role in the Hg biogeochemical cycle, functioning as the most important (tog bort: -

transient reservoir, a conduit for transport and transformation, and a siteyich, in redox chemistry. In part due to concerns about global Hg formaterade

... [18]

transport, the multilateral UN, Environment Convention on Hg was negotiated and entered into force in 2017 with a mandate to, reduce the ey (tog bort: the

jintentional use and emissions of Hg (UNEP, 2018). Research on,Hg biogeochemical cycling gained momentum after an outbreak of mass /- /A formaterade

... [19]

/
/

MMHg" poisoning severely affected the population of Minamata Bay, Japan, in the 1950s and 1960s through the consumption of ,Ctog bort: on

. . . . . . . S A f terad
contaminated seafood, and it became clear that MMHg" was present at chronically high levels in predatory fish in many lakes, particularly / / < ormaterace

... [20

/
[ ,(tog bort: circulates

those in the boreal forest belt, through long-range transport and biomagnification (Lindqvist et al., 1991). The earliest known series of / /- (tog bort: The knowled
i = The knowledge

... [22]

measurements of airborne elemental Hg, possibly the first systematic study of its kind, was conducted in Pacific North America during : (formatera de

the second half of the 1960s (Williston, 1968). It was recognized as early as the 1970s that Hg circulated globally through the atmosphere (tog bort: there was a
(Nriagu, 1979). Somewhat later, Slemr et al. (1985) published an influential paper whose results on the distribution, speciation and budget /(formaterade

of atmospheric Hg reproduce fairly well the qualitative features of the atmospheric Hg cycle, such as atomic vapor (Hg’) dominating the f(t°9 bort:
atmospheric pool and showing an interhemispheric difference with higher concentrations in the northern hemisphere, and being relatively / (formaterade

i
/ ,J' (tog bort: It used to be thought that gas
]

well mixed vertically through the troposphere with an extensive residence time (concept as a “global pollutant™). / (f P—
’f | ‘ormaterade

... [24]

/

Knowledge, of the physical and chemical processes that govern the dynamics of Hg in the atmosphere has developed gradually. Over | | / / (tog bort: - However, it

|
i (formaterade

... [25]

time, through technological leaps (stable isotope sampling in natural probes, refined methods in the theoretical and experimental /
(tog bort: now

field, etc.), its full complexity began to be appreciated. In earlier research, fhe prevailing view was that waterzphase oxidation by

/

(formaterade

ozone could be the primary mechanism initiating the removal of tropospheric Hg? (Pleijel and Munthe, 1995; Seigneur et al., 1994).

o o ) ) (tog bort: {abl
However, newer data have, indicated that gaseous oxidized mercury (GOM) could also be present in the atmosphere (Xiao et al., ( 09 Bort: more unstable

1997; Lindberg and Stratton, 1998), in addition to the particulate form (PBM). Specifically, the observation that Hg® was periodically ’ /<formatefade ... [27]
depleted in the planetary mixing layer during the polar spring (Schroeder et al., 1998) prompted a reassessment of Hg chemistry in ‘r"‘ / g:fn:,:t:;ade
favor of homogeneous gas-phase chemistry (Hynes et al., 2009). The two-step gas-phase oxidation of Hg’ initiated by Br atoms has / (tog bort: multi phase
emerged as the most important global channel for tropospheric conversion to Hg'" (Donohoue et al., 2006; Holmes et al., 2010). Gas- (formatera de T
phase O3 was previously considered an oxidizing agent for Hg” to Hg™. Although this route was discarded. O3 hag been found to (tog bort:
effectively oxidize intermediate Hg' species (Goémez Martin et al., 2022). This suggests that OH- and less certain I-initiated oxidation (formaterade - [30]
of Hg’, which produces Jess stablg intermediates than Br and Cl do, may also be important for Hg turnover in parts of the troposphere y(tog bort: its
and beyond (Dibble et al., 2020; Lee et al., 2024). A novel finding is that major Hg"" species, which are expected to be formed in the (tog bort: data sets
atmosphere upon oxidation of Hg’, are themselves photolabile and undergo gas-phase reduction (Francés-Monerris et al., 2020; Saiz- (formaterade
Lopez et al., 2019). The complexity of rapid redox Hg chemistry involving multiple gas;phase oxidation states (0, +1 and +2) is / ,Cformaterade
further compounded by the impact of ynultiphase, interactions, including reactive uptake and homogeneous and heterogeneous 7 gtog bort: 2
formaterade .. [33

processes in condensed;phase media, on the dynamics of atmospheric Hg. An indicator of the maturation of our understanding of

! Ctog bort: tool

formaterade

... [34]

(Burkholder et al., 2019). Over the past two decades, measurements of Hg stable isotope ratios in natural samples have emerged as

tog bort: dry
~aluable fools for gaining insights into the atmospheric Hg cycle. One notable outcome of isotope analysis is the recognition that dry /.- %formatera de
Hg’ deposition exerts a more pronounced influence on a global scale than was previously understood, with wet and dry deposition /- ) (t og bort:
of the atmospheric Hg" fraction being of lesser importance,(Jiskra et al., 2018), o (formaterade
Hg in the atmosphere has been the subject of reviews over the past 45 years; fopics including biogeochemical cycling (Lindqvist and Rodhe, (formaterade
1985; Lindqvist et al., 1991 Schroeder and Munthe, 1998; Selin, 2009; Lyman et al., 2020), observations (Slemr et al., 2003; Sprovieri et (tog bort: (Hynes et al, 2009;
al., 2010; Dommergue et al., 2010; Fuetal., 2015; Steffen etal..2015; Mao et al.,2016; Zhang et al., 2019¢; Custodio et al., 2022; Bencardino (formaterade
- . ) ) i “(flyttade (infogning) [1]
et al., 2024), isotopic observational data (Kwon et al., 2020; Liu et al., 2024)., atmospheric measurement technigues (Pandey,et al., 2011; .
N (formaterade

Huang et al.,2014; Gustin et al., 2015; Davis and Lu, 2024; Gustin et al., 2024), anthropogenic emissions (Carpi, 1997; Zhang et al., 2016;

+. " (tog bort: Jackson, 1997; Lin

Cheng et al., 2023), natural volcanism (Edwards et al., 2021), physical removal and air-surface exchange (Zhang et al., 2009; Sommar et

N (formaterade

... [40]

al., 2013; Zhu et al., 2016; Agnan et al., 2016; Cooke et al., 2020; Sommar et al., 2020; Zhou et al., 2021; Liu et al., 2024) with emphasis on

" (fiyttade (infogning) [2]

global change (Obrist et al., 2018; Sonke et al., 2023), polar atmospheric surface laver mercury depletion events (Steffen et al., 2008), formaterade
chemical conversion in the atmosphere (Schroeder et al., 1991; Lin and Pehkonen, 1999; Lin et al., 2011, Si and Ariya, 2018), agueous (tog bort: Bash et al., 2007; Ariya et al., 2015; Ariya et al.,

‘ (formaterade
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homogeneous and heterogeneous photoredox chemistry (Zhang, 2006; Si et al., 2022), multi-phase atmospheric chemistry (Ariya et al.,

2015), assessment of critical atmospheric chemical processes using state-of-the-art experimental and computational chemistry methods
(Ariya and Peterson, 2005; Ariya et al., 2008; Hynes et al., 2009), receptor- (Cheng et al., 2015) and global models (Lin et al.,2006; Lin et
al., 2007 Subir et al., 2011, 2012; Amos et al., 2015; Travnikov et al., 2017), This review is based on the perspective of atmospheric

(fiyttade (infogning) [3]

; (formaterade

.. [44

(flyttade upp [2]: 2014; Gustin et al.,

(tog bort: 2007; Zhang et al., 2009; Gaffney and Marley,

J

(formaterade

... [45]

scientists, with synthesis and g,comprehensive account of the results of fundamental research, including field, laboratory, and theoretical

(flyttade upp [3]: 2006; Lin et al.,

studies, that have contributed to.an, understanding of the complexity of the atmospheric Hg cycle and its interactions with the Earth's

(formaterade

.. [47

surface ecosystem, at the molecular level, This work does not address several topics related to Hg in the atmosphere. These include

Y 5 (flyttade upp [1]: 2015; Mao et al.,

N ‘(tog bort: ;

anthropogenic and natural emission inventories, corresponding top-down constraints and inverse modeling from atmospheric

observations, accounting for; long-term air data series and their temporal and spatial trends, observations of the PBM and its particle size

(tog bort: Lin et al.,

kit (tog bort: 2016; Lyman et al., 2020a; Ariya and Peterson,

distributions, wet deposition, future scenarios for the effects of regulatory measures (Minamata Convention,), ongoing climate change

i (formaterade

and many more topics. Our goal is to provide a comprehensive review of the atmospheric chemistry of both inorganic and organic Hg

in the lower and upper atmosphere, coupled with 2 compilation, of updated, critically evaluated kinetic, thermochemical, photochemical,

(formaterade

\

(tog bort: fairly

and isotopic fractionation data. Where appropriate, we introduce the basic concepts and fundamental aspects of Hg chemistry, including

... [50]

Jhose, of condensed phases. In atmospheric Hg isotope chemistry, our approach is comprehensive, encompassing a range of activities i

(tog bort: a reductionist

\ (formaterade

from field observations of air and Hg’ gas exchange with natural surfaces to laboratory studies of processes that may be selevant to th

atmosphere. We also highlight areas of persistent uncertainty or lack of consensus, such as measurement methods for atmospheric Hg

speciation,and the partitioning of Hg'" in atmospheric water between inorganic and organic ligands,

(formaterade

|

... [51]

i

(tog bort: down to a molecular level

\
\ (formaterade

. [52

(tog bort: .

2 Physical chemistry of elemental mercury

Hg is the only metal that is a liquid at standard temperature and pressure (freezing point of -38.8 °C and boiling point of 356.7 °C), and

\ (formaterade

... [53]

\(tog bort: account of

its vapor is monatomic. Under these conditions, the mixing ratio of neurotoxic Hg vapor in equilibrium with metallic liquid is already at

the hazardous level of approximately, 1.7 ppm (Huber et al., 2006). Liquid Hg possesses properties {hat have given it a wide range of

(formaterade

... [54]

i (tog bort: ) and the

i (formaterade

... [55]

applications in the past despite its known toxicity, including exceptional surface tension (nearly seven times greater than that of water at

25 °C), high specific gravity, high electrical conductivity (a reference substance for measuring the S unit Q), low compressibility, and

i (tog bort: tabulations

\ (formaterade

- [56

a constant volume of expansion in the liquid state. Hg forms solid alloys (amalgams) with most metals except iron. This property enables :

its application in gold panning (HgAu), dental fillings (HgAg), or as an electrode material in the chloralkali industry (NaHg). The

\ (tog bort: topic with

\ (formaterade

. [57

electronic configuration of the mercury atom has filled f; and d;orbitals with a high density of 6s-valence electrons near the nucleus

'}

\ (tog bort: that

([Xe]4f'*5d'%6s?), which is related to a relativistic radial contraction of s- and p-orbitals as the jnner electrons approach a significant

\ (formaterade

\ (tog bort: of

fraction of the speed of light (which for a Hg 1s electron is 58%. implying a radial shrinkage of 23%: Pyykkd, 1988), It also follows that

(formaterade

.. [59

oxidation states 0 and +2 (mercuric, d'° metal ion) are the most stable for Hg. Nevertheless, Hg differs from other metals in its propensity ||

\
\ (tog bort: of value

to readily form a polycation in the aqueous phase, the mercurous ion, AHgfz which is, however, only metastable in the gaseous phase

\‘ (formaterade

... [60]

(Stromberg and Wahlgren, 1990). The solubility of Hg” in water is limited to 0.3 uM (Sanemasa, 1975), and the gas, water equilibrium

\(tog bort: ,

is governed by Henry’s law. The Henry’s law coefficient (ki7) for Hg” is 0.11 M atm ™! at 25 °C, (Andersson et al., 2008). whereas the

formaterade

f
b

value is more than seven orders of magnitude greater for the HgCl> molecule at the same temperature (Sommar et al., 2000).

(tog bort: , and several other areas

3 Atmospheric environment

f
"E (formaterade

formaterade

|
\

3.1 At heric ts of mercury species

F

Hg is the only trace gas, other than, the, noble gases (Burnard, 2013), fhat gxists as free atoms (Hg’) in the atmosphere, making this

\x\ (tog bort: about

|

pollutant exceptional in terms of low detection limits by optical measurement techniques. This makes it possible to measure Hg vapor

emissions in real time, for example, from mining, chloralkali production and geothermal activities, as has been done in Europe for

\ formaterade

| (tog bort: which

|( formaterade

decadesyia light detection andyanging (LIDAR) in,differential absorption mode by mobile laser systems (Svanberg, 2002). If the optical

Etog bort: 25°C

formaterade

path length in the measuring cell of an instrument is sufficiently long (i.¢,. using multipath techniques such as cavity ring-down), then

(tog bort: the measure of

the conditions exist for continuous measurement of Hg’ in ambient air (at the sub-ppt level, ~5x10° atoms cm? in the northern

(formaterade

hemisphere)yia atomic absorption spectroscopy (AAS) with Zeeman background correction (Osterwalder et al., 2020). The application

(tog bort: -

of Zeeman AAS in Hg stable isotope analysis has also been described (Lu et al., 2019). As an alternative to Zeeman splitting of the
Hg(6°P) level for sensitive, selective detection of Hg" (Sholupov et al., 2004), sequential twaphoton laser-induced fluorescence schemes

i
|
‘ ]i (formaterade
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have been used (Bauer et al., 2002; Bauer et al., 2014; Hynes et al., 2017). For initial excitation of the Hg(6'So) — Hg(6°P1) transition
at 253.7 nm, a light beam from a Hg discharge lamp or the frequency-doubled output of a dye laser pumped by the third harmonic of 2
Nd:YAG laser is used. As shown in Fig. 1a, further excitation involves the sequential excitation of different atomic transitions by two
laser systems, both starting from the Hg(6°P1) state, followed by the detection of blue- (Hg(6'P1) — Hg(6'So) at 184.9 nm) or redshifted

(e.g,, at 578.9 nm) fluorescence. T he detection of Hg with such a sophisticated apparatus is an exception tofypical measurements, which

are;made,via cold vapor atomic fluorescence spectroscopy (CV-AFS) after preconcentration sampling on gold (Ambrose, 2017).,Smaller

non-Hg® portions of atmospheric Hg are challenging to speciate because of their low concentrations. Instead, they are fractionated ]

(tog bort: an

: (tog bort: the emission of

(tog bort: .

(tog bort: Detection

(tog bort: the usual

N (tog bort: typically

operationally pased on their oxidation state (Hg? versus GOM) or phase state (GOM versus PBM). Since gold does not selectively trap

A \ (tog bort: by

Hg® but also captures other Hg species (Dumarey et al., 1985; Gacnik et al., 2024), the GOM and PBM must be individually collected

upstream of the sample air to accurately measure the triad Hg%GOM,PBM. KCl-coated annular denuders have been utilized for

fractionating ambient GOM by gas;-phase diffusion for over two decades. Nonetheless, upon the development of techniques to assess Y

its accuracy in measuring ambient air regularly, the method was found to be biased in a ponsystematic manner foward lower values

(Jaffe etal., 2014; Lyman et al., 2010; McClure et al., 2014). The automated KCI denuder method, with its variable efficiency, can thus
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Figure 1: Left (a). Energy level diagram of the Hg atom. The wave-shaped arrows represent resonant radiation. Right (b): Actinic fluxes as a function
of altitude. The wavelengths of the Hg('So) — Hg(*P) and — Hg('P)) transitions at 253.7 and 184.9 nm, respectively, are given.

Jead to serious underestimation of the GOM, gvhereas the refluxing mist chamber method, which is an alternative, carries the risk of<

gosampling the GOM with the PBM (Gustin et al., 2021). However, the KCl-covered denuder does not have full penetration of PBMs )
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< 2.5 um, but aerosols of a hundred nm or less are increasingly trapped by the salt surface (Ghoshdastidar et al., 2019). When
compared, refluxing mist chambers yielded ambient GOM concentrations that were 3 to 4 times higher on average than those
obtained with KCl-coated annular denuders (Landis et al., 2002). A decade later, the capture and retention efficiency of the KCl
denuder method for GOM was evaluated, which was close to 95% in synthetic Hg’-free air,but decreased drastically to between 20%
and 54% when exposed to ambient air, where ozone and humidity yvere found to cause severe reductive losses such as Hg” (McClure -

etal., 2014). In fact, ozone gas can heterogeneously reduce particle-bound Hg" halides, as recent experiments have shown (Ai et al.,
2023). In high-humidity marine applications, KCI denuder technology operates at very low efficiency; for example, He and Mason
(2021)reported average losses of 80% during oceanographic expeditions in the Pacific. By determining total airborne mercury (TAM;
Steffen et al., 2002; Slemr et al., 2018) and Hg® in air, a measure of reactive mercury (RM) is obtained as the sum of GOM + PBM
by subtracting Hg from TAM. In turn, Hg" is obtained by passing an air stream through a filter and a cation exchange membrane

(CEM) in series, whereas TAM is measured as Hg” after a pyrolysis unit held at 800,°C converts all Hg in the sample air to elemental

vapor (Lyman et al., 2020b). CEM is capable of capturing and retaining He! quantitatively over long storage periods, but has no ;
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affinity for Hg® (Miller et al., 2019). However, when two quantities that are usually close to each other are subtracted, the precision
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of the RM determination is low. Hynes et al. (2017) used two-photon laser-induced fluorescence as an online detection method for

M (by switching between ambient and pyrolyzed air as the source for the Hg” analyte) and concluded that the variability in ambient

Hg’ severely limits the sensitivity of dual-channel difference RM neasurements. For the separation of the semivolatile GOM fraction ;

from the PBM in ambient air, yarious membranes have been examined, butyvith recognized limitations (Dunham-Cheatham et al., -
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2023; Gustin et al., 2023). The realization of NIST-traceable GOM calibration systems has recently progressed (Gacnik et al., 2022).

Several studies have been carried out with the aim of experimentally deciphering the molecular identities (speciation) of the GOM

pool in ambient air. Most methods are based on a preconcentration process of GOM on a substrate, which is then fhermodesorbed in

a gas stream following a programmed temperature ramp and detected as Hg? after pyrolysis (Gustin et al., 2015), alternatively focused
on a capillary column and analyzed by different types (chemical ionization CI; electron impact ionization) of mass spectrometry
(MS) (Deeds et al., 2015; Jones et al., 2016). In the former case, standards are used in the form of a number of commercially available

Hg chemicals (such as HgBr>, HgClo, HgO, Hg(NO:s)2, and HgSOs) that are assumed to begepresentative surrogates for GOM (Huang

etal., 2017; Sexauer Gustin et al., 2016). As inferred by Khalizov et al. (2020), this speciation is indirect, as it has not been confirmed
that the GOM ynolecules adsorbed on the substrate can be desorbed in the same chemical form as they are in air.

Jn contrast, studies have shown that aerosol reactions lead to the re-speciation of mercuric halides on surfaces (Mao et al., 2021; Mao+.

and Khalizov, 2021). The authors yeported that their ion-drift (ID) CI-MS system, which is sensitive enough for detection in
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tognultistage atmospheric pressure ID-CI-MS. The feasibility of using proton transfer reaction mass spectrometry (PTR-MS) to study

the reaction products (GOM) of Br-initiated Hg? oxidation has been evaluated by Dibble et al. (2014) but js not recommended because

i)

it cannot be applied in,multi-stage atmospheric pressure systems (Khalizov et al., 2020). In summary, direct measurements of ambient *

GOM species have not yet been achieved. No,method exists for chemically characterizing the GOM fraction, which is semivolatile

and may contain species that are photolytically unstable. Since,previous GOM measurements are considered unreliable (Lyman et \‘\
\

al., 2020a; Slemr et al., 2016) and,emerging RM data (Lyman et al., 2020b; Slemr et al., 2018; Swartzendruber et al., 2009; Gratz et \\ \}
\\

al., 2015; Lyman and Jaffe, 2012) are still too sparse and spatially limited, it is not possible to draw gdeterministic conclusions on

atmospheric Hg!". Sampling methods for organic Hg (dimethylmercury; He et al., 2022,and monomethylated Hg" species; Lee et al.,

2003) in ambient air, as opposed to inorganic Hg species, are more unambiguous. The speciation of Hg in atmospheric waters js

discussed in Section 4.6. Hg measurement data from air and precipitation, ground-based or aircraft (Slemr et al., 2018; Slemr et al.,

2016) observations that fall outside the scope of this review, including those reported from continental,(Cole et al., 2014; Cole et al., 5
2013; Schmolke et al., 1999; Wingberg et al., 2001; Gay et al., 2013; Fu et al., 2015) to hemispherical, (Bencardino et al., 2024;

Szponar et al., 2020; Slemr et al., 2020; Sprovieri et al., 2017; Sprovieri et al., 2016) monitoring networks, some of which have been
in operation since before the turn of 2000 (Custodio et al., 2020), have been reviewed elsewhere (Mao et al., 2016; Lyman et al.,
2020a; Howard et al., 2017; Angot et al., 2016; Kim et al., 2012; Zhang et al., 2017). In the case of the isotopic characterization of
atmospheric Hg, however, we feel justified in compiling, analyzing, and discussing the considerable body of recent observations

(Section 8.2).

3.2 Stability of atmospheric Hg’

JHgS represents the primary form of atmosphericymercury jn both the troposphere and stratosphere. Considering the spatial variabili

ofHg® concentrations !, which depart from a uniform vertical distribution throughout the atmosphere (Slemr et al., 2018), a singular )

global atmospheric lifetime is not appropriate. A more pertinent measure is the effective lifetime of Hg’, expressed on an annual

basis and as a function of its horizontal and vertical location within the atmosphere. The observed disparity in tropospheric Hg"

concentrations between the Northern and Southern Hemispheres of a factor of ~1.41 (Tang et al., 2025), despite, anthropogenic

emissions Jn the Northern Hemisphere being approximately 2.5 times greater than those in the Southern Hemisphere (Streets et al.

2019; Sonke et al., 2023), implies that Hg® has a relatively short effective lifetime in comparison to the interhemispheric air mass

convective uplift, enabling its transport into the stratosphere. Troposphere-to-stratosphere Hg transport has been regarded as limited
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kPa) and 0 °C (STP). By that, the unit represents a mixing ratio not an absolute (mass) concentration.
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695  crucial for biogeochemical Hg cycling, acting as the primary pathway for Hg” exchange between hemispheres and explaining the

minor interhemispheric gradient (Saiz-Lopez et al., 2025). As posited by models developed by Shah et al. (2021) and Saiz-Lopez et

al. (2025), approximately 17% of the aggregate atmospheric Hg load is situated within the stratosphere, whereas a previous study

reported 12% (Horowitz et al., 2017). Given that the stratosphere's mass (9.06 x 107 kg) constitutes approximately 18% of the total

atmospheric air mass (5.13 x 10" kg; Warneck and Williams, 2012), one might infer that the fraction of mercury present in the

700  stratosphere is comparable to the proportion of stratospheric air relative to the entire atmosphere. However, this scaling is not

supported by empirical data. Aerial measurements of Hg in the troposphere and lower stratosphere reveal a steep Hg gradient around

and above the tropopause with lower Hg mixing ratios in the upper atmospheric layers (Radke et al., 2007; Talbot et al., 2007; Slemr

etal., 2018) linked to a larger contribution of oxidized Hg species partitioned to aerosols (Murphy et al., 1998) from the gas phase.

With respect to the tropospheric Hg budget, there is a relative consensus that the Hg load is close to 4 Gg (Saiz-Lopez et al., 2020;
705 3.9 + 1.0, Saiz-Lopez et al., 2025; 3.8, Zhang et al., 2023b; 4.0, Shah et al., 2021; 3.9, Horowitz et al. 2017), with exceptions

suggesting that it is closer to 5 - 6 Gg (Holmes et al., 2010; Zhang et al., 2025) and that anthropogenic emissions, excluding biomass

burning, are approximately 2.2 —2.6 Gg yr'' (Horowitz et al., 2017; Shah et al., 2021; Zhang et al., 2023b; Geyman et al., 2024; Saiz-

Lopez et al., 2025), with significant reductions across developed countries in the Northern Hemisphere observed in the near term

(Custodio et al., 2022; Feinberg et al., 2024). Aircraft-based observations reveal a relatively consistent mixing ratio of Hg® within the

710  troposphere below the tropopause, encompassing the planetary boundary layer in regions characterized by low primary emissions
Banic et al., 2003; Talbot et al., 2007; Swartzendruber et al., 2008; Weigelt et al., 2016b; Bieser et al., 2017). This uniformity

supports the adoption of a steady-state procedure (Seinfeld and Pandis, 2006), where the inverse of the Hg’ lifetime (Tiroposphere) iS

approximated by the sum of its loss rates:

1/ = 1/Texn + 1/Tocean + 1/Tiand + 1/Twash + 1/7 (@))]

715  where the indices rxn, ocean, land, wash, and stratosphere are used to represent net oxidation, oceanic uptake, assimilation in land

ecosystems, processes that lead to wet deposition and net transfer to the tropopause/stratosphere, respectively. As discussed

subsequently, all the terms in equation 1 are subject to significant uncertainties. However, as is the case with many other trace gases,

the chemical lifetime (tn) undoubtedly plays a controlling role in determining the effective lifetime of Hg’. Representing net

(fiyttade (infogning) [4]

oxidation, tn encompasses the duration of the initial two-step oxidation to molecular forms and the subsequent redox cycling of the

(formaterade: Teckenfarg: BI&

720 photolabile fraction of these molecules in the gas phase and aerosols prior to deposition. According to the latest redox schemes (Shah

rate is usually parameterized using wind speed dependencies that

et al., 2021; Castro Pelaez et al., 2022; Saiz-Lopez et al., 2025). the extent of bidirectional Hg mass flux by atmospheric chemical have been tested for CO» emissions.

Etog bort: from the oceans into the atmosphere, the mass transfer
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725  deposition have been approximated at 7.4-11.2 and 2.9-6.8 Gg Hg"yr'!, respectively (Horowitz et al., 2017 Shah et al.,2021; Sonke
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etal., 2023; Zhang et al.,,2023b), following a tendency of researchers toward augmenting the role of re-emission of legacy Hg from
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the oceans (3.7-7.2 Gg Hg"yr™") and gross biospheric assimilation from the atmosphere (1.2-3.2 Gg Hg" yr'!; Horowitz et al., 2017; (formaterade: Teckenfarg: BIa

Yuan et al., 2019; Obrist et al., 2021; Zhou and Obrist, 2021; Feinberg et al., 2022; Wang et al., 2022; Szponar et al., 2025). (tog bort: are
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730  dependencies that have been tested for CO» emissions. However, recent evidence (Osterwalder et al., 2021) suggests that Hg®, which (tog bort: the
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emissions play,an increased role in the global Hg budget, accounting for approximately 60% of total Hg emissions to the atmosphere ;
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735  of comparable magnitude to that of Hg" deposition over oceans (Jiskra et al., 2021) and much higher than previously assumed tog bort: 2010). This also applies to the magnitude of Hg’ dry and
wet deposition (throughfall; Wang et al., 2020b) to vegetation

(Soerensen et al., 2010). The global net exchange of Hg” from the oceans has been estimated at 0.8 - 4.0 Gg He’yr' (Lamborg et al., .-~ (forests). A comprehensive overview of the understanding of the gas
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fraction of Hg” emissions resulting from Hg" reduction in surface waters is at an upper limit of 2.25 + 0.89 Hg? Gg yr! (Tang et al.,

2025). In summary, the latter terms in Equation (1) correspond to lifetimes, the spans of which are conservatively estimated to exceed

one year. However, their inverses, referring to Eq. 1, when summed, can shorten Troposphere by tens of percent beyond what the

tropospheric chemical lifetime of Hg” (1) dictates, taking into account the inherent uncertainties. Currently, Hg® is estimated to
of between 3.8 and 7 months (Shah et al., 2016; Horowitz et al., 2017; Saiz-Lopez et al., 2020; Shah et al., 2021;

have a 1

. (formaterade: Teckenfarg: BI& )

Saiz-Lopez et al., 2025) and an average atmospheric lifetime (troposphere + stratosphere) of 8.2 months (Saiz-Lopez et al., 2025),

JThe sources of atmospheric Hg'" are twofold: primary Hg" emissions from anthropogenic sources and atmospheric Hg” oxidation.

Compared with that of Hg’, the proportion of Hg" in anthropogenic emissions in the troposphere is not well defined. One estimate

suggests that 74% of cumulative anthropogenic Hg emissions into the air are Hg” (Streets et al., 2017). Currently, East Asia has the

most emissions worldwide (Streets et al., 2019); however, compelling evidence indicates that the magnitude of total Hg air emissions

in this region has already peaked (Zhang et al., 2023a) and has declined in recent years (Wu et al., 2023; Feinberg et al., 2024).

Nevertheless, a shift in the contributions of distinct source categories, with cement production emerging as the predominant source

since 2009 in China (Wu et al., 2016), suggests an increase in the proportion of Hg" within Hg emissions (Zhang et al., 2016; Wang

et al., 2024). Hg speciation profiles from anthropogenic sources may vary significantly across regions; for example, in continental

Europe, the Hg" contribution from coal-fired power plants may represent less than 25% (Weigelt et al., 2016a), whereas in the tropics

artisanal and small-scale gold mining represent a substantial yet largely unconstrained source of atmospheric Hg’ (Obrist et al., 2018).

On average, contemporary global models employ 60 to 65% Hg” speciation in current anthropogenic emissions to the atmosphere

(Horowitz et al., 2017; Shah et al., 2021; Zhang et al., 2023b). There are significant differences in the estimates of the tropospheric

pool of Hg’ (~3.3-4.8 Gg), separated from Hg" (0.1-1.0 Gg), within the above-mentioned constrained budgets for the total

tropospheric Hg load in contemporary models. Having estimated the atmospheric load of Hg" up to 20 km at ~0.36 Gg on the basis

of a synthesis of RM measurements at different heights in the atmosphere (Saiz-Lopez et al., 2020), a later contribution (Saiz-Lopez
etal., 2025) involving stratospheric transport and chemistry deployed a much larger tropospheric Hg" pool (0.51 Gg) associated with
downward transport (0.35 Gg yr'") of mostly photostable Hg" from the stratosphere (Hg" pool of ~0.2 Gg). The corresponding amount

of (wet and dry) Hg" deposited on Earth's surface is 6.92 =+ 1.70 Gg yr'', which is outside the previously estimated range of 4.8--6.8

Gg yr'' Hg" (Strode et al., 2007; Zhang et al., 2019b; Feinberg et al., 2022; Sonke et al., 2023). The effective T of Hg'is a few

weeks (Horowitz et al., 2017), whereas Hg' species are intermediates (lifetime << 1 s) in the Hg"/Hg" redox cycle, and their

tropospheric mass is negligible (Shah et al., 2021).

Hg® in the planetary boundary layer can be consumed at a surprisingly high rate, leading to low concentration levels that approach,
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complete depletion. Thus, chemical oxidation by reactive bromine species in a catalytic cycle (“bromine explosion”, Toyota et al.,
2014; Gao et al., 2022) can explain atomic Hg depletion events (AMDEs) during the polar spring after sunrise (Schroeder et al.,
1998; Sommar et al., 2007; Nerentorp Mastromonaco et al., 2016) and those observed over the Dead Sea (Obrist et al., 2011) (Fig.

2). Br-controlled oxidation via the intermediate *Hg'Br is gritical for the, tropospheric oxidation of Hg’, as described later in the ;

section on gas-phase oxidation. Upon entry into the stratosphere, thermal oxidation with Br® remains important for conversion to

Hg", but with increasing altitude in the lower stratosphere, CI chemistry plays the most important role, with OH-directed chemistry

in second place at a slow net oxidation rate, With the maximum concentration of the O; layer (~25 km) as the dividing line, there is

.| tog bort: Hg' is estimated to have a global tropospheric lifetime of

3.8 - 7 mo. and a chemical lifetime against oxidation (to Hg"") of 2.7
- 4.5 mo. (Shah et al., 2021; Horowitz et al., 2017; Zhang et al.,
2023b; Shah et al., 2016; Saiz-Lopez et al., 2025), the differences
between the two values being largely due to significant redox cycling
in the gas phase and aerosols before deposition. Atmospheric Hg
deposition persists for terrestrial ecosystems overall with a
predominance of Hg” compared to Hg" (Zhou and Obrist, 2021;
Wang et al., 2020b; Feinberg et al., 2022), while the situation appears
opposite for cryospheric and marine systems. The total atmospheric
Hg deposition is estimated to be 4800 - 6700 Mg yr"' Hg" (Sonke et
al., 2023; Zhang et al., 2019b; Feinberg et al., 2022) and 3600 - 6750
Mg yr' Hg’ (Shah et al.,

(flyttade upp [4]: 2021; Sonke et al., 2023; Zhang et al., )
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tog bort: 2023b). Hg in the stratosphere is estimated to account for
about 20% of the total atmospheric Hg mass, with an exchange with
the troposphere in the range of 176-300 Mg yr”' (Shah et al., 2021;
Lyman and Jaffe, 2012), where Hg is mainly removed from the
stratosphere as Hg"" on aerosols (Murphy et al., 2006) or, to a lesser
extent, as the most photostable gas-phase mercurial species (Saiz-
Lopez et al., 2022 & 2025). Based on correlations between Hg? and

N20 in the stratosphere within 4 km above the thermal tropopause,
Slemr et al. (2018) provided a lifetime estimate of 74 + 27 yr., while
Lyman and Jaffe (2012) inferred a relatively short lifetime for Hg” in
intercepted descending air with stratospheric origin. Saiz-Lopez et al.
(2022) estimate the lifetime of Hg" in the lower stratosphere against
surface deposition of 3 — 9 years and Saiz-Lopez et al. (2025) a mean
atmospheric (troposphere + stratosphere) lifetime of 8.2 mo.
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a strong dichotomy between the Hg chemistry in the upper and lower stratosphere. The former is UVC driven (Sun et al., 202:
UV, window > 30 km provides a substantial photon flux at A, =253.7 nm, Fig. 1b), involving optically excited Hg’ states with a strong

the
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electrophilic character. The electronic excitation of Hg” from the ground state (singlet, 'So) at 253.7 nm is spin-forbidden (leading to

a triplet state, *P1 with a radiative lifetime of ~125 ns; Fig, 1a). The metastable dark Hg(*Po) state cannot be produced directly from ) ‘

Hg('So) by light absorption, but can be produced by spin-orbit relaxation of Hg(*P1) atoms involving energy transfer to surrounding

(air) molecules. In N2, the equilibrium constant between the 3Po and *P; states at room temperature (297 K) is 1.87 x 10° (Callear and |

Shiundu, 1987), but in the presence of Ox, their distribution changes profoundly. Although O is a slightly less effective quencher for
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Hg(*Po) than for Hg(*P1) (Callear, 1987), their effective lifetimes in air at atmospheric pressure differ by only one order of magnitude (tog bort:

(~1.1 ns and ~0.2 ns, respectively; Saiz-Lopez et al., 2022). In addition to physical quenching to the ground state, both Hg(*Po) and .~ (flytta de (infogning) [5]
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WFigure 2. The chemistry behind bromine explosion events and related surface layer ozone and mercury depletion events.
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Lopez et al., 2022). In the uppermost stratosphere, there appears to be access to deeper UVC (Fig. 1b) such that at 184.9 nm, a spin- | (Formaterat: Avstand Efter: 0 pt
allowed electronic transition from Hg('So) to Hg('P1) occurs, with a light absorption cross-section yearly two orders of magnitude - formaterade
greater than that for the Hg('So) — Hg(*P1) transition (Morton, 2000). Like Hg(*P1), the more energetic Hg('P1) reacts with Oz ata | (t°9 bort: . The barrier

rate approaching the collision frequency, but the HgO product formed in the latter case is so vibrationally hot that it promptly decays (formaterade: Teckenféirg: BI, Kondenserad med 0,3 pt
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into Hg and O atoms. As a result, the chemistry of Hg('P1) is expected to play a minor role in the turnover of Hg in the upper
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stratosphere. The calculated lifetime of Hg? in the ymiddlg to upper stratosphere is altitude-dependent, ranging from, a fraction jo a

few hundred hours (Saiz-Lopez et al., 2022), and is most comparable to that of Hg” during AMDEs, However, the underlying / \// (formaterade: Teckenfarg: BI&, Kondenserad med 0,3 pt

governing physicochemical processes are completely different. i // | (tog bort: interaction
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4.1 Fundamental Kkinetics and thermodynamic principles
(tog bort: that describes the energetics of

A chemical process can be decomposed into a sequence of one or more single-step processes as elemental reactions. Elementary (formaterade: Teckenfarg: BI, Kondenserad med 0,4 pt

7 ,<tog bort: process
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processes involve a transition between two atomic or molecular states, separated by a potential energy barrier, that represents the / /
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(tog bort: entropy (A

activation energy, The rate of a gas—phase reactiondepends on the aumber of collisiong between the reactants and the thermodynamics

of their interactions (i.e., the change in entropy, AS, and enthalpy, AH, upon passing through the transition state), whereas for the rate of a

reaction in aqueous solution, there are a number of additional factors that can influence the rate, such as solvation, ionic strength, pH, and

diffusion rates, Processes that release heat as products and increase the entropy of the system favor the reaction. The balance between
AHand AS is given by the Gibbs free energy equation, where T is the absolute temperature; AG = AH — TAS. If the Gibbs free energy

is negative, the reaction is spontaneous from a thermodynamic perspective. The index is used to distinguish the enthalpy of reaction - (formaterade: Kondenserad med 0,3 pt

" (tog bort: )

N :'(formaterade: Kondenserad med 0,3 pt
(‘tog bort: in Kelvin

(AHR) from, £.¢., the enthalpy of formation of a substance (AH). We can calculate the equilibrium constant, K, using In K =— AGr/RT

and determine the ratio of the forward and reverse rate coefficients from K = kek:. Examples of important types of gas-phase reactions

are as follows:
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Reaction order Type Unit ‘ :(tog bort: say.
Unimolecular step Thermal dissociation s N ‘(formaterade: Kondenserad med 0,3 pt
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Termolecular step  Recombination assisted by a third body (M = N2/O2) cmSmolecule™s™! S L*mol™s -

Termolecular reactions are pressure (M)-dependent at low pressures with an effective rate coefficient (k) of third order, but become

pressure independent at high pressures. The transition from third- to second;order behavior is known as the fall-off region. For most

atmospheric reactions, we can expect that the rate coefficient is at the Jowgpressurg limit. However, there are exceptions, which are

listed in Table 3. While two-body collisions are common in the gas phase, three-body collisions are much less probable, and four-

body collisions can be ignored because of their low probability. An overall reaction includes two or more elementary reactions. The

temperature dependence of the rate coefficients can be fit over a relatively narrow temperature range yvia the empirical Arrhenius

equation: k(T) = A exp (—Ea/RT), where Ea is the activation energy and R is the gas constant. The pre-exponential factor A, a constant

in the original Arrhenius equation, is weakly temperature dependent for most reactions (varying as the square root of T according to
collision theory). For a wider temperature range, the modified expression k(Ty = (T /300y"- exp(-E, /RT) provides a better fit to

the experimental data. If the activation energy is high enough, there is a large endothermic barrier that prevents even a reaction with

a strongly negative AGr from occurring at measurable rates. In select cases, the experimental data show a negative activation energy, -
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suggesting that the reaction proceeds by the addition of reactants to form an intermediate species with excess energy that must be
dissipated before decomposing into the final products. The rate constant for termolecular reactions between small molecules in the
atmosphere can usually be well approximated by a combination of three parameters ko (cm®molecule ), k» (cm’® molecule™! s™)

and Fc. The first two correspond to the low- and high-pressure limits, and Fc is a form factor hat describes the transition region.

-1
_ kokoIM] FQ +l]og(k0-[M]/km)J2) @)
ke + ko'M] €

The temperature dependence of k is expressed by parameterizing ko and k as a function of temperature with the following expression:

kg = kg °(T /300y™ andk™. = k2% (T /300y ™ @)

4.2 Surface Kinetics

JAtmospheric aerosols have, a high surface-to-volume ratiq, that concentrates most of their constituents at the surface. Furthermore,

the influence of surface chemistry jncreases with decreasing particle size. Gas; to-particle reactions, among other heterogeneous .-

reactions, begin with adsorption, which links molecules from the gas phase to the surface of a solid or liquid. This process can be

physical, with low adsorption energy (p/ysisorption, van der Waals forces) or, chemical (chemisorption), when chemical bonding
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occurs as molecules approach the surface, overcome the activation energy barrier, and become reactive when the adsorbent reacts

with sites on the surface. Jmportantly, gases and solutes adsorbed at an interface frequently exhibit physicochemical properties that

" : (tog bort: ),

diverge from their bulk properties, including reactivity and spectral shifts. Surface reaction kinetics are often expressed by the uptake )

probability (y), which represents the fraction of gas collisions with a substrate surface that yield uptake or yeactions, The net uptake ‘

of gas ynet is quantified in terms of conductances (I"), which are normalized to the rate of gas surface collisions:
Y= et 0 (T + Ty @
where I'g, I'xn, and I'sol represent the processes of gas-phase diffusion to the surface, solubility, and reaction in the bulk liquid phase,

respectively, and a represents the (reversible) mass accommodation (“sticking”) across the gas;-particle interface. In addition to a,

these processes are related to the diffusion constants in gas (Dg) and liquid (Di) phases, Henry's law coefficient (k;'), and the rate ™

constant of the first-order, reaction in the condensed phase bulk (Finlayson-Pitts and Pitts, 2000). For solids, bulk diffusion is generally

too slow to allow bulk solubilities or bulk kinetics to control uptake. To justify the use of the formulation of additive kinetic

conductances (Eq. 4) to solve the continuity equation and thus to be sufficient in laboratory studies to measure the net loss of a gas

over a condensed phase of known volume and surface area, it is preferable to conduct experiments at low pressure. These experiments

are typically performed in a tube reactor (radius r) with fast laminar flow (FF) conditions, To vary the reaction time, a moving injector

is employed to change the exposed surface length in this technique. The net flux of the gas X into the condensed phase (Jx) can in

this case be expressed as Eq.5:
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where kobs is the experimentally observed first-order rate coefficient and where the indices g, « and surf represent the gas bulk and gformaterade ... [115
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surface, respectively. In turn, Kobs js approximately related to ynet2s shown in, Eq. 6: (t bort: 5
og bort:
r 2y
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Wwhere Dy is the diffusivity of the gas and where p is its mean thermal velocity. The value of ynet changes as the surface is covered

(formaterade

by molecules and depends on the concentrations of the reactants and the reaction time. The initial phase is denoted by v° , whereas (tog bort: while
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the steady_state phase is denoted by y> . The calculated yne: can be employed to estimate the lifetime of gas X (x) with respect to the

(tog bort:

reactive uptake on particles. The following formula has been applied to the uptake of acrosols with a polydisperse distribution (Mao - \Gormatera de

etal., 2021; Sander, 1999; Schwartz, 1986): (formaterade
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The uptake of the only Hg" species studied fhus far, HgCla, follows a Hinshelwood-Langmuir mechanism (Mao et al.. 2021), where (tog bort: on
} formaterade
HgCl(g) must first be adsorbed to a site (J|) on the surface and, then react as a surface complex with a reactive center (e.g., anions) R (t bort: ¢ = [123
\ og bort:
on the surface, forming a product yeleased from ||, which becomes vacant again: \\ “ Y tog bort: so_hus far, HeCla, follows a Hinselwood- 4
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. \\ (tog bort: Pankow, 2007
where K in the above equation is referred to as the Langmuir constant. Deposition velocities and partitioning coefficients constitute \\\(formatera de
an, empirical framework for parameterizing heterogeneous atmospheric processes. A coefficient for absorptive partitioning of . - \Gog bort: can...then react as a surface complex with a re{ . [127]
compound X onto existing acrosols, Kgp, was proposed as Pankow (2007): \ (tog bort: 7 )
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Where the index gp yepresents, gas,particle partitioning;, [X], and [X]g yepresent, the mass concentrations of compound X in the

(‘tog bort: is the

gas phase and particle phase, respectively, in a unit volume of air, and PM yepresents the total mass concentration of the particles. \E » (formatera de
4.3 Aqueous redox equilibria < ‘y b N (tog bort: -
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The Gibbs free energy change (AG) presented previously is related to the electrode potential (E) a5 the gquation: A ‘(tog bort:
AG = —nFE fan) ﬁ \\ ;(formaterade ... [132
il (tog bort: are
where n is the number of moles of electrons transferred in the reaction and F is the Faraday constant (96485 C mol™). The standard \
\ (formaterade ... [133
potentials for the mercury-mercurous-mercuric free cation couples are as follows: \\ (tog bort: .
\
Hg}"(aq) +2 ¢ 2 2 Hg(aq) E'=0.789 V (Rxn 1) « il (formaterade .. [134]
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2Hg™ (aqy +2 ¢ 2 Hg?'(aq) E"= 0.908 V (Rxn2) \% 9 - 1;
‘ormaterade
2+ - 0 _
Hg™' (aqyt 2 e” 2 Hg'(aq) E°=0.854V (Rxn 3) (Formaterat ... [136
These positive potentials indicate that the reduction of ng*/Hg? to Hg is favored under standard conditions. It is also evident that Ett’g bort: by
y formaterade ... [137
o . + o . e \
Hg" can be oxidized to Hgg (aq) rather than to Hg*" (aq) only by agents with potentials ranging from —0.79 to —0.85 V. None of the (tog bort: formula
common oxidizing agents meet this narrow potential range. Therefore, in excess of the oxidizing agent, Hg is completely oxidized (tog bort: 9
to Hg?* (aq). Only when the excess Hg? exceeds 50% does oxidation Jead to Hg?"(aq). Ligation and hydrolysis have a major impact (Formaterad tabell ... [138
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on standard potentials, including those listed in Rxn 1-3. For example, Hg(OH), +2 ¢ 2 Hg” + 2 HO", analogous to Rxn 3, has an
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4.4 Chemical properties of aqueous Hg""! (formaterade
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The Hg?" aqua ion, ,[Hg(H O\(,]Z*, exists only in distinctly acidic aqueous solutions containing a weakly coordinating anion (e.g., - (tog bort: K ([Hg(OHy|’
Cl0y). It readily undergoes hydrolysis at pH > 1 (logﬁuul HgOH)y ] ',=10.3, Powell et al., 2005). Owing tq, its size and stable (formaterade .. [146
electron configuration, Hg?*(aq) can be easily polarized by ligands and, therefore, has the potential to form strong covalent bonds. (formaterade ... [147
This property allows Hg*"(aq) to interact with organic C to readily form Hg—C bonds through mercuryhydrogen substitution N (formaterade .. [149
(mercuration), addition (oxy- and amino-mercuration, etc.), and decarboxylation reactions. An example is aniline, which forms g ’ g:;n;t::j:;“y - [148
covalent complex with Hg?" readily in aqueous solution at room temperature: : (formaterade 1150
NH, NHz NH, (formaterade .. [151

+ ng N @ N © + W (Rxn4) (tog bort: Depending on
(formaterade ... [152

W hg? He? (tog bort: -

The formation of organomercurials by mercuration in aqueous solution is generally slow because of the reduced electrophilicity (formaterade ... [153

of Hg? caused by hydrolysis of the metal genter. However, the presence of a polar solvent has little influence on other processes

(tog bort: form

of organomercurial formation, such as decarboxylation. Therefore, abiotic Hg methylation can occur in aqueous solutions with

the assistance of, e.g., light carboxylic acids (Deacon et al., 1986). In the case of keto-enolic organic compounds such as ‘

acetylacetone (R = H) and malonate (R = OH), the mercuric ion can, in principle, adopt a C-bond, an O-bond or a chelate structure:

Highly toxic CH;Hg" (MMHg") species are by far the most abundant organic Hg in the environment and are formed from inorganic

Hg" mainly by the action of Fe™ and SO} reducing bacteria. In addition to monomethylation, permethylation can also occur

anaerobically (Sommar et al., 1999). (CHs):Hg (DMHg) is detected mainly in deep;sea waters, but by upwelling waters (Conaway

et al., 2009), it may reach the mixed layer, where gas exchange with the atmosphere can occur. DMHg has also been detected in

andfills (Lindberg et al., 2005; Feldmann et al., 1994), sewage gas (Sommar et al., 1999), flood plains (Wallschléger et al., 1995) /- '
and rice paddies (Wang et al., 2019¢). The binding affinity of Hg?" to ligands is often qualitatively rationalized by Lewis acid_base ;
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theory, with the message that mercurials (type B metals) prefer soft ligands such as heavier halides and hydrochalcogenides (e.g. I ;

and SH’, respectively) to hard ones (e.g. OH™ and F"). In fact, Hg*" is the softest metal jon that acts as a Lewis acid. The preference .-

for low coordination numbers (< 4, typically linear two-coordinate) in Hg" complexes is related to the fact that relativistic effects

come into play for the heaviest elements (Tossell and Vaughan, 1981). The jnteractions between Hg?*(aq) and inorganic ligands

Table 1) and low:molecular:weight organics (Table 2) are given as stability constants. The tables show that Hg** also binds strongly

to nitrogenous bases. Interactions with inorganic compounds, such as ammonia, are extensive and complex (Breitinger and

: (tog bort: ions acting

(tog bort: Lewis’s acids.

(tog bort: coordination

P (tog bort: interaction

. B (tog bort:
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(tog bort: The interaction

Brodersen, 1970). For organic nitrogen ligands, there is a parallel between the basicity of the ligand and the stability of the Hg-ligand

complex (e.g. guanidine). Heterocyclic nitrogen compounds, such as histidine, also form strong complexes with mercuric jons. The
¥ +ons

hard_soft acid_base principle applies only to highly polar solvents, such as aqueous solutions, as a result of solvation (hydrolysis)

effects (Riccardi et al., 2013). In the gaseous phase, an inverse relationship prevails (Riccardi et al., 2013) and can be illustrated by

the fact that gaseous Hg(OH): is a stable molecule, whereas in aqueous solution, Hg?" and 2 OH™ can form the intermediate molecule
Hg(OH): (Yang et al., 2020b), which eliminates H>O and precipitates solid HgO. Therefore, solid Hg(OH) is not known (Wang and
Andrews, 2005). Furthermore, in the aqueous phase, the univalent state (mercurous species) is represented by the metal-metal bound

ion Hg?(acp which is ordinarily stable. Like Hg*(aq), Hg>*(aq) is a soft Lewis acid.

Hg-ligand complexation is ubiquitous in the environment. This process involves a significant energy shift due to solvation effects,*

which results in a reduction in the number of solvating water molecules and an increase in the interaction between ligands/anions in
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the complexes and water. Unlike the dimer cation, the discrete Hg®" cation is paramagnetic and was detected for the first time via
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electron spin resonance (Symons and Yandell, 1971). Free Hg®" is a highly potent reducing agent with a one-electron reduction

potential, E%(Hg?*/Hg""), estimated to be well below -2.0 V (Gérdfeldt and Jonsson, 2003). However, hydrolyzed or ligated forms <t°9 bort: x
tog bort: ), .. but is insignificant in the atmosphere. ... [156

are less reactive (Gardfeldt and Jonsson, 2003; Kozin and Hansen, 2013). The dissociation Hgi*(aq) 2 2 Hg""(aq) is considerably

2-
2

Hg**1/fHg2"1 of 10”7 (Moser and Voigt, 1957). Free cation acidity decreases in the order of Hg?* (pK 3.4), Hg?" (pK 4.9) and Hg**
e /7% ] 2
(pK 5.1). Hg? @9 2 Hg"(aq) + Hg*" (aq) has an equilibrium constant of 5.5 % 10° M (Moser and Voigt, 1957), which indicates
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less significant than the disproportionation Hg +(aq) 2 Hg(aq) + Hg*"(aq), with a conservative upper bound for the ratio

£k |
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that a solution of initially only Hgg+ in pure water will contain only a single percent Hg?" in the absence of ligands that form formaterade [159

complexes with Hg?*. However, in the presence of ligands that form complexes with Hg?*, disproportionation is rapid, and Hg;+ is | (formaterade .. [160

consumed. The same applies when Hg’(aq) is removed from the solution, e.g., by a gas stream. Hgg+ can be a major speciation ... [161

component in heavily polluted waters (Fang et al., 2024) but is insignificant in the atmosphere,,
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4.5. Chemical equilibria data
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JFor a general complex equilibrium with Hg?* and the ligand L, Hg™ +qL+rHy Z{Hqu(OH)r]( )‘+ rH
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constamfym s defined as‘[{ HgL, (OII)‘.}(’r ] [l [*]r ([ H gZ’] 1L1%), When the complex is not hydrolyzed, 8 _is reduced to = [ // (tog bort: The reader's attention should also be drawn to
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J(HgL ) | /([Hg " 1[L1%), For the equilibrium obtained by adding a ligand (L) to 2 metal complex in a stepwise manner, Kq is used, ,// 7 (formateradlﬂ Kondenserad med 0,2 pt
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b/hich is relJated to Bq
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by [T, K, Tables 1 and 2 present the equilibrium constants for Hg*" associated with a range of inorganic and / Cf‘"'“aterade: Kondenserad med 0,2 pt
organic natural ligands, respectively, without being comprehensive. Quantitative details are available through the open-access ;-
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AQUAMER database and web server dedicated to Hg, which provides direct speciation results by combining web-based interfaces ) (tog bort o
T + constants

with a speciation calculator, thermodynamic constant databases, and a computational chemistry toolbox for input to other software
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Hg" speciation in atmospheric waters such as clouds and fog is governed by,interactions with inorganic nucleophiles, low;molecular;<

tog bort: interaction...ntcractions with inorganic nucleophiles, low
-molecular ...weight organics (LMWO), and high ...molecular
-weight dissolved organic matter (DOM). Identified...he identificd
LMWOs typically make up a smaller mass fraction of the DOM in
ambient cloud and fog droplets. Despite its limited abundance (0.5 -
—3% in freshwater), sulfurized DOM exerts control over Hg cycling
in terrestrial aquatic systems by forming predominantly strong HgL
(logK ~21.9 - ...23.6) and HgL: (logK ~30.1-31.6) complexes
(Dong et al., 2011), where L represents functional groups

weight organics (LMWO), and high;molecular;weight dissolved organic matter (DOM). The identified LMWOs typically make up

a smaller mass fraction of the DOM in ambient cloud and fog droplets. Despite its limited abundance (0.5-3% in freshwater
sulfurized DOM exerts control over Hg cycling in terrestrial aquatic systems by forming predominantly strong HgL (logK ~21.9.- ,
23.6) and HgLa (logK ~30.1-31.6) complexes (Dong et al., 2011), where L represents functional groups with reduced sulfur. //

Although sulfur-containing DOM (with the elemental compositions of CHSO and CHNSO) is also relatively ubiquitous in //
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Bianco et al., 2018; Jiang et al., 2022). In contrast to sub-zero valence S, which, is jot yelevant in this context, conjugate bases of //><t°9 bort: a ...are occurrence...(Zhao et al., 2013; Bianco(", 7165
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atmospheric organic matter (AOM), sulfur, is presen{ mainly in hexavalent form, with reduced sulfur being yare, (Zhao et al., 2013; ,s"’ //(formaterade

strong oxo acids that are common in AOM, such as organic nitrates and sulfates, form only weak complexes with Hg", Therefore

the application of speciation by equilibrium modeling on a geospherical basis to assess the atmospheric interaction between
atmospheric DOM and Hg™ as in some studies (Li et al., 2018; Zhen et al., 2023), is questionable. Bittrich et al. (2011) used pH, a
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confined set of inorganic ions (NHX, NO;3, SOAZ( and CI), and LMWO acids to pbserve dissolved ng in a study of cloud and fog (tog bort: speciate observations of

water. Strongly dependent on pH, at < 5, even moderate CI levels can control speciation (HgCl2), whereas in more alkaline waters tog bort: ..., influenced by NHs)..., speciation is
(tog bort: the
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5 Gas-phase atmospheric Hg chemistry «
5.1 Inorganic species

5.1.1 Initial reactions of ground;state Hg" <

The homogeneous gas-phase oxidation of Hg" in the electronic ground state js limited to a few reactive species produced<;"

photolytically, In the atmosphere, multi-step reactions involving both Hg' and Hg" species are crucial for Hg fransformation,

Atmospheric oxidation of Hg® occurs largely in the gas phase, whereas the rates of aqueous phase reactions in deliquescent
aerosols are relatively slower on a unit air volume basis and are inherently limited by the low water solubility of Hg®. The

oxidation, of Hg" vapor by closed-shell molecules, such as halogenation chemistry with reference to the gas phase, has been

(Formaterat

studied in the laboratory at various temperatures (Hall, 1992; Qu et al., 2009; Chi et al., 2009; Ariya et al., 2002; Sumner et
al., 2005; Raofie and Ariya, 2004; Raofie et al., 2008; Wilcox, 2009) since Ogg et al. (1936). Direct oxidation by, free halogens
(X2) via the insertion reaction Hg + X2 — XHg"X is highly exothermic but very slow under atmospheric conditions due to
large energy barriers (Auzmendi-Murua et al., 2014), whereas the abstraction Hg + X2 — *Hg'X + X* proceeds at significant

rates only at high temperatures (Niksa et al., 2001). Thus, free halogen chemistry is jmportant, for the conversion of Hg in flue

gas from power generation systems (Wilcox, 2009), such as goal-fired (CEPP) systems, but not in the atmosphere. The same

applies to the Hg + NO2 reaction, which is barrierless and whose pathway to Hg"(ONO): shows a negative temperature

dependence (Li et al., 2022c). However, reactions that are jmportant only, in combustion and flue gas cleaning systems are

outside the scope of this review.

Hg + XO (X = O3, NO; and Br) «

Although oxidation of Hg” vapor by the, common atmospheric oxidants Os (Sumner et al., 2005; Hall, 1995; Pal and Ariya,«.

2004b; Snider et al., 2008), BrO® (Raofie and Ariya, 2004; Spicer et al., 2002) and NOS, (Sommar et al., 1997; Sumner et al.,

2005) has been observed in the laboratory, the identity and phase of the product(s) are in doubt. Laboratory studies of gas-

phase oxidation of ppb levels of Hg" (the atmospheric level is sub-ppt) have yevealed, product particles in the accumulation )

mode, suggesting that gas-to-particle conversion takes place (Raofie and Ariya, 2004; Sun et al., 2016). These data attributed

to the gas phase are almost certainly compromised by complex kinetics, including reactions at the reactor wall (Hynes et al.,

2009). In all cases, gas-phase oxidation pathways leading to HgO by O atom transfer are endothermic (Rxn G5-G7, Table

3). Furthermore, fhe, measured pre-exponential factors for the Hg—Os reaction, ~ 107'%,107'® cm® molecule™ s (Hall, 1995;

Pal and Ariya, 2004b), are much smaller than expected for, simple O atom transfer (Calvert and Lindberg, 2005). Alternative \(

03 oxidation via a weakly bound (~16 kJ mol™) adduct, HgOs, lacks exothermic dissociation pathways (i.e., HgO + Oz, Rxn

G5a) and is therefore unlikely to occur in the atmosphere, However, in laboratory experiments, HgO, can conceivably diffuse

to surfaces and be deposited as solid HgO possibly via oligomerization (Tossell, 2006). Recombination of Hg with NO3,

results in,weakly bound *Hg'NO; (~27 kJ mol™"), which dissociates in the lower troposphere before oxidation to Hg'" species \\

of the type O2NOHgO* or O2NOHgY can occur (Edirappulige et al., 2024). Abstractions (e.g., Hg + BrO* — HgO + Br® or ;
Hg + BrO® — *Hg'Br + O, Rxn G7a & b) are endothermic, whereas direct insertion reactions (e.g., Hg + BrO* — BrHg'O®, *
Rxn G7¢) are exothermic (-84 kJ mol™!, Shepler 2006) but affected by large barriers (170 kJ mol!) and are therefore unlikely
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to proceed (Balabanov and Peterson, 2003). The remaining exit channels, namely, the recombination of Hg and BrO® (Rxn \

G7d),leading to the formation of the geometric isomers of BrHg"O® (*Hg'BrO and *Hg'OBr), are also inconceivable, as these
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adducts are thought to be very weakly bound (Shepler, 2006). Stable Hg' species of this type have been reported, suggesting _\\\; (tog bort: 2023a

that BrO*® is important during AMDESs (Raofie and Ariya, 2004). However, other field (Wang et al., 2019a) and jmodel, (Xie et

al., 2008; Ahmed et al., 2023) studies have shown, that the synchronous disappearance of Hg and Oz during AMDEs can best
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be described solely as the action of Br atoms, with an upper limit for kug + 8o of 1, 107> cm® molecule™! s7!, but that the

reaction product *Hg'Br (Fig. 2) rapidly adds BrO®, presumably mainly to BrHg"OBr, which is 117 kJ mol! more stable than

the isomer BrHg!'BrO (Jiao and Dibble, 2017a). Despite its thermal stability, BrHg"OBr is rapidly photolyzed (Figs. 2 and 4,

and therefore does not constitute a significant component of the Hg" pool following an AMDE.

Table 3. Atmospheric gas-phase reactions. Except where otherwise noted in the reference column, the thermodynamic data have been compiled from

the following sources of information: CRC Handbook of Chemistry and Physics (Lide, 2008), Hepler and Olofsson (1975), Chemical Kinetics and

(tog bort: x )

(formaterade: Inte Expanderad med / Kondenserad med )
(tog bort: ), )
(formaterade: Inte Expanderad med / Kondenserad med )

(formaterade: Kondenserad med 0,3 pt, Ligaturer: Standard )

Photochemical Data for Use in Atmospheric Studies (Burkholder et al., 2019), Guzman and Bozzelli (2019), Saiz-Lopez et al. (2020; 2022), Balabanov (formaterade: Ligaturer: Standard )
and Peterson (2003; 2004), and Shepler (2006). The photolysis frequencies are calculated via the global annual average photon flux in the troposphere, (formaterade: Ligaturer: Standard )
. Rate AHr
ID Elementary reaction . s (Jmor Reference Remarks
coefficient' 7
Initial reactions of ground state Hg"
Gl M . 1.46 x 10 x (T/298) 69 Donohoue et al.,
Hg+Br® - BrHg 156 [M] — 2006
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G2 Hg+g1° 5y ClHg® - 104 Ponchouectal, tog bort: 3.34
g exp@SO) X [M] 200¢ .
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- 1Y Hynes etal., 2009 Ctog bort: Donohoue et al., 2005 )
Sommar et al.
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G6 Hg+NOj - HgO + NO. 195 27 Shiceigl ol JThermodynamically unfeasible ( 2 )
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etal. 2024
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Jn addition to bromine atoms (Br*), hydroxyl radicals (HO®) and, to a lesser extent, chlorine (CI*) and possibly iodine (I*) atoms have (t"g bort: rate )

tog bort: has...ave been determined by...ia pulsed laser photolysis-
laser ...induced fluorescence (PLP-LIF) for a range of pressures and
temperatures. The reaction is apparently termolecular, i.e...., it shows
a linear dependence on pressure (M), a slightly negative temperature
dependence, and a significant difference in deactivation efficiency,
with N2 and He as third bodies (Donohoue et al., 2005). There are
also several experimental static studies of the ...alogen atom
reactions carried out at 1-atm pressure, which, with the exception of
the studies by Horne et al. (1968) and Greig et al. (1970), have used
the relative rate (RR) technique at room temperature (Ariya et al.,
2002; Spicer et al., 2002; Sun et al., 2016; Guérette, 2011). The Hg +
X* rate expression determined absolutely ...y Donohoue et al. over
experimental static studies of halogen atom reactions carried out at 1-atm pressure, which, with the exception of the studies by Horne | 0.26 —...0.79 atm and 243 — ...293 K by the preferred PLP-LIF

hni i ffici (
et al. (1968) and Greig et al. (1970), have used the relative rate (RR) technique at room temperature (Ariya et al., 2002; Spicer et al., <m n;quc givesa . ate coefficient .- [255]
tog bort: -

2002; Sun et al., 2016; Guérette, 2011). The Hg + X* rate expression determined py Donohoue et al. over 0.26-0.79 atm and 243 -
tog bort: at STP ...0% greater than that of the bromine atom

293 K by the preferred PLP-LIF technique gives yate coefficients of 5.4 x10~* (Donohoue et al., 2005) and 3.6 x 10~ (Donohoue " J|| reaction, the significance of the former is small in the remote
troposphere, taking into account...onsidering the low concentration
chlorine atoms. It should also be added that...otably, a significant
increase in the apparent recombination rate coefficient of Hg + C1°*
was observed in the presence of air. This result has been rationalized
on the basis that secondarily formed C1Ox species may also react
rapidly with Hg” (Donohoue, 2008). A plausible candidate is Hg +
ClO; — *Hg'Cl + O: (Rxn G8), which is exothermic (AHg =80 kJ
mol ™), but the channel has not been investigated further. Byun et al.
(2010) studied the Hg + ClOx gas phase system experimentally at 130
°C. Their results in favor of a rapid reaction between Hg + C10* —
products at 1.1 x107"" cm® molecule ' s™! are surprising, but they also
report Hg + CI* — products at 1.2 x107'* ¢cm® molecule ' s and Hg
+ Cl, — products at 4.3 x10™'* cm® molecule™' s™', which may

been proposed to jnitiate the, global gas-phase oxidation of Hg? in the ground state in the atmosphere;,

M
Hg+X* - °*Hg'X (Rxn G1 - G3)
The reaction yates for X = Cl (Rxn G2, Donohoue et al., 2005; Taylor et al., 2005) and Br (Rxn G1, Donohoue et al., 2006) have

been determined yia pulsed laser photolysis-laser;induced fluorescence (PLP-LIF) for a range of pressures and temperatures. The

reaction is apparently termolecular, i.e,, it shows a linear dependence on pressure (M), a slightly negative temperature dependence, /

and a significant difference in deactivation efficiency, with N> and He as third bodies (Donohoue et al., 2005). There are also several

—1 Sfl

et al., 2006) cm® molecule at 298 K and 1, atm pressure in air for the CI°- and Br®- reactions, respectively. Although the rate

constant of the chlorine atom reaction is 50% greater than that of the bromine atom reaction, the significance of the former is small

in the remote troposphere, considering the low concentration of chlorine atoms. Notably, a significant increase in the apparent

recombination rate coefficient of Hg + CI°* was observed in the presence of air. This result has been rationalized on the basis that
secondarily formed ClOx species may also react rapidly with Hg” (Donohoue, 2008). A plausible candidate is Hg + C102 — *Hg'Cl
+ Oz (Rxn G8), which is exothermic (AHr =80 kJ mol™), but the channel has not been investigated further. Computational studies

(Shepler et al., 2007; Goodsite et al., 2004; Goodsite et al., 2012) yeported a slightly larger rate constant (~10~'2 cm® molecule™ s™) |

for the Hg + Br® reaction than the absolute PLP-LIF determination at STP. On the other hand, gxperimental RR studies generally indicate that the results are strongly affected by surface reactions.

. L. . . . . . . . . Computational studies (Shepler et al., 2007; Goodsite et al., 2004;
ield rate constants that exceed the limit obtained from theoretical calculations, suggesting complex kinetics, including reactions at Goodsite et al., 2012) gave [256]
the reactor wall, = tog bort: the ...xperimental RR studies generally give...icld rate

constants that exceed the limit obtained from theoretical calculations,
The reaction with X = OH (Rxn G3) was studied with PLP-LIF using an excess of Hg” over *OH (generated from the photolysis of suggesting complex kinetics, including reactions at the reac(_ [257]
HNO:s at 266 nm) without evidence of a reaction, yesulting in an upper rate limit of (<) 1.2 x 10" cm® molecule™ s™! (Bauer et al., ///<tog bort: for...fa reaction, giving C. 258D
2 Th £ . . 1. (2001 lati loh . tog bort: the ...al and Ariya (Calvert and Lindberg, 2005) and
003). The rate constant of Hg + *OH — products determined by Sommar et al. (2001) relative to cyclohexane + *OH — products Sommar et al. (Dibble et al.. 2020) data using. . ix kinetic modeling

of 8.7 x 107" ¢cm® molecule ! s™! falls below this limit at 295 K and 1 atm air, as does the temperature-resolved kinetic RR study of has shown._.cvealed that the fate of ... [259]

Pal and Ariya (2004a) extrapolated to 295 K (~1 x 1073 ¢m? molecule™ s). External re-analysis of Pal and Ariya (Calvert and tog bort: their ... xperimental conditions is ... xclusively i, [260]3
. . e . . . . tog bort: G59...57) rather than dissociation. ..issociating. The

Lindberg, 2005) and Sommar et al. (Dibble et al., 2020) data yia kinetic modeling yevealed that *Hg'OH under gxperimental // time...cmporal resolution in the PLP-LIF study also allowo( .. [761]

conditions gxclusivelyreacts with NO2 (*Hg'OH + NO2» — HOHg"ONO, Rxn G57) rather thangissociating. The femporal resolution /// [ tog bort: also ...cen modeled by...stimated via computational

. . - _ - studies. A recent one using...ccently, high-level quantum chemical
in the PLP-LIF study also allowed a lower;bound estimate of the equilibrium constant Kengon = [*HgOH] /([Hg][HO']\ of 5x107'¢ / calculations (Dibble et al., 2020).... performed at 200 ...320 K

cm® molecule™ (Bauer et al., 2003). This equilibrium constant has been gstimated via computational studies. Recently, high-level yields

quantum chemical calculations (Dibble et al., 2020) performed at 200,320 K yielded a Kengon of ~7 x10'® ¢cm® molecule ' at 298
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K. corresponding to a ki3 of 9.5 x 107* cm® molecule at 1 atm. In contrast, Saiz-Lopez et al. (2022)yeported that Kengon was

more than an order of magnitude smaller (~5 x107'7 cm® molecule™) at the corresponding temperature.
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*Hg'Cl is much less thermally unstable.
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760  Figure 3. Computed absorption spectra of the atmospherically important mercurous chloride, bromide, and hydroxyl radicals. Wavelengths accessible
in the troposphere are to the right of the colored area. Data from Saiz-Lopez et al. (2019).
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5.1.3 Bimolecular reactions of *Hg'X
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temperatures characteristic of post-combustion conditions. The observed reaction with free chlorine to form HgCl> was rapid (1.2
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oxidation by NOz being approximately twice that for oxidation by HOO®. This theoretical study indicated that the *Hg'Br + NO2
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reaction occurs along two competing channels (Rxn G20a, b), one proceeding yia, oxidative addition, resulting in BrHg"ONO,
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and jhe other, operating i, reductive displacement, resulting in Hg” + BrNOa. The dichotomy occurs pecause, *Hg'Br (*2*) ~

Ctog bort: depending on the fact that
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experimental study of the *Hg'Br + NO; reaction by Wu et al. (2020) using PLP-LIF, who jeported, that the computed rate
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coefficients for both reduction and oxidation were greatly overestimated. This study deduced that the importance of the reductive o (tog bort: found
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channel increases slowly with increasing altitude from the, ground level to the tropopause but is only ~10% as fast as the oxidation /Cformatera de

reaction. Wu et al. (2022)also experimentally studied the interaction between NO and *Hg'Br, leading to Hg® + BrNO. *Hg'Br + (tog bort: have

02 — BrHg"'0O* (Rxn G19) is slightly exothermic, while that leading to Hg° + BrOO* is less feasible due to endothermicity. Zformaterade
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at low temperatures, with an upper limit of ~50% stored at 220 K. Wu et al. (2022) argued that BrHg"OO® behaves like a peroxyl Ctog bort: och

radical (HOO®/ROO?®) in reactions with atmospheric radicals. Recently, Saiz-Lopez et al. (2020) implied missing oxidation ',(formaterade
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Suggested by Shepler (2006) and, later Lam (2019) as a potential pathway of Hg' oxidation, the Saiz_Lopez group has carried out . (formaterade
theoretical (Saiz Lopez et al., 2020) and experimental (Gomez Martin et al., 2022) investigations of the system *Hg'Br + Os. In (tog bort: -
(formaterade ... [282

addition, Castro Palaez et al. (2022), carried out theoretical calculations for rate constants and product yields, including *Hg'OH +

tog bort: have
0. *Hg'X + 03 — XHg"0* + 02 (Rxn G22, G43 and G59) is highly exothermic (172 kJ mol™! for X = Br), proceeds without a (

‘ (formaterade

... [283

substantial activation barrier and is currently considered to be jmportant, for the atmospheric oxidation of *Hg'X, with XHg"O*® § ¥ “(tog bort: G22a
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respectively. They presented an upper limit for BrHg"O® + O3 (k <5 x 1072 cm® molecule™ s™), which, was considered jnfcasible

by theoretical calculations due to steric hindrance. Instead of leading primarily to BrHg"O2: as is the case for the *Hg'Br + Os reaction,

*Hg'Br + O results in reductive elimination (Hg® + BrO*®) for all collision geometries. Hg? is also produced in the rapid reaction
between BrHg"O® + O. In the lower atmosphere (< 25 km), the content of free O atoms is low, and therefore, its role as an oxidant
880 is minor (Calvert et al., 2015). The energetic O('D), formed primarily by photolysis of Os by UV light (< 340 nm), is rapidly
consumed through two competitive channels: deactivation to OCP) by collision with air molecules or reaction with the ubiquitous
water vapor to form OH radicals. O(°P), also formed by the photolysis of NO2 (< 430 nm), reacts rapidly and thermally with Oz in
the atmosphere to form ozone (Calvert et al., 2015). Jmportantly, k(*HgBr + Os) is more than twice as fast as k(*HgBr + NOz) when

the experimental results are extrapolated to the atmospheric surface layer (1 atm, 295 K). The combination of a high k(*HgBr + Os)
885 and the abundance of ozone relative to other radicals, such as NO2 and HOO, suggests that *Hg'Br + Oj is predominant in the
conversion of Hg' to Hg" in the atmosphere. The experimentally determined k(*HgBr + O3) is close to the upper limit of 1 x 1071
gl

cm? molecule estimated by Saiz-Lopez et al. (2020), which excludes steric effects. For an updated chemical mechanism in the

global atmospheric model GEOS-Chem, Shah et al. (2021) used a conservative rate constant of 3 x 107! cm® molecule™ s for the

oxidation of *Hg'X with O3 (X = Cl, Br and OH). By postulating k(*HgOH + O3) = k(*HgBr + O3), simulations by Shah et al. (2021) |

890 sevealed that the OH-initiated pathway accounts for one-third of global Hg" production. In contrast, by not including *Hg'OH + O3

in their model, Dibble et al. (2020) yeported that the OH-initiated channel js largely irrelevant, with only some regional significance | /

in areas with high levels of photochemical smog. More recently, Castro Pelaez et al, (2022) compared *Hg'Br + Oz and *Hg'OH + f

tog bort: , however,...was considered obsolete...nfeasib] ... [293

(tog bort: It is important to note that

(tog bort: of ultimate significance

&

g

tog bort: showed...cvealed that the OH-initiated pathway ™ [294

tog bort: found...cporied that the OH-initiated channel

... [295

(formaterade

... [296

(tog bort: .,

formaterade

gl B

... [299

tog bort: to be ...imilar with a computational value for th”__ [300]

(tog bort: the

(formaterade

... [301

(tog bort: speciated Hg

(tog bort: speculate

(formaterade

... [302

(formaterade

5l 5

tog bort: ).... Edirappulige et al., 2024). An interesting

(... [304

(tog bort: in discussing

(formaterade

- [305

| ﬁ} (tog bort: , it can be concluded that it is low viz-4-viz

[
|
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(Hg + BrO*® + O) rather than oxidation (BrHg"O*® + O2) when the orientation of the terminal oxygen in ozone is joward the Bratom. [\ (formaterade 2. [30
895  There was no such tendency for *Hg'OH + Os. It was also found that k(*HgBr + O3) and k(*HgOH + Os) are likely similarat 298 K (tog bort: .

in the range of (6.6 - 8.5) < 10! cm® molecule™ s'. The positive covariation of O3 and *OH, as opposed to *Br and Os (O titrates (formaterade 309

*Br, Fig. 2), suggests precedence for OH-initiated Hg oxidation in air with secondary pollutants (Rutter et al., 2012). Field (tog bort: )

observations of GOM, in urban air ynay sugges{, radical-initiated Hg" — Hg'" gas-phase transformation, which is claimed to be / / (formaterade
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completed by certain radicals (Peleg et al., 2015; Hong et al., 2016; Edirappulige ct al., 2024). An interesting case is urban Jerusalem,
900  where episodes of elevated daytime and nighttime gaseous Hg" levels gcovary with O3 (max 250 pg m>) and NOs (430 ng m),

respectively (Peleg et al., 2015). To the east of the city lies the Dead Sea basin, where effective bromine-controlled oxidation of Hg’ ; i
has been observed (Tas et al., 2012). Finally, the reactivity of *Hg'X; toward, volatile hydrocarbons is low, as *Hg'X does not abstract ,I

a hydrogen atom from an alkang (e.g,, from CHg), nor does i significantly add fo a double pond of an alkene (e.g., to CH>=CH) #
(Dibble and Schwid, 2016).

905 5.1.4 Stability of Hg"XY <

Photoreduction and stoichiometric yields

Although atmospheric Hg"" species are generally more stable than Hg' speciesare, many, Hg" molecules are still labile, and the atmospheric £

pool contains mercuric species with different thermal and photolytic stabilities. Most of the atmospherically relevant gas-phase species have -
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well-defined absorption bands in deep UV, in some cases extending into the UV-B and UV-A regions. Early theoretical studies (Strémberg /) (tog bort: is %

910 etal, 1989; Stromberg etal., 1991),when knowledge of the atmospheric chemistry of Hg was rudimentary,jindicated that the photoreduction / - 4 (formaterade (W
of HgCl: and Hg(CN)s in actinic light at the Earth's surface vas negligible, while that of Hg(OH)2 and Hg(SH)2 gvas extremely slow, The /tog bort: for...f mercuric halides become (W

UV absorption spectra of mercuric halides are increasingly red-shifted as the halogen becomes heavier. HgClz vapor absorbs only ’ g:?:::::;:‘e [320])
radiation below 240 nm (Fig. 8a), HgBr2 absorbs mainly deep;UV light with a tiny tail (< 10" cm? molecule”!, Fig. 8¢) into UV-B, while -~ (tog bort: )

Hgl> hag significant absorption in the entire UV region (Maya, 1977, Sitkiewicz et al., 2019). However, binary compounds such as HgBr or ‘ formaterade (Wﬁ

915  HgClz do not completely dominate the atmospheric Hg'(g) speciation. Mixed compounds such as BrHg"Y molecules (Y= ONO, OOH, | (tog bort: a )
OH, OCl, OB, etc.) and XHg"O, radicals (X = Br, OH) are also predicted to be important. Saiz-Lopez et al. (2018) computed the \\(formaterade (W
absorption spectra of mixed compounds and found that abundant BrHg"Y molecules absorb in UV-B. The rapidly photolyzed Hg" species gt"g bort: * )
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identified include BrHgONO (Rxn G35), BrHgOOH (Rxn G36) and BrHgOBr (with lifetimes of a few min,to less than a second, Fig. 4a-
¢), with BrHgOH being comparatively long-lived (> 1 day, Fig. 4d) in terms of photodissociation. In their modeling study, HgCl> and
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Hg(OH): were estimated to be photolytically stable in the troposphere by Shah et al. (2021), while the photolysis frequency of HgBr2 was
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calculated to be just over an order of magnitude lower than that of BrHgOH (1.2 x 10 and 1.3 x 10 s, respectively).
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Figure 4. Computed absorption spectra of the atmospherically important (a) BrHgOBr, (b) BrHgOOH, (c) syn-BrHgONO and (d) BrHgOH.
Wavelengths accessible in the troposphere are to the right of the colored area (Francés-Monerris et al., 2020).

The photodissociation mechanism (quantum and product yield) of BrHg"Y has been studied using computer-aided calculations based<-....-

on 2D potential energy surfaces, with the result that photodynamics Jead to different channels in which the Hg-containing products

can exhibit +11, +I and 0 oxidation states (Francés-Monerris et al., 2020; Lam et al., 2019b). Photolysis of BrHg"ONOQ, results in the

formation of NO and BrHg"O® in 90% of cases, while the remainder reverts to *Hg'Br and NO2 (Francés-Monerris et al., 2020).
Consistently, a large dominance of the photoproducts BrHg"O® + NO was predicted by the calculations of Lam et al. (2019b), in

contrast to an early work by Saiz-Lopéz et al. (2018) that favored *Hg'Br and Hg" formation. During the photolysis of BrHg"OOH,

(tog bort: )in their modeling study,
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the Hg-Br, Hg.-O and O—O bonds can be broken, resulting in three main exit channels:
. Hg + Br+ *OOH (66%)
BrHg"OOH -, BrHg"0® + *OH (31%)
. *Hg'Br + O~O-H (<3%

Thus, the photodissociation of BrHg"OOH produces Hg’, *Hg'Br and BrHg"O*® to varying degrees (Francés-Monerris et al., 2020).

(Rxn G36)

In the case of BrHg!"OH, the photolytic formation of BrHg"O* is negligible, while in half of the cases (49%), reduction to elemental
Hg occurs, and in the other half, *Hg'Br or *Hg'OH is formed, with the former being predominant (~70%) (Francés-Monerris et al.,
2020).,The photolysis of BrHg"ONO and BrHg"OOH thus results in significant yields of BrHg"O®, the radical form of Hg" described

above as the major product of the rapid reaction between *Hg'Br and Os. In this series of reported compositional chemical results,

the only YHg"O* species that has been experimentally characterized is the fluorine analog that is formed along with FOHg"F when

excited Hg atoms react with OF2 (Andrews et al., 2012). Although FHg"O® has no atmospheric significance, its experimentally

determined properties are important benchmarks for other homologs in the series. YHg"O* has two strong bonds (the dissociation

energy for YHg-O is ~250 kJ mol™") and is thermally stable in the gas phase. However, YHg"O* is photolabileunder UV, VIS light /- #
(cf. Fig. 5b) and decomposes photolytically along two channels. The calculated branching yatios for both Y = Cl and Br favor, the ;

formation of HgO (67% and 56%, respectively, Saiz-Lopez et al., 2022) over,splitting into atoms, as shown below:

ne v HgO+Y* (56%)
YHE'O' = 1% 04 v* (44%)

(Rxn G31 & G48)

For HOHg"O®, there are no stoichiometric calculations for the photoproducts. The main product generated, HgO with a [T ground state,*

as a monomer in the gas phase (Sun et al., 2022), possesses a weak Hg. O bond of disputed magnitude (15-30 kJ mol”, Tossell, 2006; -

Balabanov and Peterson, 2003; Cremer et al., 2008; Filatov and Cremer, 2004; Shepler and Peterson, 2003; Peterson et al., 2007), which
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x 1073 exp (~1993/T) cm® molecule! s (Saiz-Lopez et al., 2022). The enthalpy of thermal decay of HgO is only weakly
endothermic and therefore favored by high temperature, with a dependence of 8.4 x 107" exp (=3150/T) cm® molecule ™! s as calculated
by RRKM theory (Saiz-Lopez et al., 2022). In addition, HgO is more photolabile than *Hg'OH is, with a calculated global annual

mean J(HgO) of 0.54 s™! for the troposphere (Saiz-Lopez et al., 2018, absorption spectrum in Fig. 5a). These suggesf that gas-phase (tog bort: Taken together, this information indicates
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Experimental data on the kinetics and mechanisms of the atmospheric chemistry of YHg"O® are scarcg (the reaction BrHg"O® + O3 to -
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*Hg'Br and Oz has been described above, Gémez Martin et al., 2022). Initially, the, focus of computer simulations was pn the Br analog o —{formatera de %
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below, Dibble and colleagues (Lam et al., 2019b; Khiri et al., 2020; Lam et al., 2019a),concluded that the bimolecular reaction with CH4 //<formaterade .. [327
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of organic oxidation in the atmosphere described in detail elsewhere (Finlayson-Pitts and Pitts, 2000). However, apart from the CH4
reaction, the interaction between BrHg"O® and VOCs is considered limited in the atmosphere.

Analogous to, *OH + CO, the reaction between BrHg"0* and CO is not a simple bimolecular reaction. However, the intermediate .

BrHgOCO is much less stable than HOCO with respect to the release of CO». The very weakly bound BrHgOCO promptly dissociates
in *Hg'Br + CO; (Khiri et al., 2020). The above reaction is highly exothermic (> 280 kJ mol); therefore, the product *Hg'Br can be

chemically activated to the extent that it increasingly decomposes jnto, atoms. The importance of this Hg reduction channel has been

identified as difficult to constrain theoretically, as the shape of the potential energy surface is unfavorable for the application of standard
kinetic simulation methods. Nevertheless, by using an inverse Laplace transformation method, Khiri et al. (2020) calculated the range
for the rate coefficient at two temperatures: (9.4 — 52) x 1072 cm® molecule ™' s at 298 K and (3.8-29) x 1072 cm® molecule ! s™* at
220 K. These data are the basis for the current inclusion of the,YBr'O* + CO — *Hg'Y + CO; reaction jn chemical models (Shah etal.,
2021; Saiz-Lopez et al., 2022), with an averagg

characterization, the YHg"O*® + CO reaction becomes profoundly important when implemented in simulations, as it largely counteracts

expression of 6.0 x 107! x exp(-550/T) cm® molecule ! s™'. With this numerical

the effect of the *Hg'X + Os reaction, thereby extending the predicted lifetime of Hg? in the troposphere. However, other candidates have

emerged that, like CHa, may react with HOHg"O® to form jhe stable Hg(OH)> molecule, namely, water vapor. The reaction HOHg"O® .-
+Hz20 — Hg(OH) + *OH (Rxn G60) is nearly thermoneutral due to the stability of Hg(OH)2 (AHs=—-226 kJ mol "\, Wang and Andrews, N
2005) and Saiz-Lopes et al. (2022) give 4 temperaturedependent rate constant expression of 5.3 x 1072 x exp(-2894/T) cm* molecule™ ‘

!'s! without further details. Since both the calculated HOHg"O® + HO rate coefficient and the H20(g) mixing ratio vary considerably
across the troposphere, the HOHg"O® loss due to this channel may largely exceed or fall below the more monotonic rate of hydrogen
abstraction by HOHg!"O* from CHs, depending on the circumstances. The fate of HOHg"O® is thus influenced by several exit channels
(Edirappulige et al., 2023), none of which have been investigated experimentally, Particularly, the uncertainty of the CO and H.O .
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Jeactions makes it difficult to determine the importance of OH-initiated oxidation to the atmospheric Hg" pool.
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While Hg” vapor has been observed to nucleatg homogeneously in laboratory experiments conducted under high pressures (Martens et al.+} "+

1987), neither Hg” atoms nor GOM species, which are molecular rather than ionic entities, have a vapor pressure that is sufficiently low and

a concentration that is sufficiently high in the atmosphere to nucleate new particles by simple condensation (Murphy et al., 1998). However,

the concerted action of a foreign gas-phase precursor (e.g.. amines, highly oxygenated organics, sulfuric, nitric, and iodic acids, etc.;

Lehtipalo et al., 2025; He et al., 2021) or heterogeneous condensation on, pre-existing nuclei of subcritical or critical size,may result in the

transfer of GOM species to aerosols (Ariya et al., 2015). Measurements of individual aerosol particles have shown that a significant portion
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of the aerosols present in the lowest kilometers of the stratosphere contain small yet measurable amounts of Hg". Interestingly, Hg" is

empirically correlated with bromine and iodine in these organic-sulfate-type particles and has the highest relative concentrations in the

stratosphere near the tropopause. However, Hg'" is rarely observed in the relatively pure sulfuric acid particles characteristic of the main

stratospheric aerosol (Junge) layer (Murphy et al., 2006). While bromine and iodine aerosols are also observed throughout the troposphere.
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no Hg can be detected in these aerosols, indicating that the Hg!" products can evaporate rapidly into GOM species (Murphy et al., 2014).

Both Br and I, with oceans as the primary sources, are injected into the stratosphere, where they account for most of the ozone depletion

caused by halogens (Koenig et al., 2020). It is challenging to determine whether there is a causal mechanistic relationship and, if so, what

can explain the observed correlation between aerosol Hg, Br, and I. Nevertheless, a plethora of clues can be utilized to assemble a coherent

narrative. First, the combination of Br* (Rxn G14a) and Os (Rxn G22) constitutes a significant oxidation pathway for Hg to Hg". However,

as mentioned above, there is no firm evidence that this reaction pathway is relevant when I* is a substitute for Br*. Second, the gas phase

system I* + Os + H>O has been identified as a substantial precursor of particle nucleation (as iodine oxoacids) and growth that is highly

important within marine (Sipild et al., 2016) and stratospheric (Koenig et al., 2020) environments. Third, the condensed phases Brand
I act as robust complexing ligands (Table 1) for the GOM to partition into the aerosol, thereby impeding its recycling back to the gas
phase. Presumably, the fundamentals are similar for g particle formation eventobserved in the context of the polar spring partial AMDE
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(Ghoshdastidar and Ariya, 2019), which, along with the other nonsystematic bias of the method previously mentioned, makes separation
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Figure 6. Particle growth of the reaction products,from the halogen atom (X = Cl, B) induced oxidation of Hg” vapor studied after the same de
conversion (~75%, 5.8 ppb) but at different reaction times a and b (~45 min, Hg’+ Br and ~4 h, Hg® + Cl, respectively). Adopted from Sun et al. (2016),
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S.1.5 Chemical transformation of Hg in the lower stratosphere e (tog bort: 5.1.5 Lower stratospheric conditions

In the lower stratosphere, chlorine atoms and hydroxyl radicals initiate most of the oxidation of Hg’. This is because the U (formaterade: Kondenserad med 0,2 pt
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concentrations of these species increase with altitude, and the channels in which they are contained produce more photostable

products, such as Hg(OH)2 and HgCl: (Fig. 8a, b). The prediction, of jhese model calculations, that Hg’ converts to long-lived

(photostable) oxidized forms and thus leads to a higher RM/TAM ratio is supported by hundreds of profile measurements made with ’
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et al., 2018). In addition to the frequently observed higher RM/Hg" ratios, a steep decrease in the Hg® mixing ratio occurs when
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greatest importance, leading to the formation of thermally and photolytically labile mercurous radical species (i.¢,, *Hg'Br and *Hg'OH). These
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Hg' species are further oxidized to Hg' not only by,0zone but also by gadicals (in descending order of abundance). such as NOy> HO, > Br
OH, NO, cannot efficiently oxidize Hg' to Hg" but instead jnduces, thermal reduction, e.g , *Hg'Br + NO — Hg + BrNO. As O; is a closed shell
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species, it directly oxidizes *Hg'Br/*Hg'OH to mercuric radical species YHg"OZ; for example, HOO® and BrO® are added to linear mercuric
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molecules (e.g,, BrHg"OOH) that are photolytically labile while those resulting from, e.g,, NO,, *OH and Br® are more photostable. The

photolysis of many of the major thermally more stable Hg" species, such as syn-BrHg"ONO, BrHg"OOH and BrHg"OH, leads, to several
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species-specific photoproducts (potentially Hg®, Hg' species or YHg"O®) with various yields (Table 3). The remarkably thermally stable YHgO
radical exhibits versatile thermochemistry, such as abstracting hydrogen from VOCs, adding to double bonds and being reduced by CO. Some
of its bimolecular reactions, such as with CHy, directly form fairly stable Hg" compounds such as Hg(OH),, and BrHg"OH, When these
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strong complexes, e.g,, by CI, to chloromercurates HgCl,, HgCly~ and HgCly*~. Thus, molecular HgCl, is released into the gas phase when the
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particle dries, HgCl is completely photostable and is enriched in the troposphere (a major Hg!' species), with dry and wet deposition as the only
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sink processes.
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stratospheric Hg. New insights into its conceptual stratospheric chemistry (Saiz-Lopez et al., 2022; 2025) and associated anomalous
isotope fractionation (Sun et al., 2022; Fu et al., 2021) have been presented. The gas-phase oxidation of Hg” is rapid (10°%-10* times
faster than in the troposphere, Saiz-Lopez et al., 2022) and is driven entirely, by the oxidation of electronically excited Hg atoms by
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one of the major constituents of air, Oa.

Hg'(P) reaction with glemental oxygen
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Already involved in the discovery of the element oxygen foward the end of the 18" century, the chemistry of the system of Hg + O \ (tog bort:
Jas exhibited intricate complexity. These early observations, made independently in northern and western Europe, address an | \ formaterade

important aspect of the thermochemistry of the system. A direct combination of liquid Hg and Oz occurs just below the boiling point
of Hg to form HgO, but the reaction is reversed above 400 °C. While the reaction of ground-state Hg vapor (Hg('S)) with Oz is
negligibly slow (Hall et al., 1995), deep UV light excitation of singlet to triplet Hg atoms (Hg(*P)) leads to significant homogeneous
reactions with O>. In contrast, further excitation of Hg('P1).in,blue and subsequent reaction with Oz, as discussed above, is unlikely ‘
to result in the net formation of mercury oxides. The gas-phase reactions of Hg(*P) have been studied in the laboratory since 1922

(Cario and Franck, 1922). In particular, O»/air has been used as a route for ozone synthesis since the mid-1920s (Dickinson and
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Sherrill, 1926). While larger quantities of ozone are produced by Hg photochemistry (photo-sensitization), the elemental vapor is

oxidized more slowly, resulting in the deposition of a yellow,brown film of solid HgO on the reactor walls downstream of the

irradiation zone (Volman, 1953). However, the Hg(°*P) + O2 mechanism isunclear because of the controversy regarding the molecular ‘
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intermediates, and whether there is a direct route from Hg(*P) to gaseous HgO or pxidation starting from the Hg('S) state remains “
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undetermined (Callear et al., 1959; Volman, 1953; Hippler et al., 1978; Morand and Nief, 1968)..The dark homogeneous reaction
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Hg('S) + O3 — HgO + O, supported by early researchers (Callear et al., 1959; Volman, 1953; Pertel and Gunning, 1959) as driving “
the oxidation in the photochemical experiments, can now be rejected for the reasons discussed above in Section 5.1.1. Considering
more recent results (Wang and Andrews, 2005; Hall, 1995), e.g., those, obtained by refined computational chemistry, the following
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mechanism seems to be the most plausible:

Hg('So) + hv (A=253.7 nm) — Hg(*P1) (Rxn G4)
Hg(*P1) — Hg('So) + hv (A=253.7 nm) (Rxn G9)
Hg(*P1) + N2 — Hg(*Po) + N2 (Rxn G10)

— Hg('Sp) + 0,Cx)
— HgO('IT) + OCP)
Hg(*Py) + 0, — Hg('Sy) +0,('Zh)

M + M
Hg(P)) + O, - HgO, — OHgO (Rxn G12a,b)

(RxnG11
0,(’%,) + 0, = 03+ OCP) (Rxn ) |\
02+ OCP) — O3 (Rxn ) |

Photoexcitation (Rxn G4) has been discussed, but its reverse (Rxn G9), i.¢,. the spontaneous emission of a photon that brings Hg(°*P1)

to the ground state, is spin-forbidden, and the radiative lifetime is relatively long (0.12 ps corresponding to ko = 8.4 x 10° s™"). The :

quenching of Hg(*P) states (ig,Rxn,G9 & G10 — G12a) for several gases has been,studied, with Hg(*P1) atoms being 21.3 kJ mol™! |
more energetic than Hg(*Po) atoms. The two main constituents of air play different roles in the quenching process, with N2 almost

exclusively deactivating Hg(*P1) to Hg(*Po) with kgio=5.1 x 107" exp (=701/T) cm® molecule ' s™', while Oz quenches both Hg(*P1)
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and Hg(*Po) directly to Hg('So) with ka12a and ke values of 1.3 x 1071 (T/300) %% and 1.8 x 107'° (T/300)*'¢” cm® molecule ' s™!,
respectively. In the stratosphere (T = 240 K), the kg12s/ka1o ratio is ~50, suggesting that Oz is a much better physical quencher than

N2, which is true throughout the atmosphere. Of primary interest here, however, is the spin-conserving Rxn G12b, which allows the

oxidation of Hg,and is overall nearly thermoneutral (exothermic by ~6 k] mol "), yielding HgO (*IT) with low vibrational energy, as

noted by Saiz-Lopez et al. (2022), which is important for increasing the lifetime of this weakly bound molecule. First tentatively
identified as an intermediate in a low-temperature UVC-irradiated matrix consisting of Hg, O and H> yielding discrete Hg(OH)2

molecules (Wang and Andrews, 2005), linear OHg"O as the initial product is calculated to be 275 kJ mol™ Jower in energy, than the

reactants Hg(*P) + Oz and therefore sufficiently stable over time to participate in barrier rearrangement to Hg('S) + O2* alongside

dissociation to HgO and O. Experimental data suggest that the branching ratio between Rxn G12b and G12a is low, making

oxidation the minor process. Sun et al. yeported a quantum yield of up to a few percent for the oxidation step in experiments using

synthetic air at 46,88 kPa and 233,298 K (Sun et al., 2022). Callear et al. (1959) observed a faster reaction in air than in Oo,

suggesting that Hg(*Po) may also react with Oz to form HgO, analogous to Hg(*P1).
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Figure 8. Computational absorption spectra of HgCl,, Hg(OH), and HgBr». Data from Saiz-Lopez et al. (2022) and Sitkiewicz et al. (2019).
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Chemical turnover of HgO in the stratosphere. Formation of HgCl,

The instability of the HgO molecule and its unimolecular decay to elemental Hggvas discussed earlier. Produced ingreater quantities

by,rapid photosensitized but nearly thermoneutral oxidation, the initially vibrational cold stratospheric HgO is more likely to survive

in the colder part of the upper stratosphere until it can react further into less unstable oxidized forms. The most abundant trace gases
in this part of the stratosphere are water vapor, hydrochloric acid and ozone (Calvert et al., 2015). H20 can oxidize Hg(*P) (Gunning
and Strausz, 1963; Gruss et al., 2017) and may react with HgO:
Hg(*P) + H20 — *Hg'OH + H* (Rxn G13)
g Hg(OH),
— "Hg'OH + HO®
However, the reaction of Hg(*P) + H20 is so exothermic (~200 kJ mol™) that the product *Hg'OH can be expected to be vibrational

HgOCM) + H,0 (Rxn G72)

hot and dissociate rapidly with less time for further bimolecular oxidation. A possible reaction between water vapor and HgO is
strongly exothermic if the final product is singlet Hg(OH). but weakly endothermic if the triplet form is formed instead. Nevertheless,
there is currently no evidence to suggest that HgO can be converted to Hg(OH): in a direct reaction with moisture. According to
Saiz-Lopez et al. (2022), the reaction between stratospheric HgO and HCl is fast enough (close to the collision limit) to allow some
Hg" to be converted to *Hg'Cl rather than being reduced to elemental vapor:

HgO + HCl — *Hg'Cl + *OH (Rxn G73, AHr =61 kJ mol™")
As with *Hg'OH and *Hg'Br, the reaction between *Hg'Cl and O is barrierless and rapid; in this case, CIHg"O; is produced:

*Hg'Cl + 0 — CIHg"O® + 0> (Rxn G43)

Of the versatile tropospheric chemistry presented for YHg"O®, hydrogen abstraction (Rxn G44) is still important in the stratosphere,

and is again dominated by CH4 (which is not photolyzed and yeacts with the OH radical as the main sink). The product CIHg"OH,

like CIHg!"O®, is further converted by reaction with HCI to HgCl> (Rxn G46 & G47), which is the most thermally and photolytically
stable of the Hg" molecules present. The photolytic lifetime of HgClz in the upper stratosphere is close to one hour and about twice
that of Hg®, so the oxidized Hg species dominate (of which > 90% is HgClz). .The Hg' concentration increases rapidly above 50 km

with,increasing UVC photon flux, so the ratio *Hg'Cl/Hg"Cl> approaches unity at 60 km. An overview of the gas-phase Hg chemistry

in the upper stratosphere is given in Fig. 9 below.
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Baya et al., 2015; Zhang et al., 2019a). DMHg has no known sources in the atmosphere. Its occurrence is due mainly fo volatilization

from surface waters, where it is transported by upwelling conditions from the deep sea, where it is formed under anoxic conditions

(Conaway et al., 2009; Pongratz and Heumann, 1999). Polar sea ice harbors Hg-methylating microbes and is thought to be a source
of DMHg that can be degassed as jcc melts (Schartup et al., 2020). Recently, DMHg has been jneasured in marine air and
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corresponding surface water and has an air; sea gas flux that is 1/30 of the magnitude of the simultaneously measured Hg? flux (He
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et al., 2022). The atmospheric transformation of DMHg is the main source of atmospheric MMHg" species (Sommar et al., 1997).
DMHg vapor does not absorb actinic light (Terenin, 1934; Terenin and Prileshajewa, 1935) and is, therefore, not photolyzed in the

planetary boundary layer, where it is only expected to be found (Sommar et al., 1996). DMHg appears to be prone to rapid gas phase \
transformation and, depending on the products formed, could be an important source of atmospheric MMHg" on a regional scale. \

However, in addition to MMHg" species (Niki et al., 1983a; Niki et al., 1983b), inorganic Hg compounds (Thomsen and Egsgaard, \
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et al., 1999), it has been more than a quarter of a century since any laboratory kinetic and reaction mechanistic studies of the \
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1986; Sommar et al., 1997) have also been reported as products of radical reactions with DMHg. Aware of its acute toxicity (Siegler
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figure 10. Schematics of the atmospheric fate of DMHg.
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O study, ~95% of the Hg in the converted DMHg was recovered as HgO downstream of the injector in the fast;flow experiments.«

In the DMHg + NO3, batch reactor study, carbon and nitrogen mass balances ruled out the formation of MMHg" entities, and no

Hg compound other than HgO could be considered an end product. Experimental evidence for the tentative intermediate

CH3HgO* (indicated in Fig. 10) is lacking. The rate constant of the nitrate radical reaction (Rxn G78) evaluated in the temperature
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range 258-358 K can be described by the Arrhenius expression 3.2 x 107" x exp[<(1760 + 400)/T] cm® molecule™ s, and the B i

reaction is fast enough to put the lifetime of DMHg during the night in the same time range as that for *OHgjnitiated degradation

during the day (Sommar et al., 1997). To summarize this section, the degradation of DMHg in the atmosphere js illustrated in
Fig. 10,
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Although experimental data are lacking, gaseous MMHg" species (e.g., MMHgCl) are expected to react with atmospheric radicals.
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constant is likely lower, and the uptake of particles isynore important for the atmospheric fate of MMHg" species.

6. Red-ox transformations in the aqueous phase

6.1 Inorganic Hg species

JAqueous redox reactions, of Hg" complexes can include primary (intramolecular) processes involving direct electron transfer< |

and secondary (intermolecular, usually bimolecular) reactions caused by reactive intermediates. Atmospheric aerosols serve

as microreactors for yedox Hg reactions (Lin and Pehkonen, 1999). Both oxidation and reduction occur in the aqueous phase.
b

Since Hg?*(aq) has a rapid ligand exchange rate, the formation of Hg" hydrated complexes does not limit the redox reaction

rates,and can therefore be treated separately as chemical equilibria. The aqueous speciation of Hg", where pH is often a critical

parameter, is jmportant, for the reaction kinetics, not least for the reduction pathways. Thus, acrobic reduction pathways in

principle require the formation of specific complexes, since Hg cannot be formed from Hg?* by successive bimolecular

(single-electron) reduction steps, since dissolved O2 instantaneously ye-oxidizes Hg®*";

XHg*+0, 2 *00HgX 2 HgX" + 03~ (Rxn W11)

The overall forward rate constant for Rxn W11 is at the diffusion limit (k~10° M' s”', Nazhat and Asmus, 1973). In contrast, Hg’
can be formed by fragmentation of a ligand bound to Hg" (reductive elimination, van Loon et al., 2000). Such photo- or thermolabile

Hg" complexes are characterized by low-energy ligand-to-metal charge transfer (LMCT) excited states, which tend to induce internal

redox processes leading to oxidation of a ligand and reduction of the mercuric ion. There is evidence that Hg>* complexes can undergo

both one-clectron and two-electron LMCT. An example is mercuric oxalate, where 2e-LMCT is photoinduced and occurs as part of

a concerted series of electron rearrangements (heterolytic cleavage of 6-bonds in the complex), resulting in the oxalate ligand being

1
eliminated as two molecules of CO: and the oxidation state of the metal ion decreasing by two units. This mechanism occurs without

any detectable intermediates such as free radicals:
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As described in Sections 8.1 & 8.4, 1e- and 2¢-LMCT reactions produce isotopic effects, the specific fractionation of which can be«
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used to identify the reaction mechanism. In addition to the quenching of triplet complex states, the presence of dissolved Oz leads to
the scavenging of radicals such as Hg*" produced by the 1e-LMCT mechanism, resulting in reoxidation to Hg?" (Rxn W11, Zhao et ‘1‘

i
al., 2021). As, previously noted (Pehkonen and Lin, 1998), in certain laboratory experiments, such as reduction experiments, |
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Table 4. Aqueous;phase redox chemistry
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6.1.1 Oxidation channels
The mass transfer (diffusion) of gas-phase Hg? into typical size regimes of acrosols (radius of 0. 1,10 um) does not limit the rate of aqueous | (formaterade: Kondenserad med 0,4 pt
Hg® oxidation. The concentration of dissolved Hg? ing droplet is at a steady state governed by Henry’s Jaw, (Lin and Pehkonen, 1998a). (tog bort: -
formaterade: Kondenserad med 0,4 pt
Elemental mercury . ( P
: (tog bort: the
1785 1 ic oxidant: ‘

norganic oxidants (formaterade: Kondenserad med 0,4 pt

Rxn W1. Ozone (O3) (‘tog bort: Law

The presence of Os in atmospheric water is due mainly fo the scavenging of gaseous O3 (k;] = 0.013 M atm™" at 298 K). An early (formaterade: Kondenserad med 0,4 pt

study of the oxidation of Hg? by Os in the aqueous phase was carried out by Iverfeldt and Lindqvist (1986) using a flow system in (tog bort: from

which 70,200 ppb O3 was introduced. Their results suggested a conversion rate of 1.-4% h' when applied to atmospheric conditions. - (tog bort: Henry’s constant

790  Munthe and coworkers (McElroy and Munthe, 1991; Munthe, 1992) studied the ozone reaction with the mercurous cation in an (tog bort: flowing
acidic solution (pH = 1 - 3) in a stopped-flow system and with elemental Hg using the relative rate technique (sulfite as a reference . - (tog bort: -
. . [ tog bort: -

compound, pH 5.2 - 6.2) and obtained pH-independent rate constants of (9.2 + 0.9) x 10° and (4.7 +2.2) x 10’ M s”!, respectively. -, ( 9

(tog bort: co-worker (Mcelroy

Rxn W2. Hydroxyl radical ("OH)

The OH radical in atmospheric water can come from the air (k;] = 30 M atm™') or from aqueous phase production via pathways (tog bort: cquilibrium at

—/ N AN ANANAANANAANA AN N

795 including photolysis of H2O2, HONO, O3 and NOs~ (Finlayson-Pitts and Pitts, 2000). The reaction rate of Hg® + *OH in the aqueous
phase was determined by Lin and Pehkonen (1997) using a steady-state technique with the photolysis of NOs~ as the *OH source and

CeHe as the *OH scavenger to 2.0 x 10° M s at pH 5.6.5.9. Like the first step (Hg? + *OH — *Hg'OH), the second step, which is (tog bort: —
mediated by dissolved O2 (Rxn W11), is near the diffusion limit. Gardfeldt et al. (2001) subsequently studied the same reaction at (tog bort: reaction 6)
pH 7.9,but with the reaction between CHsHg" and *OH as a reference,but with similar results (2.4 x 10° M ' s™). (tog bort: later
2 (tog bort: ,
800 Rxn W3. Carbonate radical (CO3") - (tog bort: .
In water, the carbonate system (HCO3™ and COs%") can react with OH radicals to form strongly oxidizing carbonate yadicals (CO3") in (tog bort: the
fast reactions (8.5 x 10° and 3.9 x 10 M s, respectively). In a comparative study, He et al. (2014) studied the disappearance of Hg’ (tOQ bort: radical
in aqueous solutions where NOs~ was photolyzed yia UV,-VIS in the absence and presence of COs* at pH = 8. When both NOs~ (0.23 (tog bort: in
mM) and CO3> (2.75 mM) were present in the irradiated solutions (electron paramagnetic resonance spin trapping analysis detected the (‘“’9 bort: -

A AN N

805 presence of *OH and CO3"), the rate of oxidation of Hg’ (aq) (1.44 h™') was 8 times faster than that observed when only NOs~ (which

33 AQDS is not the reductant rather photohydroxylated reduced AQDS forms.
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produces *OH) was irradiated. The carbonate radical is a single-electron oxidant and reacts according to,Hg? + CO — Hg®*+CO3,

In addition to identifying the carbonate radical as an effective oxidant of Hg” dissolved in water alongside the hydroxyl radical, fhis study,

(tog bort: :

(tog bort: .

investigated the role of 'Ag O2 (singlet oxygen) as an oxidant for Hg” (aq). However, the latter species, an excited state of Oz, does not

initiate any measurable oxidation. Notably, the absolute rate constant for Hg? + CO3~ remains to be determined.

(tog bort: the

- (tog bort: also

Rxn W4. Aqueous chlorine (HOCV/CIO")

Aqueous chlorine is formed mainly by the scavenging of gaseous Cl (k7= 7.61 x 10> M atm™' at 298 K) into the aqueous phase and

the oxidation of chloride jons by *OH. Once incorporated into the aqueous phase, it dissociates to form HOCI/OCI (pKa = 7.5) and CI"

\tog bort: It should also be noted that

N AN AN

(tog bort: formed

(tog bort: Henry's constant =

, the former being the primary pxidant and increasing the solubility of total chlorine. It is a nocturnal oxidant, as both Cl. and HOCI are

readily photolyzed by solar radiation. The prospects for Hg? oxidation by aqueous chlorine were investigated by Kobayashi (1987) and
Munthe and McElroy (1992). In the former, rapid dissolution of Hg was reported when a gas stream containing Hg® was passed through
asolution containing dissolved chlorine (HCIO), while in the latter, Hg»*'(aq) was used as a proxy for Hg’, whose oxidation was observed
to be “relatively fast” in a solution containing HCIO. A detailed kinetic study (Lin and Pehkonen, 1998b) of the reaction between Hg’
and HCIO/CIO™ was carried out using a steady-state method with chloramine as a reservoir of free hypochlorous acid formed by
hydrolysis: NH2Cl + H2O — NH; + HCIO. The turnover of Hg was studied in the pH range of 6.5 - 8.5 around the pKa (HCIO) to
investigate the influence of HCIO (aq) and ClO™ (aq), which were found to be closely equivalent according to the rate constants for Hg?
+HCIO and Hg’ + CIO™ of (2.09 + 0.06) x 10° and (1.99 + 0.06) x 10° M s, respectively. The products of both reactions (2 electrons
are transferred) are chloride and hydroxide anions with a stoichiometry of 1:1 together with a mercuric cation, which rapidly forms a

strong complex (logPi1 = 18.0).

Rxn W5. Aqueous bromine (HOBr/BrO7/Br;)
Bromine has a higher ;7 (0.725 atm M ") than chlorine does, but the disproportionation of Brz to HBrO/BrO™ (pKa = 8.7) and Br  is

(tog bort: the

) (tog bort: ion

. (tog bort:

(tog bort: oxidants

AN NN

(tog bort: Henry's constant

slow, and the equilibrium is shifted in favor of Br.. In contrast, Br! is formed by the action of O3 on bromide ions and exists in the
presence of CI largely as BrCl (Liu and Margerum, 2001). Aqueous bromine (Br2, HOBr) oxidizes Hg’ only slowly (0.2,03 M s,
Wang and Pehkonen, 2004). However, BrCl is likely important, as it is used as an oxidant for Hg in current analytical methods,

although the kinetics have not been investigated.

Organic oxidants
Rxn W6. Peroxides

H202 cannot oxidize Hg? (aq) {Kobayashi, 1987) but participates in the metal-catalyzed oxidation of Hg" as in Fenton’s system.

Fenton’s reagent itself, Fe?* + H20,, produces OH radicals, for which Hg®, Fe** and H202 compete for oxidation. The latter reaction,

(tog bort: -

(tog bort: itself

(tog bort: ),

H20: + *OH, produces the HOz radical, which propagates a chain reaction (Fenton's reaction) supported by Fe*" acting as a catalyst
to decompose H20: to Oz and H20, during which a stable concentration of Fe*" is produced as a source of *OH. Hg" oxidation is
most pronounced when the ferrous part of the Fenton reaction dominates over the ferric part, corresponding to a higher concentration
of OH radicals (Liu, 2011). The -OOH functional group in organic hydroperoxides, like that in hydrogen peroxide, lacks the ability
to oxidize Hg’, whereas that in peroxocarboxylic acids (peracetic and perbenzoic acid) seems to possess it, tentatively forming a

mercuric carboxylate by a cyclic mechanism (Wigfield and Perkins, 1985b; Wigfield and Perkins, 1985a).

Rxn W7. Thiocarboxylic acids

Thiol compounds, as substituted carboxylic acids, including cysteine and glutathione, can oxidize Hg(aq) both thermally under anoxic

conditions (Gu etal., 2011). For example, Zheng et al. (2013)eported that 2-sulphanylpropanoic acid in greater excess (1000:1) oxidized

(tog bort: the

(tog bort: The

(tog bort: are in competition
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2 (tog bort: observed

Hg’ at arate of 2.18 +0.13 h™'. The presence of an electron acceptor (such asa quinone) further jncreased, the reaction rate. The reaction

( formaterade: Kondenserad med

0,3 pt

mechanism has been described as oxidative complexation. Hg?, which is polarizable, interacts with a thiol group, leading to ligand-

induced oxidative complexation in which hydrogen participates in charge transfer (Cohen-Atiya and Mandler, 2003).

Mercurous radical species ("Hg'X)

Inorganic oxidants
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Rxn W11. Oxygen (0:)

The reaction between Hg®" and O: has been studied for a variety of ligands and over a range of pH values well into the alkaline range

using pulse radiolysis;with-a-hemegeneeuskinetie-result (Nazhat and Asmus, 1973; Jungbluth et al., 1976; Fujita et al., 1975; Fujitaet

al,, 1973; Liu et al., 1983; Pikaev et al., 1975). Mercurous species are formed by the reduction of corresponding mercuric species by the
action of solvated electrons and H atoms derived from HO radiolysis: HgXa + e, — *Hg'X + X~ and HgXz + H* — *Hg'X + H + X",
All types of *Hg'X species react rapidly (=1 x 10° M s™) with Oz (aq): Hg**+0, *00Hg 2 Hg*'+ 03", where the equilibrium

is very strongly shifted to the right. In one case (X = CN, Jungbluth et al., 1976 the reaction takes place without the clear formation of a

peroxyl radical intermediate. In an air-saturated solution (~0.2 mM O), the lifetime of *Hg'X is about 1 ps (Jungbluth et al., 1976).
Organic oxidants

Rxn W12. Quinones

Both Hg*" and *OOHg" are rapidly oxidized by benzoquinone (210° and S 10° M~ 57!, Jungbluth et al., 1976), which accepts an
electron to form a semiquinone anion. Lalonde et al. (2001) observed that Hg” is oxidized (~0.6 h™') in UVB-irradiated aqueous

solutions containing both benzoquinone (32 nM) and chloride ions (0.5 M) without being able to fix the mechanism.

6.1.2 Reduction channels

Mercuric compounds (Hg")
Inorganic reductants
Rxn W13. Sulfite (S03)

cp

SO2 dissolves in water (kj; = 1.36 M atm™) to form the weak acid H2SOs (aq), which can be deprotonated to HSO3 and SO%’.;&C

oxidation of sulfite to sulfate is rapid in the atmospherg, and takes a few hours under typical oxygenated conditions in atmospheric

droplets. SO3” is a soft ligand that forms strong complexes with Hg>* (Table 1), such as HgSO3 and [Hg(SO3) 2]2', the latter completely
dominating under natural conditions where the sulfite content greatly exceeds that of Hg?". The reduction of aqueous Hg" by the sulfite
system was first investigated by Munthe et al. (1991). [H g(SO3)2]2’ is stable, whereas HgSOs decomposes readily to Hg” and sulfate with
irstorder rate constants of <10 s and 0.6 s, respectively. Scott and co-workers (van Loon et al., 2001, 2000) carried out a thorough

re-examination and confirmed that the bis-sulfite complex is thermally stable but that the reduction of HgSOs, which is strongly

temperature dependent (k approximately quadruples with each 10 °C increase in temperature) and weakly pH dependent, is more than

50 times slower than that reported by Munthe et al. (0.011 vs. 0.6 s at 25 °C). The reaction mechanism is intramolecular with 2e-LMCT

H,0
and heterolytic cleavage of the HgS bond: Hg*" + SO§’ — HgHSWO3 — HgOSVIO3 = Hg’ + SOZ'.
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Rxn W14. Carbon dioxide anion radical (CO3")

The carbon dioxide radical (CO3~) can be formed in nature by the oxidation of carboxylic acids (see above under oxalic acid). It is
strongly reducing and occurs in anaerobic environments. Berkovic et al. (2010) studied the CO3 —mediated reduction of Hg>* at low

pH by laser flash photolysis of a dilute mixture of HgCL, formic acid and sodium peroxydisulfate at 266 nm. The one-electron

reaction Hg™" + CO;—»AHg"A-*- €O, is exothermic, with a rate constant of 1.8 x 10° M' s™!. The Hg** formed can only be further .

(tog bort: -

(formaterade: Teckensnitt:9,5 pt
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', (formaterade: Teckensnitt:9,5 pt
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reduced to Hg" in the absence of Oz.
Rxn W15. Superoxide anion/hydroperoxy radical (O; /HO3)

HO5/05™ (pKa 5.5) is a one-electron reductant of Hg?* to Hg®*. Gardfeldt and Jonsson (2003) determined the one-electron
reduction potential for the pair HgClo/*HgCl vs. NHE at [CI] = 0.05 M to be —0.47 V, which, together with that for 02/03" vs.

NHE of —0.155 V. gives an equilibrium constant for HgCl, +,05, 2, “HgCl + O, + Cl of 5 x 107 at the aforementioned [Cl7]. /

(formaterade: Teckensnitt:9,5 pt
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Given that the rate constant for the reaction *Hg'Cl + Oz is ~10° M™' s™ (Rxn W11), the bimolecular rate constant between HgCl

and O3 can be estimated to be 5 x 10° M™' s'. Pehkonen and Lin (1998) studied the photoreduction of mercuric jons to Hg’

with nitrate or chloride as counterions in the presence of formic, acetic or oxalic acid at neutral (7.0) and acidic (3.9) pH values

in aerated solutions. Only in the presence of oxalic acid does significant photoreduction occur, and,as in the later studies by Zhao
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etal. (2021) and Si and Ariya (2008), an increase in the reaction rate is observed with increasing ratios of oxalic acid to Hg”.m
reduction is also suppressed in the presence of Cl". Photoreduction results in an exponential increase in H>O: formation, which is
due to the presence of hydroperoxyl radicals in solution (2 HO; — H,0, + O,). In retrospect (see above), this follows from the
homolytic decomposition of Hg(n?-C204) into radicals in an aerated solution (CO5~ + O, — O3~ + CO,) and does not necessarily

mean that HO3/O3" can reduce Hg"' to Hg’.

Organic reductants

In the atmospheric environment, Hg" complexation by DOM plays a pivotal role in the redox chemistry of Hg (Akerblom et al.,

2015). The chemical-reducing effect of DOM (humic substances) on Hg" has been recognized for nearly 50 years (Alberts et al.,

1974). These heterogeneous macromolecular ligands contain not only building blocks that can form, complexes with Hg'l but also

redox-active aromatic chromophores that can photolytically convert Hg. The fractions of DOM contributing to Hg" photoreduction |

2 (tog bort: It is also observed that the

(tog bort: natural organic matter (NOM)

(tog bort: dissolved NOM

(tog bort: for
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include fulvic- and flavin-like fractions that contain more quinone and flavin moieties,than usual (Yang et al., 2020a). Furthermore, e

DOM contains several functional groups that can reduce complex-bound mercuric ions to Hg? by a 2e-LMCT reaction (Table 5).

Table 5. Main functional groups of DOM that can (photo)reduce ligated Hg?'.

Binding atom Ligand oxidation process
0
R—CH,0H — R +2H*
Oxygen (O) P H
R—C_ ——>R—H + 0=C=0
OH
. H,C—CH. _ =
Nitrogen (N) HZN? \N’H2—> H3C—CHz + N=N + 2 H*
OH NH;”
o, SH ~
Sulfur (S) — 5 s/s U
NH,”
L : NH,” o

Rxn W16. Organic acids

The low-molecular-weight organic acids present in the atmosphere can reduce Hg" to Hg® in the presence of Oz. These include*

dicarboxylic acids, ortho-substituted aromatic carboxylic acids, and enolic acids. Since 1880 (Eder, 1880), the salt of the lightest

(tog bort: NOM

N (tog bort: the
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NH,"

toq bort:

OH
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NHY

- (tog bort: Low

- (Formaterat: Radavstdnd: exakt 18 pt

dicarboxylic acid, oxalate, has been known to reduce Hg" in daylight. Oxalic acid is formed from, e.g., ethylene or acetylene, by ‘

was Dot RNOWI 10

atmospheric oxidation over several reaction cycles (chemical aging, Warneck, 2003). Mercuric jons form a complex with oxalate in

a 1:1 ratio (Hg(m*C204)), characterized by log B10 = 9.66, which is most photolabile under UVB irradiation. Si and Ariya (2008)

ktog bort: It has been known since

“(tog bort: ) that
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studied the kinetics and products of the photoreduction of Hg" in a series of experiments with different concentrations of the lightest
dicarboxylic acids, C>—Ca, at an initial pH of 3.0 and a temperature of 296 + 2 K, while the kinetic, product and isotopic study of

Zhao etal. (2021)involved the system Hg' + oxalic acid with ClOj as a counterion in the pH range of 2.7.-6.3 and a small temperature

range of 295303 K. The pH-resolved experiments show that in the CZOi’, HC,0,, H2C204 — system, only the oxalate ion reduces

X ‘ (tog bort: ion forms

(formaterade: Teckenfarg: Dekorfarg 2
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>-0f 157+ 2.8 M s at 295 + 1 K. Si and Ariya reported a much larger bimolecular rate constant between

24
Hg WlthangZ*+czo4

Hg*" and the total oxalic acid concentration of 1.2 x 10* M ' s™! at pH 3.0. The magnitude is surprisingly large and is comparable to

the rate constant between Hg?" and HO2/O; radicals (see below). When this higher rate constant, which is based on the total oxalic

acid concentration, is implemented in regional air quality models, the impact is significant (Bash et al., 2014). However, with respect

to the reaction mechanism, there is more consensus that it follows a branched route. Hg(n?-C204) undergoes photolysis followed by -

2 (tog bort: strongly divergent

(formaterade: Teckenfarg: BI&
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(tog bort: which is

hv
partial reductive elimination in one step (jnsensitive to the presence of 02): Hg(n*C204) - Hg’ +2 CO; and, in part, homolysis of a

B
Hg-O bond, which initiates a chain reaction: Hg(n*C204) 3 Hg*" + C,0;". Hg" should form from the reaction of Hg** with the

bulk ligand C,03, where Hg** is reformed from the reaction between bulk Hg?* and the oxalyl (C,05") or carbon dioxide anion

(CO3") radical. The reduction to Hg’ in the chain reaction is inhibited by O2, which reacts rapidly with both C,03” and CO3™ and

vt ICUUCHION

Je-oxidizes Hg®" to Hg?. Like dicarboxylic acids, aqueous solutions of aromatic ortho- and para-substituted carboxylic acids .
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exposed to UVB can oxidize Hg*" to Hg’ via elimination of CO», and Hg** — Hg’ photoreduction is attenuated but not completely
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inhibited by the presence of dissolved O2 and competing counterions. Previously, He et al. (2012) studied the aqueous photoreduction

of Hg?" coupled with a series of aromatic carboxylic acid derivatives in the absence of Oz at pH 4.3 and suggested that the reaction

3020  proceeded via a radical mechanism. However, studies of the same reactants in our laboratory (unpublished results, shown in Table

(tog bort: proceeds by

4) have shown that Hg® is formed even in the presence of dissolved Oz, suggesting the existence of an additional non-radical reduction

pathway. We propose that this channel requires solvo-mercuration to an arylmercurial intermediate followed by photolytically
induced 2e-LMCT as part of a concerted series of electron rearrangements, including cleavage of a Hg-C bond yielding Hg’, CO2

and a decarboxylated aromatic as end products. Taking p-aminobenzoic acid as an example:

NH,
NH; NH, NH, / ©
—H hv
+H® —— (RXI],Z)
g
Mercuration rig
o o

o 0—Hg® o o \

Arylmercurial 0=C=0
intermediate Decarboxylation

Photo-reduction has also been observed in the presence of dissolved O2 when Hg?* is bound mainly fo the amino acid serine (HSer),

similar to HgSer> (Motta et al., 2020b), which can be explained as the result of reductive elimination with CO> and 2-aminoethanol

as pyproducts in addition to Hg® and jnvolves an intermediate with a photolabile Hg.-C bond (Zhao et al., 2021). In,cysteine-mediated .

photoreduction (Motta et al., 2020b; Zheng and Hintelmann, 2010b), the ligand is converted from a thiol to a disulfide (Table 5).

Ascorbic acid, as a representative gnolic acid, can readily reduce inorganic divalent Hg in aqueous solutions to Hg’. Studies in our

laboratory have shown that the reaction is thermal and not affected by actinic light. When ascorbic acid is in excess (>10:1) relative

to Hg?", the reaction rate is not significantly affected by increasing ascorbic acid concentration. The reaction rate is highest in the pH |

range where the hydrogen ascorbate ion (HAsc") is dominant and the hydrolysis of Hg?" is not complete, i.e., typical pH values for
atmospheric hydrometeors (< 5.5). Presumably, HGOH" (aq) forms a reactive complex with HAsc™, Hg(HAsc)", which is labile to

the elimination of water in a heterolytic process, forming Hg? and dehydroascorbate as the final products. Enols act as atmospheric

intermediates, and it is unclear whether they are present in high concentrations, which makes them interesting, reducing agents for

atmospheric Hg?". In any case, k is relatively high (~0.17 min™!, Rxn W16c, Table 4).

He?* + HAse

Rxn W17. Hydroquinones and polyphenols
The quinonic (Zheng et al., 2012) and fulvic (Yang et al., 2020a) units in DOM act as key red-ox centers. How this happens at the

molecular level is being investigated by studying model compounds that contain yedox-active groups but lack other functional groups

(Zhao et al., 2021). The simplest quinone forms a red-ox pair with the corresponding hydroquinone in the half-reaction:

HO OH —=— 0 o
@ :<:>: (Rxng)

Benzohydroquinone Benzoquinone  E’=—0.699 V

Combined with the half-reaction in Rxn 3, this gives a AE® > 0 for Hg?" + CeHs(OH)2 — Hg’ + CeHa(=0)2 + 2 H', i,

thermodynamically feasible. Relatively slow reduction of Hg?* to Hg? by hydroquinone occurs in the dark in a dilute aqueous solution

(8.2+2.4) x 1075 s™). These results are consistent with a reaction mechanism involving a hydroxyphenoxymercuric complex or via

ipso-mercuration followed by electron shuttling and elimination of Hg® and H20:

_OH

B

/OH
H 4 o} ] Q '
ey ; {03 =

H

The aqueous photochemistry of quinones is complicated and can involve both ground and excited state reactions as well as free radicals

(Gorner, 2019). With respect to the interaction of benzoquinone with Hg under actinic light, one study yevealed significant oxidation

(~0.6 h™") of Hg" in CI, -enriched water (see above, Lalonde et al., 2001), whereas another studyyeported photoreduction of Hg" — Hg®
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of about the same magnitude (~0.8 h™') under anaerobic conditions and in the absence of strongly complexing inorganic ligands (Zhao
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etal., 2021). An anthraquinone (AQ) derivative (AQ-2,6-disulfonate) is an effective electron shuttle that facilitates electron transfer from
metal-reducing bacteria (MRB) to Hg" (Lee etal., 2018), as well as from Hg (aq) to organic thiols (R-SH) during oxidative complexation
to form Hg(SR)2 (Zheng et al., 2013). Zheng et al. (2013) reported that AQDS(aq) alone is unable to oxidize Hg® or reduce Hg" under
dark and anaerobic conditions. AQDS-assisted biotic Hg" reduction by the MRB Shewanella oneidensis MR-1 is associated with
negative charge scavenging, which temporarily increases the content of reduced AQDS species, such as AQH2DS and semiquinone
radicals (Lee et al., 2018). The reduced species AQH:DS alone is a potent reductant of Hg" in the dark. On the other hand, Hg" is

efficiently reduced to Hg” in a UVB-irradiated aqueous solution containing dissolved AQDS (~10° M™' s™'). The reactive species is

tentatively photohydrated AQDS (AQH2(OH)DS), which interacts with Hg'' by forming a photolabile bidentate O—coordinated mercuric .~

complex. In conjunction with a strong isotope effect (Section 8.4), the photoreaction is likely to occur via a paramagnetic intermediate

(a mercurous semiquinone biradical complex). The reaction rate decreases to ~0.2 h™! in the presence of dissolved Oz (Zhao et al., 2021).
Hg"" interacts with ortho-QH. moieties such as those in the natural polyphenols of humic substances and tannins (Jerzykiewicz, 2013).

A direct reaction yields redox-active Hg' complexes with ligands of semiquinone radical character that may eventually decompose into
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Hg® (Jerzykiewicz et al., 2015). Reaction kinetic and mechanistic studies that are more applicable to the environment are not available.

Rxn W18. Thiols

JHg?" and CH3Hg" bind extremely strongly, to heavier hydrochalcogenide groups (such as RSH and RSeH) and other corresponding 4
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groups of reduced chalcogenides, such as sulfides and disulfides, (Skyllberg, 2011). Most relevant, both inorganic (e.g,, H2S, CSz)

(tog bort:

and organic (CH3SH, CH3SCHa), lowzmolecular;weight reduced sulfur compounds have short lifetimes (Warneck, 1988) and \.'

therefore have no effect on aqueous Hg speciation. It is questionable whether reduced sulfur/thiol groups associated with

macromolecular organic compounds in aerosols influence internal Hg speciation. ,Jhe photoreduction, of divalent Hg by lighter

aliphatic thiols is slow (< 107 s™', Si and Ariya, 2011), svhereas that by thioglycolic thiols js slightly faster (2.3 107 s™!, Siand

Ariya, 2015), but hardly significant in the atmosphere,

6.2 Organic mercury

6.2.1 Demethylation channels

Biogenically produced organo-Hg in the environment is almost exclusively methylated Hg, although there are few reports of the

presence of ethyl Hg (Wu et al., 2023b), which must be derived from a natural source. However, only methylated Hg has been 3

detected in air. As mentioned above, DMHg is a major source of MMHg" compounds in the atmosphere through gas-phase 1

degradation. Gaseous MMHg" species (Lee et al., 2003) can potentially react homogeneously to inorganic Hg, but as MMHg" species

are only semi-volatile and have a high'k;p: they are more likely to be rapidly absorbed on aerosols. MMHg" species have been detected

in cloud water (Li et al., 2018; Weiss-Penzias et al., 2018), fog water (Weiss-Penzias et al., 2012), rainwater (Conaway et al., 2010; Won

et al.,, 2019) and snow (St Louis et al., 2007). Photolytic demethylation of dissolved DMHg occurs in pure water (Chen et al., 2024)
hv, +H"

incubated with sunlight (CH;HgCHj _+> CH;Hg" + CH,,~0.32+0.07 d', West et al., 2022). Acidolytic demethylation of DMHg

to MMHg" species is of very minor importance and occurs only at low pH (Maguire and Anand, 1976; Wolfe et al., 1973). A theoretical

study of CHsHgOH:" and CHsHgOH, which dominate the speciation of MMHg" in natural waters without significant levels of CI™- and |

reduced sulfur ligands, including DOM. indicated that CHsHgOH>" can be excited to the triplet state by sunlight and that this state dissociates

into CHs and Hg! radicals (Tossell, 1998). An room;temperature study of the photo-degradation of CHsHgOH (aq) when irradiated by a Xe

lamp with filter blocking wavelengths <290 nm reported a rate constant of (2.2 +0.2) x 1045 (Gérdfeldt et al., 2003). Rapid indirect
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demethylation of MMHg'" species by a bimolecular process with the OH radical occurs at the limit of what diffusion allows (9.83 £ 0.66)

x 10° M s7!, Chen et al., 2003). In natural water, select reactive oxygen species, such as singlet oxygen (see above, Suda et al., 1993;

Zhang and Hsu-Kim, 2010), have been suggested to cause Hg" demethylation, but their reactivity has not been directly quantified.
Instead, its presence has been suggested based on the results of added scavenger/promoter tests, some of which may yield misleading

results for some water compositions (Han et al., 2017). Chen et al. (2003) concluded that OH-initiated demethylation is comparable to

the rates of MMHg" photodegradation reported in situ in natural waters. These researchers yeported that, in addition to inorganic Hg",
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Hg® was a by-product of OH-initiated degradation in an O»-saturated system, presumably by homolytic substitution.
6.2.2 Methylation channels

The paucity of empirical data renders the budgets of tropospheric MMHg" species highly uncertain. A recent estimate of the MMHg"

pool size is 5.5 Mg, associated with a lifetime of 1.9 d, of which one of the major sources is inferred to be in-cloud methylation (Wu et

al., 2024b). The potential for atmospheric biotic methylation is considered limited, despite the presence of pathogens and bacteria in

aerosols and hydrometeors, because Hg-methylating microbes (possessing two important methylation genes, hgcA and hgeB, Parks et

al., 2013) usually thrive in anaerobic environments, in contrast to the distinctly oxic environment of atmospheric waters. However, many

unknowns about the potential for Hg" methylation under oxic conditions need to be resolved (Sonke et al., 2023). There have been

extensive studies on the abiotic methylation of Hg?* (Ullrich et al., 2001). Methylating agents that are important for MMHg" formation

in the atmosphere are oxygenated hydrocarbons containing a methyl group (Yin et al., 2012; Hammerschmidt et al., 2007). Some of
them have properties that allow competitive photochemical reduction and methylation of Hg** (Yin et al., 2012). Earlier studies have

investigated photochemical Hg** methylation by deep UV irradiation (Yin et al., 2012; Akagi et al., 1974; Hayashi et al., 1977), making

it impossible to generalize these results to the lower atmosphere. The formation of MMHg" species was observed in the dark jn dilute

Hg" solutions (1 nM) containing an excess of acetic acid (100:1 M/M), with an apparent first-order rate constant of 5.4 x 10°s™ in artificial

rainwater (pH 4.9, Gardfeldt et al., 2003). When the system is exposed to sunlight, photo-demethylation occurs, which counteracts

MMHg" formation mediated by acetic acid/acetate, and within hours, the MMHg" concentration yeaches a steady state (~2.5% of

inorganic Hg"). Hammerschmidt et al. (2007) poted that the average ratio of MMHg" to reactive Hg!" measured in North American

. (tog bort: budget

(tog bort:

(tog bort: have been discussed as

- (tog bort: indeep UV

(tog bort: Formation

(formaterade: Kondenserad med 0,4 pt

(tog bort: )

“(formaterade: Kondenserad med 0,4 pt

(tog bort: ,

(tog bort: enters

continental precipitation (2.5 = 0.6%) agrees with the findings of the above laboratory study. Methylation takes place intramolecularly

(tog bort: have pointed out

in the acetato-mercuric complexes present in solution concerted with decarboxylation (Gérdfeldt et al., 2003; Yin et al., 2012; Akagi et

al, 1974); Hg(CH,COO0) | " — CH;Hg" + CO, + (n — 1) CH;COO".

7 Multi-phase transformations

Multiphase transformations address (ynamics and chemistry at jnterfaces and media, such as aerosol particles and cloud droplets,«
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which interact heterogeneously with gases and solute species. Despite a wealth of studies addressing the multiphase chemical or ]

physical transformation of Hg under processes such as those under simulated post-combustion conditions, which undoubtedly pertain

to interactions with certain environmental surfaces, the findings offer limited insight into the surface and heterogeneous atmospheric

Hg chemistry. The subsequent chapter addresses the studies that have been identified as contributing meaningfully to the

advancement of understanding, in this domain,

7.1 Gasparticle partitioning and reactive gas uptake
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The pehaviors of gaseous Hg? atoms and Hg" molecules in interacting with the atmospheric condensed phase differ. The dominant Hg’

pool has limited water solubility, and the uptake of Hg? vapor o aerosol surfaces is low, to the limited extent that it has been investigated. ‘

Gas phase Hg" molecules, “GOM”, have k;! several orders of magnitude greater than that of Hg", favoring the liquid phase. The

heterogeneous processes that allow GOM to be adsorbed, reversibly or irreversibly, modified by ligand exchange, or dissociated to Hg? K

by reduction on surfaces are key parameters that need to be characterized to appropriately parameterize chemical transport models.

7.1.1 HgCl,

Understanding the transformation from GOM to PBM through gas phase processes (condensation, Section 5.1.4) and aerosol surface™

interaction (Section 4.2) is crucial for parameterizing deposition. Since the separation of GOM from PBM with current methods is tentative,

the accuracy of studies of Hg" distribution between the gas and condensed phases, performed by preconcentration in laboratory experiments

with nebulized aerosols (Rutter and Schauer, 2007b, a) and in the field (Amos et al., 2012), is retrospectively ambiguous. Fitting

1T
observational data to an equilibrium GOM + PM, 5 é PBM according to a van't Hofftype relationship log, O(Kgp'l) =a+b/Tis
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used in models to calculate the volatilization of GOM from atmospheric aerosols, where Kg» (Eq. 9) is weighted by the inverse of the mass (tog bort: 8
concentration of fine particulate matter (PM23; Shah et al., 2021). The partitioning expression does not consider that the interaction between (tog bort: here
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GOM and a surface is significantly influenced by the composition of the surface layer. HgCl(g) partitions among particles consisting of : (tog bort: has a high partitioning for

typical alkali metal salts such as chlorides, nitrates, and sulfates (Mao et al., 2021; Malcolm et al., 2009). To compensate, global Hg models
3225  treat the uptake of GOM onto sea salt particles separately as an irreversible first-order process parameterized by wind speed and humidity.
The equilibrium studies conducted at atmospheric pressure do not provide insights into the dynamics of the system, as the experiments are

limited by mass transport, which negates the possibility of obtaining quantitative information on reactive uptake. As an alternative (Liu et

al., 2022), partition coefficients have been calculated for individual GOM species based o theoretical predictions of both adsorption and : (tog bort: the basis of

absorption (Wu et al., 2024a). The reactive uptake of HgClx(g) on surfaces representative of inorganic and organic primary and secondary (formaterade: Teckenfarg: Dekorfdrg 2

3230  atmospheric aerosols has recently been studied yia the fast flow technique coupled with an ion drift chemical ionization mass spectrometer, (t°9 bort: using
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. . . tog bort:
(ID-CI-MS). The reported data (Mao et al., 2021; Khalizov and Mao, 2023) are summarized in Table 6, . % 09 Dort: to
tog bort: ,
Table 6. Reactive uptake of HgCl>(g) on surfaces « (tog bort:
35 N . .
Chemical Structural formula* | 5 Tnet = | Surface (i)overage Lifetime (Formaterat: Radavstdnd: Flera 1,15 li
| Vit Vhet | (0, %) (t, days)
Inorganic aerosol surrogates I (Formaterad tabell
Na,SO4 3.1x1072 1.7x1073 98 0.1
NaCl 2.2x102 1.9x1073 65 0.1
(NH4),S04 1.4x1072 7.0 x10™* 5.6 0.2
NH4NOs 3.6x1073 33x10* 0.3 0.7
Primary organic aerosol (POA) surrogates, [+ (Formaterad tabell

& ‘ (tog bort:

Levoglucosan 0q  on 1.1x 1072 29x107* 9.6 0.2
oH
Pyrene 080 2.1%10° 50107 1.3 1.2 toa bort: %
0
Perylene O 3.0x 107 52x10* 3.8 0.8 [tog bort:
{ Z

o 757
Soot % 8.9x107 0.1 20.2

Secondary organic aerosol (SOA) surrogates e (Formaterad tabell
Citric acid (Hscit) o o1 <1x107° <1x107 <0.02 >242

NaHacit OH 6.9%x107° 50x107° <0.02 35
Na,Hcit oH o 24 %1073 23 %10 1.2 1.0
Nacit o No 8.4 x 1073 6.6 %107 75 0.3
Pimelic acid (Hzpim) o on 11x10° 18x10°* 1.0 22
NaHpim Y 22x107 31x 107 1.4 11
Naypim o o 82x1073 8.0x10* 11.6 0.3
Succinic acid (Hasuc) e 9.3x10* 1.0x 10+ 0.02 2.6
NaHsuc HOJK/\”/W 2.0x% 1073 3.6 %107 0.7 1.2
Najsuc 83x1073 6.6x 107 6.2 0.3

o
CHy
OYWCHE
Dioctyl sebacate 0 _cny 2.6 x1072 7.1x1073 153 0.1
o\/(/\/cn,

o

The data in Table 6 are for dry surfaces, where y° _is the initial uptake coefficient, which is relevant throughout the lifetime of the

net

3235 aerosol, as the surface coverage by atmospheric HgCl> remains unchanged and low. In the presence of sea salt aerosols (>0.6 pm,

initially at pH 8) that dominate in marine air, where NaCl represents >95% of its mass, the lifetime of HgCl (g) is expected to be (tog bort: the

between 4 and 20 h depending on aerosol loading (Mao et al., 2021). When the relative humidity exceeds ~75%, a hygroscopic sea

salt droplet is formed as the salt deliquesces, and a highly mobile surface phase in which Hg" is equilibrated in ionic form as HgCli' i (formaterade: Teckenfarg: Dekorféirg 2

may contribute to more rapid GOM loss in marine air (Holmes et al., 2009). Ammonium salts such as nitrates and sulfates are : (t°9 bort: a

34 For soot, a clichéd structure is used that does not claim to be accuratey (tog bort:
35 Calculated by Eq. 5
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primarily found in secondary particles, typically in urban and agricultural-rural air. Although HgCl uptake is lower here, its lifetime

is comparable because of the higher particle number and the large surface area they generally represent. These semi-volatile

2 (tog bort: comparative due to

ammonium salts do not occur in isolation but coexist with oxygenated organics formed through photochemical activity, yesulting in
the formation of secondary aerosols, which constitute the primary fraction of the atmospheric burden of organic aerosols (OA,

Jimenez et al., 2009). The acidity of secondary organic aerosols (SOAs), a dominant component of PMa s, affects HgCl. uptake by
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controlling the acidbase equilibria of characteristic chemical species such as aliphatic dicarboxylic acids, aromatic polycarboxylic

. (tog bort: -

acids, and other oxygenated multi-functional organics in aerosols. For the diprotic acids in Table 6, the reactivity becomes noticeable

. (tog bort: the aerosol. Of

only after the first deprotonation step at pH 4.5 - 5.5. For the triprotic citric acid, activation occurs after the second step at pH 6.5.

The adsorption of HgCL, on primary organic aerosol (POA) surfaces is significant in the presence of levoglucosan, an anhydrosugar,
which is a fingerprint of fire activity. Nevertheless, the interaction between HgCl. and polyaromatic hydrocarbons (PAHs) derived

from carbonaceous fuel combustion is more constrained, occurring between the electrophile HgCl and the « electrons delocalized

over the aromatic fused ring skeleton. The observed adsorption on fresh soot, which is porous and graphitic with a high specific

surface area, is more than one order of magnitude lower than that for the minor type of PAH studied (pyrene, perylene). If morphology

affects uptake, so does the state of the surface phase, as a diester of sebacic acid (a close homolog of pimelic acid), octyl sebacate, a

lubricant, is more reactive to HgClz than the microcrystalline pimelic acid film is. The adsorption of HgCl> on mineral surfaces (dust

aerosols) represented by iron (hydr)oxides has not been studied experimentally, but calculations indicate a partition coefficient (Kgp)

for 0-Fe2O; that exceeds that for NaCl by three orders of magnitude (Tacey et al., 2018b). The studies listed in Table 6 were

performed without observing redox chemistry (i.e., no Hg’ was detected to be emitted from the HgCl-exposed surfaces when heated
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J0 120 °C), but a combined study using FF-ID-CIMS and Raman spectroscopy Jevealed that exchange reactions between gaseous

mercuric compounds are catalyzed by surfaces such that HgCl> and HgBr2» molecules in the presence of a deactivated surface produce

Jnixed BrHgCl jnolecules (Mao and Khalizov, 2021), which are also volatile. Owing to, rapid exchange reactions, the prospect of

accurately speciating GOMs by pre-concentration on filters and cation exchange membranes, as discussed previously (Section 3.1),

is unlikely.
7.1.2 Hg"

A challenge in studying gas-phase- or liquid-phase;initiated reactions is the potential for side reactions and phase changes to occur

during experiments. Thus, a portion of the loss of gas-phase Hg’ in laboratory experiments designed to study homogeneous oxidation

(e.g,. by Os, Snider et al., 2008; NO3, Sommar et al.,1997, etc.) has been linked to a heterogeneous rate component (ksuf) occurring

on new surfaces that form during experiments (product clusters undergoing particle growth in free suspension, Section 5.1.4) and/or
on initially deactivated existing surfaces (reactor walls) that begin to catalyze Hg? surface oxidation as deposits form (Sommar et al.,

1997; Medhekar et al., 1979). For example, in a series of spherical reactors vith varying surface-to-volume ratios (S/V), Pal and

Ariya (2004b) seported the loss of Hg by yeacting with excess O3 in N2 as follows:
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where kgas (cm® molecule™! s™) is the gas-phase reaction rate, S/V (cm™), ket (cm* molecule™ s7!) is the surface rate loss, and [O3]

(molecules cm®) is the gas-phase O3 concentration. In the S/V range of 0.28.-0.93 cm, knet increased by 30% simultaneously with |

the formation of particles (Snider et al., 2008) during the experiments, which started homogeneously. Using a fluorocarbon film

smog chamber (9 m®, S/V = 0.03 cm™), Rutter et al. (2012) studied the influence of SOA (yielding an ~100-fold increase in the
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surface area of the system) and secondarily formed *OH (at ambient level due to added scavenger) generated from an irradiated

mixture of O3 and various biogenic and anthropogenic VOCs (at a level ~one order of magnitude greater than ambient) on the -

oxidation of Hg atoms (at a level ~two prders of magnitude greater than ambient). Neither Rutter et al. nor subsequent researchers

(Lyman et al., 2022) have been able to identify evidence thatjnteractions with photochemical smog particles significantly contribute

to the oxidation of Hg. Nevertheless, few studies concerning Hg? uptake have been conducted with a sufficiently rigorous standard,
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employing techniques used in specific studies of heterogeneous processes, to produce a kinetic formalism that can be related to
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atmospheric models. These studies, which were conducted with a coated-wall laminar flow tube reactor, focused on the light- and
moisture;dependent uptake of Hg’ (detected by CV-AFS), which may be photocatalytic, on the major metal oxides (TiOz, Fe203,

FeOOH,_and ALOs) present in mineral dust aerosols (Kurien et al., 2017; Lee et al., 2022). The first three metal oxides have
semiconductor properties with band gaps that allow photoexcitation in the UVA (< 395 nm) and visible (<590 nm) regions, while
ALO;3, the second most abundant mineral oxide in the Earth's crust after SiO», is an insulator but has some thermal conductivity. It
has been established for over half a century that Hg? vapor in the presence of Oz over an irradiated TiO> surface is consumed by
reactive uptake (Kaluza and Boehm, 1971) via the following tentative mechanism:
TiO, llv» ecp +hyp
ecp + 0 (adsy — 03 (ads)
hyp + H,OlOH™ (adsy— HO® (ads) + H' (adsy)

Hg’ (adsy + HO*® (adsy — ‘Hg'OH (ads) (Rxn 10a,g)

"Hg'OH (ads) + O, (adsy — HgO (ads) + HO3 (ads)
HO*® (adsy + HOS (adsy — H,0 (adsy + O, (ads)

"
HO;3 (adsy + O3 (adsy — H,0, (adsy + 0, (ads)

When excited by light of a wavelength shorter than the band gap energy, the generation of electron—hole pairs (egg, hyg) occurs in the
y ligl gap energy, the g m_hole p: By VB

conduction and valence bands (Rxn 10a). The electrons and holes transported to the particle surface initiate redox chemistry by reacting

with H20 and Oz molecules to form reactive oxygen species (ROS, Rxn 10b, ¢). The oxidation potential of hyp exceeds +2.27 eV in

the TiOz, Fe203 and FeOOH cases, which is sufficient to generate hydroxyl radicals from surface water (Rxn 11c) that can oxidize

adsorbed Hg (Rxn 10d). The reported uptake coefficients are in the range of <107 to >10* (based on fhe Brunauer—Emmett-Teller,
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surface area), with yelative reactivities of Fe203 S FeOOH < ALOs < TiOz, where y* without irradiation is below the detection limit.

The uptake of Hg’ on jron (hydr)oxides is less than 10 under both UV and visible light and is inhibited by humidity, as s the case for

ALO;3, which shows measurable uptake under UV irradiation (v, = 1.2 x 10°*). The photo-initiated uptake of Hg” on TiO: is significant,
especially under UV light at low humidity (y*, >3 x 107, diffusion-controlled limit). However, as with ALOs, it shows reversibility

lesorption O 1in the presence of water vapor durin; 'KNess ee et . , whereas € 1ts almost 1rreversible bing
desorption of Hg") in the pi £ por during darkness (Lee et al., 2022), whereas Hg? exhibits almost i ible binding
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to iron (hydr)oxides at the temperatures studied (< 150 °C, Kurien et al., 2017). Based on limited published data, only under conditions =

of low humidity and very high mineral dust aerosol loading can the uptake of Hg” be considered to have any effect on the atmospheric j

cycling of Hg”. Notably, there are no corresponding experimental data for HgCl> uptake on mineral dust surrogates.

The uptake of Hg’ on ice, which involves the migration of radioactive Hg isotopes into ice spheres in a packed bed flow tube exposed

to a strong temperature gradient, can be described as reversible adsorption without significant solvation. The observations were in
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accordance with a Langmuir isotherm, where the adsorption equilibrium can be described thermodynamically by Bartels-Rausch et al.
(2008):

—RTInK = AH%; — TAS);= 28000 + 38-T (2)

where K is the Langmuir absorption constant (Eq. 8), R is the gas constant, T is the absolute temperature, and . AHgd and As‘;d are

the enthalpy and entropy of adsorption, respectively. Compared yvith kj; for Hg® (0.18 at 5,°C), the Langmuir adsorption coefficient

on ice, which is expressed in a dimensionless way, is much smaller even at temperatures lower than the freezing point of the metal

(224107 at 220 K), which is most relevant for polar regions and the upper troposphere. Therefore, in both atmospheric and polar ) :

environments, the uptake of Hg%(g) on ice surfaces is negligible.
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7.2 Reduction of mercurial species on surfaces

Computational chemistry studies report that the adsorption of mercuric halides on dry salt- or mineral-like surfaces reduces the energy

required for reduction to Hg® (Tacey et al., 2016) and that the reduction of HgCl» and HgBr to Hg® on iron oxide aerosols requires the

presence of actinic light (Tacey et al., 2018a). Breaking the first Hg—X bond is possible either thermally or photolytically, while the
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second requires photons with A <461 nm. To release Hg” from the surface, an excitation energy of 2.59 eV (A <479 nm) is required in

a photoinduced charge transfer process between the surface and the adsorbate.

The photoreduction of particle-bound Hg!" has been the subject of experimental jnvestigations (Tong et al., 2013; Tong et al., 2014). In* '

these experiments, aerosol surrogates doped with HgCl, were generated and dried in laboratory air and subsequently captured on filters, .-

which were then exposed to light with three spectral options in a flow-through reactor. Photoreduction of NaCl aerosols occurs under

actinic light (both UV and visible light, with approximately 2.5% and 2.0% of Hg" reduced, respectively, during a 30-minute exposure, ‘

normalized per 100 W m? irradiation). However, the presence of iron species (mainly Fe'™ rather than Fe") has been observed to exert
some inhibitory effects (Tong et al., 2013). In contrast, photoreduction on carbon-based synthetic aerosols has been demonstrated to be

more significant but also more variable. For example, Hg" on adipic acid aerosols js reduced by 8% (per same time unit and normalization

as above), while on levoglucosan, it is less than 2% (Tong et al., 2014). Notably, however, these experiments were carried out without

O in the carrier gas stream.

The reduction of Hg! in ice in the presence of organics has been studied in an ice-coated flow tube at atmospheric pressure under
irradiation with light between 300 nm and 420 nm (Bartels-Rausch et al., 2011). O»-free ice matrices containing 60 nM Hg were doped
with a stoichiometric excess (up to 50:1 M/M) of either benzophenone (a strong photosensitizer), oxalic acid-oxalate (forming

photolabile Hg'" complexes), or humic acid (ditto photolabile complexes), which, upon irradiation, accelerated the release of Hg'.

was most rapid in the presence of benzophenone at high pH. The presence of O2 (20% in the gas stream), the introduction of sea ice-like - '

conditions, or a large drop in temperature (from 270 to 250 K) or pH (to 4) resulted in diminished photoreduction. The mechanism by

which Hg"" reduction is sensitized by benzophenone is challenging to ascertain. One potential mechanism involves the dissociation of an

excited state of the major species, Hg(OH)2, which has been reported to be photolabile as a solute in water (Xiao etal., 1994). A controlled
laboratory study of light-irradiated natural snow samples at a temperature of -10 °C revealed that the release of Hg” follows first-order
kinetics with a coefficient between 0.18 and 0.25 h™', corresponding to a natural lifetime of 45.6 h (Dommergue et al., 2007). However,

no monitoring of Hg" in the condensed phase has been conducted. Given that light does not penetrate the entire snowpack, it can be

assumed that a Hg"" gradient foward depletion at the top is established.

Brominated mercurials that are present in the Arctic environment during AMDE may play a role in light-induced Hg re-emission from*

the cryosphere to the atmosphere (cf. Fig. 2). A computational study (Carmong;Garcig,et al., 2025) suggested that, compared with HgBr»

in the gas phase HgBr» in solution has an increased absorption cross section for wavelengths longer than 290 nm, whereas

bromomercurate anions (Hg"Br; and Hg''Br 4 ) have a comparatively greater absorption in actinic light. The low-energy excited states

of HgBr2, Hg"Brj, and HgHBrz- in solution are characterized by electronic transitions in which the electron density is mainly transferred

from the Br atoms to the Hg atom, indicating a significant photoreductive character upon light absorption, leading to the generation of

Hg' species (*Hg'Br, *Hg'Br; and *Hg' Br;r) and a bromine atom. The photoreductive character is also recognized for the aforementioned  ;

Hg' species in their electonically excited states, which plausibly dissociate via an LMCT mechanism with Hg” as the product. The /

predicted peak photolysis constants for the polar spring (March, ~80°N) are 3.9 x 104, 3.8 x 10 and 7.9 x 10°s”! for HgBr2, HgBr;3 ;

and HgBrﬁ’, respectively.
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For pure heterogeneous reduction, there is experimental evidence that SO2(g) can reduce HgO(s) at room temperature via HgbSO4 ;
(Zacharewski and Cherniak, 1987) to Hg®, HgS and HgSOs as stable products (Scott et al., 2003),and that Os(g) in the presence of

,(formaterade

.. [414

actinic light can reduce HgClyHgBr:(s) to mercurous species (Ai et al, 2023, which may tentatively undergo Hg/Hg"

disproportionation). In the latter exploratory study, single-particle reactors, 10-50 pm in size, synthesized from mercuric halides in 7

single-walled carbon panotubes, were prepared fo levitate during the experiments yia, optical fweezers, The turnover of HgX> by ‘

breaking 4, Hg—X bond was measured by time- and position-resolved Raman spectroscopy, which also showed that the decomposed

X atom was bound to the carbon material (X = Cl, Br). Heterogeneous reactions of this type, i.e.,

(Rxnd1)

hv a
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2 “Hg'X(s)— Hg,X; (s) 2 He’ (ads) + HgX, (s) i (Formaterat
Jmay explain why KCl-coated denuders do not work as a robust quantitative method for measuring GOM in ambient air (Lyman et al., ki \ (tog bort: a
2010). Since the gas-phase reaction HgX> + 0/0s — *Hg'X + XO® (+ O2) is endothermic (> 66 kJ mol™) and therefore unlikely, the - (formaterade ... [423
results of a steady-state study (Tong et al., 2021) claiming gas-phase photoreduction of HgX in the presence of O3 and light can instead gmg bort:
{ formaterade

be attributed to the above-mentioned heterogeneous reactions, Additionally, voltammetry can provide valuable insights into the redox

_(tog bort: , exhibiting

chemistry of mercury. Hg’ is frequently employed as the working electrode and has a high overpotential for the reduction of H:O" to Ha.
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This enables the utilization of standard potentials as negative as -1 V in acidic solutions and -2 V in basic solutions. The surface of the g:::::::::
hanging mercury drop electrode (HMDE) can be readily renewed by extruding a new drop. In a study by Giannakopoulos et al. (2012), (tog bort: solution
the interfacial adsorption mechanism of gallic acid onto HMDE was investigated, and a series of easily reducible Hg" complexes with (formaterade
mono-, di-, or tridentate gallic acid ligation were identified. (tOQ bort: the

7.3 Dark oxidation of Hg" accelerated by freeze-concentration effects (formaterade
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Slow oxidation of dissolved Hg” by Oz occurs in aquatic systems in the presence of CI” ions (Amyot et al., 2005; Wang et al., 2023).
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However, upon freezing, most of the solutes are separated from the forming ice phase and concentrated in the remaining liquid at a (formaterade

significantly reduced pH (Bartels-Rausch et al., 2011). In experimental mimics of the micro-pockets of solutions, that occur in ice, / '/,(formaterade

experiments in the presence of Oz, H202, and HONO each result in significant Hg” oxidation. It has been postulated that protonated
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forms, HO-OH;, and ONOH3, are responsible for oxidation processes, which can be classified as strongly exothermic,on the basis of

(tog bort: It should be added that
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the provided thermodynamic data (O'Concubhai,et al., 2012). Moreover, neither dilute H202 (aq) nor HONO (aq) will oxidize Hg® (aq) /
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to any significant extent at room temperature (Kobayashi, 1987). formaterade
7.4 Surface-catalyzed reduction of Hg" in aqueous solution (tog bort: Systems
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In the presence of a solid phase of ferric (hydr)oxide and dissolved di- or monocarboxylic acids under oxic conditions, the reduction of

/ (tog bort: that show

Hg" in aqueous solution to Hg® occurs upon UV irradiation (Lin and Pehkonen, 1997). The systems studied for the, photoreduction of

formaterade
Hg" are goethite (a-FeOOH) + oxalate/formate, hematite (0-Fe20s) + oxalate, and maghemite (y-Fe20s) + oxalate. The experiments gt og bort: in
with filtered Xe light were conducted with 10 uM HgCl, 1 mM organic acid, and 0.1 g L™! ferric hydr(oxide) suspension, with a starting ’ (formaterade
pH of 3.9. During some of the experiments, the pH increased substantially, resulting in the dominance of oxalate over hydrogen oxalate. ¢ (formaterade
Unlike oxalate, formate alone is not capable of reducing Hg" to Hg® yinderactinic light. It requires irradiation in the deep UV by processes d (t°9 bort: 13
such as (Leonori and Sturgeon, 2019): / (formaterade .. [439
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One study described Hg" reduction mediated by the carbon dioxide radical anion (CO3") generated from formic acid via photo- / (formaterade
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sensitization by visible light-excited naphthoquinone (Berkovic et al., 2012). Iron(Ill) complexes with formate and oxalate are (t P—
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photolabile under, UVA and visible, where a fast 1 LMCT step generates Fe?* and eventually pO; ", which initiates a chain process
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(Mangiante et al., 2017; Baxendale and Bridge, 1955): ) (tog bort: into the
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=Fe''OH + HC,0,|HCOO = EFe]"—CZO}|OOCH +H,0 \. ( formaterade
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Hg"/' + HO® — Hg'/"' + HO™, Fe** + HO® — Fe'' + HO™ and H,0, +HO® — HO? + H,0 (ox.) (formaterade
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The oxic reaction system described by Rxn 13 reaction formulas contains a number of ROS with different designations, such as strongly %t bort: 14
e og bort:
reducing CO3",and strongly oxidizing HO® , as extreme cases. One subsystem is Fenton's reagent (Section 6.1.1, Rxn W6), which &N (formaterade
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produces HO®, for which each of thg Hg", Fe?, and H20> competes to be oxidized. Except for the heterolytic photolysis of Hg(n?- -

(tog bort: by reaction

C204), which produces Hg? from Hg" in a single step (Section 6.1.2, Rxn W16), the remaining redox steps involving metals are of the ¢ (t,,g bort: the
single-electron type. The reduction of Hg" occurs yia reactions with HCO3JCO3 ", nucleophiles (Section 6.1.2, Rxn W14), which ar (formaterade

bothhomogeneous and heterogeneous with dissolved and adsorbed ferrous species, respectively. A second-order homogeneous reaction (t°9 bort: and
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coefficient of ~120;,313 M' s™' has been determined in the near;neutral pH range, with Hg(OH), and FeOH" identified as the reactive b (formaterade
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species in solution (Amirbahman et al., 2013; Schwab et al., 2023). JUndey, anoxic conditions, the rate of Hg® production derived from, * ' \g ormaterace
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surface-catalyzed reduction on hematite and goethite has been described by the expression kne[=Fe"][Hg(OH)], with ket values of ~89 |- ; (formaterade

and~78 M! s7!, respectively (Amirbahman et al., 2013). In an O»-saturated, non-bubbled solution, a photo-stationary state between Hg"
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and Hg occurs, indicating that the reduction pathways (Rxn 3, red.) are gradually balanced by oxidation pathways (Rxn 13, ox., (formaterade
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Ababneh et al., 2006). In the absence of Hg” removal, solubility limitations are easily exceeded during experiments (Lin and Pehkonen,

(tog bort: heterogeneously

1997; Ababneh et al., 2006), resulting in the precipitation of colloidal Hg’. The removal of dissolved Hg” by sorption on hydrous iron (formaterade ... [464
oxides, which is relevant here, is also documented (Richard et al., 2016). In the presence of competing anions, such as chloride, the rate (tog bort: 10
of reduction decreases, in part pwing, to the formation of metastable, poorly soluble dimeric mercurous salts that compete with the \ g:;n;t::ade
disproportionation of Hg' to Hg? and Hg" (Pasakarnis et al., 2013). \ (formaterade
7.5 Field observations of photoreduction in precipitation, clouds and fog « \“l \ g:?::::;e
In precipitation and clouds, a strong correlation between Hg and total organic carbon was observed (Li et al., 2018; Akerblom et al., “ ‘{\(tog bort: the = 1967
2015), suggesting that Hg-organics complexes are also important in acrosols. Authentic rain samples, where Hg-organics complexes | &formaterade ... [468
dominate, present photoreduction rates yanging from 0.02,-0.2 h™! (Yang et al., 2019; Saiz-Lopez et al., 2019; Fu et al., 2021). There 11‘ | (t°9 bort: 14
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have been a handful of measurements of Hg in cloud water (Li et al., 2018; Weiss-Penzias et al., 2018; Malcolm et al., 2003; Gerson
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et al., 2017; Huang et al., 2016a), but thus far, only a few studieson the photoreduction rate in this category ofgvater exist (Li et al., \ (formaterade
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2018; Zhen et al., 2023; Gao et al., 2023). Photolysis rates in cloud water samples of 0.07,-0.21 h™' measured in situ under actinic ‘ '\ (tog bort: 14

light and in the laboratory under UV (>290 nm) light are consistent with those observed in precipitation. Whether the photoreduction \ \'\ (formaterade
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rates observed in rain, or cloud water are representative of atmospheric aerosols is questionable. Hg" in snowfall or, freshly fallen
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snow has been reported to be labile for photoreduction (Steffen et al., 2008; Fain et al., 2013). In temperate urban and pristine rural (formaterade
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snow, within 24 h, approximately 50% (Lalonde et al., 2003; Lalonde et al., 2002) and, within 48 h, up to 90% (Poulain et al., 2004 (tog bort: cloud
w1 pp! y > 3 , up
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conditions and is not limited by light (Fain et al., 2013). In general, less than 5% of the Hg content of a snowpack is in the elemental

tog bort: so...hus far there seems to be... only a few stu

.. [480

form (Hg’), which is concentrated stratigraphically in the first few centimeters. Nevertheless, if the rates are implemented as a mean (Formaterat
value (~0.07 h'), determining the lifetime of atmospheric Hg against wet deposition, then fhe model-estimated wet deposition (formaterade
underestimates the observations by an average of 25% globally. Current global chemistry and transport models (GMOS-Chem) (Formaterat
consider photoreduction on particles with the pool of Hg" complexed with organic ligands as the reactant (Shah et al., 2021). ' (th bort: the
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to measure differences in the paturally,stable Hg jsotopic compositions in the environment (Jackson, 2001; Lauretta et al., 2001). Natural -

processes, including redox reactions, complexation, sorption, precipitation, dissolution, evaporation, diffusion,and biological processes,

can alter the isotopic composition, i.e., cause stable isotope fractionation (cf. Fig. 17), Stable isotope analyses can, therefore, provide a

previously untapped source of valuable information on the sources and biogeochemical cycling of natural and anthropogenic Hg. Isotopic
fractionation refers to the division of a sample into two (or more) parts with different ratios of "heavy" and "light" isotopes than the

original ratio. In isotopic jargon, if one part contains more heavy isotopes, it is said to be “enriched,” while the other part is said to be

+depleted”. Hg hag extremely large isotopic variation in nature, which, when normalized by the relative mass difference between

(tog bort: natural

isotopes, approaches that of fraditional light element isotopes (Wiederhold, 2015). However, the overlapping signals from different

fractionation processes can be a major challenge in deciphering natural jsotopig signatures when tracing sources. It is important to

determine the Hg stable isotope fractionation for individual key processes, which can be accomplished, inter alia, through controlled

laboratory and field experiments. Stable isotope variations are reported as relative values compared with a reference standard (NIST

SRM 3133 Hg solution, Blum and Bergquist, 2007):
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Wwhere **Hg 198 g (R™/ 1()8)‘is the ratio of the isotopes with mass numbers xxx and 198. The prevailing practice of expressing

isotope ratios relative to the lightest stable isotope for each element js notapplicable to Hgbecause ofithe rarity of 195Hg (0.15%, :

occurrence), The standard unit for § values is per mill (%o).5*"*Hg expresses the total mass-dependent fraction (TMDF, containing

contributions from conventional mass-dependent, fractionationy, hereafter, MDF and nuclear field shift (NFS) are described in

Section 8. 1), while the isotope anomalies caused by mass-independent fractionation, MIF are expressed by capital deltas, A is

3202

defined as the difference between the measured 6 value and that predicted from the measured &

for the kinetic MDF (B}

Hg value and the scale factor

; see Section 8. 1) and is approximated for 3 values < 10%o according to:

KIE-MDF-
AHg = §Hg — BEXLMDI-' 5o (14)
which is expressed numerically for each relevant Hg isotope:
19677, _ <196 5202 199 <199 5202 200 5200 5202 201
A Hg=0 +0.508 0.252 0.502

5 Ho - 075252 He and A™He = 5**He - 1.493.522He,

that B is the remaining reactant)+

is expressed with the fractionation factor, o, which is defined as the ratio of the isotope ratios in the compounds:

v

— 198 Hxxx/198 _ pxxx ok _ 1000+ (@6 Hg) |
oS = RV Ry*/7% = RY™ /RE™ = 15
A-B A / B A /BB 1000+ (8" He) as)

The last term is obtained by substituting Eq. 13 into the first term of Eq. 15. Actual ¢ yalues are usually very close to unity.

Therefore, it is usually more practical to use an enrichment factor:

#a = (07 Hey sy (87 Heyp = 100050, — 1) 21000- o, do) “

The last similarity isvalid only for & values less than 10%o. Substitute Eq. 14 into Eq. 16 and obtain:

eXp = (A Hg)a - (A HE)s) + Bipunr [(8 He)a - (T Hegy (D)

Eq. 17 expresses total fractionation during the process A — B, with the first term representing the MIF enrichment factor and the second

term representing the total mass-dependent enrichment factor. Thus, the enrichment factor for MIF is written as a capital epsilon:

b= (A" Hg)a - (A™He)p) = €85 — BpavortAn_ (I8)

Many kinetic processes can be described as Rayleigh fractionation, which is an irreversible process in an open system involving the

progressive removal of a fraction of a trace substance from a larger reservoir. It is described by the following differential equation:
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where (%) describes the mean-square nuclear charge radii of different isotopes. Coincidentally, MDF and NFS with *®Hg, *°Hg and+

202Hg show almost identical R, values, but Hg, *'Hg and ***Hg and, to a lesser extent, "“"Hg show distinct non-mass dependent

@) .

signatures due to NFS. Only a small proportion of the NFS is mass,independent because it creates a deviation from MDF (Yang and

Liu, 2015). The mass-dependent part of the two effects can be synergistic (increasing TMDF) or antagonistic (decreasing TMDE)

with, the former being dominant for Hg redox chemistry (Hintelmann and Zheng, 2011; Jiskra et al., 2012). ;The MDF gscale is
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proportional to 1/T2, whereas fhe NFS scale is proportional to 1/T and is more prominent than, MDF for the Hg red-ox reactions ‘ e

studied (Schauble, 2007). Among the commonly measured isotopes 198-202, a minor to moderate level of MIF has been i

experimentally observed jn the odd isotopes 199 (< 0.6%o) and 201 as a result of NFS. NFS has been described for equilibrium

exchange reactions but has never been extended to kinetic processes. In contrast to the small magnitude observed in natural samples,

the possibility has recently been suggested that nonequilibrium isotopic effects of NFS in photodissociation may give rise to a

significant magnitude of MIF (Motta et al., 2020b).

The only effect that has been documented to lead to significant odd-mass number Hg MIF (odd-MIF) in present-day surface
ecosystems is the magnetic isotope effect (MgIE). MgIE is a purely kinetic effect triggered by the formation of a long-lived radical
pair after a primary process that causes homolysis of a Hg:ligand bond upon photolytic excitation. (Fig. 11). Among the stable

isotopes of Hg, only '’Hg and 2*'Hg (odd mass numbers) have non-zero nuclear spin and momentum, with half-integer (*/> and %2,
respectively) spins. MgIE arises when hyperfine coupling (HFC) acts on a spin-coherent solvent-separated radical pair after
dissociation by changing the rate of intersystem crossing from singlet to triplet (S<>T) or vice versa (T<>S) in podd Hg isotopes.

Radical pairing and MgIE are suppressed in mercuric complexes with strong spin,-orbit coupling (containing bromine and iodine

ligands), favoring spin mixing and fo the ground state, while S-, Cl- and C-bonded complexes with generally weak spin;-orbit

coupling favor strong MgIE (Motta et al., 2020a). If the radical pair is born in the triplet state (lower panel of Fig. 11), HFCs are

Jinduced, enriching odd isotopes in the resulting singlet state. The singlet radical pair can then recombine to the ground state, resulting in

,odd isotope enrichment in the reactant, expressed as (+)MgIE. When the radical pair is in the singlet state (top panel of Fig. 11), the

overall effect is to deplete odd isotopes in the reactant, as expressed by (—)MgIE, because mainly the odd isotopes with the majority in
the triplet radical pair dissociate into free radicals. A computational study has gxplained why the, photodissociation of monomethyl Hg
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light, suggesting that contemporary UVC-induced atmospheric chemistry may be responsible for the coupled changes in even-MIF for \ (t 09 bort: ) can be detected,
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photolysis of organomercurials is different from that stipulated for inorganic Hg. The photolytic degradation of MMHg" species yesults
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al,, 2015; Rose et al., 2015; Malinovsky et al., 2010). Compared with MgIE. NFS generally results in a much weaker MIE, with greater

anomalous fractionation of '"Hg than of *'Hg, which approaches a ratio of ~1.6. However, the NFS should be confirmed via alternative formaterade
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methods when the experimentally measured NFS is too limited to determine a definitive odd-MIF ratio (Motta et al., 2020b). Another
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AXHg to A*™Hg, which is negative in natural samples (air, rainfall, and fish), is discussed in Section 8.2.4.
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Fig. 13 summarizes the magnitude of the isotopic observations reported in the literature on the main fractions of Hg in the atmosphere,«

tog bort: Signatures...ignatures as Additional Tracer

5

©O
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in biomass and fossil fuels such as coal (Sun et al., 2014), Hg” in natural gas (Washburn et al., 2018) and in smoke from spontaneous (tog bort: concentration
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combustion in coal fields (Sun et al., 2023) has strongly negative SZOZHgvalues. This differs from the majority of Hg in ambient air, - / formaterade ... [609
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which is isotopically heavy (often with positive §**?Hg values). Terrestrial background air (rural, subpolar and forest in Fig. 13a) has ,f / (tog bort: show
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anthropogenic sources (global bulk mean of —0.7%o, Sun et al., 2019). Studies examining the vertical distribution of mercury (Hg’)
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measurements of above-canopy air versus in-canopy air (Wang et al., 2022; Fu et al., 2016b) and daytime air versus nighttime air in
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Fuetal. (2019a) reported that 3Hg” in biweekly air samples during the growing season was 0.35 to 0.99%o higher than that during
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i \ formaterade

The generally negative signature of A'”Hg” in the background airjndicates thag Hg” has been added to the pool subsequent to Hg'™ \ (tog bort: can be seen in

|
photoreductiony(of the variant that induces (+)MgIE in the reactant and complements it by depleting the product Hg isotopically for, \ | \ | kformaterade

odd isotopes) in oceans and aerosols, This is supported by atmospheric Hg” exhibiting A'”Hg/A%'Hg slopes close to unity (Kwon et : (tog bort: Based on coastal
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(RM) during the Arctic spring (at three stations) compared with, the corresponding data from a background station in the Pyrenees -

(Fu et al., 2021). With respect to A'*’Hg, a dichotomy between the polar and temperate data is striking for both Hg” and Hg'"(RM),

in that montane oxidized Hg is enriched in a limited range (0.14 to 0.77%o) whereas the polar Hg'L is depleted in a greater range (—

2.15 to —0.18%o), with a complementary relationship existing for Hg” (~0.31 to —0.16%o versus —0.22 to 1.32%o), This relationshi

could be caused by surface layer airborne Hg being strongly influenced by the oxidation of Hg” to Hg", which igcontrolled by halogen

atoms during AMDES, processes characterized by E'”’Hg values of—0.37%o and —0.23%o for Cl*-initiated and Br*-initiated oxidation,

respectively (Table 7, Sun et al., 2016), In this way, the remaining reactant is driven to g higher A'””Hg° and the molecular products
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this process also operates in aerosols of the boundary layer, with Hg” reemissions providing, such a strong positive imprint that the

entire boundary layer of the Hg" pool becomes enriched in odd isotopes (Araujo et al., 2022). Isotopic measurements of Hg"(g)

separated from Hg'(p) using CEM (cf. Section 3.1) have commenced and are anticipated to elucidate the mechanisms underlying

the pronounced fractionation of odd isotopes in airborne Hg and Hg". Several such datasets are currently in preparation for
publication. Furthermore, Hg” in the Arctic during the dark period of the year and from the Antarctic Peninsula throughout the year
(Yuetal., 2021) shares a consistently slightly negative A*Hg” with other background air (represented by montane air in Fig. 13a).

In the late Arctic summer, minimum A!*Hg® values (approaching —0.5 %o) are observed uniformly without much variation from *

coastal stations around the Arctic Ocean, which are thought to result from photoreduction of cryospheric Hg", a substrate fhat has

been strongly depleted of odd isotopes during months of long sunshine (Araujo et al., 2022).

A™Hg is generally negative fornon-fossil/anthropogenic sources, while the remainder is significantly shifted to higher values<
\

(Wilcoxon T-tesl, e.g., natural gas vs. arid data, p <0.01). As mentioned above, even-MIF is generated exclusively by atmospheric |

chemical processes, which may be mainly limited to molecular Hg™!

photolysis processes (Sun et al., 2022), of which Hg" is a
product. The marine and polar A>’Hg’ data have the most negative values. For example, a recently published TGM record from
Mauna Loa (not shown in Fig. 13a) in the Pacific Ocean has A*®Hg values as low as—0.20%o (Yamakawa et al., 2024). The polar

pool as a unit significantly shifted toward, lower A*°Hg’ values than did, the forest pool (Wilcoxon T,test, p < 0.05). One can only

speculate as to the reason, but it should be mentioned in the context of a halogen-rich environment that any presence of Cl-initiated
Hg’ oxidation in the gas phase will result in depletion of *Hg in the reactant pool (E**°Hg ~ 0.06%o, Sun et al., 2016). Owing,to
its relatively limited range, ambient A*°Hg’ and, A***Hg" are, considered conservative jracers, of atmospheric Hg? deposition, and

terrestrial surface and water A**’Hg and, A*Hg values can constrain the relative contribution of Hg’ to Hg" deposition.

transfer to soil (A2Hg"~0%o, Enrico et al., 2016; Zhou et al., 2021; Zheng et al., 2016) and oceans (A2°Hg~0.04%o, Jiskra et al.,
2012). The quantitative, AMDEs observed in Alaska are isotopically mass, balanced in that the A>*Hg" in snow (-0.06%o)
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corresponds, within the measurement uncertainty, to that in ambient Hg’ {~0.05%o).

8.2.2 Aerosol-bound Hg «

While Hg" has a relatively long lifetime and Hg"(g) has a short lifetime, the lifetime of particle-bound Hg (PBM,AHg:‘I) reflects that
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of particles, which varies from days to months due to their size and composition. Isotopic analyses have been performed on airborne

PM: s, PMio, and TSP, as well as on particles in precipitation. Studies of urban air, regionally polluted air, and air associated with

anthropogenic emissions (CFPP, traffic and waste incineration, etc.) are well represented and strongly biased toward Asia. As

reviewed and discussed in Kwon et al. (2020), attempts to decipher the cause of seasonal variations jn urban and industrial air are

challenging in environments with a plethora of local and regional emission sources. However, primary particles from fossil fuel and

biomass combustion inherit the clearly negative but highly variable §**?Hg"(p) and the less negative A'’Hg'(p) of the material. The
large range in A'*’Hg'(p) (~0.93 to 1.5%o) around the origin depends on Hg"(p) photoreduction with (+)MgIE, halogen atom-initiated
Hg" oxidation or, more speculatively, Hg'"(p) photoreduction with (-)MgIE, driving the data to extremes. In a series of papers,
including field measurements of particle-bound isotopic Hg in regionally polluted air (Huang et al., 2016b; Huang et al., 2019; Qiu
et al., 2022; Zhang et al., 2022) and laboratory experiments (Huang et al., 2021; Huang et al., 2015), Chen and colleagues have

focused on the effect of (+)MgIE photoreduction, which is accelerated in the presence of a particle surface liquid layer (wet haze)
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that the globally modeled tropospheric lifetime of Hg" against photoreduction in aerosols and clouds of nearly two weeks (Horowitz

et al., 2017) is significantly shorter in East Asia, possibly because of a greater, fraction of organic acrosols, As shown, in Fig. 13b,
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Measurements of Hg isotopes in precipitation samples (including fog and cloud water) have been reported at sites in the Northern<
Hemisphere (map in Fig. 13c), mosly, in North America. Compared with the Hg” and PBM, samples, the precipitation samples
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marine, polar and rural categories, Wilcoxon tgest, p <0.01) compared with urban precipitation and precipitation near point sources.
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A**Hg" measured in precipitation (Kurz et al., 2021; Chen et al., 2012; Yuan et al., 2022) in North America. Cai and Chen (2015)
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explaining more extreme even-MIF values (Yuan et al., 2022). Compared with, snow samples from the Canadian station north of

Lake Ontario, rain samples from the Canadian station north of Lake Ontariq,generallyhave,more moderately positive A*’Hg" values,

which is consistent with precipitation, observations in the mid-latitudinal USA (Kurz et al., 2021; Demers et al., 2013; Gratz et al., R
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2010; Sherman et al., 2015), Europe (Fu et al., 2021; Enrico et al., 2016), the Tibetan Plateau (Yuan et al., 2015) and, the Pacific \
Ocean (Motta et al., 2019; Washburn et al., 2021). Although cloud water (Fu et al., 2021; Zhen et al., 2024) and fog water (Washburn
et al., 2021) have been isotopically analyzed, there are no apparent differences between them or significant differences Jfrom, rain

samples. In cloud water, Hg speciation with increasing complexation gvith, DOM, has been shown to correlate with odd-MIF values

Y
{(Zhen et al., 2024), which is consistent with the view that these mercuric complexes are photolabile. Polar precipitation samples (only

those from AMDE:s are reported in the literature, Araujo et al., 2022; Sherman et al., 2012; Zheng et al., 2021) consistently have, -
slightly negative A’Hg" values, which differ, from those of precipitation samples from, all other provenances, which have positive

median values. The reason for these observations is plausibly that oxidation is so advanced during these AMDESs that the Hg'" |

scavenged by precipitation approaches the same isotopic values as the Hg? in the polar air,before the AMDE.
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Early studies by Gratz et al. (2010) and Chen et al. (2012) yevealed that MIF anomalies of even mass number isotope **’Hg are
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regularly present in atmospheric precipitation. Later, measurements (Demers et al., 2013) were also made at A”*Hg, which is more
challenging due to the limitations of ion beam collector designs (Blum and Johnson, 2017). The anomaly of A**Hg was generally

larger and ppposite fo that of A®Hg. The A*Hg/A**Hg ratio has been calculated pased on spatial averages and exclusively on

precipitation samples, which are usually above measurement uncertainty. For example, a slope of —0.5 was previously reported (Blum

and Johnson, 2017) and later adjusted to —0.4 (Kwon et al., 2020) using this method as more data became available. However, when !

all individual precipitation data up to 2020 were combined, Kwon et al. (2020) obtained a significantly lower regression slope of —

0.24. Fig. 14 shows the even-MIF data (A*Hg vs. A?*Hg) binned into geographical regions (categorized as Hg’, rain/mist/cloud,

PBM, RM, and snowfall samples). Linear regression of York-type A?’Hg against A***Hg yields slopes between —0.07 and —0.53 for
data grouped by site and category for data of statistical significance (p < 0.05, indicated by *). When the global data grouped by |
sample type are analyzed separately, significant (p < 0.001%**) slopes of -0.510.02 (n = 45, Kurz et al., 2021; Yuan et al., 2022), — “; '

0.41£0.03 (n =108, Fu et al., 2021; Demers et al., 2015; Enrico et al., 2016; Sherman et al., 2012; Yuan et al., 2022; Demers et al.,
2013; Donovan et al., 2013; Motta et al., 2019; Washburn et al., 2021), —0.29+0.06 (n = 58, Fu et al., 2019b) and —0.11+0.02 (n =
295, Fuetal., 2021; Kurz et al., 2020; Demers et al., 2015; Tate et al., 2023; Araujo et al., 2022; Enrico et al., 2016; Kurz et al., 2021;
Demers et al., 2013; Yamakawa et al., 2017; Jiskra et al., 2019; Fu et al., 2016a; Wu et al., 2023a) are obtained for snowfall, rain and

fog, particulate matter and Hg? respectively. The reaction mechanism triggering even-MIF could be photodissociation in the gas

phase (Sun et al., 2022) or on surfaces (Fu et al., 2021). This should lead to varying degrees of fractionation depending on the species

undergoing decomposition. As a result, the fractionation of atmospheric Hg' and Hg'" species differs from one another, possibly

explaining the divergent A*°Hg/A?Hg values for Hg"(aq), Hg"(p), and Hg"(g).
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4605  during winter, reveals notable contrasts.

57

a }/ W A
-
%, RM=Hg'(g) +Hg'(p) % RM =Hg'(g) +Hg!(p) ‘_I
£ £ M

Q. [o% H
2 2 o
g Hg® § H{ |

g RM=Hg'(g) +Hg'(p) § RM =Hg'(g) +Hg!(p) “’—v—-
@ o P
He’ Hg? é
% 5 + s ;

v 87Hg(%) 4"%Hg(%) ; \ tog bort: D,
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8.3 Isotope fractionation during gas-phase oxidation
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Data on the stable isotopic fractionation of Hg during gas-phase chemical reactions are limited. However, in addition to the published (tog bort: Hg
studies on, fractionation during the oxidation of Hg’ initiated by Cl and Br atoms (Sun et al., 2016) and during the oxidation of (t°9 bort: of Hg
electronically excited Hg in the presence of synthetic air (Sun et al., 2022), the corresponding thesis,provides additional data (Sun, ‘ (tog bort: the
2018), which are highlighted here. ; g:: ::: awmk -
8.3.1 Ground-state Hg" oxidation in air ’ (tog bort: e
Isotope fractionation during the oxidation of Hg’ vapor in the ground state has been studied for yeactions initiated by .~ i (tog bort: torr
CI*/Br*/*OH/O3/BrO*® in air at 750 JTorr and 298 K. as listed in Table 7. Fig. 15 shows that the Br® and *OH reactions produce a .~ ) (tog bort: the kinetic isotope effect (
lighter isotope enrichment in the reactant Hg”, unlike the other reactions that follow KIE, This deviation from KIE occurs because - (tog bort: ).
the Hg? to Hg' step (Rxn G1:-G3, Table 3) in the overall Hg" to Hg" oxidation is reversible. EIE,is especially piotable for the Br* ) (tog bort: -
and "OH channels being affected by thermal and photolytic dissociation (Rxn G14 & G53), creating a cyclic replenishment of Hg’ g::: ::: ;l'hc equilibrium isotope effect
at higher temperatures, as discussed in Section 5.1.2. EIE predicts the enrichment of heavier isotopes in species with a stronger (tog bort: invoked
bonding environment (e.g., HgBr>, Hg(OH)., Schauble, 2007). However, at temperatures in the upper atmosphere and during (tog bort: *OH
AMDEs in polar regions, the rate of Rxn Gl4a & G53a becomes much lower, and the oxidation mechanism moves joward (tog bort: Br*
irreversibility, potentially leading to the dominance of KIE at lower temperatures. The chlorine, atom-initiated reaction already ‘(t°9 bort: Bri, OH1
displays a KIE at 298 K, which is related to the relative thermal stability of the HgCl intermediate. All the atmospherically relevant A (tog bort: Brib/OH1b
reactions investigated (C1°, Br® and *OH) give rise to (+) odd-MIF, which is most pronounced for the Cl-initiated reaction (E'*Hg = . g:: ::: iowards
—0.37%o) compared gvith the pther reactions (E'Hg = —0.23%o and —0.18%o for the Br and OH reactions, respectively). Analogous (t 0g bort: 0
to *OH + *OH recombination, which yields HxOz in the gas phase (Velivetskaya et al., 2016; Velivetskaya et al., 2018), odd-MIF ‘ “(tog bort: others
(tog bort: yiclding
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plausibly occurs due to MgIE triggered by radicalradical (*Hg'X + Y*) interactions that occur during reactions, leading to the

formation of XHg"Y species. [The diagnostic ratio of A’Hg/A*'Hg ~1.9, which is observed for the Hg? + CI* system, differs
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significantly from the ratios reported for the photoreduction of Hg>* complexes in water (Section 8.4.1).

Figure 15. Linearized Rayleigh diagram for ??Hg in Hg" during Cl, Br, OH, O; and BrO oxidation experiments at ~298 K showing normal and
inverse KXIEs. Each point represents a single experiment.

Table 7. Experimental fractionation factors determined ingas-phase oxidation studies.
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(tog bort: the

Oxidant Precursor Bath gas £22Hg (%o) E'”Hg (%o) E2°Hg (%0)
Cl* CCI,C(0)Cl + hv air -0.590 -0.370 .06
Br* CHBr; + hv air 0.740 -0.230
O3 n/a air -0.370 —0.120
*OH H,0, +hv air 0.580 —0.180

”BrO*” CHBr3 + O3 + hv air -3.105 1.009

8.3.2 Hg' oxidation initiated by photosensitized reactions
Ancient rock samples show a significant occurrence of even-MIF in the Archean atmosphere (~2.5 Ga, Zerkle et al., 2020), which

lacked an O layer to filter out deep UV light in the actinic zone. However, in the modern atmosphere, even MIF does not appear to

occur significantly in Hg redox processes at the Earth's surface. I'he current atmospheric budget reveals notable imbalances between,

A*Hg in Hg emissions from and deposition to the Earth's surface (0.025 +0.032%o vs. 0.073 £0.019%o, Fu et al., 2021). To maintain
a steady state, even-MIF sources in the atmosphere are necessary. Studies have shown that UVC-induced Hg® vapor in the
electronically excited state, Hg(*P1), undergoes chemical transformation under both artificial (Mead et al., 2013) and modern (Sun et
al., 2022) atmospheres, resulting in a large MIF of both odd and even Hg isotopes. There are claims (Blum and Johnson, 2017; Mead
et al., 2013) that the A’®Hg/A**Hg ratios found in nature are similar to those present in the glass housing of compact fluorescent
lamps (CFLs). However, the A'’Hg", A*Hg", and A**Hg" values in the CFL housing exhibit opposite signs to those observed in
nature (cf. Figs. 13 & 14). Laboratory experiments have shown that the net oxidation of Hg® by the reaction between excited;state

Hg® and atmospheric Oz, which is identical to the driving photosensitized reaction for the turnover of Hg’ in the upper stratosphere

(Rxn G12b counteracted by Rxn G72, Table 3), scrambles the systematics of all Hg isotopes in an entirely mass-independent

manner. These laboratory experiments and atmospheric samples show similar observations for the A*YHg/A?Hg ratio, suggesting
that photodissociation is a potential chemical mechanism for triggering even-MIF in the atmosphere (Sun et al., 2022). This review
outlines new findings on atmospheric Hg chemistry, supporting the fundamental importance of photodissociation processes (Sections
5.1.2 and 5.1.4). In addition to the gas phase, surface-mediated photolysis of mercurous halide species has also been proposed as a

mechanism for generating even-MIF (Fu et al., 2021). However, theoretical challenges still need to be solved at the quantum
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mechanics level to generically expand our understanding of anomalous isotope effects for traditional and non-traditional elements

(Lin and Thiemens, 2024). Further field and laboratory research in this areg should be encouraged,

8.4 Isotope fractionation during aqueous-phase red-ox transformation

Hg transformation in the aqueous phase has been reviewed extensively, including stable Hg isotope studies (Hintelmann and Zheng,

2011). Jhe present study does not focus on biotic processes, such as microbial reduction, methylation and demethylation, or

phototrophic microbial reduction. Kritee et al. (2013) and Tsui et al. (2020) provide overviews of this field. The focus is on abiotic

processes, excluding those involving coordination with macromolecular heterogeneous ligands such as DOM or fractions, and instead

(tog bort: Nevertheless, further

(tog bort: , including both field studies and laboratory experiments

(formaterade: Teckenfarg: Dekorfarg 2
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(tog bort: dissolved organic matter

8.4.1 Reduction

on low;molecular;weight ligands, including those with N—, O—, S—, or (pseudo)halide donors. This includes inorganic and organic (tog bort:

ligands,and oxidizing and reducing processes (Section 6)., (tog bort:
(tog bort: ,
(tog bort:

To recapitulate Section 8.1, in addition to, MDF, isotopic effects in NF'S and MgIE occur for Hg during chemical transformation in

the aqueous phase. MDF and NFS are present in all reactions to varying magnitudes and in all mechanisms and have a thermodynamic

nature. In contrast, MgIE is a kinetic effect and is indicative of spin-selective reactions involving a paramagnetic intermediate.

Therefore, MgIE is the only isotope effect that detects the reaction mechanism, MgIE can be both thermally and photolytically

induced and can be two-dimensional (+ or — depending on the reaction conditions, Zheng and Hintelmann, 2010b) or one-dimensional

(exclusively ). depending on the identity of the Hg" complex (Motta et al., 2020a). In cases where the spin-selective reaction can be

induced thermally, the radical pair is generated almost exclusively as a singlet (Buchachenko, 2018), which is spin-forbidden to react
(dissociate) further into products. For a singlet spin forbidden reaction compared to a triplet spin allowed reaction, the magnitude of

the MgIE-MIF is more limited. However, many Hg" complexes have a narrow energy separation of a variety of excited states,

indicating that the intermediate radical pair can evolve into a triplet or singlet state. Studies of Hg?" photoreduction in the presence

of organic ligands (which consistently follow a pseudo-first-order kinetic pathway) have shown that, depending on the degree of

Hg?(aq) turnover, weak MIF is initially induced by NFS, and then, when most of the Hg*"(aq) has been converted, there is a shift to

strong MIF induced by MgIE, the onset of which coincides with strong suppression of MDF (Motta et al., 2020b; Zheng and
Hintelmann, 2010b). One explanation_for why MgIE first appears closer to complete Hg" reduction is, at least in part, that the

termination radical_radical step when Hg' is split off (in a bimolecular reaction, such as Hg"™ + C,057/CO3 in the photoreduction
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of Hg(n?%:-C204)) is favored by a decreasing concentration ratio of oxidized Hg to bulk ligand (Zhao et al., 2021). As shown in Fig.

11, (-)MgIE is induced when the radical pair is generated in a singlet state, and (+)MgIE is induced when the excitation occurs in a
triplet state. Ligand field strength, in combination with atomic orbital hybridization theory, has been used to illustrate MgIE in the
(photo)reduction of Hg" complexes. This phenomenon has been suggested to vary as a function of, among other things, the
arrangement of the ligands around Hg?*, the coordination strength of the ligands, and the presence/absence of light along with its

wavelength (Epov, 2011a; Epov, 2011b). As discussed in Section 4,4, reduced S- and reduced N-containing groups are soft (strong

field) ligands, whereas O-donating groups are hard (weak field) ligands. Epov (201 1a) rationalized mercuric complexes with strong

field ligands such as cysteine (Hg (cyS)ﬁ') and ethylenediamine (Hg(en)*") as bright singlets (i.¢,. in the presence of light) with sp-

hybridization at the central Hg atom jn two binding orbitals. To undergo singlet-triplet evolution by hyperfine coupling between

magnetic puclei (‘”Hg and *'Hg) and electrons to a paramagnetic state, the orbital hydridization of Hg must change, from sp-linear

to sp’d-planar square so that the transfer of electrons from the soft ligand to Hg can be accomplished,
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Figure 16. Mechanism proposed by Epov (2011b) for the photoreduction of Hg(en)*" via a bright singlet excited complex undergoing intersystem
crossing preferentially for the odd isotope to the closest triplet state, which can dissociate following a complex reaction.

JFig. 16, shows fhe schematic for Hg(en)*" + light, with (-)MgIE. ]t is postulated that mercuric complexes with O-binding ligands _

possess a bright triplet state that is more likely (spin allowed) to undergo Hg reduction via 1e-LMCT with an imprint of (+)MgIE.

For a change in the spin state to occur, spin;-orbit coupling (SOC) must be induced, but if the SOC is elevated, spin relaxation or

phosphorescence can be induced, which prevents the formation of a separating radical pair during dissociation, making MgIE less

relevant (cf. Fig. 11). Coupling constants are known experimentally for only a few Hg-containing radicals (CH;Hg®, Karakyriakos

and Mckinley, 2004; *HgF, Knight Jr. et al., 1981; *HgCN, Knight Jr. and Lin, 1972; *HgH/*HgD, Stowe and Knight, Jr., 2002).

Recently, published theoretical electronic structure simulations have been performed on environmentally interesting Hg halides (Cl,

Br, I) and pseudohalides (methanethiol). The study (Motta et al., 2020a) yeported that the coupling for reactions involving *Hg'Br

and *Hgl is so high that radical pair formation is inhibited, gvhereas for *Hg'Cl and CH3SHg!*, coupling is sufficient in the caged pair -

as well as at a low level in the separated pair geometries, allowing MgIE to form. Depending on the identity of the Hg-ligand bond
that undergoes homolysis to a radical pair, either quadruple (X = Cl, S) or double (Y = C) degeneracy can occur between the low-

lying electronically excited levels and the ground state in the HgX> and HgX'Y compounds, respectively, allowing the photoreduction

of HgX: to exhibit (+)MEIE or (-)MgIE while that of HgXY (i... MMHgX) exhibits only (+)MgIE. This is based on the premise

that the photolysis of MMHgX is exclusively by cleavage of the weaker Hg—C bond rather than the stronger Hg—X bond. (+)MgIE

is most evident for the photoreduction of MMHg" species, as its 356* 1e-LMCT state is energetically separated from other excited

states in the paramagnetic intermediate, leading to the maximization of MgIE (Motta et al., 2020a). Stable Hg isotopes provide insight

into the dynamics and metabolism of inorganic and methylated Hg in biota. Exposure to the former results in subtle odd-MIF with a
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AHg/A*'Hg ratio close to unity at sampling, while for the latter, this ratio is greater (~1.3) with a large odd-MIF (up to ~5%o in

fish, Li et al., 2022b).

From Table 8, which summarizes the isotopic effects quantitatively observed in aqueous-phase laboratory studies, MgIE can have
different signs for the same reactant depending on the reaction conditions, as exemplified by the Hg-cysteine-light system. Depending

on the degree of photoconversion, the reduction of Hg"" in the presence of water-soluble diesel soot (aromatic polyacids and humic-

like structures) exhibits swings in the direction of MgIE (Huang et al., 2021). Another, example of the jmpact, of pH/complexation on

the evolution of MgIE can be seen in the UVC photodegradation of MMHg" in acidic and alkaline (adjusted with NH;)golutions. In

the former, (+)MgIE is significant, but jt is limited, in the Jatter, For traditional elements with the same reaction mechanism, the 4
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strength development of MgIE depends on various factors, including viscosity, triplet sensitizer, and excited;state quenchers (Turro,

1983; Buchachenko, 2013). As seen in the laboratory experiments, both (+) and (—) net Hg MgIE yere observed in samples related

to the natural atmosphere, as previously reported in Section 8.2. The reaction conditions also affect the degree of turnover of the Hg

reactant at which the onset of MgIE occurs, which incidentally does not correlate with a change in the overall reduction rate. o, /

better interpret odd-MIF signatures and systematically elaborate the roles of reaction parameters (pH, presence of O, light

wavelength, etc., Rose et al., 2015) in excitedgstate kinetic isotope effects, experimental research is needed. For example, dissolved 2
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02 is a well-known quencher of excited triplet states, but radical-O: reactions have also been described to induce significant MgIE
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(Pliss et al., 2019). For the photoreduction of Hg in the presence of multifunctional ligands (such as DOM), the stoichiometry (Hg:L
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ratio) has been shown to play an important role in the magnitude of MgIE induced. Zhang and Hintelmann (2009) observed an E'”’Hg {tog bort: For the dissolved organic matter (DOM) fraction from

Dorset Lake, Ontario,

optimum (25%) in anoxic photo-experiments with the DOM fraction from Dorset Lake, Ontario. Thig optimumys associated with a N )
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Table 8. Experimental fractionation factors determined for a variety of Hg red-ox transformations.

NN AN AN

Initial Hg . 2o . 02 1 1
Experimental conditions: | Anoxig| . . | e%Hg ‘ EHg| A™Hg/ Dot tog bort:
3 Reactant f . Major Hg species Isotope effects - Reference 0g bort:
) eactan L/Hg ratio Onic, 2P Ghuside) Oho) | AMHg | OOP flec (i :
(tog bort:
JPhotoreduction of Hg"
Zheng & (formaterade: Inte Expanderad med / Kondenserad med
05uM glass, ~2000:1 (M/M), 132+ 0| 146+ et
NIST:3133(ChH) Xe lamp (UVC-ilter), pH 3.6 007 | 2| 003 | MDE,NEs, |HITSAn (tog bort: NVE
FEP Teflon, 22000:1 (MM),| A T 13ds | OMelR
Cysteine (Heys) natural sunlight, pH 3.2 Hg(cys)2 0.03
FEP Teflon, 22000:1 (M/M), —1.04 £ 0.99 + Motta et al.,
017004 uM natural sunlight, pH 7.2 009 | *% | .06 MDF, 20200
FEP Teflon, 22000:1 (M/M), o 115 111+ (HMgIE
natural sunlight, pH 7.2 i 0.09
05uM Quartz glas, 2000:1 (MM), |, ALT1 | 167+ | MDENES, | Zhengd (tog bort: NVE
NIST-3133 (CI)| Xe lamp (UVCHilter), pH 3.8 0.03 . 0.28 (HMglE* | ‘"36'1'8;'""
Serine (Hser) Hg(ser), 006 | <16
FEP Teflon, 22000:1 (M/M), —1.81+ o MDF, NFS | Motta etal.,
017004 pM ‘natural sunlight A0 004 | I3 LOSE T CoMgIET | 20200
A FEP Teflon, =20000:1 P
0.17+ Ethylenediamine y Hg(en), 09+ 085+ s Motta et al.,
004M (en) (MM), atura) sunlght, pH 0 HgOH(en)" 03 | 016 | 574 MDF.OMEE 0,
Oxalate Pyrex, 300:1 (M), UV-B 145 139+ -
(0x2) light, pH 39 & 52 AO Hgn-ox 006 | %15 | 33 | MDENEST 1 oetal; (tog bort: NVE
Pyrex, 300:1 (M/M), UV-B 066+ 1.00= | MDF, 2021
AQDS light, pH 3.4 A ? 0.00 | 98| 000 | ()MgiE
1uM Salicylicacid | Pyrex, 3001 (MM),UV-B | Hgea? | |LD*
(€loy) (Flsal) light, pH 43 elsal) 030
4-hydroxy-benzoi 300:1 , UV-B 2254 153+ o .
S Fyrex, 3 e gmfg A HeOBA? | #20% ~010 | 1235 | MDENES | This work (tog bort: NVE
4-aminobenzoi Pyrex, 300:1 UVB 275+
acid (HNBs) ligm,g\gls\g’ A HgMNBA™ 540
_ Suwannee River (Quartz glass, ~10— 17 (m/m), 1.00 + MDF, Bergquist &
03-05uM | ™5 lvicacid sunlight 0 0601045 505 | (MgiE | Blum, 2007
Quartz glass, ~29000 (m/m), 0774 g, | 1195
oM Xe lamp (UVC-filter) 018 | 27*| 0.02
Quartz glass, ~6000 (m/m), 0T | 122+
Xe lamp (UVC-filter) The proportion of He- 0.10 . 0.02
NIST- | Dorset Lake bulk Quia(retzl ;grlnas S&E\I/ZCO%}II;V)m ), O bonding increases as 7})%67i -6.29 16261; MDF Zheng &
~50uM| 3133 DOM glags 1200 (m/m), A | we movegdownward, 2099 % 126+ (OMelE Hintelmann, (tog bort: downwards
[(@5) pH6.5 Q anlicht g and so does the 002 | 57| 001 UAE 2009
500 FACHONTE, 1106 g, | 130%
M Quartz glass, ~120 (m/m), Xe 0.02 . 0.02
50,:M lamp (UVC-ilter) —})(()E‘ * 199 1035 li
Marine algal _ .
29nM Teflon, 1.41 nmol chla™, MDF, Kritee et al.,
o ) DOM UVB-light (6] -0.70 | 1.03 1.06 \MelE 2018
3 (intracellular) e &
£nM | Water-soluble Qua;zzlﬁs,l;g;é‘éolvubsM), A 1305 L0001 s MDF, | Huangetal,
(@)} diesel soot extracts, removal of product (He') +0.11 (H)MIE 2021
onv | Dissohvedblack T e 40001 iy, xe| 120+ | MDF, Lietal,
(NO3) « by 4b5°um) Jamp 010 | (OMgE | 20200
Photoreduction of MMHg" i (formaterade: Inte Expanderad med / Kondenserad med
o CH:sHgCl | Hgdamp =254 nm), pH40 CHiHgCl =025 —05| |56 | (MitiE | Malinovsky
CH;HgOH | Helamp (v =254 nm)), pH86 CHHgOH | ~03 |<—0.06| 000 N”)(E*)f/‘[’g{g‘s“ etal, 2010
TOmg 705 g
o Suwannee River | CL 0.30 § 1.36 Bergquist &
03-05uMp fulvicacid; sunligl 130 £0.02 Blum, 2007 (‘tog bort:
tmegCl £020| 33
39 -1.74 1.30
1020M CHHg 213 1050 | 09 | 007 | MDF,
: —4.64 1.28 (HMgIE
86nM Suwannee River | 0.72 5.0
@ fulvic acid, Xe lamy .64 20 Chandant
101 nM| (UVCHilter) 042 1025 -72 £0.03
-1.77 1.30
80nM 0.17 081 =72 003
36 Appears at 4 h photoreduction and beyond with a A'*Hg/A%'Hg of 1.10-1.18
37 Onset of (+)MgIE at fy = 0.40-0.76 depending on reaction conditions.
3 A single experiment (anoxic, pH 6) on oxalate indicates (+)MgIE at fr = 0.1y (tog bort:

39 MMHg/organic bound reduced sulfur (M/M)
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As shown in Table 8, photoreduction of ng*pﬁen, but by no means always, is associated with high odd-MIF. For macromolecular

entities such as DOM and fulvic acidg and a selection of smaller organic ligands that use O—, N— and S-donor atoms to complex with

Hg?', MgIE is jnitially induced in the photoreduction process, whereas for the amino acid serine, MgIE is triggered only after a significant

turnover of Hg?*, the onset of which varies significantly depending on the reaction conditions (Zheng and Hintelmann, 2010b; Motta et
al., 2020b). The experimental A'”Hg/&*Hg data are described to follow the same trajectory, regardless of when MgIE kicks in during

serine-assisted photo-reduction. When oxalic acid was screened with a single light experiment (anoxic, pH 6, fr = 0.11), ()MgIE was
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observed, anoxic time series experiments with UV-B irradiation at pH 3.9 and 5.2 revealed no evidence of MgIE in the range investigated

I
down to fr = 0.01. This is evidence that Hg oxalate complexes can be directly photodegraded by homolysis (Hg(*—C204) - Hg** +

3
C, OZ’) as well as heterolysis (Hg(n?—C204) _>V Hg +2 COy). Heterolytic photoreduction does not induce MgIE,but results in NFS with

limited (—)odd-MIF, as is the case for ligation with the substituted aromatic carboxylic acids shown in the table. This also applies to
thermal (dark) reduction by a uni— (e.g., Hg—QH" — Hg" + Q + H") or bimolecular (e.g,, Hg** + Sn** — Hg" + Sn") processes. Although

NES is a general isotopic effect, its magnitude depends on the shift in the 6s orbital electron density, which is greater for a red-ox reaction ‘

than for ligand exchange or evaporation. In turn, ionic Hg complexes have greater NF'S than more covalent complexes upon reduction

to Hg’. NFS typically produces a characteristic A'”Hg/A%'Hg slope of ~1.54 to 1.66, as determined from experimental studies and %

theoretical calculations. However, the application of linear regression to NFS odd-MIF data (A'’Hg vs. A*'Hg) is limited in several

cases because the observations are distributed over such a small range that they approach the scale of the corresponding analytical

precision. Table 8 gives two standard deviations of the slope of the linear fits using York's regression, and the uncertainty is so large that

it does not allow a definitive A'*”Hg/A?*'Hg ratio to be determined. In these cases, it has been suggested that a better indicator of NFS is
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instead to confirm that the patterns of Hg isotope fractionation observed mimic the odd,-even staggering pattern of nuclear charge radii
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(Motta et al., 2020b). The description of NFS is limited to equilibrium fractionation (Eq. 25) and predicts, similar to EIE-MDF (Eq. 23),

the enrichment of heavier isotopes in the oxidized fraction of the red_ox pair. Calculations performed for a series of Hg" complexes,

both binary and heterogeneous, containing simple hard and soft ligands relative to Hg’, show that NFS makes the most significant

contribution to §*?Hg (ranging in total from 46 to 85% at 25 °C; Jiskra et al., 2012). The expected mass-independent enrichment

E'"*Hgnrs can be calculated based on the calculation of €?Hgrs, using the scale factors Bxie-vior and Prrs (Jiskra et al., 2012):

199 T . ~ 09202
E" Hg s =& "Hegyys (ﬁNFS - BKIE—MDF) =026 Hg g

(Table 8). The former system has been studied anoxically both as an open and closed system (Schwab et al., 2023), where the
fractionation is of the Rayleighian model (kinetic) and equilibrium type, respectively. The closed system permits overprinting with
the signature of isotopic equilibrium fractionation between Hg® and hydrolyzed Hg?*, which has been consistently determined in two
independent studies to be —2.63 (Wang et al., 2021) and —2.44%o (Schwab et al., 2023), respectively. As,demonstrated below, the

@) -
Reduction by Fe"" and p-substituted benzoic acids results in one of the highest magnitudes of experimentally observed kinetic MDF<. "
SN, (Formaterat: Avstand Efter: 6 pt
% (tog bort: 23
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magnitude of the equilibrium isotope enrichment factor (62?Hg) between Hg and thiol-bound Hg'" is significantly lower (1.1-1.6%o),

which is related to fhe lower vibrational energy pf Hg-S bonds than that of Hg-O/Cl bonds.

8.4.2 Oxidation

To the extent that isotopic effects in aqueous-phase Hg” oxidation have been studied in the laboratory, it has been observed that oxidized

Hg becomes isotopically heavier than the reactant. The observed fractionation does not conform to the Rayleigh model, but it is consistent

with EIE in a closed system. Consequently, the isotope ratio of the product(s) linearly approaches that of the reactant at the beginning of

the reaction. An example of atmospherically relevant oxidation is the rapid reaction with *OH (Rxn W2, generated by photolysis of

NO;3) with £”Hg = 1.20 + 0.14 %o (Stathopoulos, 2014). Experiments with thiol-substituted carboxylic acids in the dark produced

similar fractionation results (Table 8, Rxn W7). Additionally, NFS produces a small odd-MIF signal that consistently acts in the opposite

direction of mass-dependent fractionation (Zheng et al., 2019). The reason for observing EIE despite the continuous oxidation of Hg”

without any indication of reversibility in the form of back reactions has been attributed to the rapid exchange of Hg isotopes between the

remaining Hg? and the formed Hg! complexes (Wang et al., 2020). There is currently debate surrounding the mechanism by which this

exchange occurs (Wang et al., 2020; Zheng et al., 2019; Wang et al., 2021). In the presence of humic acid, the oxidation of dissolved

Hg" exhibits two kinetic regimes where the EIE is not fully established in the initial regime (Zheng et al., 2019). KIE-MDF during

dark reduction in the presence of DOM and ETE-MDF during dark oxidation caused by humic acid results in fractionation in the

same direction and magnitude, so unmasking the controlling redox process from isotopic measurements can be difficult.

8.5 Isotope fractionation during complexation, sorption and surface-catalyzed reduction

8.5.1 Processes interfacing the aqueous phase «
(Theoretical computations of EIE based on the MDF and NES, generally agree with experimentally determined fractionation factors for

complexation. Competitive complexation of Hg" between one of the typical hard ligands HO™ and CI” and a softJigand in the form of a R
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thiol resin results in a lighter isotopic signature of the sulfur-bound Hg" pool (£22Hg values of ~0.62 and —0.53%o, respectively), which

is related to increased covalent bonding and electron density in the 6s Hg orbital (Wiederhold et al., 2010). For the sorption of dissolved

Hg" on a-FeOOH, the observed isotopic fractionation (e22Hg ~ —0.4%o) is exclusively determined by the process in solution, where a

vanishingly small pool (< 0.1%) of isotopically lighter cations is in equilibrium with a bulk of neutral Hg" molecules, with only the

former being sorption active (Jiskra et al., 2012). Equilibration and kinetic fractionation have been reported to describe the precipitation

process of B-HgS and HgO, respectively, from an initially acidic solution, with €Hg values between the precipitate and the supernatant

being —0.63%o0 and —0.32%o, respectively (Smith et al., 2015). Like adsorption on goethite, the observed fractionation during the
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precipitation of metacinnabar is interpreted as an effect of solution chemistry, in this case, a transition from O—to S-bonding for Hg". In A

addition to the homogeneous phase reduction of Hg" by Fe'' in aqueous solutions (Table 8), the heterogeneous phase reduction of Hg"

by surface-bound (adsorbed Fe!' on goethite/boehmite) or structural Fe!' (magnetite Fe''Fel'O,, Schwab et al., 2023 and siderite/green

rust FeCOs, Wang et al., 2021) has been studied isotopically. As shown in Table 9, the isotopic fractionation in heterogeneous reduction
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is closely, related in magnitude to that of homogeneous fractionation, by Fe' (Table 8), except in the case of magnetite (whose iron

Structure jis present in different oxidation states). which has g much more limited TMDF, and MIF (¢??Hg = —1.38%o and E'”Hg =
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0.13%o, respectively). All these processes, when,determined with confidence, demonstrate A'’Hg/A%'Hg ratios within the range of 1.56

\
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to 1.62, which indicates that the observed MIF (E'*Hg in the range of 0.13 to 0.34%o) is caused by NFS,

8.5.2 Processes interfacing the gas phase

Section 8.4.1 and Table 8 refer to a study of Hg" photoreduction of aqueous diesel soot, which includes experiments with a stationary=<.

soot phase mixed with HgCl2 on a quartz plate over which a slow flow of Ar gas passes, as discussed below (Huang et al., 2021). In

comparison, photoreduction in aqueous- and solid;phase diesel soot shows equivalent enrichment of heavier isotopes in the Hg

reactant of 1.26.-1.75%o.. This value overlaps with the yalues typical of Hg redox chemistry (Table 8). In contrast to the aqueous

phase, the photoreduction in the solid phase shows a continuous strong MIF (this time, positive MgIE induced in the Hg? product)

throughout the reaction, whereas in the latter case, a large MIF of the opposite sign pccurs after only ~60% of the reaction.

Furthermore, the reduction rate increases with jncreasing carrier gas humidity, The photo-triggered MglIE is highest when the carrier
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gas is dehumidified, but decreases rapidly as the RH increases (Table 9).

Table 9. Experimental fractionation factors determined for Hg"' complexation, sorption, surface-catalyzed reduction and processes interfacing the gas phase.

Initial Hg" . . .
Experimental conditions: Anoxic | £"”Hg | E"Hg |A\"’Hg/ Isotope
conc. Reactant . . 201 Reference
(electrolyte) L/Hg ratio (A)Oxic (0)| (%o, £20) | (%o) |A*'Hg| effects
Complexation, sorption, precipitation of aqueous Hg"
196 uM -0.53+
. HgCly .
(CI) . I . . 0.15 Wiederhold et
207 iM Ha(OH) Complexation between Hg' and thiol resins (6] 060+ al., 2010
(NO3) g 0.17 EIE-MDF,
» HgOH* 1 . . 037+ NES Jiskra et al.,
5-25 uM HeCl' Hg" sorption to a—FeOOH [0} 0.03 -0.06 2012
Sub-stoichiometric (10, 30, 50, 70%) amounts —0.63+
100 M He(OAc), of S* added at a start pH of 2.3-3.0 A 0.04 Smith et al.,
" He?* Sub-stoichiometric (10, 30, 50, 70%) amounts A 032 KIE-MDF, 2015
€ of OH added at a start pH of 1. - NES
Hg" — Hg’ equilibration
300-328 nM 2.63+
net [eOmHe Water A 037 | 028 | , |EIE-MDF,| Wangetal,
15(F1_1173 nM HgCly/Hg" 10 mM NaCl 2.77+ 0.21 WES 2021
o 0.70
Heterogeneous Hg" reduction by surface-bound and structural Fe!!
Siderite (0.1 g L, 243+
285nM Hg" reduction to Hg by pH7.1) 038 Wang et al.,
NOy) | HEOH: | ended FeCOs (5) | Groenmust 001 g| 208+ | 00 EIEEMDF| 2021
L, pH72) 040 NFS
1 uM He(OH), Hg" reduction by suspended magnetite A -1.37+ | 013+ | 1.59+ Schwab et al.,
(NO3) g (Fe""Fel'0,, surface area ~2 m? L! 0.07 001 | 0.09 2023
Photoreduction of Hg" doped on a diesel soot matrix
Relative humidity -1.75 243
12 uM 5 28% +0.05 | £0.19 |1.15+| MDF, Huanget al.,
) H/CT8>10°MM) (g v humidity | 2148 | 020 | 001 | (-MeIE 2021
68% +0.02 | £0.05

8.6 Isotopic fractionation during air-surface Hg’ gas exchange

The interaction between atmospheric Hg and the Earth's reservoirs has been discussed only briefly in Section 3,2, as this area has recently

been covered by a literature review (Sommar et al., 2020). Jmportantly, the gas exchange of volatile Hg is bidirectional. Consequently,

the net flux of Hg over an ecosystem may represent a delicate balance between opposing processes, including deposition/uptake versus

re-emission. The end members of Hg exchange between the, surface (biosphere, pedosphere, lithosphere, hydrosphere, and
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cryosphere) and atmosphere are all isotopically distinguishable (Liu et al., 2024). A combination of bulk measurements and analysis

of stable Hg jsotopic compositions enables separation of, the contributions from,atmospheric Hg" and Hg deposition, as well as local

i

partitioning between Hg® deposition and re-emission. The isotopic composition of atmospheric Hg s, presented and discussed in .

Section 8.2. In addition to the, data, an updated compilation of complementary isotopic Hg data for reservoirs that are in contact with
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Figure 17. Schematic illustration showing key biogeochemical Hg processes in Earth's surface reservoirs and their associated Hg isotope fractionation
along with corresponding isotopic composition observations focused on the atmosphere. Section 8.2 addresses the isotopic characteristics of atmospheric
mercury. The existing isotopic information on the gas-phase and water-phase redox transformations of mercury is presented in Sections 8.3 and 8.4.
respectively. Sections 8.5 and 8.6 describe isotopic fractionation in heterogeneous chemical processes and processes involving Hg gas exchange
between the atmosphere and the Earth's surface reservoirs, respectively.

8.6.1 Mixing and fractionation modeling of Hg® deposition and post-depositional processes «

Deposition

JIsotope-based modeling by binary (e.g., Eq. 27) and ternary mixing with MDF, odd-MIF, and even-MIF signatures of atmospheric+-.

Hg’ and other Hg pools as end members has been applied to distinguish the fraction of Hg” deposition via vegetated surfaces (Wang .

et al., 2020b; Enrico et al., 2016; Obrist et al., 2017; Wang et al., 2019b; Li et al., 2022a; Li et al., 2023a; Li et al., 2023b), soil (Zheng
et al., 2016; Obrist et al., 2017, Wang et al., 2019b; Wang et al., 2020a), water (Jiskra et al., 2021; Zhang et al., 2023a), throughfall
(Wang et al., 2020b) and snow run-off (Douglas and Blum, 2019), estimated to be 60—90%, 32—105%, 50-85%, 34-82% and > 75%
of total deposition, respectively. As a proxy for atmospheric Hg’, foliage/litter Hg has been used as an end-member in mixing
modeling of Hg” inputs to soil (Demers et al., 2013; Jiskra et al., 2015; Zhang et al., 2013), runoff (Jiskra et al., 2017), and stream
water (Woerndle et al., 2018), which may introduce bias because a significant fraction of the gross air Hg incorporated as Hg" in
foliage is re-emitted after photoreduction (Yuan et al., 2019b). The contribution of Hg" deposition to vegetation Hg uptake is greatest
in foliage, followed by branches, bark, stems and roots (Wang et al., 2020b; Liu et al., 2021a; Sun et al., 2017). The new Hg isotope

evidence has demonstrated that Hg throughfall via the canopy and along stems, whichwas previously assumed to be derived mainly
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from wet and dry deposition of atmospheric RM (Wright et al., 2016), contains a larger proportion of Hg excreted from biomass,
where it originated mainly from Hg? uptake followed by translocation._The isotope mixing formula is used to determine the

proportions of different isotope sources in a mixture, the simplest form of which is as follows;

(3 Hgymix = fi- (3" Hgy, + f,(§""Hg), 27
fitHh=1
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Post-deposition -
Isotopic and concentration measurements of Hg? jointly in near-surface air and surface pore air/water, in addition to other isotopic+

data, allow the inference of processes by mass balance or Rayleigh-type models at the air;-soil interface and in the surface soil (Jiskra

et al., 2019; Li et al., 2023a; Yuan et al., 2021; Chen et al., 2023). For poorly drained boreal organic soil horizons (histosols), in

contrast to podzols, mixing modeling indicates significant reductive loss (24.-33%) to the atmosphere by abiotic reduction (Jiskra et

al., 2015). A further multi-process model is presented here, which is designed to elucidate the dynamic evolution of post-depositional

Formaterat: Radavstdnd: Flera 1,15 li, Ingen kontroll av
enstaka rader, Hall inte ihop med nésta

(Formaterat: Avstand Efter: 4 pt, Radavsténd: 1,5 rader

(tog bort: to infer

(tog bort: -

(tog bort: boreal

(tog bort: a

Hg (>90% from litterfall) on the subtropical forest floor over a 500-year period,(Yuan et al., 2020). The results indicate that photolytic

and microbial reduction processes exert an influence during the initial few years, but are subsequently superseded by dark redox

processes (exhibiting NFS) in the compost, where Hg" finally becomes inert at depths of >10 ¢m in the horizon after approximately )

420 years. Studies of forest soils in different climatic zones have shown that microbial reduction (€22Hg = —0.4%o, E'*Hg = 0, Kritee
et al., 2007) plays a dominant role (Yuan et al., 2021; Chen et al., 2023), which, for rainforests, can explain up to 90% of the Hg"
reduction in the upper soil horizon (Yuan et al., 2023b). In an open boreal peatland, photoreduction dominated the post-depositional

process, accounting for the transformation of 30% of the annually deposited Hg (Li et al., 2023a).

8.6.2 Enclosure and related flux measurements «

Experimental investigations employing dynamic flux chambers (DFCs) have been conducted in both ambient and controlled
environments with the objective of elucidating the isotopic dynamics of Hg’ exchange between the atmosphere and vegetation at the
branch level (Yuan et al., 2019b; Chen et al., 2023), as well as between air and soil (Yuan et al., 2021; Chen et al., 2023; Zhu et al.,
2022; Zhang et al., 2020), water (Zhang et al., 2023a), and snow (Sherman et al., 2010). For this application, in addition to traditional
chambers (Demers et al., 2013; Chen et al., 2023; Zhu et al., 2024), a type was used that produces a uniform surface friction velocity
over flat ground to couple with ambient shear conditions to scale to the ambient flux (Yuan et al., 2021; Yuan et al., 2023b; Lin et
al., 2012). The surface-atmosphere Hg? flux is the result of complicated bidirectional processes, including Hg" efflux from the surface

and direct atmospheric Hg? deposition.

Deposition and sink processes «

) and
0dd-MIF (E'"’Hguirsurfscc) may be calculated yia a linearized Rayleigh fractionation model (Zhu et al., 2022; Mariotti et al., 1981):

When direct Hg® deposition is measured absolutely and isotopically with a DFC, enrichment factors for TMDF (£2?Hg,i

0 0
20217 0 202pr 0 _ 202 . Hg Hg <«
8 Hepee— 87 Hey =& HE e i 10 (Crc /Cair )

@) .

199770 199770 _ 13199 . Hg'  Hg
A Hepe~ A Hgy =ETHE e i ln(CDFC/C )

air

where c represents the concentration and the indices air and DFC refer to the air entering and exiting the DFC, respectively. Alternatively,*

Eq. 28 is applied fo extract €Hggufce air using measurements of cM¢” and ”?Hg" at two pristine sites with and without vegetation

(Enrico et al., 2016) or using day- vs. night-time segregated ambient air data at the same site (Jiskra et al., 2019). When direct deposition

is measured isotopically with a DFC, the residual Hg in the chamber outlet shifts to be preferentially isotopically heavier, with a large
but variable discrimination observed over soils (£2?Hgit-air = ~0 to —5.8%o, Chen et al., 2023; Yuan et al., 2023b; Zhu et al., 2022) and
over vegetation (€2Hgfoliagesir = ~—1 t0 —4.2%o, Yuan et al., 2019b; Enrico et al., 2016; Demers et al., 2013; Jiskra et al., 2019; Chen et
al., 2023). Deposition in contact with any surface does not result in a significant change in A'Hg’, unlike the situation with 3*2Hg’.

Information on the sink processes of Hg® in the soil can be obtained by pursuing measurements of isotopic Hg’ in the soil pore air

under sub-ambient concentration regimes. In tundra (Jiskra et al., 2019) and peatlands (Li et al., 2023a), the isotopic differences

between ambient Hg® and pore gas Hg’, whose concentrations is sub-ambient (~0.4 — ~0.6 and ~0.2 — ~0.7 ng m™) and therefore

jmediate Hg® net diffusion into the substrate,via Eq. 28, have been linked to DOM-driven anaerobic oxidation in soil water exhibiting

EIE (Zheng et al., 2019). Investigations of the Hg’ level in the pore air of forest soils provide a mixed picture, ranging from sites with

concentrations above. In subtropical (Yuan et al., 2019a) and subalpine (Chen et al., 2023) forest soils, the concentration of Hg® in

pore air is typically higher than that in near-surface ambient air and shows seasonal isotopic variations (IMDF and odd-MIF),
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suggesting complexity in Hg’ gas exchange between air and soil. In tropical forest soils, pore air shifts from being icarly ambient
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during the rainy season to being markedly sub-ambient during the dry season (Yuan et al., 2023b). To resolve Hg’ flux partitioning
here, a combination of DFC measurements of net fluxes and forced unidirectional efflux, soil pore air, and Hg jsotopic composition

in forest soil depth profiles are employed as jnputs into isotope mass balance models based on odd-MIF (Yuan et al., 2021). Net

fluxes measured by DFC are interpreted as a ternary mixing of deposition, Hg’ losses from the surface soil via Hg" photoreduction,
and a term generated by Hg redox processes (dark/microbial reduction vs. oxidation) in the organic soil horizon. Although associated
with considerable uncertainties, the estimated gross deposition to the forest floor is between -7.8 and -1.8 ng m? h'! for the subtropical
site (Yuan et al., 2021) and between -6.7 and -4.4 ng m? h'! for the tropical site (Yuan et al., 2023b), depending on the season, and
between -4.9 and -2.0 ng m? h™! for the subalpine site, depending on the type of forest floor (Chen et al., 2023).

d. Air-foliage Hg® exchange
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JFigure 18, Statistical summary of observations from isotopic studies of Hg exchange between the atmosphere and various groups of surface reservoirs ;
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etal. (2010) and Douglas and Blum (2019).-or;the ik water group, data were taken from Zhang et al. (2023a; 2021a).J o the ik soil group, data were
taken from Zhang et al. (2020), Zhu et al. (2022), Yuan et al. (2021; 2023b) and Chen et al. (2023).

Foliar oxidation of Hg® drives its reactive uptake and is the most important step in the accumulation of initially'Hg(' uptake by
plants (Liu et al., 2021b). Direct bio-oxidation from Hg’ to Hg" has been traced to heme enzymes that catalyze the degradation 3

of H20, specifically to a ferryl (O=Fe') catalase radical cation complex (Ogata and Aikoh, 1984) that swiftly oxidizes Hg” (1.4 x

10* M 57!, Wigfield and Tse, 1986):

11 o+ 111 —FalV +e Il
H,0, + (Fe"-E*" « Fe"-Ey — H,0 + (O=Fe¢"-E™* < O=Fe¢"-E (Rxn4)

Hg"+ (0=FeVE"* < O=Fe""E) + 2 H" — Hg*'+ (Fe'-E"* « Fe''-E + H,0
here, E represents the heme group attached to the enzyme, which can provide an electron, reducing the formal oxidation number of

iron from five to four. Divalent Hg readily binds to soft functional groups on the enzyme as soon as it is formed. MDF fractionation

during oxidation of the absorbed isotopically light Hg” causes the product pool to be heavier than the reactant, which is consistent |

with observations that Hg! incorporated into leaf shoots is only slightly lighter than Hg” in ambient air. Notably, in contrast to the
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Hg pool in the leaf shoots, the Hg in the growing foliage of the current year ghifted rapidly in the first months foward clearly negative ‘

3%?Hg" signatures, the causes of which have been discussed elsewhere (Yuan et al., 2019b),

(tog bort: will

In contrast to the observations regarding the air modified by jnteractions with soil and foliage, the residual Hg® in the outgoing

air is significantly lighter than that in the incoming air (ASZOZHgO —82°2Hg(r’m, = 0.38%o), as observed by DFC, for deposition

Al A

regimes over freshwater surfaces (Zhang et al., 2023a). This may be interpreted as the dissolved Hg%(aq) being consumed by :

oxidation, whereby the rapid exchange of Hg isotopes between the remaining Hg? and the formed Hg" (Section 8.4.2) causes the
former, which is partially returned to the gas phase, to exhibit a more negative 5?*?Hg". In surface waters, photolytic re-reduction

is also possible, which can be used for determining the isotopic composition of dissolved Hg” (Zhang et al., 2021a).

During colder seasons with limited solar radiation, there is a small but persistent net Hg? dry deposition over the snow-covered
Arctic interior tundra (Obrist et al., 2017), whose interstitial snow air has sub-ambient concentrations (0.69 vs. 1.07 ng m ™) with

comparatively more positive 5*?Hg” values (1.08 vs. 0.77%, Jiskra et al., 2019). Using the exclusion method, this trajectory may

reflect Hg® uptake by ground lichens (Olson et al., 2019). Compared with the hinterland snowpack (~50 ng m2), the Arctic coastal

snowpack has regionally much higher Hg!' pools (>2000 ng m2), which are characteristically released as an ionic pulse in the

runoff during snowmelt. High Hg" concentrations in the coastal marine cryosphere are partially explained by AMDESs (described

in Section 3.2, Douglas et al., 2017). However, coastal AMDE deposition is mostly re-emitted as Hg’ to the atmosphere before

snow melts (see below). In contrast, the pulse in junoff appears to be related mainly to the reactive uptake of Hg” on marine snow, ‘

which is rich in halogen compounds and other reactive species (see Section 7.3) (Douglas et al., 2017). In support of the significant i

reactive uptake of Hg” on salt-laden snow, .analogous odd-MIF signatures between ambient air Hg® and snowmelt Hg" have been

reported (A'Hg values documented in Fig. 18b, Douglas and Blum, 2019).

Net exchange, source processes and flux partitioning

Owing to the length of time (typically a few days) required to accumulate sufficient Hg to perform isotopic analysis, samples from a

DFC measurement are a composite of periods of net emission and net deposition, unless the Hg’ concentration in the inlet is

manipulated so that emission or deposition becomes persistent within the chamber. The TMDF and odd-MIF signatures from DFC

measurements in ambient air ("net Hg® exchange") are calculated as follows (Zhu et al., 2022):
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In a series of light, temperature and substrate moisture controlled laboratory experiments with untilled (forest) and tilled (agricultural)

soils, both with elevated Hg levels, enclosed in a DFC fed with Hg-free air, large Hg® fluxes (=500 ng m? h™') were unanimously

0

associated with the most negative 8202Hg
emisson

values (-2.9 to —2.2%o and —4.4 to —4.2%o for agricultural and forest soils,

respectively) when substrates were exposed to elevated temperatures in the dark (100130 °C vs. 40 °C), while treatments with light, : (t°9 bork: were observed
moisture, or a combination of both at room temperature produced more moderately negative 620sz gflm L, values (2.1 to —1.6%o (tog bort: -

and —3.3 to —2.6%o for agricultural and forest soils, respectively, Zhang et al., 2020). E*Hgemission of agricultural and forest soils [tog bort: g e
displays a value of approximately 0.2 %o. and A'*’Hg/A*'Hg was ~ 1.55 for the temperature controls, suggesting that the treatment : (t°9 bort: %

caused Hg’ loss propelled by the thermally driven yeduction in Hg''in the dark (Section 8.4.1). In the light and light-moisture g:: ::: Z;rk
exposure controls, the substrates differed in terms of the observed E'®’Hgemission, which for agricultural soils was 0.67 to 0.76%o (tog bort: Hg"

(mean) and for forest soils of a small magnitude, both positive and negative (=0.03 to 0.18%o, mean). The E'*Hgemission dichotomy (tog bort: -

may be interpreted as derived from a composite with A™Hg contributions from both (-)MgIE and (H)MglE induced Hg" - (formaterade: Teckenféirg: Dekorfirg 2
photoreduction pathways, almost completely dominated by (—)MgIE processes (Hg" bound to, e.g., N, S-containing ligands) for (tog bort: deriving
agricultural soils and for forest soils with a larger contribution from (+)MgIE processes (Hg" bound to, e.g,. O-containing ligands). - (t°9 bort: inducing
balancing odd-MIF fractionation from (—-)MgIE processes. However, the agricultural soil placed under water (rice paddy) photoemits M (tog bort: ,

Hg? characterized by a negative A*’Hg" (AlggHggmission =—0.38 + 0.18%o, Zhang et al., 2024), which is indicative of all observed 8:: ::: )

Hg" photoreduction in natural freshwaters studied in the laboratory as well as in situ. \ (tog bort: the

A field study with DFC of cultivated or managed soils measured exchange fluxes (an MDF Rayleigh model yielded a 10-27 %

contribution from deposition), which revealed net Hg® emissions (fraction) associated with average &22Hgexchange of —1.1 to —0.1%o

; (tog bort: aforementioned
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and —1.6 to —0.2%o and average g1991izex vaiues 0f —0.27 to —0.13%o and 0.00 to 0.14%o for rural and urban soils, respectively. The above .. %tog :orti ) that showed
enrichment factors and EHgexchange = E**'Hgexchange indicate that the emitted Hg” comes mainly from the pool produced by (::: b::; }:,;chxcw
photoreduction. The air concentration positively influences the magnitude of deposition jn soils so that at a critical concentration (tog bort: the
level (compensation point), the net flux tends to change direction. This is reflected in the apparent &22Hgexchange , which varies with (tog bort: to
the ambient Hg concentration (Zhu et al., 2022). Analogous to Jaboratory experiments, in situ experiments on the subtropical forest (tog bort: )
floor have revealed that soil emissions of Hg” are strongly negative 8°"°Hg® . (mean —3.0%o, Yuan et al., 2021), while the (tog bort: the
magnitude of anzHggmission for the tropical rainforest floor is much smaller, but still negative (mean —0.7%o, Yuan et al., 2023b). . 8:: ::: f:;v:lave
E'*Hgemission for subtropical forest soils exhibit positive values for all seasons over a considerable range (mean 0.1.-0.7%o), whereas (tog bort: .
for rainforests, E'*’Hgemission i consistently positive, albeit to a lesser extent (mean 0.2.-0.3%o). Limited negative 57?Hg’ values ‘(t 0g bort: cxhibits
(mean values of —0.26, —0.54, —0.07 and —0.09 %o) and consistently positive E'”Hg, values (mean_values of 0.42, 0.23, 0.39 (tog bort:
and 0.30 %o) are observed in net Hg? gas exchange experiments over subtropical (Yuan et al., 2021), tropical (Yuan et al., 2023b), (tog bort: -
subalpine (Chen et al., 2023) and temperate (Demers et al., 2013) forest soils, respectively. In conclusion, bare or cultivated soils (t°9 bort: sub-alpine
result in a greater degree of MDF isotope fractionation associated with Hg” gas exchange with the atmosphere, than do forest soils, ’ (t°9 bort: . compared to
where the effects of photic and thermal processes are limited by canopy shading. Temporally extensive chamber measurements (t°9 bort: effect
conducted globally over the forest floor indicate net emissions (Yuan et al., 2019a). For the first three forest soil studies mentioned (tog bort: is
above, the DFC datasct also contains sufficient isotope data to enable the modeling of net flux partitioning into gross emission and : (tog bort: data set
gross deposition.
Re-emissions of Hg” from perennial foliage of three beech species show an average positive 2*?Hgemission and E'*Hgemission of 0.6
and 0.3%o, respectively. The studied net exchange of Hg between foliage and air for montane evergreen deciduous (Yuan etal., (tog bort: the
2019b) and spruce (Chen et al., 2023) forests is mostly on the uptake side, which jndicates that 8202Hg?wr is generally more : (tog bort: gives
positive than that of ambient air (Fig. 182, mean shift of 0.72%o. for the latter site). The presence of bidirectional fluxes is, however, : (t°9 bort: 17a
reflected in the observation that the E'*’Hgexchange for both sites is consistently positive (mean 0.08 and 0.13%o, respectively), albeit
modestly, due to a contribution from Hg® emissions resulting from (—)MgIE-induced photoreduction.
Isotopic studies of air_snow Hg" jnteractions and post-depositional processes have typically been conducted in the Arctic (Araujo et ’ (tog bort: -

(tog bort: interaction

al., 2022; Sherman et al., 2010; Zheng et al., 2021; Jiskra et al., 2019; Obrist et al., 2017; Douglas and Blum, 2019), with occasional
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question of which snow Hg'" complexes are involved,

studies at mid-latitudes (Kurz et al., 2021; Yuan et al., 2022). Hg in aging snowpacks exhibits by far the most extensive distribution ’ (tog bort: previously )
of A" Hg" among Earth’s surface reservoirs, with observations of A®’Hg progression reported in both positive (Kurz et al., 2021) (tog bort: when compared to )
and negative (Sherman et al., 2010; Zheng et al., 2021; Douglas and Blum, 2019) directions relative to fresh snow. As discussed in - . (tog bort: , )
Section 8.2.1, the larger A'”Hg spread observed in polar airborne Hg (Hg and RM) than in, for instance, high-altitude air from mid- ! (tog bort: is )
latitudes,can be attributed to the influence of AMDES (during spring after sunrise and during summer) on a significant proportion of the (t°9 bort: the )
collected polar data. Snow(fall) during the polar night is characterized by positive or near-zero A'”’Hg signatures, as is the case for most (formaterade Co. [760]3
global precipitation data (Fig. 13¢), while the A"’Hg values of polar Hg® for the same period gre all slightly negative, which is consistent yngn:,:t::::: commequenee [761]2/
with the global Hg” background pool (Fig. 13a). Only sporadic isotopic DFC measurements have been conducted over snow, yet ample (tog bort: . )
measurements of polar air and snow as endmembers still offer an understanding of ir-surface Hg’ exchange following Hg" deposition (tog bort: showed )
associated with AMDE. A seminal set of isotope data (Sherman et al., 2010) demonstrating a substantial odd-MIF triggered because of (tog bort: of photo-reduced )
Hg" photoreduction in snow was obtained from samples collected during a 9-day AMDE at the Alaskan Arctic coastline in conjunction (tOQ bort: inclusive of )
with periods of minimal snowfall carrying high concentrations of scavenged Hg'" (0.5 + 0.4 pg L"‘; Johnson et al., 2008). Fresh snow, (tog bort: A )
surface snow, and drifting snow presented, in order, rapidly increasing negative A!*’Hg" values of ~0.95 to —1.20%o, —2.41 to —2.63%o, g:orn;at:rz:de Co [762]%
and —3.84 to —5.08%o, which, according to Rayleigh fractionation, can correspond to 5-30%, 35-50%, and 65-75% photoreduced Hg", 09 Jori :
respectively. A chamber measurement was conducted on AMDE-impacted drifting snow that had undergone substantial photoreduction g:;n:;t::ade [763])
(A"Hg ~-5.0%o) for 10.5 h of sunlight. The total DFC throughput, jncluding the Hg” emissions corresponding to 6% of the total Hg" in Cformaterz;de (W
the snow plot (whose A”Hg" dropped to ~5.4%o), exhibited a A'”Hg’ of —1.87%o. Mid-latitude snow (ML, USA), derived from polar ’ ,(tog bort: ., )
vortex-transported air masses originating in AMDE-affected subarctic regions, shows, when A"’Hg is plotted against 5*”Hg, g /i (formaterade (W
regression of -3.32 + 1.19, (Kurz et al, 2021), which, given the uncertainty in the line fit, appears to agree well with the corresponding | (tog bort: ) )
Jegression of data from the Alaska DFC snow experiment of -3.44 = 0.7Q (Sherman et al, 2010). (formaterade G [766]3
L (tog bort: to )
Perennial data from the Canadian High Arctic show that Hg" deposited on snow during the most frequent phase of AMDES just after © .- : (formaterade (W
polar sunrise until early May, which is partly characterized by low temperatures and Arctic haze, has a significantly greater " (formaterade (W
susceptibility to photoreduction and loss as Hg (up to 60%) than that deposited later (<20%, Zheng et al., 2021). As previously stated \ (t°9 bort: A™Hg plotted against 5""Hg data (- )
in Section 5.1.4, airborne Hg" originating from high Arctic AMDES undergoes rapid conversion to the particle phase between March (formaterade CW
and April, whereas unconverted GOM remains the dominant form between May and June. The cause of the reactivity of deposited (tog bort: ):
Hg" is unclear (Sherman et al., 2010; Kurz et al., 2021). It has been speculated that components of Arctic haze, such as black carbon, g:;n:;t:ade [770])
that cause photoreactivity of particulate Hg" are the cause of the observed (-)MgIE signature (Zheng et al., 2021), which is supported 1 (formate;z:de Sz
by water-phase experiments with Hg!" and dissolved black carbon (Table 8, Li et al., 2020b). Concurrently, the restricted Hg" * (tog bort: ) has also been observed, given the uncertainty (W
reduction observed in Arctic snow foward the conclusion of spring is consistent with concurrent observations of substantial reactive | (tog bort: higher )
uptake of Hg’ (see above; Douglas and Blum, 2019), indicating that the snowpack then contains species with a predominant oxidative ~(t°9 bort: 2021). Regression of the Alaskan DFC expeﬁm(ﬁ?
capacity. However, during snowmelt on the inland tundra, net Hg deposition is disrupted by shifts in the isotopic signatures of snow N (tog bort: while )
interstitial air to those indicative of photoreduction, with A'*Hg values decreasing to—1.37%o in snow,and —0.62%o in snow interstitial ‘ g:: ::: i:o-uld - %
air, which are consistently lower than those in ambient air (-0.23 + 0.06%o). In contrast to Arctic snow, snow sampling in the U.S. ‘ (t 0g bort: owards )
Great Lakes area (with the exceptions noted above) generally yesults in increasing positive A'*Hg!" values (up to 3.51%o) in aging (tog bort: down )
snow (Kurz et al., 2021). Indicative of (-) and (+) MgIE triggering photoreduction, respectively, the snow data from coastal Alaska | : (tog bort: , )
(Sherman et al., 2010; Douglas and Blum, 2019) and the Great Lakes region (Kurz et al., 2021) show steeper A'*Hg/6*?Hg (formaterade (W
trajectories than is the case for any of the well-studied Hg" complex photoreductions in the laboratory (Tables 8 & 9), leaving the : (tog bort: shows )
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) (tog bort: Table )
The mean MIF values (A'’Hg" and A*Hg") in the pools of fresh and seawater are between the mean values of global atmospheric (tog bort: )
Hg" and wet precipitation. However, the variation is particularly pronounced for A'"’Hg" in coastal seawater, lakes, and river water : (t°9 bort: pool )
(Liu et al., 2024). After fhree different categories of lakes with DFC were studied, a A*°Hg isotope mass balance model was used to (tog bort: scawaters )
partition the overall net emission fluxes into gross emission and deposition fluxes, which ranged from 2.1 to 4.2 ng m™ h™' and from . E::: ::: :::;:: %
—2.3to-1.2ngm?2h"', depending on the lake (Zhang et al., 2023a). Hg" gross deposition exceeds the measured wet deposition | ACTOSS (tog bort: over )
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these lakes and accounts for 56.-85% of the total deposition (Feng et al., 2022). The anomalous observation of preferential deposition

of heavier Hg isotopes over water has already been discussed. The results of the volatilization experiments of dissolved Hg” in water
jndicate an MDF enrichment factor (62Hg%ir-waer) of —0.45%0 and a negligible E"’Hglir-waer (Zheng et al., 2007). Emission-
controlled experiments for one of the lakes yielded E"’Hgemission of —0.38%o and £**Hgemission of —0.31%o, which are subject to large .

uncertainties, with a resulting E"’Hgemission/e”Hgemission trajectory of 1.26 + 0.72, which is within the margin of error for Hg"

photoreduction mediated by fulvic acids (1.15 + 0.07, Bergquist and Blum, 2007). The isotopic tracing of the formation of dissolved
Hg" in peat-covered groundwater from Hg" in rainwater (1.24 + 0.68) has also suggested that this process is fhe same type of .~

» (tog bort: is
p (tog bort: (DGM)

s (tog bort: give
. (tog bort:

' ,(tog bort: by

(tog bort: -

that agrees

(tog bort: with that

(tog bort: of

photoreduction (Li et al., 2023a). The E'”’Hgexchange Was between —0.76 and —0.32%o, with the highest absolute value for a clear

mountain lake fed mainly glacial water, indicating that (+)MgIE photoreduction plays an important role, as has been shown early in '

laboratory experiments on natural freshwater (Bergquist and Blum, 2007; Zheng and Hintelmann, 2009). The observed substantial
positive A'’Hg! shift of the sampled lake surface waters relative to Hg" in precipitation can be interpreted as an effect of partial
photoreduction of Hg!". However, other sources, including MMHg photodegradation, have been suggested (Chen et al., 2016). As
discussed in Section 4.2, Hg” emissions from the ocean represent a primary source of Hg in the atmosphere. However, the isotopic

signatures of this emission source remain largely unknown. In the absence of in:situ sampling, photoexperiments with Hg" in the

presence of DOM extracted from marine phytoplankton produce (-)MgIE during reduction, in contrast to freshwater DOM (Kritee /
etal., 2018).

9. Future perspectives
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This examination of the advancements made in our comprehension of the mercury cycle in the troposphere and stratosphere reveals 'v,(tog bort: -
iterative interactions among three distinct branches of atmospheric chemistry (modeling, field neasurements, and laboratol gformaterade: Teckenférg: BI&
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measurements). Advances in computational chemistry, have made seminal contributions to our understanding of gas-phase Hg!

molecules in terms of their geometries, energies, UV VIS spectra, and reaction kinetics. The treatment of strong relativistic effects,

which largely determine the chemistry of Hg-containing species, is crucial for accurate results. Ab initio thermochemical calculations

for atmospheric Hg species are performed at a higher level of theory, which incorporates core_valence electron correlation and

coupled-cluster methods, This approach yields a significantly improved accuracy of < 4 kJ mol”, in accordance with high-quality

experimental data. However, significant uncertainties in the estimates of the binding strength and thermal and photolytic stability of
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‘Ho'l (Section 5.1.2) remain, limiting the ability, to assess the occurrence and significance of jodine-induced Hg® oxidation in the 3
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troposphere and lower stratosphere, as has been suggested from atmospheric observations (Murphy, et al., 2006; Lee et al., 2024).

Compared with ab initio thermodynamics, the calculation of ab initio kinetics is a much more challenging task, for which transition

p—l

state theory (TST) and RRKM theory are often used for barrier and non-barrier bimolecular reactions, respectively. More flexible

methods (e.g., variational TST) are now applied to optimize the position of the transition state (TS) by varying it along the reaction

coordinate to minimize the free activation energy, which more accurately estimates the rate than traditional TST, which assumes a

single, fixed TS that irreversibly leads to products. The calculation of TS energies is more challenging than the calculation of energies

of relative minima (metastable species) because of the involvement of extended bonds where the electronic wave function is less

dominated by a single electronic configuration. Obtaining a correct barrier energy is crucial for calculating reliable rate constants
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as a bias of ~4 kJ/mol in the barrier height can lead to an error of nearly an order of magnitude in the resulting rate constant (Ariya

and Peterson, 2005; Ariya et al., 2009).

For gas-phase reactions (Section 5), calculated rate constants have been presented and compared with those experimentally

determined in the laboratory. The level of agreement varies from relatively good (< 30% as Rxn G1 - G3) to inconsistent (Rxn

G20a,b & G22). Owing to the complex shape of their potential energy surfaces, the rates of assumed key reactions such as Rxn

(formaterade: Teckenfarg: BI&

i (formaterade: Teckenfarg: BI&
i (tog bort: transition states (TS) with high accuracy than t

(tog bort: energies
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G27, G45, and G63 are inherently difficult to constrain theoretically (Section 5.1.4) and thus require empirical verification

preferably using PLP-LIF or similar techniques. A direct reaction between water vapor and YHg"O" has recently been proposed for
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Y = OH (Rxn G60, Saiz-Lopez et al., 2022). If this reaction is realized with the given rate expression in models, it will result in the ] (tog bort: )
conversion of essentially all HOHg"O" to the completely stable Hg(OH): in the tropics. This type of reaction also requires empirical ii (formaterade ... [778]
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The absolute determination of rate constants experimentally with pulsed laser-assisted methods (reaction times typically < 0.1 ms), , (tog bort: the
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such as PLP-LIF, is more easily facilitated when secondary reactions are negligible and therefore does not contribute to the measured

Ctog bort:

values. In general, absolute determination is conducted by obtaining pseudo-first-order conditions, whereby the more stable reactant |
x ™ - (formaterade
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is present in a density more than tenfold that of the other reactant. However, for Hg, this method is viable only for studies that are (tog bort: exceeding

conducted at elevated temperatures, (typically > 100 °C), At atmospheric femperatures, the relatively low vapor pressure of Hg” (in \Cformaterade

... [783

comparison to, for instance, DMHg) precludes the possibility of such experiments. Despite the challenges for Hg’, a flow PLP-LIF (tog bort: .

system has many advantages, including the ability to measure the rate coefficient over a wide range of temperatures and pressures <t°9 bort: standard

and to test the effect of a change in the bath gas (third body). Nevertheless, to exploit these advantages, alternative methods have " (tog bort: conditions

. . N . . . . . . . " ( formaterade
been used in which the Hg species is not in excess, but jn which the excess is X = Cl and Br when the reaction Hg + X + M. is studied, ! (
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while jt is instead Y = O3, NO2, NO, and O2 when the interaction between :Hg'Br and Y_is studied. In the study of the former reaction
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e, X' is present, in excess, but its concentration decreases over time owing to the rapid three-body recombination of the species

intg X2 and M. This results in additional Hg’ exponential decay. To achieve a fit to the observed Hg" time profiles, rate coefficients

.. [787

must be obtained through numerical integration. This requires monitoring both the X’ and Hg’ time profiles using LIF, with the (tog bort: have been exploited by

absolute concentration of X atoms known with precision. The experimental measurements of the rate coefficients for the Hg + X + : (formaterade
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M reaction by Donohoue et al. (2005; 2006) are in accordance with the findings of theoretical computational studies,,
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The co 0b; Wu et al., 2020; Wu et al., 2022), addition | (tog bort: where

(oxidation assisted by M [Rxn G20a]; Wu et al., 2020), or abstraction (Rxn G22, Gémez Martin et al., 2022) is constrained by the (formaterade
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capacity to generate sufficiently high densities of Hg'Br through the gas-phase photolysis of HgBr2 in deep UV. Because the vapor (tog bort: in the study of

pressure of HgBr: is low (less than one-tenth that of Hg"), it is necessary to keep the HgBr2 source at least 30,°C and the flow tube

.. [791

reactor at least 10 °C higher to prevent vapor condensation. A higher temperature increases the thermal dissociation of *Hg'Br |

. [792

therefore, a large excess of Y is required for the :Hg'Br + Y reaction to dominate the conversion of Hg'Br. Jn the context of laboratory

experiments necessitating deep UV irradiation, it is essential to consider that oxygen atoms are formed through the partial photolysis |

... [793

of :Hg'Br with NO: and Os will inevitably result in the observation of a partially reversible oxidation process. This is due to the

- [794

occurrence of secondary chemistry, including yeactions G14, G23, G24, and G29, which fake place concurrently with the title

reactions G20 and G22 Furthermore, to elucidate the influence of secondary chemistry on the observed *Hg'Br disappearance, a |

comprehensive series of experiments must be conducted, with pressure, temperature, ['Hg'Br], [Y], and [O] as variables. This (tog bort: . Despitc being
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necessitates, numerical modeling fo isolate the individual rate constants. While the laboratory study of *Hg'Br + O3 gives an
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experimental rate constant for the reaction G22 that is in good agreement with computational predictions (Castro Pelaez et al., 2022),
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experimental kinetic data for ‘?{g[Br + NO;z (Rxn G20), which must be decoupled jnto, termolecular oxidation (Rxn G20a) and (tog bort: due

reduction (Rxn G20b) reactions, respectively, indicate that computational methods overestimate the rate constants for both channels

(formaterade
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(Wu et al., 2020). Later, experimental investigations revealed that Rxn G20 cannot fully account for observations but that significant (tog bort: to

losses of Hg'Br must occur via side reactions, probably involving Rxn G23, which was unexplored at the time. These intractable
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shortcomings present a challenge to validating a majority of the proposed reaction steps by computational quantum chemistry in the
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atmospheric Hg redox cycle, including YHg"O; chemis

through experimental means. As requested by theoretical chemists

Edirappulige et al., 2023) and modelers (Shah et al., 2021), better rate constants are needed for YHgO* + CH4 and YHgO* + CO

reactions, especially for Y = Br and OH, to better assess the atmospheric fate of YHgO", i.e., whether YHgO* will be mainly reduced

or form closed-shell Hg" compounds under different atmospheric conditions. As a workaround in the absence of experimentally

... [802

77

.. [803

... [804

... [805

... [806

... [807

... [808

formaterade

... [809

(tog bort: *

(formaterade

... [810

(tog bort: the

8Ll e L e) ) el ) ] ) el )l ) ) ]l e L



3620

J625

3630

3635

3640

J645

3650

655

3660

determined rate constants, Khiri et al. (2020) proposed efforts to perform molecular dynamics simulations via computationally more
sophisticated variational TST with multidimensional tunneling,

Many of the proposed key gas-phase Hg species lack experimental characterization (such as spectral proofs). The main method for .-

studying such gas-phase molecules has been spectroscopy after preparation by matrix isolation, which has thus far been used to study

the products of photochemical reactions of excited Hg atoms, e.g., Os (Butler et al., 1979), O2 (Andrews et al., 2023), H> (Wang and
Andrews, 2005b), H-O (Wang and Andrews, 2005a), F> (Wang et al., 2007), and OF> (Andrews et al., 2012), in a matrix host of solid
Ar and Ne at a cold (typically 4-7 K) surface. Section 5.1.4 has already described some of the isolated molecules of interest, namely,
Hg(OH), (Wang and Andrews, 2005a) and the fluorine analog of YHg"O" (Andrews et al., 2012). Other studies involve mercury
halide molecules (Loewenschuss et al., 1969) and their adducts (Tevault et al., 1977). The reaction mechanism for the formation of
Hg(OH), tentatively involves insertion as a first step: Hg(*P) + O» + Ha — (OHgO)* + H» — HOHgOH, where OHgO (3Zg')§

implicitly indicated as a reactive intermediate (c.f., Rxn G12, although, unlike the analogous complexes for the other Group 12

metals, OZnO and OCdO, it has yet to be identified by IR spectra, Chertihin and Andrews, 1997). Apart from MS experiments of

the laser desorption ionization and time-of-flight type with solid HgO as the source and detection of (HgO)x clusters in the gas phase
Jayasekharan and Sahoo, 2014), there is one early (Butler et al., 1979) and one recent (Andrews et al., 2023) matrix study of the

products of the Hg(*P) + O system, where both %0, and 'O, were used as reagents. The former experiments required co-deposition

of Hg with 0.5 to 5% Os_in excess of Ar under deep UV photolysis for oxidation to occur, while the latter experiments used laser-

ablated Hg atoms energetic enough to form oxygen atoms when deposited in a cryogenic matrix doped with 0.3% '°O2 or 'O, which

reacts upon annealing to form O; and a series of HgOx species (x = 1 to 3). The observed fundamental harmonic vibrational

frequencies in different cryogenic matrices for the simple oxide Hg-O are in the range of 500-600 ¢cm™', as predicted by high-level

calculations (Shepler and Peterson, 2003; Peterson et al., 2007), indicating the presence of a weakly ionic molecule. This is also true

for HgO» and HgOs, which have superoxide (Hg""O5 ") and ozonide (Hg"O3") characteristics, respectively (Andrews et al., 2023).

Notably, the study did not isolate linear mercury dioxide, OHgO, and evidence for this species remains weak. Nevertheless, this

species is included as a metastable adduct in the Rxn G12 scheme, the key reaction for Hg” turnover in the stratosphere, whose

complex potential energy surface forms the basis of ab initio kinetic calculations. In these calculations (Saiz-Lopez et al., 2022), the

energy of the Hg—O bond is assumed to be 27.3 kJ mol™!, which is significantly higher than the most recently published high-level

calculation values (Peterson et al., 2007; Cremer et al., 2008). Increased activity and innovation in advanced experimental studies

characterizing key species and reactions are needed to verify models of atmospheric Hg chemistry that currently appear overly reliant

on computational chemistry. The innovation could be, for example, finding a laboratory method to capture the temporal behavior of
HgO (perhaps generated by the spin-allowed Hg('S) + O('D) reaction or by reacting DMHg with O(P)) in the presence of gas-phase
coreactants (with reference to Rxn G73 & G74), performing a detailed study of Rxn G8 & 12, or finding a synthetic route to matrix-

isolate species such as BrHgO" from laser-ablated Hg atoms.

9.3 Laboratory measurement techniques & limitations

Current limitations and challenges in accurately measuring speciated atmospheric mercury (Gustin et al., 2024; Section 3.1) mean

that the basis for verifying models in detail is insufficient, despite reliable measurements of Hg’ in air and Hg" in wet deposition.
Nevertheless, some models have been developed by including KCI-denuder-based Hg" measurements in the reference material (Shah

etal., 2021; Fu et al., 2024), which are known to suffer from low bias, and others (Saiz-Lopez et al., 2020; Saiz-Lopez et al., 2025).

which seem to stick strictly to RM data for validation or include KCI-denuder-based Hg! measurements corrected according to

Marusczak et al. (2017); consequently, the evaluation is qualitative (Shah et al., 2021) and consistently fails to simulate the magnitude

of recurring episodes of highly oxidized mercury originating in the free troposphere (underestimation by up to several hundred

percent, Elgiar et al., 2025; Gustin et al., 2023). In Section 3.2, we highlighted the discrepancies that exist in terms of the atmospheric
budget and the fluxes into and out of it. Particularly, new model results concerning the importance of the stratosphere are inconsistent

with existing empirical data and require further elaboration, as does the stratospheric chemistry discussed above. Recent observations
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between YHg"O® and CO has been identified as crucial in assessing
the atmospheric burden of Hg'". However, the calculated rate constant
is subject to significant uncertainty, within a factor of 10 being a
reasonable estimate. A direct reaction between water vapor and
YHg"O* has recently been proposed for Y = OH (Saiz-Lopez et al.,
2022). If this reaction is realized with the given rate expression in
models, it will result in the conversion of essentially all HOHg"O® to
the completely stable Hg(OH): in the tropics. The question of
whether iodine-induced Hg” oxidation is a significant process in the
troposphere and lower stratosphere has been raised based on
atmospheric observations (Murphy et al.,
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have shown that there are abundant anthropogenic emissions of reactive halogens (e.g., Br» and BrCl) over continental, densely / ,Ctog bort: 2024) and the emerging role that Oj is thought
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(tog bort: ,

identifying the pool of reducible complexes have been described (Section 4.3). Additionally, the potential for simulating the gas- (formaterade

... [843
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Appendix

List of symbols and acronyms

Symbol Quantity Unit etc.
o Imass accommodation coefficient
o O/198 fractionation factor of the Hg isotope with mass number xxx (relative to 198)
OA-B E o5 isotope fractionation factor between any two parts (chemicals, phases etc.) of a system
g = g/ 198 . scaling factor for an isotope effect acting on the Hg isotope with mass number

XXX, dimensionless
Bnrs = QXF‘S/ 198 _scaling factor for NFS acting on the Hg isotope with mass number xxx.

— 198 - o - - y
Bemamr = By mpg=Scaling factor for equilibrium MDF acting on the Hg isotope with mass number

] IXXX.
BKiE-MDF E B ,1: r};w scaling factor for kinetic MDF acting on the Hg isotope with mass number xxx.
. . . 2yt -

Bar cumulative stability coefficient for a complex of the type {Hqu (OH)Y}( 0 miscellaneous

luptake coefficient (probabili
Y
Yﬂe‘ linitial net uptake coefficient (probabili dimensionless

o

Y|1C1
§OH 6-notation for the **Hg isotopic composition in a sample relative to that of the NIST3133
o _Hg standard.
5202H2 0-notation to describe total mass-dependent fractionation
Oa, OB 5-notation for an isotope in reservoir A and B, respectively
So F(8"" Hg). initial 3**Hg of a process

IA-notation. deviation fi dependence (5™2Hg) of the Hg isotope with b dimensionless
A™He -notation, deviation from mass dependence of the Hg isotope with mass number oo
a8 XXX (bo)
¢*Hg lenrichment factor for a Hg isotope with mass number xxx.

1g 18¢

e F €"*Hg, . enrichment factor for an isotope between two reservoirs A and B.
E**Hg lenrichment factor for a Hg isotope of mass number xxx for the mass-independent part of a process.
EX?E; EE™Hg " MIF enrichment factor for an isotope between two reservoirs A and B
r conductance (= 1/resistance) of diffusion of a gas to the surface in a resistance model of
=g

lgas-droplet interaction.

conductance (= 1/resistance) of reaction in the liquid phase in a resistance model of gas-
roplet interaction.

conductance (= 1/resistance) of solubility and diffusion in the liquid phase in a resistance
imodel of gas-droplet interaction.

dimensionless

=

wavelength of light

nm

(]

labsorption cross section

cm’molecule”!

I

latmospheric lifetime

Ttroposphere

loverall tropospheric lifetime

I

rXn

lifetime in the troposphere due to net oxidation

Tocean

lifetime in the troposphere due to oceanic net uptake

Tland

lifetime in the troposphere due to terrestrial net uptake

Twash

lifetime in the troposphere due to tropospheric wash-out

Tstratosphere

lifetime in the troposphere due to net transfer to the tropopause/stratosphere

year

mean thermal velocity of a gas X

ms’!

[photolysis quantum yield

dimensionless

[parameter for T dependence of Ky,

S BN

lparameter for T dependence of K,

dimensionless

s}

0 Hg . .
= clie ,cmacx, gas-phase mass concentration normalized to standard temperature (0 °C)

land pressure (101.325 kPa).

lgas-phase diffusion coefficient

liquid-phase diffusion coefficient

standard electrode potential

lelectrode potential

<

lactivation ener

Jmol!

N EEEEE

fraction (isotope mixin;

dimensionless
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fraction of reactant remaining

F Faraday constant 96485 C mol ™!

Fe form factor describing the transition region of a gas-phase reaction, typically ~0.7 dimensionless

F(, lphoton flux photons cm? 5!

AGr Gibbs free energy of reaction

AG’ standard Gibbs free energy

AHr lenthalpy of formation Jmol™!

AHr lenthalpy of reaction

AthS standard enthalpy of adsorption

Jx net flux of the gas X into the condensed phase mol m™

k. k(T) ate coefficient miscellaneous

ko Ek) low-pressure limit gas-phase rate coefficient cm® molecule s

koo E kI high-pressure limit gas-phase rate coefficient cm’ molecule

ke forward rate coefficient )

l_<; reverse rate coefficient miscellancous

I Henry’s law coefficient dimensionless

k;p Henry’s law coefficient mol L' atm!

Kads ladsorption rate coefficient

Kaes ldesorption rate coefficient miscellaneous

Khet eterogeneous rate coefficient

Kobs effective first-order rate constant s

Keas bimolecular rate coefficient of the gas phase part of a partially heterogeneous reaction cm’® molecule™!

Kourf surface bimolecular rate coefficient (normalized by reactor surface-volume ratio cm* molecule”’ 5!

Ka lacid constant (HA 2 H' + A) mol !

Kgp !coeﬂicient for absorptive partitioning of GOM onto existing aerosol m’ ug!

Kq stepwise stability coefficient for a HgL, 1 + L 2 HglL, type equilibrium Lmol!

m™M] ithird body concentration molecule cm3

m lempirically fitted exponent dimensionless

Myxx imass of the isotope **Hg amu

n lnumber of electrons transferred in a red-ox reaction mol

AN/Alogr  |particle number concentration in the size range Alogr (log-normal distributed polydisperse aerosol) m>

pK Lok dimensionless

pKa Flog(Ka)

PM particulate matter ugm>

r radius (droplet or tubular reactor) m

(rfxx) imean-square nuclear charge radius fim?

R lgas constant 8.314 Jmol' K!

RY¥¥V198 [E R™*, ratio of isotope xxx to isotope 198 dimensionless

Asgbs lenthropy of adsorption Jmol 'K

T labsolute temperature K

\Y% volume m

[Xlgo lbackground (bulk) gas-phase concentration of species X

[Xsurt [X] at the surface of a droplet B
mol m™~

[XIe lgas-phase concentration of species X T

X1y article-phase concentration of species X

Acronym Plain text

AAS latomic absorption spectroscopy

AMDE latmospheric mercury depletion event

AOM latmospheric organic matter

AQ lanthraquinone

CFPP coal-fired power plant

CI-MS chemical ionization mass spectrometry

CV-AFS cold vapor atomic fluorescence spectroscopy
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DFC

dynamic flux chamber

DMHg

dimethylmercury
DOM dissolved organic matter
EIE lequilibrium isotope effect
EIE-MDF  [equilibrium MDE
even-MIF  |mass-independent fractionation of even Hg isotope (**Hg,***Hg)
FEP polymeric fluorinated ethylene propylene
FF fast flow reactor, chemical reactor designed for rapid mixing and reaction of gases or liquids

E—ID-CI-MSfast flow ion-drift chemical ionization mass spectromet

FT-IR [Fourier Transform Infrared

GOM = Hg''(g), gaseous oxidized mercury

HMDE anging mercury drop electrode

HFC hyperfine coupling

KIE inetic isotope effect

KIE-MDF  [kinetic MDF

LIDAR light detection and ranging

LMCT ligand to metal charge transfer

LMWO low molecular weight organics

LOD limit of detection

MDF imass-dependent fractionation

MgIE Imagnetic isotope effect (acting on 'Hg, *'Hg)

MIF mass-independent fractionation

MMHg" Ispecies containing a methyl mercuric cation and an unspecified counteranion.
m/m Imass-to-mass ratio

M/M imol-to-mol (stoichiometric) ratio

MRB imetal-reducing bacteria

NES nuclear field shift, synonym for NVE

NVE uclear volume effect, synonym for NFS

odd-MIF mass-independent fractionation of odd Hg isotope ('’Hg. **'Hg)
PBM = Hg"'(p), particle-bound mercury

PLP-LIF pulsed laser photolysis-laser induced fluorescence

PM articulate matter, synonym for TSP

PM>s particulate matter <2.5 um

PMio particulate matter < 10 pm

POA [primary organic aerosol

PTR-MS roton transfer reaction mass spectrometry

RH relative humidity (% of absolute humidity)

RKKM Rice-Ramsperger-Kassel-Markus (theory

RM Ireactive mercury (GOM + PBM)

RR determination of rate constant by a relative rate method, opposite to an absolute determination
Rxn labbreviation for reaction, representing a chemical reaction
SOA secondary organic aerosols

STP standard temperature and pressure (one atmosphere, 101.325 kPa and 0 °C)
TAM ltotal atmospheric mercury (Hg” + GOM + PBM)

TGM ltotal gaseous mercury (Hg’ + GOM), in practice not quantitative for GOM
TSP total suspended particles, all particle sizes suspended in the air
TS ltransition state

TST transition state theory

UV-A ultraviolet A, 315 — 400 nm

UV-B iltraviolet B, 280 — 315 nm

uUVv-C ultraviolet C, 100 — 280 nm, also called deep UV

UV-VIS ultraviolet (A + B) + visible light (400 — 700 nm)
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