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Abstract. This study compares two large hydrometeorological datasets, the Model Parameter Estimation Experiment (MOPEX), 

and the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS), with the aim of quantifying differences that 

might impact their mergers. This comparison focusesing on 47 shared watersheds within the continental United States spanning . 

The evaluation spans daily, monthly, seasonal, and annual scales for the overlapping water years of 1981 to 2000. Spatial 

aggregations are conducted based on Köppen-Geiger climate regions along with annual Budyko evaporative and aridity indices. 10 

Results indicate significant differences between the datasets at daily timesteps, highlighting the challenge of high temporal 

resolution data reconciliation; however, compatibility markedly improves with temporal aggregation at monthly, seasonal, and 

annual scales. Systematic biases are evident, with MOPEX showing a warm bias for temperature and CAMELS displaying a wet 

bias for precipitation. For future studies analysing monthly or annual runoff trends, no corrections to the raw data are necessary, 

as the biases do not significantly affect large-scale temporal analyses. Studies focusing on fine-scale hydrological characteristics, 15 

such as daily precipitation events, the frequency of wet and dry days per month or single-basin dynamics, may require a statistical 

bias correction to ensure accuracy. Uncertainty is inherent in all climate datasets due to differences in data sources, interpolation 

methods, and spatial coverage. The transition from MOPEX to CAMELS does not notably introduce additional uncertainty beyond 

what is already present in the original datasets. The variability between the datasets is comparable to the inherent variability within 

each individual dataset and is neither a useful criterion for dataset selection nor a barrier to potential merger. As a result, the overall 20 

uncertainty in annual or decadal modeling outcomes remains essentially the same, regardless of which dataset is used. That said, 

model outputs should be calibrated against observational reference data to account for systematic errors. While MOPEX shows a 

warm bias for temperature and CAMELS shows a wet bias for precipitation, sStatistical analyses demonstrate that both datasets 

are representative of climatic conditions, trends, and extreme events. Our findings validate the results of previous research 

employing either dataset. Furthermore, this study serves as a foundation for the merging and extension of MOPEX and CAMELS 25 

datasets without any alterations, providing a comprehensive, long-term dataset suitable for hydrological modeling and climate 

analyses while maintaining comparability across basin and temporal scales.   

1 Introduction 

Comprehensive historical datasets are crucial for investigating and projecting surface water availability given the complex response 

of watersheds to natural and anthropogenic forcings. In particular, comparative and large sample hydrology (LSH) rely on large 30 

datasets comprised of numerous catchments to derive relationships, develop new models and uncertainty estimates, and classify 

locations that span different climatic and physiographic regions (Addor et al., 2020; Gupta et al., 2014), yet significant 

discrepancies make combining and comparing such datasets difficult. Indeed Addor et al. (2020) state the “lack of common 

standards impedes the comparison of basins from different datasets”.  
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This paper explores and attempts to resolve the principal issues confronting the merger of two of the most commonly used LSH 

datasets for the continental United States, (CONUS), the Model Parameter Estimation Experiment, MOPEX (Duan et al., 2006; 

Schaake et al., 2006), and the Catchments Attributes and Meteorology for Large-sample Studies, CAMELS (Addor et al., 2017; 

Newman et al., 2015). In general, there is an abundance of data available for climate variables, streamflow, and catchment 

characteristics, including ground and remote-sensed parameters; however, varying spatial and temporal resolutions among 40 

variables such as precipitation and temperature often hinder intercomparison and merging of datasets (Guo, 2017). A wide range 

of data sources with varying analysis and derivation methods can introduce uncertainty, especially when metadata (Kelleher and 

Braswell, 2021) or uncharacterized anthropogenic influences are excluded (Addor et al., 2020).  

 

MOPEX and CAMELS are two prominent datasets that encompass a combination of daily temperature, precipitation, potential 45 

evapotranspiration, and streamflow values for selected catchments. Additionally, these datasets provide essential catchment 

characteristics such as area, elevation, vegetation, and soil texture, employing the United States Geological Survey (USGS) 

hydrologic unit code (HUC) subbasin classification (Seaber et al., 1987). While the consolidation of attributes and hydroclimatic 

data simplifies the acquisition process, challenges arise due to differences in spatial coverage and data sources, which currently 

limit the opportunity to effectively utilize both the MOPEX and CAMELS datasets simultaneously or confirm findings and expand 50 

on studies employing either dataset. 

Researchers often face the necessity of choosing one data set over the other, leading to a situation where the unique strengths and 

limitations of each data set influence the selection process. Numerous studies have engaged in the generalization and 

categorization of watersheds within the CONUS using either the MOPEX or CAMELS dataset, which underscores the 

widespread impact and influence of these two large-sample datasets, making them arguably the most prolific resources within 55 

hydrological studies focused on the CONUS. Their prevalence in hydrologic studies is reflected in the citation counts data 

derived from Clarivate Web of Science (Clarivate, 2024); with MOPEX (Duan et al., 2006) currently cited in 489 scientific 

papers and CAMELS (Addor et al., 2017) cited in 352.  Here we undertake a unique comparative study between the MOPEX and 

CAMELS datasets, using exploratory data analysis to evaluate their comparability, accuracy, and implications for past, present, 

and future research. The results aim to bolster confidence in analytical and modeling outcomes derived from either dataset, 60 

thereby fostering robust hydrological research, and supporting effective water resource management in the CONUS.  

This study compares daily precipitation and temperature data derived from land surface stations across the country. MOPEX 

includes data for 431 watersheds from 1948 to 2003 and CAMELS covers 671 basins from 1980 to 2014. There are 52 

overlapping basins between the two datasets. Thise evaluation is conducted over water years common to both datasets (1981–

2000), emphasizing 47 common subbasins. Many previous dataset comparison studies have addressed global climate datasets 65 

(Essou et al., 2016; Newman et al., 2019), precipitation (Buban et al., 2020; Levy et al., 2017; Muche et al., 2020; Prat and 

Nelson, 2015; Sitterson et al., 2020; Sun et al., 2018), temperature (Oubeidillah et al., 2014), and evapotranspiration products 

(Carter et al., 2018; Chao et al., 2021; Han et al., 2015). These studies contribute to the ongoing efforts to advance the 

understanding of hydrological processes and improve the reliability of hydrologic models (Gupta et al., 2014); however, there 

has yet to be a study comparing these two large sample watershed-based datasets. Our findings show that while MOPEX and 70 

CAMELS exhibit systematic biases, they can still be merged or reliably compared without requiring corrections beyond smaller 

time scales (i.e. a single day, month, or season). Statistical adjustments to daily data depend on study objectives, as no single 

method fits all needs. Raw data or direct model outputs typically require bias correction, and we intend for our results to help 
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researchers determine necessary adjustments using appropriate methods, such as equidistant quantile matching (EDCDFm) for 

temperature and quantile delta mapping (QDM) or PresRATe for precipitation (Lehner et al., 2023; Pierce et al., 2015). To 75 

support long-term hydrological analyses, all basins will be extended to 2023 using Daymet, yielding a combined dataset of up to 

1,050 basins (in progress, Sink et al., 2025). When MOPEX is extended using Daymet, slight shifts in these biases are expected, 

but the dataset’s overall reliability remains intact.  The unique combination of MOPEX and CAMELS datasets could potentially 

encompass 1,050 watersheds within the CONUS, providing detailed attributes and daily values for the period 1948 to present (in 

progress, Sink, et al. 2025). This study focuses on 47 of the 52 watersheds shared by both datasets and demonstrates that both 80 

can be extended by leveraging external gridded datasets, while accounting for the associated margin of error and biases in the 

process. 

2 Hydrometeorological datasets  

2.1 MOPEX 

The MOPEX intercomparison project was conceived by several organizations including the World Meteorological Organization 85 

(WMO), the International Association of Hydrogeologists (IAH) Predictions in Ungauged Basins (PUB) initiative, and the Global 

Energy and Water Cycle Experiment (GEWEX) in 1996 (Duan et al., 2006). Its aim was to establish guidelines for parameter 

estimation techniques while simultaneously decreasing uncertainty (Schaake et al., 2006). MOPEX contains precipitation, 

minimum and maximum temperature, and streamflow data for 431 CONUS basins on a daily time step for 19489–2003. MOPEX 

variables are based on weather station observations from the National Climatic Data Center (NCDC) and Natural Resources 90 

Conservation Service (NRCS) SNOTEL network, which wereare then averaged by catchment area using an inverse distance 

weighting method. For more details regarding data selection and processing, refer to Duan et al. (2006) and Schaake et al. (2006).  

2.2 CAMELS 

CAMELS, sponsored by the US Bureau of Reclamation and the US Army Corps of Engineers, consists of is a dataset of three daily 

forcing data sets from Daymet Version 2 (Thornton et al., 2012), Maurer (Maurer et al., 2002), and North American Land Data 95 

Assimilation System (NLDAS), (Xia et al., 2012) along with benchmark model performance results using the coupled Snow-17 

snow model and the Sacramento Soil Moisture Accounting Model (SAC-SMA), using each of the three forcing datasets, for 671 

basins within the CONUS covering the years 1980–2014 (Newman et al., 2015). CAMELS contains precipitation, temperature, 

and streamflow data on daily time steps in addition to detailed soil characterizations and geology. The CAMELS Daymet Version 

2 forcing dataset is used in this study and interpolates observations to a 1 km x 1 km grid using a Gaussian weighting process 100 

(Thornton et al., 2021), which are simply averaged over the catchment area in CAMELS. For an in-depth discussion regarding 

data selection and processing for CAMELS, refer to Addor et al. (2017) and Newman et al. (2015).  

2.3 Dataset comparison 

Both datasets selected basins with apparently minimal anthropogenic impacts, highlight processing methods, and provide access 

to basin characteristics including boundary files, fractional spatial coverage of soil type, vegetation type, land cover, area, and 105 

elevation (Table 1). The documentation of catchment attributes, along with daily data for streamflow, temperature, precipitation, 

and potential evapotranspiration, significantly streamlines the initial phases of data investigation, consolidation, and processing, 

making the datasets exceptionally valuable for research and analysis.    
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Table 1. Comparisons between MOPEX and CAMELS. Acronyms are Hydro-Climatic Data Network (HCDN), National Climatic Data 110 
Center (NCDC), Cooperative Observer Program (COOP), Snow Telemetry Network (SNOTEL), Parameter-elevation Regressions on 

Independent Slopes Model (PRISM), North American Land Data Assimilation System (NLDAS), National Oceanic and Atmospheric 

Administration (NOAA), Sacramento Soil Moisture Accounting Model (SAC-SMA), State Soil Geographic (STATSGO) database, 

Global Lithological Map (GLiM), Global Hydrogeology Maps (GLHYMPS) of permeability and porosity, Moderate Resolution Imaging 

Spectroradiometer (MODIS), International Geosphere-Biosphere Programme (IGBP), University of Maryland (UMD), Normalized 115 
Difference Vegetation Index (NDVI).   

Characteristic MOPEX CAMELS 

Basins 431 671 

Temporal coverage 1948–2003 1980–20145 

Streamflow (daily) 
USGS HCDN 

(Slack and Landwehr, 1992) 

USGS HCDN-2009 

(Lins, 2012) 

Precipitation (daily) 

Temperature (daily) 

NCDC COOP, SNOTEL 

NCDC COOP, SNOTEL 

Daymet, Maurer, NLDAS 

Daymet, Maurer, NLDAS 

Potential Evapotranspiration NOAA (Farnsworth et al., 1982)  Priestly-Taylor 

Actual Evapotranspiration  SAC-SMA model 

Soil Properties STATSGO (Miller and White, 1998) STATSGO, Pelletier et al. (2016) 

Geology  GLiM, GLHYMPS 

Greenness Fraction (NDVI) NLDAS MODIS 

Vegetation Type IGBP, UMD MODIS 

 

For this study, temperature and precipitation values from the datasets were evaluated on daily, monthly, seasonal, and annual 

temporal scales between 1981 and 2000, based on water years spanning 1 October 1980 to 30 September 2000. The readily 

available CAMELS dataset is derived from Daymet (Thornton et al., 2012), but also provides Maurer (Maurer et al., 2002) and 120 

NLDAS (Xia et al., 2012) forcing values. Derived variables were omitted for most analyses in this study because 

evapotranspiration, when calculated using the water balance, will only differ based on the precipitation since both MOPEX and 

CAMELS obtain the other balance component, streamflow, from the USGS National Water Information System (NWIS). Potential 

evapotranspiration values are highly dependent on the estimation method used and require additional information such as wind 

speed, solar radiation, and temperature (Andréassian et al., 2004; Lemaitre-Basset et al., 2022; Pimentel et al., 2023). Potential 125 

evapotranspiration values can also be estimated during modeling.    

 

This study provides researchers with detailed analyses regarding the uncertainties within the datasets and between them for a 20-

year period through quantitative measurements of dispersion, distribution, central tendency, interval estimates, and statistical tests. 

To obtain a longer record, the datasets will can be extended to the present using Daymet (Thornton et al., 2021) and the results 130 

from this study can be applied to additional basins by climate region. The merged MOPEX and CAMELS datasets will incorporate 

up to 1,050 watersheds, temporally extended from 1948 to 2023. (in progress, Sink et al., 2025). 

2.4 Study Area 

MOPEX contains 431 catchments and CAMELS contains 671 (red and blue points, respectively, Fig. 1) within the CONUS. The 

spatial coverage differs between the two with CAMELS deliberately incorporating more basins within the Great Plains and 135 

southwestern US (Addor et al., 2017; Newman et al., 2015). Each catchment is identified based on the USGS NWIS stream gauge 

identification number (Table 2), representing its downstream outlet.   
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Figure 1.  Locations of 431 USGS NWIS stream gauges in MOPEX (red points), 671 gauges in CAMELS datasets (blue points), and 

common gauges (yellow points) within the CONUS that appear in both the MOPEX and CAMELS datasets. 140 

The datasets have 52 basins in common, 47 of which were used in this study (yellow points, Fig. 1). Five watersheds were omitted 

from this study because of incomplete streamflow records, or the gauge catchment was only a portion of the watershed. Catchment 

climate variables precipitation (PRCP) and temperature (TAIR) data were area weighted (average of observations values over the 

area of the basin) using the Hydro-Climatic Data Network (HCDN) basin delineations (Slack and Landwehr, 1994) 

 145 

Table 2. Common watersheds between MOPEX and CAMELS. Basins are described by GaugeID (NWIS identification) along with the 

station name, location (city, state), latitude (decimal degrees), longitude (decimal degrees), elevation (meters), area (square kilometers) 

and climate. Basins are grouped by climate type and then sorted by increasing gauge identification number.  

GaugeID Station Name Location Latitude Longitude Elevation (m) Area (km2) Climate 

06441500 Bad River Fort Pierre, SD 44.33 -100.38 683.42 8,152.55 Arid 

08171300 Blanco River Kyle, TX 29.98 -97.91 379.23 1,067.47 Arid 

08189500 Mission River Refugio, TX 28.29 -97.28 67.31 1,808.29 Arid 

09430500 Gila River Gila, NM 33.06 -108.54 2,227.36 4,804.93 Arid 

11224500 Los Gatos Creek Coalinga, CA 36.21 -120.47 658.03 247.44 Arid 

01664000 Rappahannock River Remington, VA 38.53 -77.81 216.10 1,605.10 Continental 

01667500 Rapidan River Culpepper, VA 38.35 -77.98 193.47 1,209.75 Continental 

02016000 Cowpasture River Clifton Forge, VA 37.79 -79.76 645.04 1,194.55 Continental 

02018000 Craig Creek Parr, VA 37.67 -79.91 648.68 852.34 Continental 

03173000 Walker Creek Bane, VA 37.27 -80.71 750.95 773.32 Continental 

03237500 Ohio Brush Creek West Union, OH 38.80 -83.42 272.36 1,003.21 Continental 

03238500 White Oak Creek Georgetown, OH 38.86 -83.93 285.37 568.50 Continental 

03346000 North Fork Embarras River Oblong, IL 39.01 -87.95 173.50 814.69 Continental 

04185000 Tiffin River Stryker, OH 41.50 -84.43 250.64 1,064.00 Continental 

05408000 Kickapoo River La Farge, WI 43.57 -90.64 348.35 689.33 Continental 

05412500 Turkey River Garber, IA 42.74 -91.26 327.65 3,858.21 Continental 

05514500 Cuivre River Troy, MO 39.01 -90.98 226.22 2,407.41 Continental 

05585000 La Moine River Ripley, IL 40.02 -90.63 197.96 3,354.61 Continental 
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GaugeID Station Name Location Latitude Longitude Elevation (m) Area (km2) Climate 

06191500 Yellowstone River Corwin Springs, MT 45.11 -110.79 2,547.95 6,783.59 Continental 

06885500 Black Vermillion River Frankfort, KS 39.68 -96.44 394.81 1,062.87 Continental 

06888500 Mill Creek Paxico, KS 39.06 -96.15 412.34 842.35 Continental 

06892000 Stranger Creek Tonganoxie, KS 39.12 -95.01 304.55 1,092.72 Continental 

07057500 North Fork River Tecumseh, MO 36.62 -92.25 324.68 1,456.44 Continental 

01423000 West Branch Delaware River Walton, NY 42.17 -75.14 593.67 859.68 Temperate 

01543500 Sinnemahoning Creek Sinnemahoning, PA 41.32 -78.10 547.44 1,778.26 Temperate 

01548500 Pine Creek Cedar Run, PA 41.52 -77.45 546.71 1,557.05 Temperate 

01606500 South Branch Potomac River Petersburg, WV 38.99 -79.18 836.38 1,684.55 Temperate 

02143000 Henry Fork Henry River, NC 35.68 -81.40 399.35 216.67 Temperate 

02143040 Jacob Fork Ramsey, NC 35.59 -81.57 411.33 66.48 Temperate 

02472000 Leaf River Collins, MS 31.71 -89.41 123.24 1,927.13 Temperate 

02479300 Red Creek Vestry, MS 30.74 -88.78 65.19 1,144.20 Temperate 

03069500 Cheat River Parsons, WV 39.12 -79.68 961.46 1,856.85 Temperate 

03164000 New River Galax, VA 36.65 -80.98 766.60 2,952.74 Temperate 

03182500 Greenbrier River Buckeye, WV 38.19 -80.13 934.51 1,364.97 Temperate 

03186500 Williams River Dyer, WV 38.38 -80.48 1,057.61 329.68 Temperate 

03281500 South Fork Kentucky River Booneville, KY 37.48 -83.68 376.49 1,838.22 Temperate 

03473000 South Fork Holston River Damascus, VA 36.65 -81.84 916.29 784.81 Temperate 

03504000 Nantahala River Rainbow Springs, NC 35.13 -83.62 1,039.71 134.52 Temperate 

03574500 Paint Rock River Woodville, AL 34.62 -86.31 337.61 813.80 Temperate 

04221000 Genesee River Wellsville, NY 42.12 -77.96 658.41 750.88 Temperate 

07056000 Buffalo River St. Joe, AR 35.98 -92.75 459.08 2,149.36 Temperate 

07068000 Current River Doniphan, MO 36.62 -90.85 293.50 5,318.59 Temperate 

07197000 Baron Fork Eldon, OK 35.92 -94.84 348.86 808.45 Temperate 

07261000 Cadron Creek Guy, AR 35.30 -92.40 197.55 445.81 Temperate 

12358500 Middle Fork Flathead River West Glacier, MT 48.50 -114.01 1,559.24 2,939.19 Temperate 

13337000 Lochsa River Lowell, ID 46.15 -115.59 1,548.18 3,053.42 Temperate 

13340600 North Fork Clearwater River Canyon Ranger Station, ID 46.84 -115.62 1,417.79 3,354.62 Temperate 

3 Methodology 

3.1 Climate characterization of the watersheds 150 

Understanding how catchments partition annual precipitation into runoff and evapotranspiration under varying climatic conditions 

is crucial for hydrological modeling and water resource management. The Budyko function describes the long-term water and 

energy balance using annual evaporative (evapotranspiration/precipitation) and aridity (potential evapotranspiration/precipitation) 

indices (Budyko, 1974). The annual indices were determined for both datasets and subsequently combined during KMeans 

clustering to obtain the overall climate representation for each basin. KMeans clustering, an unsupervised machine learning 155 

algorithm, that seeks to minimize the within cluster sum of squares (Hartigan and Wong, 1979), was utilized to divide the 47 

selected MOPEX-CAMELS shared basins into three climate groups based on their annual evaporative and aridity indices, with a 

classification accuracy of 84 %. The arid (aridity index > 1.5), continental (aridity index 1.5 to 0.82), and temperate (aridity index 

< 0.82) zones represent the three KMeans groups. For this study, the basin climate region classifications (arid, continental, 
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temperate) are based on the KMeans clustering results, which agree closely (but not perfectly) with the Köppen-Geiger (Beck et 160 

al., 2018)climate classification (Fig. 2).  

 

Figure 2. Regions of the CONUS divided into Köppen Geiger climate classification (arid, continental, temperate) are represented by 

vermillion, orange, and bluish green respectively. The blue colors in southern Florida represent regions within the tropical climate group, 

which is not represented in this study. The results of the KMeans clustering are based on the annual aridity and evaporative indices for 165 
MOPEX-CAMELS shared basins shown by point symbols (diamond, triangle, circle). Climate groupings for analyses are represented 

by the KMeans clusters which agree closely but imperfectly with the Köppen-Geiger classification.   

Terrestrial evapotranspiration is difficult to measure directly but can be evaluated using lysimeters or eddy covariance towers on 

small, local scales. ET can be estimated on a larger scale using satellite remote sensing or land surface models but carry with them 

inherent biases due to varying algorithms, spatial resolutions, calibration, and input data (Long et al., 2014). Many studies have 170 

shown that derived ET products fail to reconcile the terrestrial water budget on multiple temporal scales (Carter et al., 2018). A 

water balance approach is commonly used on a catchment scale, with observed streamflow obtained from a measured outlet (Han 

et al., 2015). A water balance sets ET (mm) equal to the precipitation (mm) minus basin runoff (mm), with water storage assumed 

to be zero on an annual scale.  

 175 

The MOPEX dataset does not contain daily ET. Studies that have made use of MOPEX data obtain ET via the water balance 

approach using the precipitation and observed runoff (Berghuijs et al., 2014; Coopersmith et al., 2012; Sawicz et al., 2014). As 

mentioned previously, CAMELS provides three different daily forcing datasets (Daymet, Maurer, NLDAS), which do not contain 

ET, in addition to three Sacramento Soil Moisture and Accounting Model (SAC-SMA) generated time series from each of the 

forcing datasets. Daily ET values from the model output time series using Daymet forcing variables (CAMELS SAC-SMA) were 180 

compared to the water balance derived ET using CAMELS catchment averaged Daymet precipitation and USGS runoff values 

(CAMELS WB) to evaluate any notable differences between methods and facilitate comparison of MOPEX and CAMELS. The 
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CAMELS SAC-SMA model derived ET values are typically greater than the values derived from the CAMELS WB, which will 

become more prominent at an annual scale, as plotted in Fig. 3.  

   185 

Figure 3. Total annual evapotranspiration for a) arid, b) continental, and c) temperate regions. The annual values are the overall mean 

of all basin totals in a region. The model output ET (CAMELS SAC-SMA), water balance derived MOPEX ET (MOPEX), and water 

balance derived CAMELS ET (CAMELS WB) are shown in each plot.  

 

When annual differences between CAMELS SAC-SMA model estimated ET and CAMELS WB estimated ET are averaged, SAC-190 

SMA model estimations are approximately 13 mm larger in arid regions (Fig. 3a), 36 mm larger in continental regions (Fig. 3b), 

and 50 mm larger in temperate regions (Fig. 3c). Higher ET values lead to reduced runoff. As shown in Fig. 4, estimated ET values 

from CAMELS SAC-SMA model were subtracted from the provided CAMELS (Daymet) precipitation data to calculate estimated 

runoff (SAC_RUN), which was then compared to observed runoff (OBS_RUN). Incorporating ET values from the model output 
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time series as an input variable to a hydrologic model may result in slightly lower discharge estimates, primarily reflecting the 195 

influence of ET values rather than actual runoff conditions.  

 

 

Figure 4. Total annual runoff for a) arid, b) continental, and c) temperate regions. The boxplots represent the annual totals for all basins 

in a region, with measured observed runoff (OBS_RUN) and water balance calculated runoff (PRCP minus ET) using CAMELS SAC-200 

SMA model output ET (SAC_RUN).   

 

A Budyko diagram, plotting evaporative versus aridity indices, clarifies the predominant hydrologic processes versus climate type 

(Fig. 53) for the common basins. The Unfortunately, CAMELS SAC-SMA evapotranspiration (solid symbols, Fig. 5) exhibits 

large discrepancies from  (ET, Newman et al., 2015) values are computed differently than MOPEX values (which uses catchment 205 

water balance, the difference between precipitation and streamflow, to estimate ET); a water balance-based estimate for CAMELS 

WB (open symbols, Fig. 5) and  basins (CAMELS-WB, open symbols, Fig. 3) was derived in this study to facilitate comparison 

of the two datasets.  ET provided in the CAMELS dataset is generated from SAC-SMA modeling results (CAMELS SAC-SMA, 

solid symbols, Fig. 3), and exhibits large discrepancies from CAMELS-WB and MOPEX ET values for most catchments (arrows, 

Fig. 53). Furthermore, several CAMELS SAC-SMA gauges plotted above the water limit (i.e. to extremeabsurd values in the 210 

Budyko context) and were 10 to 12 % larger than the water-balance-calculated evapotranspiration indices. The higher model-

derived ET for CAMELS could reflect additional non-precipitation sources of water to the catchment, but that was not evaluated 

in this study. The largest discrepancies between model-derived ET/P and water balance derived ET/P for CAMELS for each climate 

region are 46%, 12.25 %, and 6059.82 % for arid, continental, and temperate regions respectively. Average discrepancies for 

bothbetween CAMELS evapotranspiration values are largest in arid regions, 12.22 %, followed by average discrepancies of 11.34 215 

% in temperate regions, and 54.88 % in continental regions. Studies that have made use of MOPEX data obtain evapotranspiration 

via the water balance approach (Berghuijs et al., 2014; Coopersmith et al., 2012; P. F. Han et al., 2023; Sawicz et al., 2014) and 

further research conducted using the CAMELS dataset should also apply the water balance approach instead of the SAC-SMA 

derived evapotranspiration, to avoid  vertical displacement in Budyko space that is an artifact of model derived evapotranspiration 



10 

 

values. The water balance evapotranspiration values were calculated using precipitation that does not include snowmelt; however, 220 

most of the larger discrepancies are present in arid regions (vermillion, Fig. 3) where snowmelt is negligible.  

 

Differences between water-balance calculated ET for MOPEX versus CAMELS vary by climate type and may partly result from 

variations in sample distribution. Most of the shared watersheds fall into temperate and continental climates, but the western US 

is not as heavily represented based on the distribution of the catchments and the restriction to shared basins. Only eight shared 225 

catchments lie west of the hundredth meridian (Fig. 1). The arid region basins lie close to the water limit (ET/P = 1, Fig. 53), while 

the temperate region basins are close to the energy limit (PET/P = 1). The continental region catchments can be seen as a transitional 

climate which can be either energy or water limited.  Annual MOPEX and CAMELS evaporative and aridity indices are plotted 

separately to highlight the improvements when utilizing the water balance evapotranspiration values for CAMELS. The largest 

difference between MOPEX and CAMELS evaporative indices using evapotranspiration water balance values is 16.21 % in 230 

temperate regions with an overall average difference of 4.6 % for all 47 basins. The mean difference between MOPEX and 

CAMELS evaporative indices, with water balance calculated evapotranspiration, is 1.89 %, 2.53 %, and 7.14 % for arid, 

continental, and temperate regions respectively.   

 

Figure 53. Budyko diagram with the aridity and evaporative indices plotted for each of the 47 catchments (1981-2000). The overall aridity 235 
index and evaporative index is plotted for each catchment for the three ET values, resulting in 141 points. The three ET values include 

MOPEX (asterisk), CAMELS (solid triangle) with SAC-SMA derived ET, and CAMELS WB (open triangle) with water balance 

calculated evapotranspiration.  Evaporative index values > 1 are non-physical. 

Further research using the CAMELS dataset should apply the water balance approach instead of SAC-SMA derived ET to avoid 

decreased runoff and vertical displacement in Budyko space that are artifacts of model derived ET values. The water balance ET 240 

values were calculated using precipitation that does not include snowmelt; however, most of the larger discrepancies are present 

in arid regions (vermillion, Fig. 5) where snowmelt is negligible.  
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3.2 Exploratory data analysis 

All statistical analyses were conducted using R Statistical Software (v. 4.3.3; R Core Team, 2024). When basins are consolidated 

by climate region, the number of values used in calculations are dependent on the number of gauges unless otherwise specified 245 

(Table 3). Each gauge has 7,305 daily observations beginning on 1 October 1980 and ending on 30 September 2000. Monthly 

values are based on water years which begin in October of the previous calendar year and end in September of the current calendar 

year. Seasons are winter (December, January, February), spring (March, April, May), summer (June, July, August), and fall 

(September, October, November) and the months are grouped by water year, resulting in all four seasons within each water year.  

 250 

Table 3. Number of observations used for various statistical analyses on temporal scales per dataset. 

Time Range 
Per 

Gauge 

Arid 

(5 gauges) 

Continental 

(18 gauges) 

Temperate 

(24 gauges) 

Days 1 October 1980–30 September 2000 7,305 36,525 131,490 175,320 

Months October–September  240 1,200 4,320 5,760 

Seasons Fall 1981–Fall 2000 80 400 1,440 1,920 

Water Years 1981–2000 20 100 360 480 

 

3.2.1 Uncertainty and variability within datasets 

The central tendency (mean, median), variability (variance, standard deviation, coefficient of variation), and distribution 

(skewness) of precipitation and temperature were independently evaluated for MOPEX and CAMELS. Uncertainty for the mean 255 

value was determined using two-sided confidence intervals computed via the bootstrap method. Bootstrapping is a statistical 

technique that estimates the sampling distribution of a statistic by iteratively resampling, with replacement, from the observed data 

when the population or sample distribution is unknown (Helsel et al., 2020). This nonparametric method utilizes the observed data 

to derive the robust estimates and sampling distributions (Helsel et al., 2020). In this study, bootstrapping was implemented using 

the Hmisc R package (Harrell Jr, 2024) to calculate the mean value for daily, monthly, seasonal, and annual precipitation and 260 

temperature for MOPEX and CAMELS, separately. Analyses involved 10,000 resamples, and the two-sided 95-percent confidence 

intervals were determined by the 0.025 and 0.975 quantiles. This approach provides a robust method for estimating the uncertainty 

and variability associated with the mean values on different temporal scales.     

3.2.2 Uncertainty and variability between datasets 

Several hypothesis tests were conducted to compare observations between MOPEX and CAMELS. The nonparametric (binomial) 265 

sign test is used to compare two groups and assess whether one group is consistently higher than the other (Helsel et al., 2020). 

For a two-sided test, the null hypothesis posits that about half of the differences will be positive and half will be negative, resulting 

in a median difference of zero between paired observations. For context, paired observations compare the same date (day), month, 

season, or water year from each dataset. To conduct this test, MOPEX values were subtracted from CAMELS values, where a 

positive (negative) difference indicates that the CAMELS value is greater than (less than) the MOPEX value, with no consideration 270 

for the magnitude. The differences were computed for daily (7,305 pairs), monthly (240 pairs), seasonal (80 pairs), and annual (20 

pairs) precipitation and temperature values for each basin (“Per Gauge” column, Table 3). Given that temperature may include 

negative instances, strict inequalities were applied. Subsequently, the outcomes were assigned a positive (n+), negative (n-), or zero 

value, and the values were tallied. A binomial distribution was used to calculate the probability of observing a value of n, which is 

0.5. A 95 % confidence interval results in a significance level of p<0.05. Hypothesis testing and significance make use of the rstatix 275 

(Kassambara, 2023) and stats R packages. 
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Independent difference hypothesis tests included the Fligner-Killeen test (Fligner and Killeen, 1976) and the t-test. The non-

parametric Fligner-Killeen test was conducted to check whether MOPEX and CAMELS have equal variances, with the null 

hypothesis assuming variances are equal across all samples. It is less sensitive to departures from normality compared to the Bartlett 280 

and Levene tests (Helsel et al., 2020). The absolute value of the residuals (AVR) is calculated in Eq. 1 from each group median 

for j=1 to k groups and i=1 to nj observations where 

𝐴𝑉𝑅𝑖𝑗 =  |𝑥𝑖𝑗 −  𝑚𝑒𝑑𝑖𝑎𝑛𝑗|                         (1) 

The AVR is ranked and weighted, resulting in a set of scores. A linear-rank test is then computed on the set of scores (Helsel et 

al., 2020).  285 

Welch’s t-test (Welch, 1951) is a modification of the Student’s t-test that does not assume equal variance. The null hypothesis 

posits that the two group means are identical. The test statistic, t, is calculated as shown in Eq. 2  

𝑡 =
𝑚𝐴−𝑚𝐵

√
𝑆𝐴

2

𝑛𝐴
+

𝑆𝐵
2

𝑛𝐵

           (2) 

Where SA and SB are the standard deviation of the two groups A and B, along with the means mA and mB. And the degrees of 

freedom, df, is calculated as shown in Eq. 3 290 

𝑑𝑓 =
(

𝑆𝐴
2

𝑛𝐴
+ 

𝑆𝐵
2

𝑛𝐵
)

2

(
𝑆𝐴

4

𝑛𝐴 
2  (𝑛𝐴−1)

+ 
𝑆𝐵

4

𝑛𝐵
2 (𝑛𝐵−1)

)

          (3) 

Statistical significance for the Fligner-Killeen test and t-test are based on a p-value less than 0.05.  

Bias, the mean absolute error (MAE), and standard error (SE) were also used to assess the variability within each group. The 

standard error provides an estimate of the standard deviation of the sampling distribution of the difference between means. The 

margin of error (MOE) was also determined based on a 95-percent confidence interval with a critical value (α) of 1.96. The critical 295 

value is multiplied by the standard error of the difference of the means, which provides the confidence interval for the true 

difference between the means. The nonparametric Spearman rank correlation coefficient (ρ) was also employed to assess the 

strength of association between variables. This method is robust to the distribution of data and is less influenced by outliers.  

3.3 Validation  

Machine learning (ML) techniques, such as linear regression, random forest, gradient boosting, and support vector regression, offer 300 

a valuable alternative to physically based models by capturing relationships between input and output variables. While they do not 

rely on detailed hydrological processes, these models can still provide robust predictions and allow for comparative analysis of 

different datasets (Herrera et al., 2022). Using ML models as a proxy is increasingly common in hydrological research, as these 

models can efficiently handle high-dimensional data and learn intricate patterns without explicitly modeling physical processes 

(Kratzert et al., 2019). ML models have been shown to perform well in a range of hydrological applications, especially in data-305 

rich contexts. For this study, we employed ML models to evaluate the potential influences of MOPEX and CAMELS precipitation 

and temperature biases on predicted runoff.  

 

Hydrologic models rely on parameterization and assumptions about physical processes while ML models learn directly from data, 

reducing dependence on prior assumptions and allowing for a purely data-driven evaluation (Nearing et al., 2021). ML models can 310 

highlight inconsistencies or biases in input datasets by comparing their predictive performance across datasets. If one dataset 

consistently leads to better predictions, it may indicate better representativeness or higher quality. Traditional hydrologic models 
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typically require extensive calibration and long run times, especially for larger scale applications, but ML models, once trained, 

can make predictions rapidly and do not require manual calibration (Kratzert et al., 2019). ML models can also be trained separately 

on different temporal scales, allowing for direct comparisons without modifying model structures. By evaluating performance 315 

metrics across datasets, ML provides an objective assessment of whether precipitation and temperature inputs are sufficient to 

capture runoff variability (Yokoo et al., 2022).  

 

Four different ML models were implemented in R to estimate runoff from precipitation and mean air temperature using the e1071 

(Meyer et al., 2024), gbm (Ridgeway et al., 2024), randomForest (Breiman et al., 2024), and caret (Kuhn et al., 2024) packages. 320 

Linear regression models the relationship between a dependent variable and one or more independent variables by fitting a linear 

equation (Xu and Liang, 2021). Random forest is an ensemble learning method that constructs multiple decision trees and averages 

their predictions to improve accuracy and reduce overfitting (Breiman, 2001). Gradient boosting builds models sequentially, 

optimizing for errors in previous iterations by combining weak learners to create a stronger predictive model (Xu and Liang, 2021). 

Support vector regression (SVR) maps input data into a higher-dimensional space and finds the ideal hyperplane, separating the 325 

data points into different classes, and minimizes prediction error while maintaining generalization (Shmilovici, 2023). These 

models provide a diverse approach to estimating runoff, ranging from simple linear relationships to more complex, non-linear 

learning techniques.  

 

MOPEX and CAMELS precipitation and temperature values were used as input to predict runoff at daily, monthly, seasonal, and 330 

annual time scales. Precipitation and temperature data were transformed into common scales using min-max normalization. 

Datasets were then split into training and test sets, with 80 % of the data allotted to training and 20 % to testing. Rather than 

partitioning the data into multiple subsets, each ML model was run 10 times, resampling and randomly splitting into testing and 

training sets (Domingos, 2012). Predicted runoff values were then compared to actual observed runoff to assess model accuracy 

using root mean square error (RMSE), MAE, R2, and bias as performance metrics. Model results were then compared across 335 

MOPEX and CAMELS datasets to determine their consistency, assess whether they provide compatible inputs for runoff 

estimation, and the influence of potential systematic biases in the input data.       

 

A support vector machine (SVM) is a supervised machine learning algorithm used for linear or non-linear classification and 

regression. SVMs finds the ideal hyperplane, separating the data points in different classes (Shmilovici, 2023). This modeling is 340 

robust, efficient, and versatile. Predictive machine learning models can aid in accuracy assessments (Patton et al., 2022) and a 

linear kernel, C-classification SVMSVR was also ableused to compare MOPEX and CAMELS datasets as a simple binary 

classification problem using the e1071 (Meyer et al., 2023) R package. The two datasets were merged into a composite dataset for 

each climate region and temporal aggregation, and each was identified by either a zero (CAMELS) or one (MOPEX), representing 

the target variable. The composite dataset was then split into training and test sets, with 75 % of the data allotted to training and 345 

25 % to testing. Data were randomly selected to avoid any potential bias due to formatting, etc. SVR models were trained on the 

composite datasets to classify the binary label (MOPEX or CAMELS) using precipitation, temperature, and evapotranspiration 

values as predictor variables. Classification was performed separately for The classification was conducted on all three climate 

regions separately for dailyat daily, monthly, seasonal, and water year aggregations. If the datasets are similar, then the model 

should have difficulty differentiating between them, yielding a classification probability near 50 %, akin to a random 350 

guessPrecipitation, temperature, and evapotranspiration values were used as the predictor variables. A double mass curve was also 
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used to check the consistency of the data by plotting the cumulative annual precipitation of CAMELS versus MOPEX. If the data 

are proportional, then the points will plot as a straight line (Searcy et al., 1960).   

4 Results 

Evaluation and comparison of the internal uncertainty and variability of individual dataset parameters are key to understanding the 355 

consistency between the MOPEX and CAMELS datasets, and the potential for merging and extending these datasets.  For each 

dataset, climate parameter variability primarily depends on level of aggregation (daily, monthly, seasonal, annual) and secondarily 

on climate type. Between datasets, potentially important biases in climate variables are evident, varying by climate type and 

aggregation level. This paper presents a thorough exploratory data analysis and supports the main finding that the two datasets 

exhibit similar uncertainty and variability, both within and between them. By considering multiple statistics, we can evaluate the 360 

representativeness of each dataset and identify any systematic differences that may need further investigation. If both datasets 

exhibit similar means and variability within a climate region, it suggests that their distributions are comparable. Differences in 

variance and skewness, on the other hand, highlight potential biases between the datasets. Though there are consistent biases, they 

are minimal for aggregations beyond a daily time step, making them suitable for combined application in climate studies and 

hydrologic modeling at monthly, seasonal, or annual aggregations. Although efforts were made to distinguish results for internal 365 

analyses within datasets and intercomparisons between datasets, the results are often presented together to provide a clearer 

understanding of how each dataset behaves independently, while also enabling direct cross-dataset evaluation. Consequently, some 

overlap does occur.   

4.1 Uncertainty and variability within datasets 

The internal uncertainty and variability Analysis of internal variability of the MOPEX and CAMELS datasets were assessed using 370 

median, mean, variance, standard deviation, skewness, coefficient of variation, and confidence intervals for each climate region at 

daily, monthly, seasonal, and annual scales. Precipitation statistics shown in Table 4 were determined for each individual basin, 

indicates relatively similar characteristics. Statistics for precipitation included in the datasets are shown in Table 4 with minimum 

and maximum values representing all basins within each climate region (number of observations, Table 3). Due to the large 

differences between temporal precipitation totals, the ranges for each statistic were normalized by finding the difference between 375 

the maximum and minimum values and then dividing the difference by the mean of the maximum and minimum values. The 

normalized ranges (NR) were then used to assess the variability of each statistic within the dataset across the different temporal 

aggregations and are summarized in Table 4. When calculating the normalized range, a minimum value of zero or close to zero 

(i.e. median or skew) will conflate the range, making it appear larger than it truly is. For this reason, normalized daily median 

ranges and normalized skew values are ignored.   380 

 

 

 

 

 385 
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Table 4. Minimum (min), maximum (max), and normalized range of median, mean, variance, standard deviation, and skewness for 

MOPEX (M) and CAMELS (C) total daily, monthly, seasonal, and annual precipitation (PRCP) totals in mm. Values are based on all 390 

basins within a climate region. The normalized ranges (NR) are based on the maximum and minimum values (maximum – minimum / 

mean (maximum + minimum)).   

 PRCP Median Mean Variance Standard Deviation Skewness 

 mm Min Max NR Min Max NR Min Max NR Min Max NR Min Max 

ARID 

CAMELS 

Day 0.00 0.00 - 1.30 2.50 0.63 13.93 60.91 1.26 3.73 7.80 0.71 4.01 5.84 

Month 11.50 63.25 1.38 39.55 76.01 0.63 1421.16 4110.82 0.97 37.70 64.12 0.52 1.23 2.23 

Season 91.10 209.51 0.79 118.66 228.03 0.63 6608.73 16794.05 0.87 81.29 129.59 0.46 0.45 1.37 

Year 423.07 920.40 0.74 474.63 912.11 0.63 13628.52 64193.54 1.30 116.74 253.36 0.74 -0.46 0.87 

ARID 

MOPEX 

Day 0.00 0.15 - 1.27 2.31 0.58 13.36 54.01 1.21 3.66 7.35 0.67 5.40 7.81 

Month 9.13 55.67 1.44 38.55 70.33 0.58 1329.37 3569.40 0.91 36.46 59.74 0.48 1.00 2.34 

Season 69.89 202.28 0.97 115.65 211.00 0.58 6289.11 18484.56 0.98 79.30 135.96 0.53 0.37 1.64 

Year 381.36 878.77 0.79 462.60 844.02 0.58 11933.15 54745.76 1.28 109.24 233.98 0.73 -0.41 0.83 

CONT 

CAMELS 

Day 0.00 0.57 - 2.25 3.19 0.35 11.44 64.58 1.40 3.38 8.04 0.82 2.26 4.70 

Month 58.74 88.78 0.41 68.51 97.06 0.34 1529.66 4577.49 1.00 39.11 67.66 0.53 0.71 1.99 

Season 203.99 281.15 0.32 205.52 291.19 0.34 5124.76 20848.61 1.21 71.59 144.39 0.67 -0.01 0.95 

Year 796.50 1197.26 0.40 822.10 1164.76 0.34 11734.23 63049.45 1.37 108.32 251.10 0.79 -0.5 1.14 

CONT 
MOPEX 

Day 0.03 0.87 - 2.08 3.16 0.41 9.68 62.68 1.46 3.11 7.92 0.87 2.9 5.33 

Month 60.05 86.34 0.36 63.35 96.11 0.41 966.07 4001.93 1.22 31.08 63.26 0.68 0.83 1.62 

Season 209.10 277.72 0.28 190.04 288.34 0.41 3920.88 18210.45 1.29 62.62 134.95 0.73 0.03 1.00 

Year 765.73 1143.82 0.40 760.18 1153.35 0.41 11497.26 53327.77 1.29 107.23 230.92 0.73 -0.41 1.09 

TEMP 

CAMELS 

Day 0.00 0.70 - 2.90 5.71 0.65 26.61 135.48 1.34 5.16 11.64 0.77 2.09 4.80 

Month 79.12 165.40 0.71 88.14 173.68 0.65 1872.09 6241.27 1.08 43.27 79.00 0.58 0.39 1.24 

Season 251.52 508.24 0.68 264.42 521.04 0.65 6496.89 28687.61 1.26 80.60 169.37 0.71 0.18 1.12 

Year 1014.72 2181.86 0.73 1057.68 2084.18 0.65 23220.68 128322.97 1.39 152.38 358.22 0.81 -0.66 0.91 

TEMP 

MOPEX 

Day 0.04 1.09 - 2.59 5.28 0.68 27.73 144.50 1.36 5.27 12.02 0.78 2.88 5.34 

Month 71.48 151.99 0.72 78.98 160.71 0.68 1458.72 5823.13 1.20 38.19 76.31 0.67 0.48 1.29 

Season 224.14 445.36 0.66 236.93 482.12 0.68 4861.81 26089.63 1.37 69.73 161.52 0.79 0.05 1.12 

Year 923.61 2004.61 0.74 947.70 1928.48 0.68 18274.22 136058.9 1.53 135.18 368.86 0.93 -0.63 0.85 

 

The range in median values decreases in all regions when moving from a monthly aggregation to seasonal (CAMELS arid 1.38 to 

0.79, CAMELS continental 0.41 to 0.32, CAMELS temperate 0.71 to 0.68, MOPEX arid 1.44 to 0.97, MOPEX continental 0.36 395 

to 0.28, MOPEX temperate 0.72 to 0.66). Median ranges continue to contract in arid regions at an annual scale (CAMELS 0.74, 

MOPEX 0.79). Continental and temperate regions show a slight expansion in median ranges between seasonal and annual 

aggregations. The range in mean values is uniform in each region over all temporal scales (CAMELS arid 0.63, CAMELS 

temperate 0.65, MOPEX arid 0.58, MOPEX continental 0.41, MOPEX temperate 0.68), with a minor change of 0.35 to 0.34 in 

CAMELS continental daily to monthly. All basins within each region demonstrate minimal variability in the mean and proportional 400 

aggregation. The range in variance is slightly wider for daily and annual aggregations in all regions for both CAMELS and 

MOPEX. The range in annual variance increases when moving to an annual aggregation except for MOPEX continental, which 

remains at a normalized value of 1.29 between seasonal and annual. This suggests interannual variability may be more pronounced 

than intra-seasonal fluctuations, attributed to the accumulation of extreme precipitation events or shifting between wet and dry. 

The range of standard deviation values mimics the variability in variance values with the smallest ranges for monthly and seasonal 405 

aggregations and minor increases at daily and annual aggregations for all regions except MOPEX continental (seasonal and annual 

0.73). Differences in precipitation patterns can become more apparent over longer periods of time. Precipitation variability has 

been shown to increase over longer time scales under a warming climate (Pendergrass et al., 2017; Zhang et al., 2021), The 

distribution in all regions tends to become more Gaussian as the aggregation increases from daily to annual, which is to be expected.     

 410 

and were calculated over all shared basins within a climate region. The minimum and maximum median, mean, variance, standard 

deviation, and skewness values for mean temperature in degrees Celcius along with the range valuesTemperature statistics are 

shown in Table 5. Overall, temperature variability in each climate region decreases with temporal aggregation with daily values 

showing the highest variability and annual values the lowest for both CAMELS and MOPEX datasets. The mean values and 
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corresponding confidence intervals are based on the averages derived from bootstrapping results, shown in Figs. 4-6 for monthly, 415 

seasonal, and annual precipitation values and Figs. 8-10 for monthly, seasonal, and annual temperature values. The tables also 

highlight the commensurate central tendencies, variabilities, and dispersion values within the datasets and provide insight into the 

biases and comparisons between the datasets that will be discussed in Sect. 4.2. There is minimal variability in the central tendency 

in all climate regions, with a slightly narrower spread in the mean values compared to the median values. In continental regions, 

the minimum seasonal median value for all CAMELS basins is 0.81 ˚C and 0.96 ˚C for MOPEX basins, which is due to a few 420 

colder than average winters in a watershed located in Montana. Variance in mean temperature is smallest in annual aggregations 

for all regions because it is based on annual averages, which smooths the extreme values. In contrast, the variability in skewness 

is greatest at annual aggregations in both CAMELS and MOPEX. Aggregation at an annual scale reduces variance among mean 

temperature values but at the same time, fewer data points increase the sensitivity to extremes, which can shift the distribution.    

 425 

 

Table 4. Statistics for MOPEX (M) and CAMELS (C) precipitation totals by climate region. Bootstrapping mean values for each climate 

region and the lower and upper confidence limit are based on two-sided 95 % confidence interval and 10,000 replicates with replacement. 

Variance, standard deviation, and skew are based on the average of values calculated for each basin within a region.  

 430 

 
PRCP 

(mm) 

Median 

C 

Median 

M 

Mean ±CI 

C 

Mean ±CI 

M 

Variance 

C 

Variance 

M 

St Dev 

C 

St Dev 

M 

Skew  

C 

Skew  

M 

ARID 

Day 0.00 0.06 1.76 ±0.06 1.78 ±0.06 33.12 32.78 5.50 5.51 5.18 6.82 

Month 36.92 40.38 53.65 ±10.59 54.13 ±10.22 3088.97 2846.59 54.63 52.47 1.55 1.50 

Season 143.97 148.50 159.08 ±22.75 160.56 ±22.03 13249.96 12495.40 114.91 111.23 0.91 0.81 

Year 607.69 638.06 643.74 ±182.57 649.56 ±165.36 66151.24 55442.78 236.10 213.50 0.21 0.01 

CONT 

Day 0.03 0.18 2.85 ± 0.04 2.70 ±0.04 46.45 42.53 6.74 6.45 3.99 4.52 

Month 78.21 73.76 86.86 ±5.20 82.17 ±4.86 2645.29 2253.29 50.90 47.00 1.14 1.14 

Season 248.88 235.19 257.56 ±9.79 243.68 ±9.61 9504.04 8246.90 97.17 90.54 0.60 0.68 

Year 1040.57 982.88 1,042.31 ±79.39 986.09 ±76.57 35233.38 31811.23 178.89 170.55 0.01 0.04 

TEMP 

Day 0.10 0.39 3.73 ±0.04 3.50 ±0.04 61.98 60.14 7.69 7.55 3.56 4.20 

Month 103.36 95.94 116.09 ±6.03 111.42 ±6.46 3655.81 3278.64 60.25 57.04 1.00 1.12 

Season 325.39 300.32 344.33 ±12.30 330.48 ±14.36 14851.10 13598.74 121.20 115.60 0.92 0.96 

Year 1315.96 1243.95 1393.13 ±122.75 1337.09 ±158.06 75120.98 76096.40 267.91 271.02 1.12 0.89 
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Table 5. Minimum (min) and maximum (max) median, mean, variance, standard deviation, and skewness for MOPEX (M) and CAMELS 445 
(C) mean daily, monthly, seasonal, and mean temperature (TAIR) in degree Celsius. Values are based on all basins within a climate 

region. Range is maximum minus minimum. Statistics for MOPEX (M) and CAMELS (C) temperature means by climate region. 

Bootstrapping mean values for each climate region and the lower and upper confidence limit are based on two-sided 95 % confidence 

interval and 10,000 replicates with replacement. Variance, standard deviation, and skew are based on the average of values calculated 

for each basin within a region.  450 

 TAIR Median Mean Variance Standard Deviation Skewness 

 ˚C Min Max Range Min Max Range Min Max Range Min Max Range Min Max Range 

ARID 

CAMELS 

Day 8.91 22.77 13.86 8.70 21.54 12.84 48.08 139.15 91.07 6.93 11.8 4.87 -0.68 0.12 0.80 

Month 9.08 21.98 12.90 8.64 21.51 12.87 36.97 113.08 76.11 6.03 10.63 4.60 -0.22 0.14 0.36 

Season 8.91 21.97 13.06 8.63 21.5 12.87 30.14 92.47 62.33 5.49 9.62 4.13 -0.24 0.13 0.37 

Year 8.74 21.57 12.83 8.70 21.54 12.84 0.30 1.14 0.84 0.54 1.07 0.53 -0.30 0.51 0.81 

ARID 

MOPEX 

Day 9.08 22.81 13.73 9.08 21.57 12.49 43.84 123.74 79.90 6.62 11.12 4.50 -0.68 0.15 0.83 

Month 9.12 22.00 12.88 9.02 21.54 12.52 36.49 103.1 66.61 6.04 10.15 4.11 -0.23 0.19 0.42 

Season 9.00 21.90 12.90 9.02 21.54 12.52 29.49 84.07 54.58 5.43 9.17 3.74 -0.23 0.16 0.39 

Year 9.04 21.59 12.55 9.08 21.57 12.49 0.27 0.86 0.59 0.52 0.93 0.41 -0.33 0.45 0.78 

CONT 

CAMELS 

Day 1.26 14.38 13.12 0.38 13.48 13.10 75.41 141.07 65.66 8.68 11.88 3.20 -0.40 -0.19 0.21 

Month 1.04 13.92 12.88 0.33 13.43 13.10 59.41 119.00 59.59 7.71 10.91 3.20 -0.22 0.08 0.30 

Season 0.81 13.54 12.73 0.33 13.43 13.10 49.13 99.53 50.40 7.01 9.98 2.97 -0.23 0.10 0.33 

Year 1.47 13.38 11.91 0.38 13.48 13.10 0.32 0.96 0.64 0.57 0.98 0.41 -0.18 0.22 0.40 

CONT 

MOPEX 

Day 1.16 14.09 12.93 1.45 13.32 11.87 73.49 125.15 51.66 8.57 11.19 2.62 -0.33 -0.04 0.29 

Month 1.34 13.75 12.41 1.40 13.27 11.87 59.02 107.77 48.75 7.68 10.38 2.70 -0.14 0.12 0.26 

Season 0.96 13.29 12.33 1.40 13.27 11.87 48.77 89.26 40.49 6.98 9.45 2.47 -0.14 0.16 0.30 

Year 1.52 13.27 11.75 1.45 13.32 11.87 0.31 0.72 0.41 0.56 0.85 0.29 -0.19 0.34 0.53 

TEMP 

CAMELS 

Day 2.72 20.03 17.31 2.73 19.03 16.30 52.24 102.48 50.24 7.36 10.12 2.76 -0.53 -0.03 0.50 

Month 2.36 19.04 16.68 2.68 19.00 16.32 41.80 82.09 40.29 6.46 9.06 2.60 -0.14 0.11 0.25 

Season 2.57 19.23 16.66 2.69 18.99 16.30 34.08 67.80 33.72 5.84 8.23 2.39 -0.12 0.12 0.24 

Year 2.87 18.98 16.11 2.73 19.03 16.30 0.28 0.88 0.60 0.53 0.94 0.41 -0.28 0.50 0.78 

TEMP 
MOPEX 

Day 2.75 20.06 17.31 3.11 19.06 15.95 53.08 92.52 39.44 7.29 9.62 2.33 -0.51 0.04 0.55 

Month 2.54 19.16 16.62 3.07 19.03 15.96 41.59 77.30 35.71 6.45 8.79 2.34 -0.15 0.12 0.27 

Season 2.83 19.26 16.43 3.06 19.03 15.97 34.05 64.06 30.01 5.84 8.00 2.16 -0.13 0.15 0.28 

Year 3.23 19.06 15.83 3.11 19.06 15.95 0.25 0.59 0.34 0.50 0.77 0.27 -0.29 0.55 0.84 

 
TAIR 

(˚C) 

Median 

C 

Median 

M 

Mean ±CI 

C 

Mean ±CI 

M 

Variance 

C 

Variance 

M 

St Dev 

C 

St Dev 

M 

Skew  

C 

Skew  

M 

ARID 

Day 14.77 15.33 14.39 ±0.10 15.01 ±0.10 70.17 65.68 8.17 7.93 -0.32 -0.25 

Month 13.83 15.34 14.35 ±1.07 14.97 ±1.04 32.28 29.08 5.59 5.30 -0.06 -0.16 

Season 13.73 15.49 14.39 ±1.05 15.01 ±1.04 30.26 27.31 5.43 5.16 0.01 -0.12 

Year 13.47 15.35 14.39 ±4.44 15.01 ±4.29 33.28 30.27 5.76 5.49 0.18 0.01 

CONT 

Day 11.32 11.37 10.61 ± 0.06 10.77 ±0.06 103.63 98.58 10.13 9.89 -0.34 -0.26 

Month 11.25 11.29 10.57 ±0.37 10.72 ±0.34 13.34 11.09 3.63 3.32 -1.57 -1.42 

Season 11.30 11.32 10.60 ±0.36 10.75 ±0.32 10.93 8.99 3.30 3.00 -1.91 -1.81 

Year 11.54 11.66 10.62 ±1.33 10.77 ±1.19 9.35 7.64 3.05 2.76 -2.30 -2.33 

TEMP 

Day 11.14 11.35 10.57 ±0.05 10.92 ±0.04 80.52 76.14 8.94 8.70 -0.36 -0.28 

Month 10.07 10.63 10.47 ±0.40 10.89 ±0.38 21.71 19.96 4.64 4.45 -0.02 -0.05 

Season 9.96 10.64 10.49 ±0.38 10.92 ±0.36 19.63 18.15 4.42 4.26 0.05 -0.01 

Year 10.09 10.65 10.51 ±1.64 10.94 ±1.57 19.04 17.67 4.36 4.20 0.11 0.03 

 

The coefficient of variation (CV) was calculated for each catchment on all temporal scales for precipitation (Fig. 64). Analyses 

indicate that the largest dispersion is observed among daily values and decreases with greater temporal aggregation. Daily 

precipitation shows considerably high variation, with CAMELS mean CV values of 3.28, 2.39, and 2.12 and MOPEX mean CV 

values of 3.23, 2.42, and 2.22 in arid, continental, and temperate regions respectively (Fig. 64a). Considerably high variation is 455 

still observed on monthly scales (Fig. 64b) but decreases to moderate variability for seasonal temporal aggregations for all regions, 

and low variability, less than one, on an annual scale. The normalized ranges for precipitation variance in Table 4 indicate that 

annual totals are the most variable while the CV demonstrates decreasing variability from a daily to annual scale. While both are 

measures of variability, they differ in how they express dispersion and their sensitivity to scale. Variance is unit dependent and is 

sensitive to magnitude while the CV is normalized relative to the mean. This suggests that at short time scales, precipitation is 460 
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more event-driven whereas at longer scales, climate patterns dominate. Temperature demonstrates the same decrease ina consistent 

decrease in variability as precipitation from daily to annual temporal aggregation for all regions and is not shown. 

 

 

Figure 64. Coefficient of variation of precipitation for CAMELS (blue) and MOPEX (red) for each climate region, shown by temporal 465 
aggregation a) day, b) month, c) season, and d) water year. Each boxplot represents the value of all basins within the climate region 

based on total precipitation (mm).  Note progressively declining y-axis range from (a) to (d). 

 

Two-sided interval estimates were computed to determine the uncertainty within each dataset. The daily mean precipitation and 

temperature were calculated for each basin and the corresponding 95-percent confidence intervals were established by 470 

bootstrapping, using 10,000 samples with replacement. The results in Table 4 illustrate that overall daily precipitation means are 

larger for CAMELS than for MOPEX (except for arid regions); however, it is noteworthy that the confidence intervals, shown in 

Table 7, exhibit overlap for most regions, suggesting similar degrees of uncertainty. The most pronounced divergence in 

precipitation means, a difference of 7 percent, is observed in temperate catchments where the overall CAMELS daily mean is 3.73 

mm day-1 and MOPEX is 3.50 mm day-1.  475 

 

When examining total mean monthly precipitation, both datasets exhibit comparable monthly fluctuations (Fig. 75), but CAMELS 

exhibits a small positive bias in non-arid climate regions. Arid regions display the most variability, with the largest confidence 

intervals (± 13.74 mm month-1 for CAMELS and ± 12.93 mm month-1 for MOPEX) observed in June, and the smallest (± 7.00 mm 

month-1 for CAMELS and ± 7.73 mm month-1 for MOPEX) observed in November. Despite this variability, these regions show 480 

the greatest temporal consistency between MOPEX and CAMELS values, with total precipitation highest in May and June and 

lowest in April (Fig. 75a). Additionally, arid regions demonstrate the most notable overlap of the mean values and confidence 

intervals of the two datasets. Continental regions show an increase in total monthly precipitation in May, June, and July (Fig. 75b). 

There is the least amount of variation in February (± 4.12 mm month-1 for CAMELS and ± 3.79 mm month-1 for MOPEX), 

contrasting with the largest in July (± 6.31 mm month-1 for CAMELS and ± 6.08 mm month-1 for MOPEX). Temperate regions 485 

show decreased precipitation in August, September, and October with less overlap between dataset confidence intervals (Fig. 75c). 
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The smallest confidence intervals differ between datasets with April (± 4.92 mm month-1) for CAMELS and July (± 4.54 mm 

month-1) for MOPEX, but both share the largest amount of variability in December (± 8.19 mm month-1 for CAMELS and ± 10.21 

mm month-1 for MOPEX).  

 490 

 

Figure 75. Average total monthly precipitation for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate 

climate region. The mean value is determined using all basins within the climate region and each corresponding month for 1981-2000. 

Error bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 

Seasonal precipitation confidence intervals exhibit the most variability yet also the greatest consistency in arid regions (Fig. 86), 495 

which coincides with monthly precipitation analyses (Fig. 75). The range of potential values decreases in continental and temperate 

regions. MOPEX values are larger than CAMELS in arid regions in the summer and winter seasons (which corresponds to larger 

monthly values in December, January, June, July, and August). For arid regions (Fig. 86a), the greatest variance is in the winter 

season (± 25.24 mm season-1 for CAMELS and ± 25.37 mm season-1 for MOPEX). Continental regions (Fig. 86b) show the greatest 

uncertainty in summer for CAMELS (± 10.58 mm season-1) and fall for MOPEX (± 10.24 mm season-1). Temperate regions (Fig. 500 

86c) have the largest differences in variance between datasets with little to no overlap of confidence intervals, notably in the spring. 

Winter has the greatest confidence intervals for CAMELS (± 17.69 mm season-1) and MOPEX (± 22.89 mm season-1).    
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Figure 86. Average total seasonal precipitation for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate 505 
climate region. The mean value is determined using all basins within the climate region and each corresponding season for 1981-2000. 

Error bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 

For average total annual precipitation, arid regions exhibitcontinue to show the highestlargest variability within each individual  

dataset, however, their mean valuesbut remain similar between the most consistent between the two datasets (Fig. 97a); other 

climate regions exhibit a small positive precipitation bias for CAMELS. Arid region confidence intervals are greater for CAMELS 510 

(between ± 70.91 mm year-1 in 1996 and ± 326.94 mm year-1 in 1987) than MOPEX (between ± 33.96 mm year-1 in 1996 and ± 

298.17 mm year-1 in 1985). Annual means in continental (Fig. 97b) and temperate regions (Fig. 97c) are consistently higher in 

CAMELS but confidence intervals do overlap with MOPEX. The smallest uncertainty is in continental regions with intervals 

slightly larger for CAMELS (± 48.03 mm year-1 in 1986 to ± 136.19 mm year-1 in 1996) compared to MOPEX (± 43.57 mm year-

1 in 1992 to ± 126.91 mm year-1 in 1996). Temperate regions have greater uncertainty associated with MOPEX values (± 92.22 515 

mm year-1 in 1992 to ± 221.13 mm year-1 in 1982) rather than CAMELS (± 72.39 mm year-1 in 1981 to ± 152.43 mm year-1 in 

1995).   
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 520 

 

Figure 97. Average total annual precipitation for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate climate 

region. The mean value is determined using all basins within the climate region and each corresponding water year for 1981-2000. Error 

bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 

Evaluation of daily temperature indicates a consistent pattern discerned in Tables 5 and 8. The means for daily temperature are 525 

consistently larger for MOPEX with the largest differences (mean difference of 0.62 ˚C day-1) observed in arid regions. Monthly 

temperatures show consistent trends in both datasets, with higher temperatures in July and August and lower temperatures in 

January and December in all regions. MOPEX and CAMELS are quite similar in their mean values and monthly variability (Fig. 

108). Akin to precipitation, arid regions contain the most variability, followed by temperate regions. The largest uncertainty is in 

December for CAMELS (± 1.37 ˚C month-1) and MOPEX (± 1.32 ˚C month-1) in arid and continental regions (CAMELS ± 0.46 530 

˚C month-1, MOPEX ± 0.40 ˚C month-1) and in February for temperate regions (CAMELS ± 0.45 ˚C month-1, MOPEX ± 0.43 ˚C 

month-1).  The smallest uncertainty is in July (CAMELS ± 0.80 ˚C month-1, MOPEX ± 0.71 ˚C month-1) for arid regions, October 

(CAMELS ± 0.32 ˚C month-1, MOPEX ± 0.31 ˚C month-1) for continental regions, and August (CAMELS ± 0.36 ˚C month-1, 

MOPEX ± 0.33 ˚C month-1) for temperate regions.  

 535 
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Figure 108. Average monthly mean temperature for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate 

climate region. The mean value is determined using all basins within the climate region and each corresponding month for 1981-2000. 

Error bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 

Seasonal temperature is also the most variable in arid regions with confidence intervals ranging from ± 0.77 ˚C to ± 1.28˚C season-540 

1 compared to intervals ranging from ± 0.30 ˚C to ± 0.40 ˚C season-1 for continental and temperate regions (Fig. 119). Winter is 

consistently the most variable season among all regions, resulting in the largest confidence intervals.  

 

 

Figure 119. Average mean seasonal temperature for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate 545 
climate region. The mean value is determined using all basins within the climate region and each corresponding season for 1981-2000. 

Error bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 

Annually, for temperature, arid confidence intervals are more than double the range of those found in continental and temperate 

regions (Fig. 120), strongly influenced by the small number of arid sites (Table 3). MOPEX means are consistently larger than 
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CAMELS indicating a warm bias with the largest bias in arid regions (Fig. 120a). Continental regions have the most similarity 550 

between mean values and the smallest amount of uncertainty, with confidence intervals ranging from ± 1.24 ˚C year-1 to ± 1.47 ˚C 

year-1 for CAMELS and from ± 1.10 ˚C year-1 to ± 1.31 ˚C year-1 for MOPEX (Fig. 120b).  For temperate regions, MOPEX has a 

slightly smaller variance compared to CAMELS (Fig. 120c) with confidence intervals ranging from ± 1.44 ˚C year-1 to ± 1.73 ˚C 

year-1 (MOPEX) versus ± 1.47 ˚C year-1 to ± 1.82 ˚C year-1 (CAMELS).   

 555 

 

 

Figure 120. Average annual temperature for CAMELS (blue) and MOPEX (red) by a) arid, b) continental, and c) temperate climate 

region. The mean value is determined using all basins within the climate region and each corresponding water year for 1981-2000. Error 

bars represent two-sided 95 % confidence interval, derived from bootstrapping with replacement for 10,000 replicates. 560 

4.2 Uncertainty and variability between datasets 

Important differences between the datasets are detailed below, but in general in time-aggregated values MOPEX exhibits higher 

temperature, while CAMELS exhibits higher precipitation. Statistical and bootstrapping results from Sect. 4.1 supports these 

findings. The comparison of paired observations via binomial sign test, CAMELS values minus MOPEX, indicates that individual 

daily MOPEX values for precipitation and temperature are generally larger than CAMELS; in contrast, when CAMELS 565 

precipitation values are aggregated monthly, seasonally, or annually, they are typically larger than MOPEX in continental and 

temperate regions (Fig. 131). This analysis is based solely on the counts of negative (MOPEX > CAMELS), positive (CAMELS 

> MOPEX), and zero values (CAMELS = MOPEX). The magnitudes of the differences are not incorporated. Out of the 7,305 days 

recorded for each basin, precipitation values for MOPEX surpass CAMELS 48 % (62,638 days out of 131,490 total days) and 49 

% (86,496 days out of 175,320 total days) of the time in continental and temperate climates respectively, and 40 % of the time in 570 

arid regions (Fig. 131a). In arid climates, MOPEX and CAMELS precipitation values are equal 46 % of total days, while in 

continental and temperate climates, they are equal 28 % and 22 % of total days. The same binomial test was conducted to analyse 

total monthly precipitation for each catchment. Direct comparisons were made for each month across all water years (i.e. January 

1981, January 1982), tallying negative and positive differences, resulting in 240 months per catchment. When aggregated on a 

monthly scale, CAMELS typically exhibits greater total monthly precipitation, particularly in continental (66 %) and temperate 575 

(69 %) regions. Identical (“SAME”, Fig. 131b) total values are negligible. In contrast, arid regions indicate larger MOPEX values 
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in 55 % of all months and only 3.25 % of all months have the same total value (Fig. 131b). Seasonal comparisons, based on 80 

seasons per catchment, indicate the same pattern with total precipitation greater in MOPEX for 52 % of all seasons in arid regions, 

and CAMELS greater in continental and temperate regions for 76 % and 78 % of all seasons respectively (Fig. 131c). On an annual 

scale, 20 years per watershed, the comparison reveals that total precipitation for arid regions is evenly split, with CAMELS and 580 

MOPEX dominating 51 % and 49 % of all years respectively. In contrast, continental and temperate regions are largely dominated 

by CAMELS, constituting 88 % of all years (Fig. 131d). All comparisons, except for arid seasonal and annual, failed to reject the 

null hypothesis, which expects a median difference of zero between paired observations. 

 

 585 

Figure 131. Sign tally results from non-parametric binomial sign test for a) daily, b) monthly, c) seasonal, and d) annual precipitation 

values. Counts on the y-axis reflect the number of basins (gauges) within each climate region times the number of temporal periods. All 

results are based on CAMELS minus MOPEX values. Positive values (CAMELS) indicate that CAMELS > MOPEX (blue bars), negative 

(MOPEX) values indicate MOPEX > CAMELS (red bars), and zero (SAME) indicate that CAMELS = MOPEX (black bars).  

Regarding temperature, MOPEX exceeds CAMELS 72 % of total days in arid, 58 % in continental, and 65 % in temperate regions 590 

respectively (Fig. 142a). These regions all exhibit the same mean daily temperature values (CAMELS = MOPEX) only 0.03 % of 

total days. On a monthly scale, MOPEX mean temperature values are larger for all regions, with arid at 81 %, continental at 58 %, 

and temperate at 74 % of total months with no equal values (Fig. 142b). Seasonal temperature is greater for MOPEX values 85 %, 

58 %, and 77 % of all seasons for arid, continental, and temperate regions (Fig. 142c). As for annual mean temperatures, MOPEX 

values are greater for arid regions in 91 % of all years, while continental and temperate regions show MOPEX dominance in 65 % 595 

and 79 % of all years respectively (Fig. 142d). All temperature differences were statistically significant.   
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Figure 142. Sign tally results from non-parametric binomial sign for a) daily, b) monthly, c) seasonal, and d) annual temperature values. 

Counts on the y-axis reflect the number of basins (gauges) within each climate region times the number of temporal periods. All results 

are based on CAMELS minus MOPEX values. Positive values (CAMELS) indicate that CAMELS > MOPEX (blue bars), negative 600 
(MOPEX) values indicate MOPEX > CAMELS (red bars), and zero (SAME) indicate that CAMELS = MOPEX (black bars).  

The numerical differences between each pair of same day precipitation values, CAMELS minus MOPEX, reveal substantial 

differences for extreme events. Specifically, there are 20 instances of daily precipitation values differing by more than 100 mm in 

separate comparisons across all catchments. This indicates notable variations in daily precipitation values between the two datasets. 

Daily values do not consistently coincide, as exemplified by the comparison of the same maximum precipitation events for each 605 

climate region between 1981 and 2000 (Table 6). In the temperate region, for instance, CAMELS reports the maximum 

precipitation (181.04 mm day-1) occurring on 7 April 1983 for gauge 02479300 while MOPEX, for the same date, reports a 

precipitation total of 64.07 mm. MOPEX reports the maximum precipitation (183.25 mm day -1) as occurring on 20 January 1993 

at the same gauge (while CAMELS shows a precipitation value of 59.73 mm day-1). Consequently, this study does not recommend 

direct daily comparisons between MOPEX and CAMELS due to discrepancies in single precipitation events.  610 

 

Table 6. Largest precipitation event on record for each climate region. Max indicates the maximum daily measurement on record for 

that dataset between 1981–2000 along with the corresponding value in the other dataset on that date for comparison. 

Climate GaugeID Date CAMELS (max) MOPEX GaugeID Date MOPEX (max) CAMELS 

Arid 08171300 17 Oct 1998 152.12 mm  216.23 mm 08171300 17 Oct 1998 216.23 mm 152.12 mm 

Continental 02016000 5 Nov 1985 126.82 mm 11.46 mm 03237500 1 Mar 1997 140.08 mm 68.68 mm 

Temperate 02479300 7 Apr 1983 181.04 mm 64.07 mm 02479300 20 Jan 1993 183.25 mm 59.73 mm 

 

 615 

A positive precipitation bias for CAMELS is visible for all watersheds within a climate region for all temporal aggregations 

(positive values, Fig. 153). Monthly, precipitation biases for arid regions range from -52.57 mm month-1 to 99.28 mm month-1, 
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continental regions range from -57.60 mm month-1 to 103.22 mm month-1, and temperate regions are between -102.68 mm month-

1 to 117.29 mm month-1, comparing 240 months per catchments (Fig. 153a). Seasonal precipitation biases for arid, continental, and 

temperate regions are -92.21 mm season-1 to 94.65 mm season-1, -64.04 mm season-1 to 137.32 mm season-1, and -123.50 mm 620 

season-1 to 174.88 mm season-1 (Fig. 153b). Total annual precipitation bias ranges are -174.43 mm year-1 to 160.03 mm year-1, -

111.77 mm year-1 to 315.40 mm year-1, and -256.88 mm year-1 to 405.25 mm year-1 based on 20 years per catchments (Fig. 153c).   

 

Figure 153. Monthly (a), seasonal (b), and annual (c) precipitation biases. All basins are combined by climate region (arid, continental, 

and temperate) and box plots represent the number of observations indicated in Table 3. Precipitation biases are based on total values 625 
of CAMELS minus MOPEX. Positive values indicate CAMELS > MOPEX and negative values indicate MOPEX > CAMELS.   

A negative temperature bias for CAMELS vs MOPEXS is visible for all watersheds in a climate region for all temporal 

aggregations (negative values, Fig. 164). Daily temperature values differ between the datasets by as much as ± 28 ˚C day-1 with 

MOPEX demonstrating a greater positive bias (Fig. 142a). Monthly temperature biases for arid regions range from -5.29 ˚C to 2.00 

˚C month-1, continental regions range from -6.43 ˚C to 0.70 ˚C month-1, and temperate regions range from -5.51 ˚C to 2.26 ˚C 630 

month-1 (Fig. 164a).  Seasonal temperature biases range from -2.71 ˚C to 1.70 ˚C season-1, -4.24 ˚C  to 0.53 ˚C season-1, and -2.84 

˚C  to 0.85 ˚C season-1 (Fig. 164b) and mean annual temperature biases decrease to -2.17 ˚C to 0.09 ˚C year-1, -2.44 ˚C to 0.39 ˚C 

year-1, and -1.89 ˚C to 0.36 ˚C year-1 (Fig. 164c) for arid, continental, and temperate regions respectively.  
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 635 

Figure 164. Monthly (a), seasonal (b), and annual (c) temperature biases. All basins are combined by climate region (arid, continental, 

and temperate) and box plots represent the number of observations indicated in Table 3. Temperature biases are based on mean values 

of CAMELS minus MOPEX.  Positive values indicate CAMELS > MOPEX and negative values indicate MOPEX > CAMELS. 

While the ranges of biases for precipitation and temperature are shown in Fig. 153 and Fig. 164 respectively, the magnitude of 

differences between MOPEX and CAMELS precipitation and temperature values is clarified by averaging biases over all basins 640 

in a climate region for daily, monthly, seasonal, and annual time aggregations for 1981–2000 (Fig. 175). Given that the differences 

are either negative (MOPEX > CAMELS) or positive (CAMELS > MOPEX), the mean reflects the overall bias since equal 

differences will negate each other. In direct pairwise comparisons, MOPEX daily precipitation values tend to be larger than 

CAMELS, however, when CAMELS values exceed MOPEX, the numerical difference is greater. Daily averages (not shown) for 

precipitation bias are -0.02 mm day-1 (MOPEX > CAMELS) for arid regions, 0.15 mm day-1 (CAMELS > MOPEX) for continental, 645 

and 0.23 mm day-1 (CAMELS > MOPEX) for temperate regions, indicating a wet bias in arid regions for MOPEX and a wet bias 

for CAMELS in continental and temperate regions. When precipitation values are aggregated on a monthly scale (Fig. 175a), 

CAMELS values exceed MOPEX values by 2.94 mm month-1 (Feb) to 6.79 mm month-1 (May) in continental regions and by 4.41 

mm month-1 (Aug) to 9.31 mm month-1 (Mar) in temperate regions. In arid climates, CAMELS exceeds MOPEX by 0.18 mm 

month-1 (Feb), 5.07 mm month-1 (Mar), 1.11 mm month-1 (May), and 2.56 mm month-1 (Oct) while MOPEX exceeds CAMELS 650 

(negative values) by 2.58 mm month-1 (Jan), 0.84 mm month-1 (Apr), 0.14 mm month-1 (Jun), 4.38 mm month-1 (Jul), 3.16 mm 

month-1 (Aug), 0.42 mm month-1 (Sep), 0.36 mm month-1 (Nov), and 2.88 mm month-1 (Dec). Average seasonal precipitation 

differences are larger for CAMELS in continental regions (Fig. 175b), ranging between 12.13 mm season-1 (DJF) to 15.66 mm 

season-1 (MAM), and temperate regions, ranging between 16.78 mm season-1 (JJA) to 24.88 mm season-1 (MAM). Average arid 

precipitation differences are larger in JJA and DJF by 7.68 mm season-1 and 5.27 mm season-1 for MOPEX values and larger in 655 

SON and MAM by 1.79 mm season-1 and 5.34 mm season-1 for CAMELS. Mean annual differences mirror the biases observed in 

monthly aggregations (Fig. 175c). Annual CAMELS precipitation values are 1.62 mm year-1 to 12.05 mm year-1 larger (1981, 

1987, 1988, 1989, 1992, 1994, 1997, 1998, 1999) than MOPEX, while MOPEX values are 5.63 mm year -1 to 46.91 mm year-1 
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larger than CAMELS for annual totals (1982, 1983, 1984, 1985, 1986, 1990, 1991, 1993, 1995, 1996, 2000) in arid regions. 

CAMELS values in continental regions are 27.84 mm year-1 to 89.23 mm year-1 larger, and temperate regions are 51.46 mm year-660 

1 to 112.03 mm year-1 larger than MOPEX values. 

 

 

Figure 175. Magnitude of precipitation bias averaged over all watersheds in a climate region (arid, continental, and temperate) based on 

a) monthly, b) seasonal, and c) annual totals. All differences are CAMELS minus MOPEX values. Positive bias indicates CAMELS > 665 
MOPEX while negative bias indicates MOPEX > CAMELS.  

The average of daily temperature differences indicated MOPEX values were greater than CAMELS by 0.62 ̊ C day-1 for arid basins, 

0.15 ˚C day-1 for continental basins, and 0.35 ˚C day-1 for temperate basins, suggesting a warmer bias in all MOPEX values. For 

monthly aggregations, temperature exhibits larger values for MOPEX by 0.41 ˚C month-1 to 0.95 ˚C month-1, 0.01 ˚C month-1 to 

0.54 ˚C month-1, and 0.24 ˚C month-1 to 0.64 ˚C month-1 in arid, continental, and temperate regions respectively (Fig. 186a). 670 

Seasonally, temperature differences indicate a warm MOPEX bias with average differences of 0.51 ˚C season -1 to 0.85 ˚C season-

1 in arid, 0.03 ˚C season-1 to 0.41 ˚C season-1 in continental, and 0.25 ˚C season-1 to 0.52 ˚C season-1 in temperate regions (Fig. 

186b). Mean annual temperature differences indicate MOPEX is greater than CAMELS by 0.43 ˚C year -1 to 0.86 ˚C year-1, 0.07 

˚C year-1 to 0.29 ˚C year-1, and 0.23 ˚C year-1 to 0.47 ˚C year-1 for arid, continental, and temperate regions respectively (Fig. 186c).  
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 675 

Figure 186. Magnitude of temperature bias averaged over all watersheds in a climate region (arid, continental, and temperate) based on 

a) monthly, b) seasonal, and c) annual totals. All differences are CAMELS minus MOPEX values. Positive bias indicates CAMELS > 

MOPEX while negative bias indicates MOPEX > CAMELS.  

Spatial distribution of precipitation and temperature mean biases between the two datasets shows some geographic concentration, 

especially of positive (CAMELS) bias for precipitation in the Eastern U.S. (Fig. 197a). Arid regions show an overall wet bias for 680 

MOPEX (two watersheds have a slight wet bias for CAMELS) while continental and temperate regions have a wet bias for 

CAMELS for all temporal aggregations. Temperature biases in Fig. 197b show an overall warm bias for MOPEX for all regions 

with the exception of four continental watersheds and two temperate watersheds.  

 

 685 
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Figure 197. Overall bias for a) mean precipitation at each gauge location based on CAMELS minus MOPEX. Color bar represents bias 690 
in mm per day where negative values (red) indicate a MOPEX bias and positive values (blue) indicate a CAMELS wet bias. Overall bias 

for b) mean temperature at each gauge location based on CAMELS minus MOPEX. Color bar represents bias in degrees Celcius per 

day where negative values (red) indicate a MOPEX bias and positive values (blue) indicate a CAMELS warm bias.  

Overall statistics for precipitation are shown in Table 7 and were calculated over all shared basins within a climate region. 

Temperature statistics are shown in Table 8. The mean values and corresponding confidence intervals are based on the averages 695 

derived from bootstrapping results, shown in Figs. 7-9 for monthly, seasonal, and annual precipitation values and Figs. 10-12 for 

monthly, seasonal, and annual temperature values. The tables highlight the commensurate central tendencies, variabilities, and 

dispersion values within the datasets and provide insight into the comparisons between the datasets.  

Table 7. Overall statistics for MOPEX (M) and CAMELS (C) precipitation totals by climate region. Bootstrapping mean values for 

each climate region and the lower and upper confidence limits are based on two-sided 95 % confidence interval and 10,000 replicates 700 
with replacement. Median, variance, standard deviation, and skew are based on the average of all values for each basin within a 

region.  

 PRCP 

(mm) 

Median 

C 

Median 

M 

Mean ±CI 

C 

Mean ±CI 

M 

Variance 

C 

Variance 

M 

St Dev 

C 

St Dev 

M 

Skew 

C 

Skew 

M 

ARID 

Day 0.00 0.06 1.76 ±0.06 1.78 ±0.06 33.12 32.78 5.50 5.51 5.18 6.82 

Month 36.32 37.25 53.65 ±10.59 54.13 ±10.22 2912.56 2697.72 52.86 51.03 1.55 1.52 

Season 142.71 142.06 159.08 ±22.75 160.56 ±22.03 11287.61 10923.90 104.63 102.62 0.85 0.83 

Year 644.74 646.79 643.74 ±182.57 649.56 ±165.36 37205.76 24725.11 185.53 180.40 0.14 0.13 

CONT 

Day 0.03 0.18 2.85 ±0.04 2.70 ±0.04 46.45 42.53 6.74 6.45 3.99 4.51 

Month 76.40 73.17 86.86 ±5.20 82.17 ±4.86 2918.08 2502.34 53.38 49.32 1.13 1.12 

Season 248.45 235.51 257.56 ±9.79 243.68 ±9.61 11252.31 9913.34 103.43 96.78 0.49 0.53 

Year 1039.78 978.47 1042.31 ±79.39 986.09 ±76.57 33962.67 29675.00 180.26 167.92 0.34 0.33 

TEMP 

Day 0.10 0.39 3.73 ±0.04 3.50 ±0.04 61.98 60.14 7.69 7.55 3.56 4.20 

Month 105.73 98.73 113.44 ±6.03 111.42 ±6.46 3484.74 3051.77 57.99 54.04 0.84 0.90 

Season 330.78 309.13 344.33 ±12.30 330.48 ±14.36 12668.97 11042.11 109.89 101.87 0.54 0.55 

Year 1364.52 1279.35 1393.13 

±122.75 

1337.09 

±158.06 

48010.82 42250.29 213.19 197.93 0.18 0.18 

 

 

 705 
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Table 8. Overall statistics for MOPEX (M) and CAMELS (C) precipitation totals by climate region. Bootstrapping mean values for 

each climate region and the lower and upper confidence limits are based on two-sided 95 % confidence interval and 10,000 replicates 

with replacement. Median, variance, standard deviation, and skew are based on the average of all values for each basin within a 

region.  

 TAIR 

(˚C) 

Median 

C 

Median 

M 

Mean ±CI 

C 

Mean ±CI 

M 

Variance 

C 

Variance 

M 

St Dev 

C 

St Dev 

M 

Skew 

C 

Skew 

M 

ARID 

Day 14.77 15.33 14.39 ±0.10 15.01 ±0.10 70.17 65.68 8.17 7.93 -0.32 -0.25 

Month 14.57 15.08 14.35 ±1.07 14.97 ±1.04 56.51 53.95 7.33 7.18 -0.05 -0.02 

Season 14.49 14.98 14.39 ±1.05 15.01 ±1.04 46.06 43.94 6.61 6.48 -0.04 -0.01 

Year 14.36 14.99 14.39 ±4.44 15.01 ±4.29 0.59 0.45 0.74 0.65 0.22 0.12 

CONT 

Day 11.32 11.37 10.61 ±0.06 10.77 ±0.06 103.63 98.58 10.13 9.89 -0.34 -0.26 

Month 11.01 11.13 10.57 ±0.37 10.72 ±0.34 84.44 81.65 9.14 8.99 -0.12 -0.08 

Season 10.88 10.94 10.60 ±0.36 10.75 ±0.32 70.25 67.79 8.34 8.20 -0.10 -0.07 

Year 10.65 10.81 10.62 ±1.33 10.77 ±1.19 0.59 0.51 0.76 0.71 0.04 0.06 

TEMP 

Day 11.14 11.35 10.57 ±0.05 10.92 ±0.04 80.52 76.14 8.94 8.70 -0.36 -0.28 

Month 10.56 10.93 10.47 ±0.40 10.89 ±0.38 63.60 61.69 7.95 7.83 -0.08 -0.05 

Season 10.62 10.94 10.49 ±0.38 10.92 ±0.36 52.41 50.88 7.21 7.11 -0.05 -0.03 

Year 10.52 10.91 10.51 ±1.64 10.94 ±1.57 0.46 0.38 0.67 0.62 0.10 0.14 

 710 

To assess the magnitude of disparities between CAMELS and MOPEX, we also examined the mean absolute error (MAE), with 

temperate regions exhibiting greatest MAE in precipitation (Fig. 2018), and arid regions greatest in temperature (Fig. 2119). The 

overall error considers both positive and negative differences equally, with the magnitude escalating from 1.30 mm day -1 in arid 

regions to 2.70 mm day-1 in continental and 3.19 mm day-1 in temperate regions for daily precipitation. Monthly precipitation 

MAE ranges from 2.37 mm month-1 to 5.72 mm month-1 in arid regions, 3.74 mm month-1 to 6.80 mm month-1 for continental 715 

regions, and 5.48 mm month-1 to 9.62 mm month-1 in temperate regions (Fig. 2018a). Seasonal MAE ranges from 1.79 mm 

season-1 to 7.68 mm season-1, 12.13 mm season-1 to 15.66 mm season-1, and 16.78 mm season-1 to 24.88 mm season-1 for arid, 

continental, and temperate regions (Fig. 2018b).  Annual MAE ranges from 1.62 mm year-1 to 46.91 mm year-1, 27.84 mm year-1 

to 89.23 mm year-1, and 51.46 mm year-1 to 112.03 mm year-1 for arid, continental, and temperate regions (Fig. 2018c).  
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 720 

Figure 2018. Mean absolute error for a) monthly, b) seasonal, and c) annual precipitation. MAE is based on mean totals between all 

basins within a climate region (arid, continental, and temperate).  

Daily temperature MAE averages 1.01 ˚C day-1 in arid regions, 0.87 ˚C day-1 in continental, and 0.82 ˚C day-1 in temperate 

regions. Monthly temperature MAE ranges from 0.41 ˚C month-1 to 0.95 ˚C month-1, 0.04 ˚C month-1 to 0.54 ˚C month-1, and 

0.24 ˚C month-1 to 0.64 ˚C month-1 for arid, continental, and temperate regions respectively (Fig. 2119a). Seasonal MAE for 725 

temperature ranges from 0.51 ˚C season-1 to 0.85 ˚C season-1, 0.03 ˚C season-1 to 0.41 ˚C season-1, and 0.25 ˚C season-1 to 0.52 

˚C season-1 for arid, continental, and temperate regions (Fig. 2119b). Annual temperature MAE ranges from 0.43 ˚C year-1 to 

0.86 ˚C year-1, 0.07 ˚C year-1 to 0.29 ˚C year-1, and 0.23 ˚C year-1 to 0.47 ˚C year-1 for arid, continental, and temperate regions 

(Fig. 2119c).  
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 730 

Figure 2119. Mean absolute error for a) monthly, b) seasonal, and c) annual temperature. MAE is based on means between all basins 

within a climate region (arid, continental, and temperate).  

The statistical results for all regions are summarized in Table 97 and are calculated over all days, months, seasons, and water years 

(refer to Table 3). Overall statistics remove the observed fluctuations in monthly, seasonal, and annual data but provide a 

generalized value by climate region. The margin of error (MOE) was derived from the standard error (SE) of the difference of the 735 

means and coincides with the bootstrapping results. Arid regions have the largest MOE for precipitation and temperature. 

Table 97. Statistical results for comparisons between CAMELS and MOPEX values for all basins within a climate region. Analyses were 

conducted over the total number of values. Bias represents mean CAMELS minus mean MOPEX. Standard error (SE), margin of error 

(MOE), mean absolute error (MAE), and Spearman rank (R2) are also based on mean values.  

  Precipitation (mm) Temperature (˚C) 

   Bias SE MOE MAE R2 Bias SE MOE MAE R2 

ARID 

Day -0.02 0.04 ± 0.08 1.30 0.665 -0.62 0.07 ± 0.14 1.01 0.992 

Month -0.48 2.24 ± 4.38 3.99 0.975 -0.62 0.37 ± 0.72 0.62 0.996 

Season -1.45 8.02 ± 15.71 5.02 0.977 -0.62 0.59 ± 1.16 0.62 0.993 

Year -5.82 35.90 ± 70.37 12.09 0.964 -0.62 0.72 ± 1.41 0.62 0.986 

CONT 

Day 0.15 0.03 ± 0.05 2.70 0.571 -0.16 0.04 ± 0.08 0.87 0.994 

Month 4.69 1.13 ± 2.22 5.16 0.973 -0.15 0.20 ±0.40 0.16 0.999 

Season 13.88 3.92 ± 7.69 14.05 0.978 -0.15 0.33 ±0.64 0.15 0.998 

Year 56.21 14.95 ± 29.31 56.22 0.956 -0.15 0.22 ±0.42 0.15 0.989 

TEMP 

Day 0.23 0.03 ± 0.05 3.19 0.609 -0.35 0.03 ± 0.06 0.82 0.995 

Month 4.67 1.11 ± 2.18 7.52 0.962 -0.36 0.17 ± 0.33 0.35 0.999 

Season 13.85 3.88 ± 7.60 21.07 0.964 -0.35 0.27 ± 0.52 0.35 0.998 

Year 56.04 18.99 ± 37.22 84.28 0.949 -0.35 0.27 ± 0.53 0.35 0.996 
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 740 

Fligner-Killeen’s test for equality of variances indicated that arid regions are the most similar in precipitation variance for all 

temporal aggregations except daily (Table 108). Statistically significant differences between variances were found for continental 

regions (daily, monthly, seasonally) and temperate regions (daily and monthly) but not on an annual basis. Temperature values are 

more consistent with statistically significant differences between variances indicated for daily values only. These results are 

corroborated by observations previously presented and outlined in Sect. 4.1, as shown in Tables 4 and 5, and Figs. 74 through 120.  745 

 

Table 108. Fligner-Killeen’s test for homogeneity of variance results. Df1 is the number of groups minus 1, statistic is Chi-squared. P-

values are reported as * p < 0.05, ** p < 0.01, *** p < 0.001.    

  Precipitation Temperature 

   df1 Chi-squared p df1 Chi-squared p 

ARID 

Day 1 9661.2 <0.001*** 1 38.22 <0.001*** 

Month 1 0.15 0.70 1 1.16 0.28 

Season 1 0.10 0.75 1 1.00 0.32 

Year 1 0.09 0.76 1 1.35 0.25 

CONT 

Day 1 14432 <0.001*** 1 60.52 <0.001*** 

Month 1 23.24 <0.001*** 1 2.86 0.09 

Season 1 4.96 0.03* 1 1.98 0.16 

Year 1 0.69 0.41 1 2.62 0.11 

TEMP 

Day 1 11096 <0.001*** 1 89.83 <0.001*** 

Month 1 21.54 <0.001*** 1 3.32 0.07 

Season 1 2.68 0.10 1 1.86 0.17 

Year 1 0.67 0.41 1 2.69 0.10 

 

Differences in the mean values, evaluated by Welch’s t-test, indicated that there were no statistically significant differences in the 750 

mean for daily, monthly, seasonal, and annual arid precipitation (Table 119). Despite the largest variance, arid regions are the most 

similar with the smallest amount of bias between means. Differences in mean precipitation values in continental and temperate 

regions are statistically significant on all temporal scales, however, the largest difference between mean values is only 6.36 % 

(daily temperate). Temperature mean differences are only statistically significant at daily aggregations for all climate regions, with 

the exception of monthly temperature. 755 

 

 

 

 

 760 

 

 

 

 

 765 
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Table 119. Welch's t-test for comparison of means with unequal variance results. The n represents the number of values, df is calculated 

degrees of freedom, statistic is calculated t.  P-values are reported as * p < 0.05, ** p < 0.01, *** p < 0.001.    

  Precipitation Temperature 

   n df statistic p n df statistic p 

ARID 

Day 36525 73045.58 -0.37 0.71 36525 72950.21 -8.70 <0.001*** 

Month 1200 2393.65 -0.22 0.83 1200 2395.78 -1.70 0.09 

Season 400 797.34 -0.18 0.85 400 797.19 -1.05 0.29 

Year 100 197.15 -0.16 0.87 100 197.54 -0.86 0.39 

CONT 

Day 131490 262467.77 5.91 <0.001*** 131490 262734.92 -3.76 <0.001*** 

Month 4320 8589.14 4.14 <0.001*** 4320 8632.98 -0.75 0.45 

Season 1440 2867.28 3.58 <0.001*** 1440 2875.99 -0.47 0.64 

Year 360 715.67 3.76 <0.001*** 360 711.07 -0.71 0.48 

TEMP 

Day 175320 350554.08 8.72 <0.001*** 175320 350322.75 -10.64 <0.001*** 

Month 5760 11481.67 6.32 <0.001*** 5760 11513.38 -2.11 0.03* 

Season 1920 3829.89 5.43 <0.001*** 1920 3836.39 -1.32 0.19 

Year 480 957.97 4.44 <0.001*** 480 956.60 -1.29 0.20 

 

The non-parametric Wilcoxon signed-rank test (Helsel et al., 2020) was also conducted to evaluate the median differences and the 770 

results indicated statistically significant differences for daily precipitation in all regions, and for monthly, seasonal, and annual 

precipitation in continental and temperate regions. Temperature median differences were only statistically significant for daily 

values.  

 

As previously noted, there are no discrepancies in runoff between MOPEX and CAMELS datasets because both contain identical 775 

daily streamflow values sourced from the USGS. However, evapotranspiration estimates derived from the water balance approach 

will differ due to variations in precipitation, since runoff remains consistent across the datasets. Runoff and water balance derived 

evapotranspiration were included in correlation analyses to evaluate the relationships among all variables for both datasets and to 

determine consistency in the strength and direction of their associations.  

 780 

Daily precipitation Spearman Rank correlation values between CAMELS (_C) and MOPEX (_M) ranged from 0.58 to 0.74, 0.48 

to 0.86, and 0.46 to 0.88 for arid, continental, and temperate regions respectively (Fig. 220). The highest precipitation correlation 

values were observed for monthly and seasonal aggregations (red cells, Fig. 220), with annual values following closely. Monthly 

precipitation correlations are the lowest in July and August for all regions (0.84 to 0.91). Monthly and seasonal aggregations are 

the most consistent between MOPEX and CAMELS, followed by annual and then daily for precipitation and temperature. 785 

Temperature shows a high similarity between MOPEX and CAMELS for all temporal aggregations and regions, ranging from 0.99 

to 1.0. Correlations between runoff and precipitation are positive for all regions and temporal aggregations in both datasets with 

the largest difference of 0.08 in daily continental (0.14 for MOPEX, 0.22 for CAMELS).  Water balance evapotranspiration values 

show improved agreement, greater than 0.90, for monthly, seasonal, and annual aggregations. Daily evapotranspiration coefficients 

are between 0.59 to 0.64, indicating less consistency between MOPEX and CAMELS.  790 
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Figure 220. Spearman rank correlation values between CAMELS (_C) and MOPEX (_M) datasets for precipitation, temperature, and 

water balance calculated evapotranspiration. Runoff represents both datasets.  795 

Runoff efficiency is the amount of precipitation that becomes runoff and can be used to evaluate trends and climate impact. This 

coefficient provides an additional metric of dataset compatibility. The annual efficiency for each basin was determined for 

CAMELS and MOPEX using total precipitation and total runoff and then plotted, resulting in an R2 value of 0.988 for all climate 

regions combined (Fig. 231). This correlation was conducted to illustrate the annual compatibility of the datasets and the ability of 

both to convey consistent attributes among watersheds for derived parameters, such as runoff efficiency.   800 

 

Figure 231.  Annual runoff coefficient (runoff/precipitation) for each basin. Colored points represent climate region (arid, continental, 

and temperate). The blue line indicates the best linear fit.   
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4.3 Evaluation of precipitation and temperature extremes between datasets 

While data extremes were not the focus of this study, a few precipitation and temperature extreme indices were evaluated for 805 

CAMELS and MOPEX values. The number of heavy precipitation days, where daily precipitation is greater than or equal to 10 

mm, are more prolific in CAMELS, consistent with the wet bias (Fig. 242a). Despite the difference in the number of days, the 

two datasets show the same trends over time from 1981 to 2000. The number of dry days (precipitation < 1mm) per year are 

greater in CAMELS for all climate regions, with the largest discrepancies in arid regions (Fig. 242b). This study has shown that 

CAMELS has a wet bias for continental and temperate regions and MOPEX has a wet bias for arid regions (Fig. 175). The 810 

differences in the number of dry days show that CAMELS daily precipitation values are overall, larger than MOPEX values (Fig. 

242b).   

 

Figure 242. Precipitation indices which show the a) annual count of heavy precipitation days where precipitation is ≥ 10 mm and b) 

annual count of dry days where precipitation amount is < 1mm. Colors represent the climate region (arid, continental, and temperate), 815 
dashed lines represent MOPEX, and solid lines represent CAMELS.  

The extremely wet day rainfall, R99p, represents the annual total precipitation when daily rainfall is greater than the 99 th 

percentile and when plotted for both datasets by climate region, very similar trends are observed (Fig. 253). In a broad temporal 

context, analysis consistently shows that precipitation values tend to be larger in CAMELS, regardless of the temporal scale 

considered beyond paired daily values. This pattern is observed in monthly, seasonal, and annual aggregations as well as 820 

summarized daily mean for continental and temperate regions.  
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Figure 253. Annual total precipitation when daily precipitation amount on a wet day (≥ 1mm) is greater than the 99th percentile for a) 

arid, b) continental, and c) temperate regions. Colors (blue and red) represent the dataset.  

In contrast, temperature values exhibit a different trend, with MOPEX consistently showing larger values irrespective of the 825 

temporal aggregation or climate region (Fig. 186). The number of frost days (Fig. 264a) indicate the annual count per year where 

temperature falls below 0 ˚C. CAMELS has a greater number of cold days which corresponds to warmer MOPEX bias. The 

warm MOPEX bias is most prevalent in arid regions when evaluating the number of summer days per year, the annual count of 

days with temperatures above 25 ˚C (Fig. 264b).   
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830 

Figure 264. Temperature indices which show the a) annual count of frost days where temperature is < 0 ˚C and b) annual count of 

summer days where temperature is > 25 ˚C. Colors represent the climate region (arid, continental, and temperate), dashed lines 

represent MOPEX, and solid lines represent CAMELS. 

 

4.4 Validation 835 

Hydrologic models are used to simulate real world processes and range from simple conceptual models to complex physically 

based models. Choosing a suitable model is highly dependent on the purpose and scale. The input data required depends on the 

spatial and temporal distributions evaluated in a model, but precipitation and temperature are fundamental. Inherent biases in input 

data can skew modeling results. Machine learning (ML) was used instead of hydrologic models (i.e. SWAT, VIC, SAC-SMA) 

because ML models provide a data-driven, model-agnostic approach that focuses on the relationships between inputs and outputs 840 

without relying on predefined process-based assumptions (Herrera et al., 2022). Four machine learning models were used to predict 

runoff at daily, monthly, seasonal, and annual scales for MOPEX and CAMELS. The objective is not to determine model 

suitability, rather evaluate the performance of each dataset.  The RMSE, MAE, R2, and bias of predicted versus observed runoff 

serve as dataset comparisons. 

On a daily scale, CAMELS has a slightly lower RMSE and MAE than MOPEX for all regions and a better R2, although the values 845 

are quite low, less than 0.3, shown in Table 12. A good fit is not expected with daily data which will have multiple zero values for 

precipitation.  

 

 

 850 
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Table 12. Machine learning model metrics for predicted versus observed total daily runoff using total daily precipitation and mean daily 

temperature data as inputs for CAMELS (C) and MOPEX (M).  

Day ML Model RMSE C RMSE M MAE C MAE M R2 C R2 M Bias C Bias M 

 Linear Regression 0.73 0.82 0.21 0.21 0.15 0.08 -0.01 0.00 

ARID Random Forest 0.70 0.84 0.20 0.22 0.21 0.04 -0.01 0.01 

 Gradient Boosting 0.69 0.82 0.20 0.21 0.25 0.09 0.00 0.00 

 SVR 0.77 0.85 0.17 0.17 0.12 0.06 -0.06 -0.06 

 Linear Regression 1.99 2.09 0.89 0.93 0.21 0.06 0.00 -0.01 

CONT Random Forest 1.95 2.14 0.85 0.95 0.25 0.05 0.01 0.01 

 Gradient Boosting 1.89 2.06 0.83 0.90 0.29 0.09 -0.01 -0.01 

 SVR 1.99 2.15 0.73 0.77 0.29 0.08 -0.39 -0.46 

 Linear Regression 2.62 2.83 1.41 1.48 0.17 0.06 0.00 -0.01 

TEMP Random Forest 2.60 2.87 1.38 1.48 0.19 0.07 0.01 0.01 

 Gradient Boosting 2.51 2.77 1.34 1.41 0.24 0.10 -0.01 -0.01 
 

SVR 2.63 2.88 1.21 1.26 0.23 0.11 -0.60 -0.69 

 

At the monthly aggregation, Table 13, CAMELS narrowly outperforms MOPEX with lower RMSE and MAE values. The R2 

values are extremely similar between datasets in all regions, and both exhibit the same positive biases with all ML models except 855 

for SVR, which underpredicts runoff and results in negative biases for both datasets. The results indicate that the predictive 

performance of the models is very similar across both datasets, suggesting a high degree of consistency between them.    

 

Table 13. Machine learning model metrics for predicted versus observed total monthly runoff using total monthly precipitation and 

mean monthly temperature data as inputs for CAMELS (C) and MOPEX (M).  860 

Month ML Model RMSE C RMSE M MAE C MAE M R2 C R2 M Bias C Bias M 

 Linear Regression 7.73 10.64 5.12 5.94 0.37 0.37 0.62 0.64 

ARID Random Forest 8.08 10.82 3.82 5.32 0.31 0.37 0.12 0.30 

 Gradient Boosting 8.15 11.13 4.00 5.54 0.33 0.35 0.37 0.44 

 SVR 7.00 10.65 3.48 4.34 0.36 0.39 -0.91 -1.42 

 Linear Regression 23.42 23.45 17.16 16.95 0.40 0.41 0.42 0.31 

CONT Random Forest 22.61 22.81 16.05 16.03 0.45 0.44 0.48 0.29 

 Gradient Boosting 21.49 21.87 15.40 15.56 0.50 0.48 0.45 0.51 

 SVR 21.69 22.02 14.80 14.93 0.50 0.49 -2.74 -2.99 

 Linear Regression 41.55 42.09 28.96 29.27 0.32 0.31 0.74 0.78 

TEMP Random Forest 41.01 40.97 28.13 28.18 0.36 0.36 1.39 1.27 

 Gradient Boosting 38.73 38.91 26.52 26.84 0.41 0.41 1.21 0.75 
 

SVR 38.71 39.21 25.29 25.85 0.42 0.41 -5.00 -5.20 

 

Seasonally, Table 14, the main discrepancies between the datasets are in continental regions, where CAMELS runoff predictions 

are lower than those from MOPEX by approximately 4 to 5 mm. This difference, while evident, is relatively small and may not 

have significant implications for broader regional or long-term studies. For instance, seasonal runoff values in continental regions 

range from 0.3 mm in one basin (JJA 1988) to 423.88 mm (MAM 1996) in another basin. This effect of these biases would be 865 

more pronounced for basins with very little runoff in a specific season, but this issue is not unique to these datasets. Any dataset 

used on such a fine, basin-specific scale may exhibit similar biases.  
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Table 14. Machine learning model metrics for predicted versus observed total seasonal runoff using total seasonal precipitation and 

mean seasonal temperature data as inputs for CAMELS (C) and MOPEX (M).  870 

 

Season ML Model RMSE C RMSE M MAE C MAE M R2 C R2 M Bias C Bias M 

 Linear Regression 21.60 22.66 14.52 14.65 0.37 0.31 0.48 0.41 

ARID Random Forest 16.96 20.25 10.36 11.27 0.61 0.55 1.29 1.02 

 Gradient Boosting 18.25 21.17 11.26 12.15 0.59 0.54 2.27 1.32 

 SVR 18.63 21.33 9.27 9.49 0.53 0.39 -2.49 -4.35 

 Linear Regression 59.11 51.78 43.00 38.57 0.44 0.43 -4.41 -0.12 

CONT Random Forest 54.75 54.91 39.47 40.55 0.52 0.58 -4.45 -0.99 

 Gradient Boosting 53.19 50.00 39.01 36.76 0.55 0.47 -5.00 0.07 

 SVR 53.93 50.94 37.02 35.79 0.55 0.47 -9.69 -4.22 

 Linear Regression 97.33 96.28 70.64 70.71 0.31 0.33 0.66 0.46 

TEMP Random Forest 92.10 92.02 67.26 65.56 0.40 0.40 2.23 2.28 

 Gradient Boosting 87.83 88.08 66.09 63.93 0.44 0.44 2.54 1.92 

 
SVR 91.48 91.78 64.44 64.54 0.41 0.41 -7.17 -9.29 

 

The differences in precipitation and temperature between MOPEX and CAMELS become more relevant depending on the scale 

and objective of the study. For daily or single-month analyses, as well as for very specific seasons, the datasets may not be directly 

comparable. However, as with any modeling approach, results come with inherent uncertainty, which should be acknowledged 875 

when presenting findings. Model results should be accompanied by an uncertainty estimate, reflecting potential biases or 

discrepancies. Bias correction is an essential part of any modeling process, typically done during the calibration phase (Lehner et 

al., 2023). In this context, the warm bias in MOPEX and the wet bias in CAMELS are important only when focusing on very fine, 

basin-specific scales. On larger temporal or spatial scales, these biases are less likely to significantly affect the conclusions, making 

these two datasets comparable for general hydrological or climate studies. At an annual scale, Table 15, MOPEX and CAMELS 880 

have improved R2 and the same predicted runoff biases despite the overall warm MOPEX temperature biases and wet CAMELS 

precipitation biases present in the data. The similarity in predicted runoff demonstrates the compatibility between the two datasets 

and that no corrections to the raw data are required at an annual scale.    

 

Table 15. Machine learning model metrics for predicted versus observed total annual runoff using total annual precipitation and mean 885 

annual temperature data as inputs for CAMELS (C) and MOPEX (M).  

Year ML Model RMSE C RMSE M MAE C MAE M R2 C R2 M Bias C Bias M 

 Linear Regression 33.57 32.52 28.63 26.97 0.79 0.78 17.72 19.03 

ARID Random Forest 31.82 34.20 23.87 25.44 0.58 0.60 10.86 13.29 

 Gradient Boosting 35.33 30.54 26.30 22.16 0.68 0.83 17.85 21.22 

 SVR 20.18 21.24 15.95 16.53 0.81 0.81 4.27 8.06 

 Linear Regression 85.78 91.05 77.12 77.10 0.69 0.67 -6.11 -9.69 

CONT Random Forest 91.53 94.40 82.25 77.77 0.64 0.65 -10.76 -10.76 

 Gradient Boosting 89.53 95.91 83.76 80.24 0.64 0.64 -15.48 -15.15 

 SVR 80.13 85.16 74.19 70.84 0.73 0.73 -11.10 -15.48 

 Linear Regression 106.89 113.85 82.26 91.08 0.88 0.87 -19.61 -19.52 

TEMP Random Forest 121.34 126.85 92.93 103.58 0.85 0.83 -17.52 -23.33 

 Gradient Boosting 109.74 121.89 85.29 95.15 0.87 0.84 -20.21 -28.71 

 
SVR 101.84 118.68 79.35 94.11 0.89 0.86 -19.59 -33.60 
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Total annual observed runoff is plotted against the predicted runoff for all four ML models in Fig. 27 with a 1:1 reference line. In 

all regions, MOPEX and CAMELS exhibit similar visual patterns and alignment of the points. In arid regions (Fig. 27a, b), both 

datasets show distinct clusters of low and high runoff values, reflecting greater variability and defined wet and dry periods. In 890 

contrast, continental (Fig. 27c, d) and temperate regions (Fig. 27e, f) display a more even distribution of runoff throughout the 

year, with both datasets capturing this behavior.   

 

 

 895 

Figure 27. Observed versus predicted total annual runoff (mm) for each ML model and each climate region. The dashed red line 

represents the 1:1 reference line.  

 

In addition to predicting runoff, machine learning was used to differentiate between MOPEX and CAMELSMachine learning has 

been used to successfully validate data and models (Patton et al., 2022). For this study, dData were separated by climate region 900 

and then daily, monthly, seasonal, and annual precipitation, temperature, and water balance derived evapotranspiration were used 

for daily, monthly, seasonal, and annual classifications. The support vector machine performed binary classification, assigning the  

on standardized values to either MOPEX or CAMELS. The classification accuracy values shown in Table 160 represent the 

model’s ability to identify which dataset the values belong to. If both datasets are considered equal, then the probability of choosing 
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the correct dataset based on a selection of precipitation, temperature, and evapotranspiration values would be 0.5. Accuracy ranges 905 

from 49 to 53 % with most classifications close to 50 %. The model’s difficulty to successfully classify the data demonstrates the 

relative similarity of MOPEX and CAMELS for all climate regions and temporal aggregations.  

 

Table 160. Classification accuracy results for support vector models.  

 Day Month Season Year 

Arid 0.517 0.490 0.495 0.480 

Continental 0.505 0.521 0.529 0.523 

Temperate 0.508 0.524 0.530 0.510 

 910 

Annual precipitation similarity was evaluated using the double mass curve (Searcy et al., 1960), a comparative analysis that can 

identify changes in values over time, examine data consistency, and provide validation (Gao et al., 2017). Cumulative values of 

two variables plotted against each other should display a linear relationship if the ratio between them is constant. Breaks in the 

slope can indicate changes in the data and the time it occurred. When cumulative precipitation values are plotted for CAMELS and 

MOPEX, the slopes are 0.99, 1.06, and 1.07 for arid (Fig. 285a), continental (Fig. 285b), and temperate regions (Fig. 285c) 915 

respectively. There are apparent trends in the residuals for continental (Fig. 285e) and temperate (Fig. 285f) regions which could 

be due to bias, however, the residuals are small, within ± 60 mm.  

 

Figure 285. Cumulative annual precipitation of CAMELS versus MOPEX for each climate region a) arid, b) continental, c) temperate 

for all water years 1981 – 2000. Residuals of regression are shown for each double mass curve d) arid, e) continental, f) temperate.  920 

5 Discussion  

The comprehensive results above indicate important biases between the CAMELS and MOPEX datasets which vary in potential 

importance by climate region, geographic location and degree of temporal aggregation. The findings underscore the need for 

careful consideration of dataset disparities, acknowledging the impact of temporal scale and methodology. As one would expect, 

comparability between CAMELS and MOPEX increases with greater temporal aggregation. The uncertainty and variability 925 
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within each dataset were evaluated independently by calculating variance, standard deviation, and mean confidence intervals 

with bootstrapping (Tables 4-5, 7-8). The uncertainty and variability between the datasets were evaluated by paired tests, bias, 

MAE, MOE, R2, and hypothesis tests. By these measures monthly, seasonal, and annual precipitation and temperature values are 

comparable for MOPEX and CAMELS (Table 97). “Magnitudes of difference or trends within data products may be comparable 

to the magnitude of difference between data products (Levy et al., 2017).” Essentially, the datasets share similar uncertainties 930 

and variances.  

Statistically significant differences between variance and mean were more prevalent for precipitation than temperature, however, 

bootstrapping results indicate that both datasets have similar uncertainties for their mean values, with frequent overlap of the 

confidence intervals (Tables 74-85). The most substantial differences in mean values are observed in daily aggregations, with 

discrepancies of 1.13 %, 5.41 %, and 6.36 % for arid, continental, and temperate regions, respectively. At the annual scale, these 935 

differences decrease to 0.87 % for arid regions and 4.11 % for temperate regions. Continental regions unexpectedly show an 

increased difference of 5.54 % at the annual scale, which could be attributed to higher interannual variability or spatial 

heterogeneity. Median differences in precipitation show significant improvement with temporal aggregation: arid regions 

decrease from 200 % to 4.88 %, continental regions from 142.86 % to 5.70 %, and temperate regions from 118.37 % to 5.63 %. 

Arid regions have the largest margin of error for precipitation, but the smallest percent difference between their daily, monthly, 940 

seasonal, and annual mean values. Conversely, for temperature, arid regions have the largest percent difference between mean 

values in addition to the largest margins of error compared to continental and temperate regions. Correlations improve from 0.57 

to 0.67 for daily precipitation values to greater than 0.90 for monthly, seasonal, and annual totals. Temperature correlation values 

are 0.99 for all regions. Positive correlation between temperature/evapotranspiration and runoff in arid regions is possibly due to 

increased rates of soil drying and decreased soil moisture retention, which then leads to greater runoff. Intense precipitation 945 

events with higher temperatures can also lead to less infiltration and more runoff. Climate patterns, such as rainy or dry seasons, 

are captured similarly in both datasets and the more consistent pattern may contribute to higher monthly and seasonal 

correlations compared to annual.  

MOPEX has an overall warm bias for all climate regions and a wet bias for arid regions. CAMELS has an overall wet bias for 

temperate and continental regions. MOPEX is approximately 0.62 ˚C, 0.16 ˚C, and 0.35 ˚C warmer than CAMELS for arid, 950 

continental, and temperate regions respectively on all temporal scales. For precipitation, MOPEX is larger than CAMELS by 0.02 

mm day-1, 0.48 mm month-1, 1.45 mm season-1, and 5.82 mm year-1 for arid regions. CAMELS shows a wet bias for continental, 

ranging from 0.15 mm day-1 to 56.21 mm year-1, and temperate, with biases of 0.23 mm day-1 to 84.27 mm year-1. Other comparison 

studies have also shown a warm MOPEX bias when compared to Daymet and a wet Daymet bias compared to MOPEX (Essou et 

al., 2016) and PRISM (Muche et al., 2020). Arid regions have the largest variance and uncertainty which could be due to high 955 

evaporation rates, diverse landscapes, or the limited number of stations could influence bootstrapping results, incorporating fewer 

values compared to temperate or continental landscapes.  

 

Precipitation exhibits a more pronounced positive bias on an annual scale (Fig. 153c), primarily due to the accumulation of small 

positive biases observed on monthly and seasonal scales. On finer temporal scales, these individual biases may partially offset each 960 

other due to seasonality, leading to less noticeable discrepancies yet when data is aggregated annually, consistent overestimations 

are amplified, resulting in a more evident positive bias. This pattern highlights the presence of a systematic wet bias, where 
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precipitation is consistently overestimated across temporal scales. The effect becomes more apparent at larger aggregation 

intervals, particularly due to increasing precipitation totals. 

 965 

For temperature, although larger biases are observed in the 1980s, this pattern is limited to arid regions. Even in later years, the 

outliers for arid regions remain close to -2 °C. The medians for 1981, 1983, and 1987 are near zero, indicating minimal central 

tendency bias for those years. When averaged over time, as shown in Fig. 186, there is a slight improvement in biases for arid 

regions, with a reduction of approximately 0.25 °C from 1981 to 2000. An increase in station density could also contribute to the 

observed improvement in biases. The GHCNd database, accessed via the National Centers for Environmental Information (NCEI), 970 

indicates a noticeable rise in the number of precipitation and temperature stations during the late 1990s and early 2000s. This 

increased station coverage likely enhanced the spatial representation of observations, reducing biases and improving the accuracy 

of aggregated data. 

 

Biases have potential consequences for dependent variables like evapotranspiration and runoff. A wet bias in daily precipitation 975 

could propagate and inflate the estimates of evapotranspiration and runoff, with hydrological models possibly predicting higher 

water availability across the system than actually present. Precipitation and temperature data sources differ between MOPEX and 

CAMELS, resulting in the observed biases, however, statistical analyses and validation in this study demonstrate that the datasets 

closely resemble one another. Precipitation biases are between -0.25 to 0.54 mm day-1 and temperature biases are between -1.88 

to 0.27 ˚C day-1.  These biases exhibit little influence on general hydrologic indices such as runoff efficiency (Fig. 231). Paired 980 

same-day comparisons of CAMELS versus MOPEX indicate that the largest discrepancies are between daily values for 

precipitation and temperature. Combining these datasets is not recommended for evaluating daily events such as maximum 1 day 

precipitation, however, both datasets exhibit the same general trends for seasonality and climatic indices (Sect. 4.3). 

Climate data inherently carries a degree of uncertainty, and the biases described above derive from varying data sources and 

interpolation of those data to the watershed footprint. Factors such as heterogeneity, gaps in coverage, and interpolation methods 985 

contribute to deviations from precision. Data sources can include gauges, satellites, or a combination of both. No two datasets 

will be identical, as discrepancies occur across various scales. The primary objective is to choose the most appropriate, quality-

controlled, accurate, and representative dataset for the research at hand. Previous comparison studies have highlighted the 

inconsistencies and biases between data products (Levy et al., 2017; Mallakpour and Villarini, 2016; Prat and Nelson, 2015; Sun 

et al., 2018).  990 

Differences are expected between the datasets based on their sources and processing. Essou et al. (2016) compared three gridded 

datasets that interpolated daily temperature and precipitation values from the same observation network and noted that “the 

differences between gridded products may largely be attributed to the interpolation schemes which differ substantially from one 

dataset to another.” MOPEX estimated daily mean areal precipitation and temperature by interpolating NCDC COOP and SNOTEL 

station data using an inverse distance algorithm. CAMELS used gridded daily precipitation and temperature data from Daymet 995 

version 2 which used a Gaussian convolution kernel interpolation (Thornton et al., 2012). While there are some notable differences 

in daily events, the results from this study show that MOPEX and CAMELS consistently demonstrate the same trends in space and 

time. A key distinction between the MOPEX and CAMELS datasets lies in their methodological foundations. While both rely on 

ground-based weather stations as their primary source of meteorological input, they differ in how these observations were 

processed and spatially interpolated. Daily observations from a network of weather stations are made available by NOAA’s 1000 

National Centers for Environmental Information (NCEI). These data undergo quality assurance checks and processing prior to 
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dissemination. However, uncertainties inherent to station observations remain due to limitations in instrumentation, despite adhere 

to established standards and calibration protocols, such as those outlined by the National Weather Service 

(https://www.weather.gov/coop/standards).  

MOPEX used observed, gauge-based inputs of precipitation and temperature from Cooperative Observer Program (COOP) and 1005 

Snowpack Telemetry Network (SNOTEL) weather stations to estimate mean areal values at the catchment scale (Schaake et al., 

2006). For precipitation, MOPEX employed the Mean Areal Precipitation (MAP) methodology developed by the National 

Weather Service River Forecast Systems (NWSRFS), which combined an inverse distance weighting algorithm with monthly 

climatological means from PRISM to enhance spatial representativeness (Daly et al., 1993). In contrast, CAMELS derived its 

meteorological forcing data, specifically precipitation and temperature, from Daymet version 2, a gridded dataset that 1010 

interpolates and extrapolates surface observations from Global Historical Climatology Network (GHCN) stations, including 

those from COOP (Thornton et al., 2014). Daymet version 2 employs a Gaussian convolution kernel interpolation method to 

produce spatially and temporally consistent values across the CONUS. These gridded values were then spatially averaged to the 

catchment scale within CAMELS (Newman et al., 2015).   

Evapotranspiration values in CAMELS are estimated via the SAC-SMA hydrological model and as our results highlight, these 1015 

model-based ET values can sometimes produce implausible behavior – such as overestimation or ET demand exceeding 

available precipitation. As MOPEX does not provide ET data, it can be calculated as a water balance residual. This approach 

benefits from empirical grounding, particularly in well-instrumented basins, but may suffer in regions with poor data quality or 

significant anthropogenic influences that are not explicitly accounted for in the water balance in addition to the uncertainties 

present in precipitation and runoff estimates (Carter et al., 2018).   1020 

MOPEX provides a longer historical record, which is valuable for evaluating long-term trends and hydroclimate variability. 

CAMELS is particularly well-suited for regional-scale hydrological analyses and climate sensitivity studies, especially in areas 

where gauge coverage is minimal or where spatial variability in meteorology is high (Addor et al., 2017; Newman et al., 2015). 

For spatially extensive or gridded analyses where consistency and meteorological realism are priorities, CAMELS offers 

advantages. Thus, when using daily data, the choice between CAMELS and MOPEX depends on the application.  1025 

 

6 Conclusions 

In this study, we evaluated two large sample datasets, MOPEX and CAMELS, comparing precipitation and temperature. The 

current MOPEX dataset contains data for 431 watersheds within the CONUS while CAMELS includes data for 671 watersheds. 

The datasets were combined for this study and 47 common basins were compared for water years 1981 through 2000 on daily, 1030 

monthly, seasonal, and annual scales. Precipitation, temperature, and streamflow data are areally weighted by delineated 

boundaries available as shapefiles. The main conclusions from the statistical comparison between CAMELS and MOPEX at daily, 

monthly, seasonal, and annual scales are summarized as follows: 

 

1) The relevance of differences between MOPEX and CAMELS depends on the study’s scale and purpose. 1035 

https://www.weather.gov/coop/standards
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2) Daily pairwise comparisons are not recommended due to the variability in extreme precipitation event measurements. 

However, both datasets capture similar patterns and basin behavior, for example, when evaluating the number of rainy 

days or dry days per year.  

1) Daily pairwise comparisons are not recommended due to the variability in extreme precipitation event measurements. 

However, both datasets capture similar patterns and basin behavior, e.g. when evaluating the number of rainy days or dry 1040 

days per year.  

2)3) Comparison improves significantly with monthly, seasonal, and annual aggregations. Despite temperature and 

precipitation biases, MOPEX and CAMELS show similar predicted runoff at the annual scale, requiring no raw data 

corrections. Monthly, seasonal, and annual values are comparable, as their differences are within expected uncertainty 

ranges.  1045 

4) Compatibility is constrained by basin water balance and requires basin averaged values, i.e. ET values from model output 

CAMELS time series must be used with caution, and often cannot be reconciled with MOPEX or other water-balance 

based estimates 

3)5) All modeling results should include uncertainty estimates. Bias correction is typically performed during calibration, 

addressing dataset specific biases.  1050 

 

The comparative analysis of the MOPEX and CAMELS datasets reveals distinct biases and variability patterns across climate 

regions and temporal scales. CAMELS generally exhibits a positive precipitation bias at monthly, seasonal, and annual 

aggregations in continental and temperate regions, while MOPEX shows higher daily precipitation values, particularly in arid 

regions. Temperature analysis highlights a consistent warm bias in MOPEX across all regions and time scales, with notable 1055 

disparities in daily values. Despite these differences, the datasets show overlapping confidence intervals for many metrics, 

suggesting similar levels of uncertainty. 

The observed variations, particularly for extreme precipitation events, underscore the necessity for cautious interpretation of 

dataset-specific results. For applications requiring precision, such as hydrological modeling or climate analysis, direct substitution 

of daily values between MOPEX and CAMELS is not advisable without considering these biases. Instead, leveraging insights from 1060 

both datasets can provide a more comprehensive understanding of regional and temporal climate characteristics. 

Ongoing research aims to extend the MOPEX dataset from 2003 to 2023 and the CAMELS dataset from 2014 to 2023, leveraging 

the Daymet dataset (Thornton et al., 2021). MOPEX and CAMELS will be integrated into a cohesive resource that combines 

catchment attributes and human impact classifications based on the GAGESII framework (Falcone et al., 2010). The enhanced 

dataset will support model calibration and freshwater balance studies at the watershed scale (in progress, Sink et al.). Basin-scale 1065 

analyses and forecasts are expected to benefit from more precise water balance constraints, improving their accuracy and predictive 

power. 

 

Code and data availability. A repository with R Code used for analyses and resulting data is available from https://github.com/k-

sink/Toward_merging. Colors are based on https://jfly.uni-koeln.de/color/#pallet by Okabe-Ito (2008). Although the MOPEX 1070 

dataset (Schaake et al., 2006) was publicly available at the time of analysis, recent attempts to access the data at 

http://hydrology.nws.noaa.gov/pub/gcip/-mopex/US_Data were unsuccessful. The CAMELS dataset (Addor et al., 2017) is 

available from https://gdex.ucar.edu/dataset/camels.html. Streamflow data and attributes are available from 

https://waterdata.usgs.gov/nwis/inventory.     

https://github.com/k-sink/Toward_merging
https://github.com/k-sink/Toward_merging
https://jfly.uni-koeln.de/color/#pallet
http://hydrology.nws.noaa.gov/pub/gcip/-mopex/US_Data
https://gdex.ucar.edu/dataset/camels.html
https://waterdata.usgs.gov/nwis/inventory
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